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This paper integrates pricing and replenishment decisions for the following prototypical two-echelon distribution system with deterministic
demands. A supplier distributes a single product to multiple retailers, who in turn sell it to consumers. The retailers serve geographically
dispersed, heterogeneous markets. The demand in each retail market arrives continuously at a constant rate, which is a general decreasing
function of the retail price in the market. The supplier replenishes its inventory through orders (purchases, production runs) from a source
with ample capacity. The retailers replenish their inventories from the supplier. We develop efficient algorithms to determine optimal pricing
and replenishment strategies for the following three channel structures. The first is the vertically integrated channel, where the system-wide
pricing and replenishment strategies are determined by a central planner whose objective is to maximize the system-wide profits. The
second structure is that of a vertically integrated channel in which pricing and operational decisions are made sequentially by separate
functional departments. The third channel structure is decentralized, i.e., the supplier and the retailers are independent, profit-maximizing
firms with the supplier acting as a Stackelberg game leader. We apply our algorithms to a set of numerical examples to quantify the supply
chain inefficiencies due to functional segregation or uncoordinated decision making in a decentralized channel. We also gain insight into
systematic differences in the associated pricing and operational patterns.

1. INTRODUCTION

Traditional inventory planning models for supply chains
assume that all demand processes and hence all revenue
streams are exogenously determined. As a consequence,
such models focus on the minimization of the logistics
costs in the supply chain. Marketing models, on the other
hand, focus on pricing strategies and their impact on sales
volumes and revenues, typically with a rudimentary and
simplistic treatment of the operational costs in the system.
This paper integrates pricing decisions with the determi-

nation of replenishment strategies for the following proto-
typical two-echelon distribution system with deterministic
demands. A supplier distributes a single product to multiple
retailers who in turn sell it to consumers. The retailers serve
geographically dispersed, heterogeneous markets (i.e., the
retailers are local monopolists). (A much more complex
model arises when the retailers act as oligopolists, where
the demand at each retailer is a function of not only his
own price but also the prices charged by the other retailers.
In a decentralized setting, the problem facing the retailers
can be modeled as a noncooperative game, with a solution
being based on a particular equilibrium concept. We do
not address this type of model, which requires entirely dif-
ferent algorithmic approaches.) The demand in each retail
market arrives continuously at a constant rate which is a

general decreasing function of the retail price in the mar-
ket. The supplier replenishes its inventory through orders
(purchases, production runs) from a source with ample
capacity. The retailers replenish their inventories from the
supplier. The logistics costs consist of (1) holding costs
for the inventories carried at the supplier and the retailers,
(2) fixed and variable costs for orders placed by the supplier
and those placed by each of the retailers, and (3) account
management costs, i.e., the costs incurred by the supplier
for managing each retailer’s needs and transactions.
Channel-wide profits are most straightforwardly opti-

mized, if there is a central planner who makes all the pric-
ing and replenishment decisions in the system. A recent
paper by Chen et al. (2001) has identified that this central-
ized solution can in fact be realized in a decentralized sys-
tem if the channel implements a wholesale pricing scheme
that offers discounts based on a number of the retailers’
characteristics. However, whether the centralized solution
is implemented by a central decision maker specifying all
pricing and operational decisions throughout the system, or
in a decentralized manner via a properly designed discount
scheme, it is necessary to determine the Centralized solu-
tion efficiently. This represents one of the main objectives
of our paper.
Inefficiencies in the above supply chain may arise in a

variety of ways. In a vertically integrated channel (i.e., the
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supplier and the retailers belong to the same firm), one
often sees that the pricing decisions are made by the mar-
keting department to maximize revenues minus variable
production/transportation costs, ignoring less apparent
operational (for instance, setup and inventory) costs. Taking
these pricing decisions (and the resulting demand rates) as
given, the production/distribution department subsequently
determines a replenishment policy minimizing total opera-
tional costs. In short, the pricing and replenishment deci-
sions are made sequentially. This artificial separation of the
marketing and operational decisions, typical of many orga-
nizations in which different functional departments act as
isolated silos, causes supply chain inefficiencies. We refer
to the resulting solution as the silo solution.
In a decentralized channel where the supplier and the

retailers are independent, profit-maximizing firms, supply
chain inefficiencies may be even more severe. Consider the
case where the supplier is able to specify the terms (i.e.,
the wholesale price) unilaterally to maximize its own per-
formance. This situation can be modeled as a Stackelberg
game, with the supplier as the leader and the retailers as
followers. More specifically, the supplier sets a wholesale
price and a replenishment strategy for itself with the objec-
tive of maximizing its own profit. Each of the retailers
takes the wholesale price as given and determines a retail
price and a replenishment strategy so as to maximize its
own profits. The resulting solution for the supply chain is
referred to as the Stackelberg solution.
To understand the magnitudes of the supply chain inef-

ficiencies in the above scenarios as well as any systematic
differences in the associated pricing and operational pat-
terns, one must determine the resulting solutions and com-
pare them with the centralized solution. Note that in the silo
solution, the channel-wide profits can easily be determined
by using existing results (see the literature review below);
in fact, this problem mirrors the current academic litera-
ture in marketing and operations. However, the problems
of obtaining the centralized solution and the Stackelberg
solution are considerably harder and to our knowledge,
untackled. The main contribution of this paper is to pro-
vide efficient algorithms to solve these problems. While
not strictly polynomial in N , the number of retailers, we
demonstrate that all proposed algorithms are in practice of
linear or O!N logN " time, with instances with 10 retailers
solvable in approximately 0.02 CPU seconds on a PC with
a Pentium 450-MHz processor.
We apply our algorithms to a set of numerical exam-

ples to gain insight into the above mentioned questions and
comparisons. Based on the results, we make the follow-
ing observations. First, the percentage decrease in channel-
wide profits when going from the centralized solution to
the Stackelberg solution is significant, ranging from around
30% to 100%. When the percentage reaches 100%, it
means that the supplier cannot ensure itself of a positive
profit, even though a vertically integrated system results in
healthy profits. In such cases, the supplier, despite being the

price leader, is forced to withdraw from the market. Sec-
ond, sequential (as opposed to joint) decision making can
be quite costly. In some cases, sequential decision mak-
ing results in negative profits even though the maximum
channel profits are positive. Third, compared with the cen-
tralized solution, the Stackelberg solution results in higher
retail prices and lower sales volumes. Therefore, the dou-
ble marginalization phenomenon, identified in many indus-
trial organization models since Spengler’s (1950) seminal
paper, also arises in our Stackelberg game. Finally, we
have observed that the centralized solution generally pre-
scribes longer replenishment intervals than the Stackelberg
solution. Therefore, shorter replenishment intervals are not
automatically the result of the mere integration or coordi-
nation of decision making processes, contrary to what some
have suggested (Eckstut and Tang 1996).
The remainder of this paper is organized as follows.

Section 2 briefly reviews the relevant literature. Section 3
specifies the model and basic notation. The solution meth-
ods for the centralized solution, the silo solution, and the
Stackelberg solution are developed in §§4, 5, and 6, respec-
tively. Section 7 reports on the numerical examples.

