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This paper develops a stochastic general equilibrium inventory model for an oligopoly, in which all inventory constraint
parameters are endogenously determined. We propose several systems of demand processes whose distributions are func-
tions of all retailers’ prices and all retailers’ service levels. We proceed with the investigation of the equilibrium behavior
of infinite-horizon models for industries facing this type of generalized competition, under demand uncertainty.
We systematically consider the following three competition scenarios. (1) Price competition only: Here, we assume that

the firms’ service levels are exogenously chosen, but characterize how the price and inventory strategy equilibrium vary
with the chosen service levels. (2) Simultaneous price and service-level competition: Here, each of the firms simultaneously
chooses a service level and a combined price and inventory strategy. (3) Two-stage competition: The firms make their
competitive choices sequentially. In a first stage, all firms simultaneously choose a service level; in a second stage, the
firms simultaneously choose a combined pricing and inventory strategy with full knowledge of the service levels selected
by all competitors. We show that in all of the above settings a Nash equilibrium of infinite-horizon stationary strategies
exists and that it is of a simple structure, provided a Nash equilibrium exists in a so-called reduced game.
We pay particular attention to the question of whether a firm can choose its service level on the basis of its own (input)

characteristics (i.e., its cost parameters and demand function) only. We also investigate under which of the demand models
a firm, under simultaneous competition, responds to a change in the exogenously specified characteristics of the various
competitors by either: (i) adjusting its service level and price in the same direction, thereby compensating for price increases
(decreases) by offering improved (inferior) service, or (ii) adjusting them in opposite directions, thereby simultaneously
offering better or worse prices and service.
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1. Introduction
We develop a stochastic general equilibrium inventory
model for an oligopoly in which firms compete in terms of
two strategic instruments, i.e., (i) their prices (or expected
sales targets), and (ii) their service-level targets, in partic-
ular, their fill rates. The fill rate is the fraction of demand
that can be met from existing inventory.1 Each firm com-
plements its choice of a service-level target and pricing
strategy with an appropriate inventory strategy.
To build the general equilibrium model, we propose sev-

eral demand models, where the stochastic demands are
functions of all retailers’ prices and all retailers’ service
levels. In a periodic review, infinite-horizon setting, the
retailers face a stream of demands that are independent
across time, but not necessarily across the retailers. End-of-
the-period inventories are carried over to the next period.
Stockouts are backlogged.2 Customer sales are final, i.e.,
they cannot be cancelled when the customer needs to wait
for delivery. Each retailer may, at the beginning of each
period, place an order with his supplier, who fills the orders
instantaneously or after a given lead time. The retailers

incur retailer-specific inventory carrying costs. We consider
both the case where direct (retailer-specific), out-of-pocket,
backlogging costs prevail and the common case without
such direct stockout costs. Our model applies both to retail-
ers selling to the final consumer, as well as to vendors
selling to retailers. (In describing and analyzing the model,
we confine ourselves to the former setting.)
We observe an increasing number of industries in which

some of the competing firms aggressively attempt to obtain
larger market shares by providing higher levels of service.
For example, in the fierce competition between amazon.
com and barnesandnoble.com, the latter initiated a massive
advertising campaign promising same business-day deliv-
ery in various parts of the country. The same firms are also
examples of companies routinely posting expected wait-
ing times by item or group of items. In the video rental
industry, Blockbuster launched an advertising campaign
in 1997, emphasizing high fill rates with its “Go Home
Happy” slogan, and backing their promise up with a free
rental guarantee under the slogan “I’ll Be There” (see, e.g.,
Dana 2001).3 Similarly, Domino’s has offered a 30-minute
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delivery guarantee for its pizza sales, backed up with a free-
of-charge delivery if the time limit is exceeded. In B2B
settings, it is well known that vendors routinely specify
allowable windows for order delivery times and they, too,
often back these up with chargebacks in case their service
targets are violated.4

Even if most retailers do not yet advertise their service
levels, “customer service level as measured by % of time
product is in stock” is now recognized by retail execu-
tives as one of the most important performance metrics,
ahead of traditional key measures such as “sales per sell-
ing square foot.”5 An industry of “secret shoppers” has
emerged to provide retail management with independent
estimates of various customer service levels, while various
Internet firms continuously gather and report information
on online retailers.6

Ever since the seminal papers by Arrow et al. (1951) and
Dvoretzky et al. (1952), a massive literature has addressed
inventory systems under uncertainty. These papers provide
a systematic trade-off for two competing risks, i.e., the risk
of overstockage and that of understockage. It is relatively
easy to assess the consequences of the former because the
costs of carrying inventories can be measured or estimated
in a fairly straightforward manner. At the same time, the
consequences of shortages are much harder to quantify.
Most standard inventory models assume that when short-
ages can be backlogged, the cost associated with a given
backlog size can be assessed as an exogenous input to
the model. Much has been written about the difficulty of
specifying backlogging cost rates. Often, no out-of-pocket
expense is associated with a stockout, and even if such
out-of-pocket penalties prevail, it is generally agreed upon
that backlogging cost rates or stockout penalties should,
in addition, reflect the long-term or equilibrium impact on
goodwill and market shares. The latter is hard to quan-
tify, at least in the absence of a complete model describing
the impact of the relative service levels offered by com-
peting firms on each of their demand processes. As a con-
sequence, many practitioners are more comfortable with
a model in which (production, distribution, and carrying)
costs are minimized subject to given service-level con-
straints, e.g., fill rates satisfying given minimum fill-rate
bounds. Alternatively, an upper bound on the expected
value or a given fractile of the customer waiting time may
be imposed. However, here too, it is unclear whether a
company should strive for a 90%, 95%, or 99% fill rate or
promise a 24-hour, two-business-day, or one-week response
time, say, and what the long-term revenue implications of
this choice may be. The need to endogenize fill rate and
stockout cost parameters via a model with competing firms
was first articulated by Li (1992). An additional compli-
cation is that virtually all inventory models assume that a
company’s demands are not affected by its service levels,
let alone by those of its competitors.
We systematically characterize the equilibrium behavior

of the industry under three possible scenarios. (1) price

competition only: Here, we assume that the firms’ service
levels are exogenously chosen, but characterize how the
price equilibrium and inventory strategy vary with the cho-
sen service levels. (2) Simultaneous price and service-
level competition: Here, each of the firms simultaneously
chooses a service level and a combined price and inventory
strategy. (3) Two-stage competition: The firms make their
competitive choices sequentially. In a first stage, all firms
simultaneously choose a service level; in a second stage,
the firms simultaneously choose a combined pricing and
inventory strategy with full knowledge of the service levels
selected by all competitors. Fudenberg and Tirole (1991)
refer to the equilibria arising under (2) as open-loop equi-
libria and those under (3) as closed-loop equilibria. Our
first principal result is to show that in all of the above
settings a Nash equilibrium of infinite-horizon stationary
strategies exists and that it is of a simple structure, provided
a Nash equilibrium exists in a so-called reduced game.
The reduced game is a single-stage, single-period game
under scenarios (1) and (2) and a two-stage, single-period
game under (3). More specifically, under scenario (1) each
firm adopts a stationary price and a stationary base-stock
policy to control its inventory, i.e., the firm increases its
inventory to a given base-stock level whenever it is below
this level and avoids placing replenishment orders other-
wise. Under Scenarios (2) and (3), the equilibrium infinite-
horizon strategies are of the same type, except that under
(2) each firm selects a long-run service level along with
the other choices and, under (3), in advance of selecting a
price and base-stock policy combination. The critical con-
trol parameters for the equilibrium strategies in the infinite-
horizon model are easily derived from the equilibrium of
the reduced game. The equivalency results between the infi-
nite horizon and the reduced games are obtained for fully
general stochastic demand functions of the price and ser-
vice vectors.7

The remainder of this paper is, therefore, devoted to the
characterization of the equilibrium behaviors in the reduced
games; these depend critically on the type of stochastic
demand functions. We consider three of the most frequently
used classes of demand functions in the marketing and
industrial organization literature, appropriately adjusted for
their dependence on the vector of service levels. The attrac-
tion models represent the first such class: with a fixed total
potential market size, each firm acquires a market share
that is proportional to an attraction value given by a (pos-
sibly firm-dependent) general function of its price and ser-
vice level. Bell et al. (1975) have shown that this class of
models, with the (generalized) MultiNomial Logit (MNL)
models as a special case, is the unique class to satisfy a set
of rather intuitive axioms. Linear demand functions con-
stitute our second class of demand models. In a third and
last class of so-called log-separable demand functions, each
firm’s demand is given by a general function of the price
vector, multiplied with a scaling factor that is given by a
general function of the industry’s vector of service levels.
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(The scaling factor equals one when the firms do not dif-
ferentiate themselves on the basis of their service levels,
i.e., when these levels are identical.)
We particularly focus on the question of whether a firm