2. LITERATURE REVIEW

It is only slightly more than a decade ago that Roundy
(1985) identified effective strategies for the one-warehouse
multi-retailer model considered here, under the assumption
of centralized control and exogenously given demand rates
for all retailers. Even in this simplified setting, the struc-
ture of an optimal strategy is exceedingly complex; such
fully optimal strategies are therefore of no practical use.
Roundy showed, however, that a simple so-called power-
of-two policy comes within 2% of being optimal. Under
a power-of-two policy, each facility replenishes its inven-
tory with intervals of constant length, which is a power-of-
two multiple of a common base-period. Subsequent work
(e.g., Roundy 1986, Federgruen et al. 1992, and Federgruen
and Zheng 1995) showed that power-of-two policies con-
tinue to come within 2% of optimality for a much larger
class of production/distribution networks with general cost
structures.
The marketing literature on channel coordination focuses

on pricing decisions. Jeuland and Shugan (1983) consider
a simple channel with one supplier and one retailer. Their
model does not consider any inventory replenishment deci-
sions and resulting setup and inventory carrying costs. This
single-retailer model is generalized by Ingene and Parry
(1995) to multi-retailer settings. The operations literature
dealing with channel coordination, on the other hand, has
until recently been confined to replenishment decisions,
assuming that all demand processes are exogenously given.
With the exception of Lal and Staelin (1984), this lit-
erature restricts itself to channels with a single retailer
(or multiple, identical retailers). These papers compute an
optimal centralized solution and discuss various alterna-
tives to implement this solution. Monahan (1984) deter-
mines the centralized solution with the restriction that the
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supplier and retailer use identical order intervals, while
Lee and Rosenblatt (1986) relax this assumption. Lal
and Staelin (1984)—dealing with multiple, nonidentical
retailers—compute a centralized solution implicitly assum-
ing the supplier replenishes its stock infrequently, hence in
large quantities. This paper also discusses a heuristic coor-
dination mechanism via an order quantity discount scheme.
We refer to Chen et al. (2001) for a more detailed review
of this part of the literature.
The need to integrate inventory control and pricing

strategies was first advocated by Whitin (1955). Both
Whitin (1955) and later Mills (1959, 1962) address a
single-period, single-location model in which a single price
and supply quantity need to be determined (under uncer-
tain demands). Subsequent work by Karlin and Carr (1962)
considers an infinite horizon model, again for a single item
and under the assumption that a single constant price is to
be specified at the beginning of the planning horizon.
The first treatments of dynamic integrated pricing and

inventory strategies (i.e., in a multi-period setting) are due
to Thomas (1970) and Kunreuther and Schrage (1973),
developing variants of the Wagner and Whitin (1958)
dynamic lot-sizing model for settings where the demands
can be controlled by selecting appropriate price levels.
Rajan et al. (1992) analyze a continuous-time version
of the same model. Gilbert (1997) extends the results
in Kunreuther and Schrage (1973). See Eliashberg and
Steinberg (1993) for a comprehensive survey of this area
of research. Federgruen and Heching (1999) characterize
optimal strategies for a periodic-review model with stochas-
tic demand; see the references therein for earlier treat-
ments of special cases. Finally, there is a stream of recent
papers characterizing dynamic pricing strategies in settings
with a single initial procurement or perhaps two procure-
ments during the planning horizon. These include Bitran
and Mondschein (1993, 1997), Bitran et al. (1998), Gallego
and van Ryzin (1994), Fisher and Raman (1996), Eppen
and Iyer (1997a, 1997b) and Zhao and Zheng (2000).
All these models deal with a single item held at a sin-
gle location only. Most recently, Gilbert (1998) extended
the Kunreuther-Schrage model, without setup costs, to
allow for multiple items tied together by a joint capacity
constraint.

3. MODEL

Consider a distribution system consisting of a supplier
who distributes a single product to N geographically dis-
persed retailers. The consumer demand in each retailer’s
market occurs continuously at a constant rate, which is
determined by the retail price charged in this market, in
accordance with a general, time-invariant (i.e., stationary)
demand function. All demands must be satisfied without
backlogging.
Each firm (i.e., the retailers and the supplier) incurs

inventory carrying costs which at any point in time are pro-
portional to its inventory level, at a facility-specific cost

rate. The supplier replenishes its inventory through orders
from an outside source with unlimited stock, and the retail-
ers place orders with the supplier. All such orders incur
fixed and variable order costs; the fixed cost components
as well as the variable order cost rates may all be facility-
dependent. As with the outside consumer demand, retail
orders cannot be backlogged.
In addition, our model allows for a cost component

that is often ignored in many inventory models: the sup-
plier may incur a specific annual cost for managing each
retailer’s needs and transactions. In the consumer elec-
tronics industry, for example, one finds that some suppli-
ers establish a “management team” for each of its major
retailer accounts, to monitor the retailers’ needs, transac-
tions and forecasts, to negotiate and implement sales and
logistical terms, etc. Such account teams may comprise
logistics managers, and sales and production representa-
tives. The same management team may be devoted exclu-
sively to a single retailer account, for the largest among
them, or to multiple accounts, for the smaller ones. For
settings where these costs arise, we model the “manage-
ment costs” associated with a retailer account by a concave
function of the retailer’s annual sales volume, reflecting
economies of scale.
All cost parameters are stationary. Similarly, each retailer

maintains a constant retail price. The planning horizon is
infinite. For the centralized system, the objective is to opti-
mize long-run average system-wide profits, whereas for the
decentralized system, each firms maximizes its own long-
run average profits.
Define for i = 1# $ $ $ #N ,

pi = retail price charged by retailer i
di!pi" = annual consumer demand in the market served

by retailer i, a strictly decreasing function of pi

K0 = fixed (setup) cost per order placed by the
supplier

Ki = fixed (setup) cost per order placed by retailer i
h0 = basic annual holding cost per unit carried in

inventory anywhere in the system
hi = incremental (or echelon) annual holding cost per

unit carried in inventory at retailer i.
h̄i = h0+hi

c0 = variable cost per unit ordered by the supplier
ci = variable cost per unit ordered by retailer i

%!di" = annual cost for managing retailer i’s account,
with &!·" increasing, concave and &!0"= 0

(In this paper, we use “increasing” and “decreasing” in the
weak sense.) Let pi!di" be the inverse demand function,
since the demand function di!·" is strictly decreasing. We
assume that pi!di"di is strictly concave and differentiable
in di and that the price pi is allowed to vary over a finite
interval 'pmin

i #pmax
1 ( only.

Note that the quantities )Ki#hi# ci* i = 0# $ $ $ #N + are
given parameters while the prices )pi* i = 1# $ $ $ #N + or
alternatively the demand rates )di* i = 1# $ $ $ #N + are deci-
sion variables. We assume, as in standard inventory models,
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that for all i = 1# $ $ $ #N #hi ! 0, i.e., the cost of carrying
a unit at retailer i is at least as large as the cost of carry-
ing it in the supplier’s warehouse. In addition, the above
specified costs for retailers’ orders, as represented by the
parameters )Ki# ci* i = 1# $ $ $ #N +, reflect the total expen-
diture associated with retailer orders for the system as a
whole, whether expended by the supplier, the retailer or
both. Note that these costs include all logistics costs such
as handling and transportation costs, but exclude any trans-
fer payments between the retailers and the supplier. (For
each order by retailer i, it is often the case that the sup-
plier incurs a fixed order-processing cost Ks

i and the retailer
incurs a fixed setup cost Kr

i with Ks
i +Kr

i =Ki. The separa-
tion of these cost components of Ki is clearly unnecessary
in analyzing the centralized system, and it does not fun-
damentally affect the analysis of the decentralized system,
see below.)
We assume, for convenience, that all orders are received

instantaneously upon placement. Positive, deterministic
leadtimes can be handled by a simple shift in time of all
desired replenishment epochs, as determined under zero
leadtimes, by the actual leadtimes.
Assume, for a moment, that all retailer prices and hence

all demand rates and revenues are given, and consider the
problem of finding an integrated replenishment strategy
minimizing system-wide long-run average setup and hold-
ing costs. As mentioned in the introduction, Roundy (1985)
showed that even for this limited problem an exact optimal
strategy is exceedingly complex and entirely intractable. On
the other hand, he showed that a simple power-of-two pol-
icy is guaranteed to come within 2% of optimality and that
the parameters of this policy can be computed by a sim-
ple algorithm in O!N logN " time. (A later refinement by
Queyranne 1987 reduces the complexity to O!N ".) Under
such a power-of-two policy a base period TL is chosen,
and each of the facilities chooses a constant replenishment
interval from the set of the power-of-two multiples of TL,
receiving replenishments when its inventory is down to
zero. Let

Ti = replenishment interval for retailer i# i = 1# $ $ $ #N

T0 = replenishment interval for the supplier.