can choose its service level on the basis of its own (input)
characteristics (i.e., its cost parameters and demand func-
tion) only, as is assumed in virtually all standard inven-
tory models, including those that address combined pricing
and inventory decisions. This implies, in particular, that a
firm’s service level can be chosen independently of its own
equilibrium price or its competitors’ equilibrium prices and
service levels. This extreme form of robustness holds for
the (generalized) MNL model: Here, each firm adopts the
same equilibrium service level, whether engaged in simul-
taneous or two-stage competition (Scenarios (2) and (3),
respectively) and this level only depends on the firm’s own
input characteristics. Under linear demand functions, each
firm’s equilibrium service level under simultaneous com-
petition again depends only on its own input characteris-
tics; however, in general, a different service level should be
chosen under sequential competition, and this service level
may well depend on the choices and characteristics of the
competitors. A more limited robustness result applies to the
general attraction model. (Recall that the MNL model is
a special case of this class of models.) Here, each firm’s
equilibrium service level under simultaneous competition
depends only on its own price and input characteristics;
under two-stage competition, even this more limited robust-
ness result breaks down. None of the above robustness
results apply to the log-separable demand functions.
We also investigate under which of the demand models a

firm, under simultaneous competition, responds to a change
in the exogenously specified characteristics of the various
competitors by either: (i) adjusting its service level and
price in the same direction, thereby compensating for price
increases (decreases) by offering improved (inferior) ser-
vice, or (ii) adjusting them in opposite directions, thereby
simultaneously offering better or worse prices and service.
As stated, no adjustment in the service level is needed
under the linear and MNL models. In the general attraction
model with attraction functions that are separable in the
firm’s price and service level (or where the increase in the
firm’s attraction value due to an improvement of its service
level is smaller when it charges a higher price), price and
service levels always move in opposite directions. Within
the general attraction model, adjustments in the same direc-
tion may arise only when the attraction functions are super-
modular, i.e., the increase in a firm’s attraction value due to
an improvement of its service level is higher when the firm
charges a higher price. Likewise, service and price levels
may move in the same direction under the log-separable
demand model.
The fact that many of the qualitative properties of the

market equilibria (as well as their dynamics) depend on
the type of demand model has important implications for
empirical studies that attempt to estimate the system of

stochastic demand functions. (See Leeflang et al. 2000,
Basuroy and Nguyen 1998, and Besanko et al. 1998 for
examples of such demand estimation studies under compet-
itive pricing.) It suggests that a variety of demand models
should be considered, instead of an upfront restriction to
a particular type of model. Moreover, if in a given indus-
try it is known, for example, that firms adjust their service
levels in response to changes made by some of their com-
petitors, this is a fundamental reason to consider demand
model specifications that permit such responsive behavior.
The remainder of this paper is organized as follows:

In §2, we review the relevant literature. In §3, we intro-
duce our general model and notation. In §4, we show in
full generality that under Scenarios (1) and (2) a Nash
equilibrium exists of infinite-horizon stationary strategies
under which each retailer adopts a stationary price, fill rate,
and base-stock policy, provided a Nash equilibrium exists
in a reduced single-stage game. Under (3), only the sec-
ond stage is an infinite-horizon game. This scenario can,
similarly, be reduced to a two-stage game with the sec-
ond stage a “single-period” game. Sections 5–7 thus focus
on the reduced single- or two-stage games and systemati-
cally characterize the equilibrium behavior under the three
Scenarios (1)–(3), each section for one of the above three
classes of demand functions. Section 8 summarizes our
main results. All proofs are deferred to the appendix.