Throughout this paper, we assume that TL is fixed. A
power-of-two policy is one where

Ti = 2miTL# i = 0# $ $ $ #N # (1)

with mi a (positive or negative) integer. (The above 2%
optimality gap is obtained when TL is allowed to vary. If
TL is fixed, the guaranteed optimality gap increases to 6%.)
Assume that the system starts out empty (i.e., without

inventories). Thus all facilities place an order at time 0.
Note that thereafter all retailers with a given replenish-
ment interval Ti = t place all of their orders at the same
replenishment epochs along with all retailers with a smaller
replenishment interval. (A replenishment interval t′ smaller

than t satisfies t = 2mt′, due to Equation (1), with m a
positive integer.) The power-of-two structure thus induces
maximum coordination between the replenishment orders
of different facilities, providing an intuitive explanation for
its excellent performance.

4. THE CENTRALIZED SYSTEM

This section considers the problem facing a central planner
for the supply chain, who determines the retail prices and
the system-wide replenishment strategy, and whose objec-
tive is to maximize the system-wide profits. We develop an
efficient algorithm for solving this problem.
The problem considered here is considerably harder than

that treated in Roundy (1985), who showed that for exoge-
nously given demand rates, there exists a power-of-two
policy that comes within 2% of optimality (or 6% if the
base period is fixed). This negligible optimality gap, when
measured in terms of cost differentials along with other
attractive features discussed above and elsewhere (e.g.,
Roundy 1985 and Federgruen et al. 1992), motivates us to
restrict ourselves to replenishment strategies which are of
the power-of-two type. Below, we examine the optimality
gap (in terms of system-wide profits) resulting from this
restriction. Let profit∗ = revenue∗− cost∗ be the maximum
system-wide profits under an optimal pricing/replenishment
strategy without the power-of-two restriction, and profit0

the maximum system-wide profits under the restriction.
(Here the revenue term is defined to be sales minus variable
costs minus account management costs, and the cost term
refers to setup and inventory holding costs only. Note that
the supply chain’s revenue is completely determined by the
demand rates.) Now fix the demand rates (thus retail prices)
at those found in the (truly) optimal pricing/replenishment
solution, and consider the remaining problem of choos-
ing a replenishment strategy to minimize the system-wide
inventory costs (i.e., setup and inventory holding costs).
This problem is exactly the one considered in Roundy
(1985). Let LB be a lower bound on the system-wide
inventory costs of any feasible policy. As mentioned, one
can find an optimal power-of-two policy so that the cor-
responding system-wide inventory costs, denoted by cost′,
is within 6% of LB (assuming the base period is fixed),
i.e., cost′ " 1$06LB. Because cost∗ ! LB#1$06cost∗ ! cost′.
Let profit′ be the resulting system-wide profits. Because the
demand rates are fixed at those found in the truly optimal
solution, the total revenue for this system is still revenue∗.
Thus profit′ = revenue∗ − cost′. Note that this sequential
solution (fix demand rates first, then optimize within the
class of power-of-two policies) is only a feasible solution
to the integrated pricing/replenishment problem under the
power-of-two restriction. Thus profit′ " profit0. The above
observations lead to the following inequalities:

profit0

profit∗
!

revenue∗ − cost′

profit∗
= 1− cost′ − cost∗

profit∗

! 1−0$06
cost∗

profit∗
$
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Therefore, if the supply chain has a relatively large
profit margin (corresponding to a relatively large value of
profit∗/cost∗), we can expect the profit gap caused by the
power-of-two restriction to be quite small. Conversely, if
the profit margin is small, the profit gap can be large.
Nevertheless, power-of-two policies represent the state-of-
the-art solution for the kind of replenishment problem con-
sidered here.
Recall from Roundy (1985) that under a power-of-two

policy the long-run average (system-wide) setup and hold-
ing costs are given by

K0

T0
+

N∑

i=1

{
Ki

Ti

+ 1
2
h0di!pi"max)T0#Ti++

1
2
hidi!pi"Ti

}
$ (2)

Treating )di# i= 1# $ $ $ #N + as the decision variables, along
with the intervals )Ti# i= 0# $ $ $ #N +, we obtain the follow-
ing expression for the system-wide profits ,:

,=−K0

T0
+

N∑

i=1

Gi!di#Ti#To"# (3)

where

Gi!di#Ti#T0"= !pi!di"− c0− ci"di−&!di"−
Ki

Ti

− 1
2
h0dimax)T0#Ti+−

1
2
hidiTi$

The problem thus reduces to determining a power-of-two
vector T satisfying Equation (1) and a vector of demand
rates d achieving the maximum in Equation (3). Let
!T ∗

0 #T
∗
1 # $ $ $ #T

∗
N " and !d

∗
1# $ $ $ #d

∗
N " be the optimal solution,

and ,∗ the maximum channel profits.
Below, we develop an efficient algorithm to compute an

optimal vector pair !T #d" maximizing channel-wide prof-
its. We first need the following preliminary results. For any
fixed vector of demand rates d, define for i = 0# $ $ $ #N

T̂i!d"= the replenishment interval for facility i which
achieves the unconstrained minimum of
Equation (2), i.e., without consideration of the
constraints in Equation (1). (Roundy 1985
establishes the existence of a unique minimum of
Equation (2) for any given d.)

T ∗
i !d" = the smallest replenishment interval for facility i

which achieves the minimum of Equation (2)
subject to the power-of-two constraints (1).

It follows from Roundy (1985) that T ∗
i !d" is obtained from

T̂i!d" by rounding the latter to the power-of-two multiple
of TL that is closest in the relative sense. More formally, let
m= $log2!T̂i!d"/TL"%, where $y% is the largest integer less
than or equal to y. Then, by the definition of m#2mTL "

T̂i!d"< 2m+1TL, and

T ∗
i !d"=

{
2mTL if T̂i!d""

√
22mTL#

2m+1TL otherwise.
(4)

In the sequel, “rounding” refers to the above procedure.
Similarly, for any fixed vector of power-of-two inter-

vals T = !T0#T1# $ $ $ #TN ", let d∗
i !T "= the demand rate for

retailer i which achieves the maximum of Equation (3),
i = 1# $ $ $ #N .
The following lemma identifies some useful monotonic-

ity properties. We say a function f !x" is decreasing in the
N -dimensional vector x if f !x′" ! f !x′′" for all x′ and x′′

with x′
i " x′′

i for i = 1# $ $ $ #N .

Lemma 1. (a) T ∗
i !d" is decreasing in d for i = 0# $ $ $ #N .

(b) d∗
i !T " is decreasing in T for i = 1# $ $ $ #N .

Proof. (a) Observe first that the rounding procedure trans-
forming T̂ to T ∗ is order-preserving, i.e., if T̂i!d

1"" T̂i!d
2"

for some demand rate vectors d1 and d2 and some i =
0# $ $ $ #N then T ∗

i !d
1" " T ∗

i !d
2". It thus suffices to prove

that T̂ !d" is decreasing in d.
We first derive an equivalent formulation for

Equation (2). Introduce auxiliary variables T0i =
max)T0#Ti+, i = 1# $ $ $ #N . The problem of minimizing
Equation (2) is thus equivalent to the following convex
program:

!P"min
Ti#T0i

N∑

i=0

Ki

Ti

+
N∑

i=1

1
2
h0diT0i+

N∑

i=1

1
2
hidiTi# (5)

s$t$ T0i ! T0# i = 1# $ $ $ #N (6)

T0i ! Ti# i = 1# $ $ $ #N $ (7)

(Because for any i = 1# $ $ $ #N the objective (5) is increas-
ing in T0i, in an optimal solution to (P) at least one of
the two constraints is binding, i.e., T0i = max)To#Ti+.)
Next, substitute the Ti and T0i variables by xi = T−1

i and
x0i = T−1

0i :

!P"min
xi#x0i

f !x#d"
def=

N∑

i=0

Kixi+
N∑

i=1

1
2
h0di/x0i (8)