2. Literature Review
It appears that Schwartz (1966) was the first to reject the
usual assumption in inventory models of a fixed penalty for
stockouts. Schwartz (1970) explicitly models, in a single-
location setting, the impact of stockouts on future sales:
demand in a given period equals the potential demand
multiplied with a factor that depends on the observed fill
rate and the rate at which customers forgive the firms for
the stockouts. See Hill (1976) for a generalization of this
model. Caine and Plaut (1976) consider a periodic-review
model with demands whose means are a function of the
fill rates. Robinson (1991) provides a further generaliza-
tion where the mean and variance of each period’s demand
varies linearly with the number of satisfied customers in
the previous period. Ernst and Cohen (1992) and Ernst and
Powell (1995) consider a single-supplier single-retailer sys-
tem in which the demands faced by the retailers have a
mean and standard deviation that depend on the steady-state
service level. Ernst and Powell (1998) model this system
as a Stackelberg game, with the supplier as the leader.
Several economists, starting with Dorfman and Steiner

(1954), have realized that representing demands as a func-
tion only of the sales price(s) may oversimplify customer
preferences. In the context of deterministic monopoly mod-
els, these and other authors (e.g., Spence 1975, 1976; Dixit
1979; Tirole 1988, §2.2) have considered a demand func-
tion with an additional attribute variable, referred to as
“advertising,” “service level,” or “quality.” Carlton (1989)
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and Carlton and Perloff (1999) argue that demand func-
tions should be specified as a function of prices and cus-
tomer service levels, which they quantify by the customer’s
expected waiting time. See Table 15.3 in Carlton (1989) for
estimates of price and “delivery-lag” elasticities in a variety
of industries. Karmarkar and Pitbladdo (1997) consider a
multidimensional quality measure in the demand functions.
They address perfect competition and oligopolistic markets,
where the oligopoly equilibrium is specified by an entry
and exit condition under which the profits of all firms are
driven to zero.
In contrast, Banker et al. (1998) and Tsay and Agrawal

(2000) characterize the equilibrium behavior of oligopolies
with a fixed number of firms competing simultaneously
with their price and a “quality” or service instrument. Both
papers consider a single-period model for duopolies, with
deterministic demand functions that are linear in all price
and quality variables. The former (latter) characterize the
equilibrium under sequential (simultaneous) competition.
Both assume that each retailer’s cost increases quadrati-
cally with the service or quality level provided. This exoge-
nously specified quadratic cost function is substantiated by
the fact that “under the assumptions of standard inven-
tory models, moving from, say, 97% to 99% fill rate typ-
ically requires a greater incremental investment than does
moving from 95% to 97%” (see Footnote 3 in Tsay and
Agrawal 2000, p. 375). In our infinite-horizon model with
an arbitrary number of competing firms, stochastic demand
functions of a general (nonlinear) type and inventory carry-
ing expenses, the cost/service relationship is endogenously
determined; costs indeed increase convexly with the cho-
sen service level, but the dependency fails to be quadratic.
Anderson et al. (1992) consider a two-stage game with
deterministic demands for retailers competing with a price
and quality variable, similar to Scenario (3)’s reduced two-
stage game. The authors restrict themselves to the case of
identical retailers and a special case of the demand func-
tions treated in §5.1.
Li (1992) appears to be the first to model horizon-

tal competition between firms facing uncertain demands
(and) or supplies. The firms offer an identical product and
charge equal prices, but compete in terms of their produc-
tion/inventory strategies. Customers arrive according to a
Poisson process and purchase with equal probability from
any firm with positive inventory. If all firms are out of
stock, the customer places the order with each firm, but
buys from the firm that completes the order first, a practice
common in the semiconductor industry. Van Mieghem and
Dada (1999) develop a single-period model for firms pro-
ducing a homogeneous good. Similar to our Scenario (3),
the firms select a capacity level in a first stage and actual
production quantities in a second stage; the common price
is a linear function of the total quantity offered in the mar-
ket, with a random intercept. Carr et al. (1999) develop
a single-period model for firms competing in terms of

their prices and facing linear stochastic demand func-
tions. Bernstein and Federgruen (2001), similarly, develop
a single-period model for firms facing price competition
under a general class of stochastic demand functions. Kir-
man and Sobel (1974) and Bernstein and Federgruen (2004)
appear to be the first infinite-horizon models for an industry
with firms competing in terms of their prices only. We refer
to Bernstein and Federgruen (2001) for a review of sev-
eral (single-period) models in which retailers compete via
their starting inventories. To our knowledge, this is the first
paper to address an oligopoly under uncertain demands,
with price and service-level competition.