+
N∑

i=1

1
2
hidi/xi#

s$t$ x0i " x0# i = 1# $ $ $ #N (9)

x0i " xi# i = 1# $ $ $ #N $ (10)

Let:

S = )x = !x0#x1# $ $ $ #xN *x01# $ $ $ #x0N " ∈ R2N+1 - x ! 0

satisfies !9" and !10"+#

D = )d ∈ RN - d ! 0+#

x∗
d = the vector x ∈ S which achieves the minimum in

Equation (8). (Because T̂ !d" is the unique minimizer of (2)
for fixed d#x∗

d is uniquely determined as well.)
Note that D is a partially ordered set. Also, S is a lat-

tice, since it is a partially ordered set and it can be shown
that if x#y ∈ S then min)x#y+ ∈ S and max)x#y+ ∈ S.
(min)x#y+ is the vector of component-wise minima and
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max)x#y+ the vector of component-wise maxima.) We
verify that min)x#y+ ∈ S. (The proof that max)x#y+ ∈
S is analogous.) Because x ∈ S, for all i = 1# $ $ $ #N ,
x0 ! x0i !min)x0i#y0i+ and y ∈ S, y0 ! y0i !min)x0i#y0i+.
Thus, min)x0#y0+ ! min)x0i#y0i+, verifying Equation (9).
The proof that min)x#y+ satisfies Equation (10) as well is
analogous.
The fact that x∗

d is increasing in d ∈ D and hence
Lemma 1 follows from Theorem 6 in Topkis (1978) by ver-
ifying that:

(i) f !x#d" is submodular in x ∈ S for each d ∈D
(ii) f !x#d" has antitone differences in !x#d" on S×D.

Part (i) is immediate because f !x#d" is in fact a modular,
i.e., a separable function in the x-variables. To verify (ii),
we need to show that for all x1 " x2 and d1 " d2:

f !x2#d2"−f !x1#d2"" f !x2#d1"−f !x1#d1"$

Note that the corresponding inequality holds term by term
in Equation (8).
(b) Note first that for fixed T , the profit function in

Equation (3) is separable in di# i = 1# $ $ $ #N . More specif-
ically, di is chosen to maximize

!pi!di"− c0− ci"di−&!di"

−
(
1
2
h0 max)T0#Ti++

1
2
hiTi

)
di#

which can be written as

ri!di"− c̃idi# (11)

where ri!di" = !pi!di" − c0 − ci"di − &!di" and c̃i =
1
2h0 max)T0#Ti++ 1

2hiTi, which is clearly increasing in T .
Therefore, it suffices to show that the value of di that max-
imizes the value of Equation (11) is decreasing in c̃i. Take
any c̃1i < c̃2i . Let d

1
i and d2

i be the corresponding optimal
values of di. Note that for any d > d1

i , we have

ri!d
1
i "− c̃1i d

1
i ! ri!d"− c̃1i d

> ri!d"−
[
c̃1i d

1
i + !d−d1

i "c
−2
i

]
#

which is equivalent to

ri!d
1
i "− c̃2i d

1
i > ri!d"− c̃2i d$

Thus d2
i " d1

i . #

The above result is quite intuitive. We can interpret c̃i as
the “imputed” marginal cost for retailer i. As the marginal
cost increases, the retailer tends to charge a higher price
and sell less.

We now derive bounds on )T ∗
i !d"# i = 0# $ $ $ #N + that

apply to all achievable demand vectors d. Let dmax
i =

di!p
min
i " and dmin

i = di!p
max
i " for i = 1# $ $ $ #N . Define

. ′i =
√

2Ki

h̄id
max
i

and .i =
√

2Ki

hid
min
i

# i = 1# $ $ $ #N #

and

. ′0 =min). ′i # i = 1# $ $ $ #N + and

.0 =max).i# i = 1# $ $ $ #N * z+#

where z=
√
2K0/!h0

∑N
i=1 d

min
i "$ For i= 0#1# $ $ $ #N , let .̄ ′i

and .̄i be the rounded values of . ′i and .i, respectively.

Lemma 2. .̄ ′i " T ∗
i !d"" .̄i# i = 0#1# $ $ $ #N .

Proof. Fix the demand vector d. Thus the revenue is fixed,
and profit maximization reduces to minimizing the cost
function in Equation (2). Take any i = 1# $ $ $ #N . Because
√

2Ki

h̄idi

" T̂i!d""

√
2Ki

hidi

(see, e.g., Roundy 1985) and dmin
i " di " dmax

i , we have
. ′i " T̂i!d"" .i. The lemma follows because rounding (to a
power-of-two number) is order-preserving. We next prove
the lemma for i= 0. Because T̂0!d"!mini=1#$$$ #N T̂i!d"! . ′0
(see, e.g., Roundy 1985 for the first inequality), the lower
bound on T ∗

0 !d" follows. To prove the upper bound, sup-
pose Ti = T ∗

i !d" for i = 1# $ $ $ #N . For T0 ! max).̄i# i =
1# $ $ $ #N + which implies T0 ! Ti for i= 1# $ $ $ #N , the only
part in Equation (2) that depends on T0 is

K0

T0
+ 1

2
h0

N∑

i=1

diT0# (12)

which is convex and its unconstrained minimum is x
def=√

2K0/!h0
∑N

i=1 di" " z. If z " max).̄i# i = 1# $ $ $ #N + then
Equation (12) is increasing in T0 over the range T0 !

max).̄i# i = 1# $ $ $ #N +, in which case T ∗
0 !d""max).̄i# i =

1# $ $ $ #N +; otherwise, T ∗
0 !d" does not exceed the rounded

value of z. The lemma follows by combining these two
cases. #

We are now ready to present an algorithm for solving
the joint optimization problem. Recall from Equation (3)
that for a given T0, the channel-wide profit function is sep-
arable in !di#Ti" for i= 1# $ $ $ #N . The algorithm therefore
has two loops. The first loop iterates over all values of
T0 within the bounds identified in Lemma 2. Within this
loop, for each retailer i and each value of Ti in '.̄ ′i # .̄i(,
we optimize the profit function Gi!di#Ti#T0" over di. Let
ni be the number of power-of-two values between .̄ ′i and
.̄i# i = 0#1# $ $ $ #N . Initially, the optimization over di is
over the range 'dmin

i #dmax
i (. For each retailer i, we keep

track of ni upper bounds on di# )d̄ij - j = 1# $ $ $ #ni+, where
d̄ij applies when Ti is set at its jth smallest value. By
Lemma 1’s monotonicity property, we have d̄ij ! d̄i# j+1 for
all j = 1# $ $ $ #ni − 1. By the same monotonicity property,
any upper bound d̄ij which applies for a given value of T0,
continues to apply when T0 is replaced by a larger value,
in particular as T0 is replaced by 2T0 in the outer loop. As
a result, when executing the !j+1"st iteration of the inner
loop for retailer i, we set d̄i# j+1 equal to d̄ij or the current
value of d̄i# j+1, whichever is smaller.
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Algorithm I.

Initialize: ,∗ -= 0;
For i -= 1# $ $ $ #N do di -= dmin

i ;
For i -= 1# $ $ $ #N and j -= 1# $ $ $ #ni do
d̄ij -= dmax

i ;
T0 -= .̄ ′0;

Step 0: , -=−K0/T0;
Step 1: For i -= 1# $ $ $ #N do

begin
j -= 1*Ti -= .̄ ′i *,i -=−);
Iterative Step:
Determine the smallest maximum x of
Gi!x#Ti#T0" on the interval 'di# d̄ij(;

d̄ij -= x;
If Gi!x#Ti#T0">,i then
begin

T 0
i = Ti;

d0
i -= x;

,i -=Gi!x#Ti#T0";
end;
If j < ni then
begin

d̄i# j+1 -=min)d̄i# j+1# d̄ij+;
j -= j+1*Ti -= 2Ti; and go to
Iterative Step;

end;
, -=,+,i

end;
If ,>,∗ then
begin

,∗ -=,;
T ∗
0 -= T0;

For i -= 1# $ $ $ #N do T ∗
i -= T 0

i and
d∗
i -= d0

i ;
end;
T0 -= 2T0;
If T0 " .̄0 then go to Step 0.