3. Model and Notation
Consider an industry with N independent retailers facing
random demands. We analyze a periodic-review infinite-
horizon model in which each Retailer i positions himself
on the market by selecting a steady-state fill rate fi, where
the fill rate is defined as the fraction of customer demands
satisfied from on-hand inventory, as well as a retail price pi.
Without loss of practical generality, we restrict ourselves
to service levels in the interval �0�5�1	.8 While the fill-rate
target levels f are stationary choices, the retail price may,
in principle, be varied in each period. Each retailer may, at
the beginning of each period, place an order with his sup-
plier, assumed to have ample capacity to fill any size order
completely and in time for the retailer to meet this period’s
demand. Stockouts are backlogged. Thus, each Retailer i
makes the following choices: (i) a one-time choice of fi, at
the beginning of the planning horizon; (ii) at the beginning
of each period t, a retail price as well as the quantity to be
ordered from the supplier.
One of the novel features of our model is that the demand

faced by each Retailer i, in any period t, has a distribution
that may depend on the entire vector of retail prices p in
that period as well as the entire vector of fill-rate target
levels f . Thus, let

Dit�p� f 	= the random demand faced by Retailer i in
period t, under the retail price vector p and the service-
level vector f ,

where the cdf of Dit , denoted by �Gi�x�p� f 	, depends on
the entire vector p as well as the complete vector of service
levels f . Thus, demands in any period depend on the target
fill rates, not on the actual inventory levels. We assume that
the demand variables are of the multiplicative form, i.e.,

Dit = di�p� f 	�it� (1)

with �it a general continuous random variable whose dis-
tribution is stationary and independent of the retail price
vector p and the service-level vector f , i.e., for all i =
1� � � � �N , the sequence ��it� has a common general cdf
Gi�·	 and density function gi�·	 such that �Gi�x�p� f 	 =
Gi�x/di�p� f 		.
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The multiplicative model implies that the coefficients of
variation of the one-period demands are exogenous con-
stants, independent of the price vector or the service levels,
and hence of the expected sales volumes as well. Without
loss of generality, we normalize E��it	 = 1� i = 1� � � � �N
and t = 1�2� � � �, so that EDit�p� f 	 = dit�p� f 	. In other
words, the functions �di�p� f 	� may be viewed as repre-
senting the expected one-period sales volumes. As in virtu-
ally all inventory models, we assume that the sequence of
random variables ��it� t = 1�2� � � ��, and hence the sequence
�Dit� t = 1�2� � � ��, are independent for all i = 1� � � � �N . At
the same time, we allow for arbitrary correlations between
the demands faced by the different retailers in any given
period.
Information about the firms’ service levels is not always

as readily available as the unit price. As mentioned, in the
B2B world, service-level guarantees are routinely provided
by the vendors, often backed up with chargeback agree-
ments for violations of these guarantees. Software systems
allow retailers to monitor their vendors’ compliance and
provide them with comparative data regarding groups of
vendors’ service levels. We also mentioned several exam-
ples in the B2C world, where firms advertise service-level
measures, as well as independent Internet services that rate
online retailers in terms of their fill-rate performance (along
with other service measures). Even when such information
is not publicly available, consumers develop estimates on
the basis of their own (repeat-purchase) experience as well
as on the basis of word of mouth and other reputational
information (see Tirole 1988, §2.3, for a general discus-
sion of the consumers’ ability to assess quality attributes
of competing products and its implications for industrial
organization models).
At this stage, we make minimal assumptions regarding

the shape of the mean sales functions �di�p� f 	�, other than
the following basic monotonicity properties:

�di�p� f 	

�pi

� 0�
�di�p� f 	

�fi

� 0�

�di�p� f 	

�pj

� 0�
�di�p� f 	

�fj

� 0� j �= i�

(2)

In other words, if a retailer increases his retail price (fill
rate), this results in a decrease (increase) of his own
expected sales while increasing (decreasing) those of his
competitors.
No firm’s sales are expected to increase under a uniform

price increase:9

(D)
N∑

j=1

�di

�pj

< 0 for all i = 1� � � � �N �

Decisions are made in the following sequence: At the
beginning of each period, all retailers simultaneously deter-
mine their price and order quantity for that period; next,
these orders are filled.

Each retailer pays the supplier a constant per-unit whole-
sale price, inclusive of delivery costs, or he incurs produc-
tion costs at a constant rate. (We describe the remainder
of the paper in terms of retailers purchasing their goods
from outside suppliers.) Holding costs are proportional with
end-of-period inventories. A retailer may incur direct, out-
of-pocket, backlogging costs; if so, these are proportional
with the backlog size. Thus, for each retailer i = 1� � � � �N :

wi = the per-unit wholesale price paid by Retailer i,
h+

i = the per-period holding cost for each unit carried in
inventory, and

h−
i = the per-period direct backlogging cost for each unit

backlogged at Retailer i.