The computational effort of Algorithm I consists pri-
marily of the multiple optimizations of the single-variable
function Gi!x#Ti#T0" over x. These functions are often
strictly concave, e.g., in the absence of account manage-
ment costs !&!·" = 0" or when the function &!·" is of
the fixed-plus-linear type. In this case, maximizing Gi is
entirely straightforward, e.g., by bisection or by finding
the unique root of its derivative, while a more general
single-variable optimization technique is required in case
Gi fails to be concave. As is the case with all optimiza-
tion problems involving general, nonlinear functions, we
refer to the single-variable maximization procedure opti-
mizing Gi as an “oracle” and we assess the complexity
of the algorithm in terms of the number of oracle calls
required. Note that the outer loop in Algorithm I is tra-
versed n0 times and the inner loop

∑N
i=1 ni times. Each exe-

cution of the inner loop involves a single call to the oracle
and a constant number of multiplications and comparisons.

The overall effort is thus given by n0
∑N

i=1 ni oracle calls
and O!n0

∑N
i=1 ni" elementary operations. The expression

no

∑N
i=1 ni fails to be polynomial for completely arbitrary

parameters. However, as has been frequently observed for
other algorithms involving power-of-two policies (see, e.g.,
Federgruen and Zheng 1995), it would be exceedingly rare
to have an instance where more than (say) eight distinct
power-of-two values need to be investigated for any of the
facilities, because otherwise, the largest considered replen-
ishment interval would be more than 500 times the small-
est considered interval.Thus, for all practical purposes, the
complexity of Algorithm I can be conservatively bounded
by 64N calls to the oracle and O!N " elementary opera-
tions. This bound does not incorporate the very significant
shortcuts achieved by the updating of the upper bounds
)d̄ij+ described above.

5. THE SILO SOLUTION

The silo solution assumes that the supplier and the retailers
are part of a single firm, where pricing and replenishment
decisions are delegated to separate departments. More
specifically, the marketing department first determines the
demand rates (or the retail prices) to maximize the firm’s
gross profits

∑N
i=1!pi!di"− c0 − ci"di. Let ds

i be the opti-
mal demand rate for retailer i, i = 1# $ $ $ #N . Given these
demand rates, the production/distribution department then
determines the replenishment intervals to minimize the
firm’s logistics costs. This problem is identical to the prob-
lem Roundy (1985) has solved; thus one can use his
O!N logN " algorithm to identify an optimal power-of-two
policy. (An alternative implementation by Queyranne 1987
results in a linear time algorithm.) Alternatively, one can
use a modified version of Algorithm I. First, redefine

. ′i =
√

2Ki

h̄id
s
i

and .i =
√

2Ki

hid
s
i

# i = 1# $ $ $ #N #

and z=
√
2K0/!h0

∑N
i=1 d

s
i ". The rounded values of . ′i and

.i are again the lower and upper bounds on T ∗
i !d

s"# i =
0#1# $ $ $ #N , where ds = !ds

1# $ $ $ #d
s
N ". With these updated

bounds, one can use Algorithm I to find the silo solu-
tion by skipping the step optimizing over the demand
rates. Therefore, this algorithm searches over all possi-
ble values of the replenishment intervals. Because no ora-
cle calls are required for the silo solution, the complexity
of this modified version of Algorithm I is O!n0

∑N
i=1 ni".

As argued above, in most practical instances ni " 8 for
i = 0#1# $ $ $ #N , resulting in a linear time algorithm.

6. THE STACKELBERG GAME

In this section, we assume that the supplier and the retail-
ers are independent firms, each of which maximizes its
own profits. The supplier, in anticipation of the retailers’
reactions, chooses a constant wholesale price and a replen-
ishment strategy for itself with the objective of maximiz-
ing its own profits. The retailers take the wholesale price
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as given and each of them maximizes its individual prof-
its by charging an optimal retail price and following an
optimal replenishment strategy. In other words, the players
in the distribution channel play a Stackelberg game, with
the supplier as the leader, and the retailers as followers.
This modus operandi represents many traditional distribu-
tion channels in which the channel members fail to coor-
dinate their decisions. Nevertheless, no solution procedure
has been proposed to solve this decentralized system. The
objective of this section is to develop an efficient algorithm
for the Stackelberg game. In addition to providing the opti-
mal policy parameters for such decentralized systems, the
algorithm enables us to quantify the relative benefits of the
centralized solution.
Every decentralized supply chain requires an upfront

specification of a contract, i.e., a set of ground rules for
the commercial interactions between the different parties
involved. Such a contract may involve the specification of
a pricing rule, the commitment to deliver in whole or in
part (possibly within a specified leadtime), return policies,
restrictions on the times at which orders may be placed and
delivered (e.g., daily, every Tuesday or Friday, etc.), among
others. In our model, the contract consists of the following
provisions. We assume, without loss of generality, that the
system is without inventory at time 0. The supplier com-
mits himself to satisfy all retailer orders in their entirety
without backlogging and to deliver them with a fixed lead-
time, which is without loss of generality normalized to be
zero. The supplier is responsible for all (fixed and vari-
able) costs associated with its orders, the holding costs
incurred for its own inventories as well as the account man-
agement costs. The retailers are responsible for all costs
incurred for orders they place with the supplier and all
inventories they carry at their sites. (Later, we will show
that the same analysis goes through if the supplier incurs a
fixed order-processing cost for each retailer order.) Finally,
all channel members place their replenishment orders at
epochs chosen from the discrete set of power-of-two val-
ues )2mTL - m = $ $ $ #−2#−1#0#1#2# $ $ $ +. This restriction
results in considerable simplifications and efficiencies for
the supplier at minimal expense to the retailers. As dis-
cussed before and known since Brown (1959), the latter’s
inventory related costs increase by at most 6%. On the
other hand, if the retailers were able to choose their replen-
ishment intervals without any restriction, these would be
set according to the EOQ formula and the resulting order
stream for the supplier would be highly nonstationary and
in general without a periodically repeating pattern. This
rather intricate order pattern from the retailers would cer-
tainly represent a difficult managerial task for the supplier.
Moreover, no satisfactory solution exists for the resulting
inventory problem for the supplier and the supplier’s costs
are significantly larger than if orders come in according to
power-of-two patterns. It can therefore be expected that the
supply-chain-wide profits in the Stackelberg game with the
power-of-two restriction are larger than those in a version
of the game without such restrictions. If the restriction to

power-of-two intervals is difficult to enforce, the supplier
may offer an annual rebate to the retailers equal to the
modest increase in their inventory and setup costs resulting
from the interval restriction. (Such rebates are most easily
computed and clearly do not affect the supply-chain-wide
profits arising from the Stackelberg game.)
We now develop an efficient algorithm for solving the

above Stackelberg game. We begin by considering retailer
i’s problem. Let w be the wholesale price and T0 the
supplier’s replenishment interval. Given these decisions,
retailer i sets his own retail price pi and replenishment
interval Ti to maximize his own profit. Therefore, retailer
i’s problem can be formulated as

max
di#Ti

/i!di#Ti*w"
def= !pi!di"− ci−w"di−

Ki

Ti

− 1
2
h̄idiTi#

i = 1# $ $ $ #N # (13)

where Ti only takes on power-of-two values and di is con-
fined to the finite interval 'dmin

i #dmax
i (. (As before, we use di

as the decision variable. The retail price is again uniquely
determined through the inverse demand function.) Note that
the profit measure in Equation (13) depends only on a sin-
gle parameter specified by the supplier, i.e., the (constant)
wholesale price w. In particular, the profit measure is inde-
pendent of T0.
We adopt the convention that when given a choice

between two pairs of decision variables !di#Ti" with differ-
ent Ti- but identical profit values, the retailer will always
choose the pair with the lower Ti value. Note that for
any fixed Ti value, the corresponding optimal di value is
uniquely determined since the profit function /i is strictly
concave in di. Furthermore, this optimal di value is strictly
decreasing in Ti, as follows from the first-order condition.
Therefore, if there are multiple optimal solutions to the
retailer’s problem, they must have distinct di and Ti values.
Thus, given the above convention, let !di!w"#Ti!w"" be the
(uniquely) chosen optimal solution in Equation (13).
Just like for any given Ti, there is a unique correspond-

ing optimal di value, the converse holds as well, given
the above convention. For any fixed di, the chosen opti-
mal corresponding value of Ti is obtained by rounding the

unconstrained minimum point
√
2Ki/h̄idi of the EOQ cost

function

min
Ti

Ki

Ti

+ 1
2
h̄idiTi

to the power-of-two value that is closest in the following
relative sense. Let tm = 2mTL#m integer. The optimal value
of Ti equals tm if and only if

tm√
2
<

√
2Ki

h̄idi

" tm
√
2 or dm

i " di < dm−1
i # (14)

where dn
i = Ki/h̄it

2
n for any integer n. Because di is con-

fined to a finite interval 'dmin
i #dmax

i (, there are only a finite
number of Ti values that need to be considered. Let ni be
the number of such Ti values.
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Lemma 3. For i= 1# $ $ $ #N , we have (i) di!w" is decreas-
ing in w, (ii) Ti!w" is an increasing step function of w with
finitely many steps, and (iii) Ti!w" is still an increasing
step function of w if Ti is confined to any finite subset of
power-of-two values.

Proof. The rounding procedure in Equation (14) implies
that the optimal value of Ti is uniquely determined by di

and is decreasing in di. Moreover, as noted above, there
are only a finite number of Ti values that are potentially
optimal and thus the function Ti!w" takes on finitely many
values. Therefore, (i) implies (ii).
To show (i), take any w′ < w′′. Note that

/i!di#Ti*w′"−/i!di#Ti*w′′"= !w′′ −w′"di$ (15)

Write d′
i and T ′

i for di!w
′" and Ti!w

′", respectively. Note
that for any di > d′

i and any Ti, we have

/i!d
′
i#T

′
i *w′′"= /i!d

′
i#T

′
i *w′"− !w′′ −w′"d′

i

> /i!d
′
i#Ti*w′"− !w′′ −w′"di

= /i!di#Ti*w′′"#

where the inequality follows because /i!d
′
i#T

′
i *w′" !

/i!di#Ti*w′" by the definition of d′
i and T ′

i , and di > d′
i.

Therefore, di!w
′′"" d′

i.
Now suppose Ti is confined to a finite subset of power-

of-two values. It is clear that in this case, the optimal value
of Ti is still uniquely determined by di and decreases as di

increases. (iii) thus follows from (i). #

Because Ti!w" is an increasing step function of w with
finitely many steps (Lemma 3), there exist a finite number
of breakpoints for the wholesale price so that Ti!w" remains
constant between any two consecutive breakpoints. We now
show how these breakpoints can be determined efficiently.
First, note that we can restrict w to a finite interval !a#b"
with a= c0 and b=max)pmax

i # i= 1# $ $ $ #N +. Let di!w#Ti"
be the optimal demand rate for retailer i as a function of w
and Ti. Let /i!w*Ti" denote /i!di!w#Ti"#Ti*w". (Clearly,
/i!w*Ti" is a decreasing function of w for any given Ti.)
Now take any pair of reorder intervals T ′

i and T ′′
i with T ′

i <
T ′′
i , and suppose the retailer chooses between these two

intervals. By Lemma 3 (iii), one of the following three
cases prevails: (1) the retailer chooses T ′

i for all w ∈ !a#b";
(2) the retailer chooses T ′′

i for all w ∈ !a#b"; and (3) there
exists a point w0 such that T ′

i is chosen to the left of w0

and T ′′
i is chosen to the right of w0. Thus in all three cases,

there exists a unique cross point ŵ such that at this point,
the retailer’s choice switches permanently from T ′

i to T ′′
i :

in case (1), ŵ = b; in case (2), ŵ = a; in case (3), ŵ = w0.
Note that ŵ can be determined easily by bisection, starting
with the evaluation of the sign of /i!w*T ′

i "−/i!w*T ′′
i " for

w = a and w = b.
Recall that there are ni distinct power-of-two values of Ti

that are potentially optimal. We construct the step function
)Ti!w" - a < w < b+ by an iterative procedure. In the first

iteration, we consider only the two smallest feasible power-
of-two values, in the kth iteration the !k+ 1" smallest
values until reaching the ni−1st iteration in which all feasi-
ble power-of-two values are considered. By Lemma 3 (iii),
if only the k smallest values of Ti are considered, the func-
tion )Ti!w" - a < w < b+ is still an increasing step function
and can therefore be characterized by a (possibly empty)
list of breakpoints Wi = )w!1"# $ $ $ #w!L"+ with 0 " L < k
and an associated list of indices Ji = )j!1"# $ $ $ # j!L"+ such
that for all l = 1# $ $ $ #L#Ti!w" equals the j!l"th smallest
power-of-two value on the interval !w!l−1"#w!l"( (with the
convention w!0" = a), while Ti!w" equals the kth smallest
power-of-two value on !w!L"#b(. To simplify the exposition
below, we write “Ti = k” when Ti equals the kth smallest
power-of-two value. After the first iteration, both lists con-
tain one element with w!1" the cross point of the profit func-
tions associated with the two smallest power-of-two values.
Assume now that the k−1th iteration has been completed.
We describe how the two lists can be updated efficiently
in the kth iteration. First, compute the cross point ŵ of the
profit functions of “Ti = k” and “Ti = k+1” and compare
this with w!L". Case I: ŵ >w!L": set L=L+1, add w!L" = ŵ
at the back of list Wi and add k at the back of Ji as j!L". (By
the cross point definition, “Ti = k+1” dominates “Ti = k”
for w > ŵ while the list Wi indicates that “Ti = k” dom-
inates all smaller power-of-two values for w > ŵ > w!L".
Thus “Ti = k+ 1” dominates the k smallest values for
w > ŵ, while one of the k smallest values dominates for
w" ŵ. Indeed, for all l= 1# $ $ $ #L, “Ti = j!l"” continues to
dominate on the interval !w!l−1"#w!l"(.) Case II: ŵ " w!L":
In this case, “Ti = k” is dominated by one of the other
values throughout the interval !a#b" and can therefore be
eliminated from consideration. Thus, delete w!L" and j!L"
from the lists. The situation is now equivalent to that of iter-
ation j!L", assuming all values j!L"+1# $ $ $ #k are eliminated
from consideration. Thus, as before, compute the cross
point ŵ of the profit functions “Ti = j!L"” and “Ti = k+1,”
set L -= L− 1, and compare the cross point with the new
w!L" value. Repeat this process, eliminating the elements
from the back of the lists Wi and Ji and reducing the value
of L by one until either Case I emerges or the lists are emp-
tied out. After the nith iteration, the lists Wi and Ji, both
of length L " ni − 1, fully characterize the step function
)Ti!w"- a < w < b+.
Note that the above algorithm bears similarity to other

list-based procedures used to solve dynamic programs of
special structure, see e.g., Aggarwal et al. (1987), Hirshberg
and Larmore (1987), Wilber (1988), Miller and Myers
(1988), Galil and Giancarlo (1989), and Federgruen and
Tzur (1991).
Let

⋃N
i=1Wi = )w0#w1# $ $ $ #wM+1- a = w0 < w1 < · · · <

wM <wM+1 = b+ for some integer M "
∑N

i=1!ni−1" denote
the complete list of all of the retailers’ breakpoints. For all
w ∈ 'wm#wm+1(, the optimal replenishment intervals for the
retailers remain fixed, m = 0# $ $ $ #M . Let Tm

i be retailer
i’s optimal replenishment interval when w ∈ 'wm#wm+1(,
for m = 0# $ $ $ #M and i = 1# $ $ $ #N . Note that on the
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m-th interval 'wm#wm+1(#di!w" is easily determined as
follows:

di!w"=






dmin
i if 0/i!d

min
i #Tm

i *w"/0di < 0#

dmax
i if 0/i!d

max
i #Tm

i *w"/0di > 0#

unique root of

0/i!di#T
m
i *w"/0di = 0 otherwise#

where

0/i!di#T
m
i *w"

0di

= !pi!di"− ci−w"+p′
i!di"di

− 1
2
h̄iT

m
i # i = 1# $ $ $ #N $

Finally, it is noteworthy that each retailer’s optimal prof-
its vary continuously with the wholesale price w, in spite
of the retailer’s optimal replenishment interval being con-
fined to a discrete set of values. More specifically:

Lemma 4. /i!di!w"#Ti!w"*w" is continuous and decreas-
ing in w for i = 1# $ $ $ #N .