Contrary to most standard inventory models, but more
representative of actual cost/service trade-offs experienced
in practice, our model does not require that direct backlog-
ging costs exist, i.e., that h−

i > 0. Even if h−
i = 0, every firm

is incentivized to carry appropriate safety stocks because a
large backorder frequency or, equivalently, a low fill rate,
reduces the retailer’s average sales while increasing those
of his competitors.

4. The Infinite-Horizon Model: Reduction
to Single- or Two-Stage Games

In this section, we show that under each of the competitive
scenarios, (1)–(3), the equilibrium behavior in the infinite-
horizon model may be characterized by analyzing that of
an equivalent single-stage or, in Scenario (3), two-stage
game.
We start with the simultaneous price- and service-com-

petition Scenario (2) and show that in the infinite-horizon
retailer game, an N -tuple of stationary strategies arises
as a Nash equilibrium, where each Retailer i adopts a
fill rate f ∗

i , a constant price p∗
i , and a base-stock policy

with stationary base-stock level y∗
i . Moreover, the triplet

�p∗� f ∗� y∗	 represents a Nash equilibrium in a single-stage
game with the following profit function for Retailer i:

�i�p� f � yi	= �pi −wi	di�p� f 	−h+
i E�yi −Di�p� f 	 +

−h−
i E�Di�p� f 	− yi 

+� i = 1� � � � �N �

where Retailer i’s action set is given by the following sub-
set of 	3:

{
�pi�fi�yi	� pmini �pi�pmaxi �0�fi <1�

Pr�Di�p�f 	�yi �fi

}={�pi�fi�yi	� pmini �pi�pmaxi �

0�fi <1�yi�di�p�f 	G−1
i �fi	

}
�

because

Pr�Di�p�f 	�yi =Pr
[
�i�

yi

di�p�f 	

]
=Gi

(
yi

di�p�f 	

)
�fi

iff yi � di�p� f 	G−1
i �fi	.
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While a retailer’s price p and fill rate f have a poten-
tial impact on all retailers’ profits, his choice of a base-
stock level y affects his own profit function only. Thus,
each Retailer i chooses yi to maximize his profit, while
ensuring a service level at least equal to the announced
service level fi. That is, for given p and f , Retailer i
chooses an order-up-to level yi � di�p� f 	G−1

i �fi	, which
maximizes �i�·� ·� yi	:

yi�p� f 	= di�p� f 	G−1
i

(
max

{
fi�

h−
i

h−
i +h+

i

})
� (3)

This gives rise to an equivalent reduced single-stage retailer
game in which each Retailer i competes with two instru-
ments �pi� fi	 ∈ �pmini � pmaxi  × �0�1	 and reduced profit
functions

!i�p� f 	= �pi −wi − ki�fi		di�p� f 	� where (4)

ki�fi	= h+
i E

[
G−1

i

(
max

{
fi�

h−
i

h−
i +h+

i

})
− �i

]+

+h−
i E

[
�i −G−1

i

(
max

{
fi�

h−
i

h−
i +h+

i

})]+
�

Note that ki�f 	 is the expected (end-of-period) inventory
cost per unit of sales, required to guarantee a given service
level of at least f . The reduced single-stage game is equiv-
alent to an oligopoly model with deterministic demands
d�p� f 	 and cost functions Ci�p� f 	 = ki�fi	di�p� f 	. It is
the cost structure that sets the model apart from other
oligopoly models with competition with two or more strate-
gic instruments (see, e.g., Basuroy and Nguyen 1998, and
the references therein). (The only exception is the price-
quality two-stage model in Anderson et al. 1992, which
considers identical retailers and a special case of the
demand functions in §5.1.)
We now show that if a pair of vectors �p∗� f ∗	 is a Nash

equilibrium of the (reduced) single-stage game, an N -tuple
of infinite-horizon strategies can be constructed that is a
Nash equilibrium in the original infinite-horizon game.