Proof. Take any i = 1# $ $ $ #N . Because retailer i’s profit
under a higher wholesale price is lower for any di and
Ti values, it follows that /i!di!w"#Ti!w"*w" decreases in
w. Now take any w′ < w′′. Write d′

i, T
′
i , d

′′
i , and T ′′

i for
di!w

′"#Ti!w
′"#di!w

′′", and Ti!w
′′", respectively. Note that

0" /i!d
′
i#T

′
i *w′"−/i!d

′′
i #T

′′
i *w′′"

= /i!d
′
i#T

′
i *w′′"−/i!d

′′
i #T

′′
i *w′′"

+ !w′′ −w′"d′
i " !w′′ −w′"d′

i#

where the first inequality follows because the retailer’s opti-
mal profits are decreasing in the wholesale price, the equal-
ity follows from Equation (15), and the second inequality
follows from the definition of d′′

i and T ′′
i . Because d′

i is
bounded, it follows that /i!di!w"#Ti!w"*w" is a continu-
ous function of w. #

We now proceed to consider the supplier’s optimization
problem, which can be written as

max
w#T0

/0!w#T0"
def=

N∑

i=1

{
!w− c0"di!w"−&!di!w""

− 1
2
h0di!w"'T0−Ti!w"(

+
}
− K0

T0
# (16)

where T0 takes on only power-of-two values. Let w0 be the
optimal wholesale price and T 0

0 the optimal replenishment
interval for the supplier. The supplier’s maximum profit
is ,0

0. Let d
0
i = di!w

0"#T 0
i = Ti!w

0", and ,0
i retailer i’s

maximum profits, i = 1# $ $ $ #N .
Note that /0!w#T0" is best optimized by restricting w

sequentially to each of the M+1 intervals 'wm#wm+1(#m=
0# $ $ $ #M . Let wm and Tm

0 be the optimal solution to

Equation (16) when w is restricted to the mth interval,
'wm#wm+1(. Note that

/0!w#T0"=
N∑

i=1

{(
w− c0−

1
2
h0'T0−Tm

i (
+
)
di!w"

− &!di!w""

}
− K0

T0
# wm " w " wm+1$

We next show that only a limited number of power-of-two
values need to be considered for T0. Define

Sm =min)Tm
i # i = 1# $ $ $ #N +#

Um =max)Tm
i # i = 1# $ $ $ #N +#

Tm = smallest power-of-two value greater than

or equal to
√
2K0/!h0

∑N
i=1 di!wm+1""$

Lemma 5. Sm " Tm
0 "max)Tm#Um+#m= 0# $ $ $ #M .

Proof. The lower bound follows because /0!w#T0" is
increasing in T0 for T0 " Sm. To prove the upper bound,
first note that for T0 >max)Tm#Um+

/0!w#T0"=
N∑

i=1

{
!w−c0"di!w"−&!di!w""+

1
2
h0di!w"T

m
i

}

−
{
1
2
h0

N∑

i=1

di!w"T0+
K0

T0

}
$

Also note that
√

2K0
h0

∑N
i=1 di!w"

is the minimum point of
1
2h0

∑N
i=1 di!w"T0+ K0

T0
, and that for any w ∈ 'wm#wm+1(,

√
2K0

h0
∑N

i=1 di!w"
"

√
2K0

h0
∑N

i=1 di!wm+1"
" Tm#

where the first inequality follows because from Lemma 3,
di!w" ! di!wm+1" for all w ∈ 'wm#wm+1(. Therefore,
/0!w#T0" is decreasing in T0 over the range T0 >
max)Tm#Um+. The upper bound follows. #

The supplier’s problem on the interval 'wm#wm+1(#m =
0# $ $ $ #M , can be solved by fixing T0 at each of the power-
of-two values between Sm and max)Tm#Um+ and maxi-
mizing /0!w#T0" over w. Later, we will show that for
an important special case, /0!w#T0" is concave in w over
'wm#wm+1(, allowing for a simple maximization.
We are now ready to present an algorithm for solving

the Stackelberg game. The first step of the algorithm is to
determine the breakpoints )a=w0#w1# $ $ $ #wM #wM+1 = b+
and the optimal reorder intervals Tm

i for all retailers i
and all intervals 'wm#wm+1". The second step involves
two loops. The outer loop iterates through the intervals
'wm#wm+1"#m= 0# $ $ $ #M . For each of these intervals, the
inner loop investigates each of a finite number of distinct
power-of-two values of T0. For a given interval 'wm#wm+1"
and a given value of T0, we optimize /0!w#T0" over
w ∈ 'wm#wm+1". If /0 is concave in w, this optimization is
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straightforward, e.g., by bisection. (Later, we will show that
this is indeed the case when the demand functions are lin-
ear.) Otherwise, if /0 fails to be concave in w, then a more
general single-variable optimization technique is required.
When these two loops are completed, we have an optimal
solution to the Stackelberg game.

Algorithm II.
Step 1. (Determine )wm+

M+1
m=0 with w0 = a and wM+1 = b

and Tm
i # i = 1# $ $ $ #N #m= 0#1# $ $ $ #M"

For i -= 1# $ $ $ #N do
begin

Set w!1" as the cross point of /i!·*“Ti = 1”" and
/i!·*“Ti = 2”"*

j!1" -= 1*Wi -= )w!1"+; Ji -= )j!1"+*L -= 1* k̂ -= 2;
For k -= 2# $ $ $ #ni−1 do
begin
Set ŵ as the cross point of /i!·*“Ti = k̂”"
and /i!·*“Ti = k+1”";

While ŵ " w!L" do
begin
k̂ -= j!L"; Eliminate j!L" and w!L" from

Ji and Wi;
Set ŵ as the cross point of /i!·*“Ti = k̂”"
and /i!·*“Ti = k+1”";

L -= L−1;
end;
L -= L+1* j!L" -= k̂*w!L" -= ŵ* Add j!L"
to Ji, and w!L" to wi;

k̂ -= k+1;
end;

end;
Merge the lists )Wi# i = 1# $ $ $ #N + into a
single list W ;

Step 2. ,0
0 -= 0;

For m -= 0# $ $ $ #M do
begin

For each power-of-two value of T0 between Sm

and max)Tm#Um+ do
begin
Determine the maximum x of /0!x#T0" on the
interval 'wm#wm+1(;

If /0!x#T0"!,0
0 then

begin
,0

0 -= /0!x#T0"*w
0 -= x*T 0

0 -= T0;
For i -= 1# $ $ $ #N do d0

i -= di!x"*T
0
i -= Tm

i ;
,0

i -= /i!d
0
i #T

0
i *x";

end;
end;

end.

We will measure the complexity of Algorithm II in
terms of (i) elementary operations, (ii) the number of times
a cross point needs to be computed of a pair of profit
functions, and (iii) the number of times the continuous,

single-variable function /0!x#T0" is optimized on one of
the intervals 'wm#wm+1". Recall that a cross point can be
determined with simple bisection evaluating the sign of
a difference function /i!·*Ti"−/i!·*T ′

i " for some pair of
values Ti#T

′
i , Fix i = 1# $ $ $ #N . The effort to construct

the lists Wi and Ji consists of ni − 1 iterations. In each
iteration, there is one cross point calculation followed by
the addition of an element to each of the lists Wi and Ji
and an increase of L (Case I) and possibly several cross
point calculations resulting in eliminations of elements and
a reduction of L (Case II). However, the total number of
times Case II occurs across all !ni − 1" iterations is at
most ni − 1 itself, since each such case is uniquely asso-
ciated with one of the distinct power-of-two values. The
entire effort to construct the lists Wi and Ji for a given
i = 1# $ $ $ #N thus consists of O!ni" elementary operations
and at most 2!ni−1" cross point calculations. To construct
the complete set of breakpoints across all i = 1# $ $ $ #N
therefore involves O!

∑N
i=1 ni" elementary operations and at

most 2
∑N

i=1!ni−1" cross point calculations. An additional
O!N logN +∑N

i=1 ni" operations is needed to merge the
lists )Wi# i = 1# $ $ $ #N + into a single list.
To assess the complexity associated with the sec-

ond step of Algorithm II, let n0 be the number of
power-of-two values between min)Sm- m= 0# $ $ $ #M+ and
max)Tm#Um- m = 0# $ $ $ #M+. Thus the outer loop of the
second step of Algorithm II is traversed M "

∑N
i=1!ni−1"

times and the inner loop at most n0 times for each value
of m. Each time this inner loop is executed, we maximize
/0!x#T0" (a nonlinear, continuous, single-variable, closed-
form function) over a finite interval of x. Therefore, the
second step of Algorithm II involves doing this maximiza-
tion at most n0

∑N
i=1!ni−1" times.

The overall effort for the algorithm thus consists of
O!N logN+∑N

i=1 ni" elementary operations, 2
∑N

i=1!ni−1"
cross-point calculations, and at most n0

∑N
i=1!ni −1" max-

imizations of a continuous, closed-form, single-variable
function. As mentioned, practical problems have ni " 8!i=
0#1# $ $ $ #N ", resulting in an algorithm that requires at
most 14N cross-point calculations, 56N single-variable
function maximizations, as well as O!N logN " elementary
operations.

Remark 1. Suppose for each order by retailer i# i =
1# $ $ $ #N , the supplier incurs a fixed order-processing cost
Ks

i and the retailer incurs a fixed setup cost Kr
i . In this

case, the problem facing retailer i in the Stackelberg game
is still characterized by Equation (13) with Ki replaced by
Kr

i . Clearly, this problem has the same structure as before.
Therefore, it is still true that there exist breakpoints of the
wholesale price )wm+

m+1
m=0 such that for all w ∈ 'wm#wm+1(,

m= 0# $ $ $ #M , the optimal replenishment intervals for the
retailers remain fixed, i.e., Ti!w"= Tm

i , i= 1# $ $ $ #N . Note
that the supplier’s objective function is obtained by sub-
tracting

N∑

i=1

Ks
i

Ti!w"
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from the objection function in Equation (15). This extra
term, however, remains fixed for w ∈ 'wm#wm+1(. There-
fore, the supplier’s problem on each interval 'wm#wm+1(
has the same structure as before. In conclusion, Algorithm
II still applies in this case.

Remark 2. For the important special case where each
retailer is facing a linear demand function:

pi!di"= ai−bidi# i = 1# $ $ $ #N #

with ai and bi retailer-specific positive constants, maxi-
mizing /0!w#T0" over w ∈ 'wm#wm+1( becomes straight-
forward. To see this, simply note that di!w" is linear for
w ∈ 'wm#wm+1(. Therefore, if, e.g., &!·" has the fixed-plus-
linear form, then /0!w#T0" is quadratic in w for wm "w"

wm+1. This significantly reduces the computational effort
for the second step of Algorithm II.

7. NUMERICAL EXAMPLES

This section presents numerical examples that were used to
compare the centralized solution, the silo solution, and the
Stackelberg solution.

Figure 1. Identical retailers.

We have evaluated two sets of examples, one with
identical retailers and the other with nonidentical retail-
ers. In all examples, we assumed &!d" = f + ed and
pi!di" = ai − bidi for some positive constants f #e#ai and
bi# i = 1# $ $ $ #N . The base case for the first set of exam-
ples has the following parameters: N = 10#K0 = 500#h0 =
5# c0 = 10#f = 10# e = 1, and Ki = 10#hi = 1# ci = 1#ai =
100#bi = 20 for i= 1# $ $ $ #N . The base case for the second
set is the same except

ci = 1+ i/10# and bi = 1!20+ i/10"# i = 1# $ $ $ #N #

with 1 = 1. All the examples in a set were obtained from
the base case of the set by varying one parameter at a time.
Both Algorithm I and Algorithm II are very efficient,

solving each instance with N = 10 retailers in a fraction
of a second (less than 0.02 secs) on a PC with a Pentium
450-MHz processor. Because the computational effort is
effectively linear in N (under the above described assump-
tions), this implies that even instances with several hun-
dred retailers can be solved in approximately one CPU
second. Figures 1 and 2 summarize the results, where
the percentage profit decrease is relative to the maximum
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Figure 2. Nonidentical retailers.

channel profits (the joint optimum). Based on the results,
we make the following observations.
• The system-wide profits decrease significantly in the

Stackelberg game. In some cases, the supplier cannot
ensure itself of a positive profit, even though a vertically
integrated system (or an appropriately decentralized one,
see Chen et al. 2001) results in healthy profits. In such
settings, the supplier, in spite of being the price leader, is
forced to withdraw from the market.
• Sequential (as opposed to joint) decision making can

be quite costly, especially when the number of retailers
is small or the price elasticity is large (a smaller value
of ai means larger price elasticity at any price level), or
the slope of the inverse demand function !bi" is large.
(Because the demand function is di = !ai−pi"/bi, a larger
value of bi means a smaller market at any given price.) In
fact, we have identified instances where sequential decision
making results in negative profits even though the max-
imum channel profits are positive. (In Figures 1 and 2,
negative channel-wide profits are replaced by zero profits
because in such cases the channel members withdraw from

the market.) Note that the percentage profit decrease for
small values of bi (or 1) is consistent with an observation
by Boyaci and Gallego (1997), who show that the relative
profit decrease due to sequential decision making disap-
pears as bi → 0.
• The economics literature (starting with Spengler 1950)

has observed that wholesale prices arising in Stackelberg
games exceed the marginal costs in a vertically inte-
grated channel, resulting in higher retail prices and lower
sales volumes. This phenomenon is usually referred to
as double marginalization. We conjecture that this phe-
nomenon is guaranteed to arise in our Stackelberg solution
as well. While it is intrinsically difficult to prove this con-
jecture analytically, all our numerical results confirm the
hypothesis. We observed in several instances that the sales
volumes of the retailers in the Stackelberg solution are
reduced by as much as 50% as compared to the centralized
solution.
• It is often claimed that supply chain integration results

in shorter replenishment cycle times, regarded by many as
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a benefit in and of itself. For example, Eckstut and Tang’s
(1996) recent survey of supply chain management practices
in the pharmaceutical industry, observed that companies
with explicit strategies to improve their supply chains have
shorter cycle times both in manufacturing and replenish-
ment as compared to others. Our results indicate that the
mere integration or coordination of the decision making
processes may fail to have the desired effect, by itself. As
an example, in the base case with identical retailers, the
retailers’ replenishment intervals are 50% shorter in the
Stackelberg solution as compared to the centralized solu-
tion. On the other hand, shorter cycle times are likely to
arise if a coordinated or integrated decision making frame-
work in the supply chain is exploited to achieve reduc-
tions in setup costs and setup times. Continuing with the
same example, supply chain coordination must be accom-
panied by a reduction of the fixed costs associated with
retailer orders !Ki" of at least 25% to achieve shorter cycle
times.
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