Theorem 1. Consider Scenario (2) (simultaneous price
and service competition). Assume that �p∗� f ∗	 is a Nash
equilibrium in the reduced single-stage game. The N -tuple
of infinite-horizon stationary strategies under which
Retailer i adopts a stationary price p∗

i , a fill rate f ∗
i ,

and a base-stock policy with (stationary) base-stock level
yi�p

∗� f ∗	 is a Nash equilibrium in the infinite-horizon
game.

We obtain similar reductions of the infinite-horizon
model under Scenarios (1) and (3).

Corollary 1. (a) Consider Scenario (1) (price compe-
tition only), i.e., assume that the vector of service levels
f = f̂ is exogenously given. Consider also the single-stage
game in which each Retailer i competes with a single
instrument pi ∈ �pmini � pmaxi  and reduced profit functions

!̂i�p	
def= !i�p� f̂ 	. Assume that p∗�f̂ 	 is a Nash equilibrium

in this reduced single-stage game. The N -tuple of infinite-
horizon stationary strategies under which Retailer i adopts
a stationary price p∗

i �f̂ 	, a fill rate f̂i, and a base-stock
policy with (stationary) base-stock level yi�p

∗�f̂ 	� f̂ 	 is a
Nash equilibrium in the infinite-horizon game.
(b) Consider Scenario (3) (two-stage competition) and

the following two-stage game: In the first stage, the retailers
compete with a single instrument fi ∈ �0�1	 and reduced
profit functions !̂i�f 	

def= !i�p
∗�f 	� f 	, where p∗�f 	 denotes

the Nash equilibrium in the game considered in (a). Let f̂
denote a Nash equilibrium of this first-stage game. In the
second stage, the retailers face the game in (a). The N -
tuple of infinite-horizon stationary strategies under which
Retailer i adopts a stationary price p∗

i �f̂ 	, a fill rate f̂i, and
a base-stock policy with base-stock level yi�p

∗�f̂ 	� f̂ 	 is a
Nash equilibrium in the infinite-horizon game.

In §§5–7, we exhibit several important classes of demand
functions for which the reduced single-stage or two-stage
games in Theorem 1 and Corollary 1 have an equilibrium so
that Theorem 1 and Corollary 1 apply. Lemma 1 describes
the shape of the ki�·	-functions.
Lemma 1. (a) ki�·	 is increasing and differentiable.
(b) ki�·	 is convex, twice differentiable for all fi �=

h−
i /�h−

i + h+
i 	, and limfi→1 k

′
i�fi	 =� for all distributions

Gi such that:

�PF2	
Gi is log-concave or, equivalently, is a
Polya Frequency function of order 2 for all
x�G−1

i �0�5	, and gi has infinite support,
(5)

where G−1
i �·	 denotes the inverse of the Gi-distribution.

Condition �PF2	 in (5) is trivially satisfied for all dis-
tributions whose density function decreases beyond the
median, e.g., the normal and exponential distributions and
many specifications of the gamma and Weibull distribu-
tions. The condition is closely related to the more com-
mon condition that the density functions be log-concave or
PF2 (see, e.g., Barlow and Proschan 1965). By Lemma 5.8
and Theorem 5.6 in Barlow and Proschan, the latter condi-
tion implies that the complements of the cdfs Gi are PF2.
Lemma 1 is intuitive: The operational costs increase con-
vexly with the service level.10

5. Attraction Models
Many marketing models characterize the market shares
obtained by competing retailers via a vector of attraction
values a = �a1� � � � � aN 	. The market share achieved by a
given firm i is given by its attraction value divided by the
industry’s total value, i.e., by

mi =
ai∑N

j=0 aj

� (6)

with a0 the value of the no-purchase option. Bell et al.
(1975) show that if market shares are exclusively deter-
mined by the attraction vector a, they must be given by
the simple ratios (6), provided four general assumptions are
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satisfied. Attraction models are among the most commonly
used market share models, both in empirical studies and
theoretical models (see, e.g., Leeflang et al. 2000). In stan-
dard marketing models, the attraction values a may depend
on the price vector and/or other marketing instruments such
as advertising efforts. Here, we will assume that a0 is a
constant and the attraction value of any firm i is given by
a general, twice-differentiable function of its price and ser-
vice level, i.e., ai = ai�pi� fi	, with

�ai

�pi

� 0�
�ai

�fi

> 0� (7)

With fixed total market size M , this results in the following
mean demand functions:

di�p� f 	=M
ai�pi� fi	∑N

j=0 aj�pj� fj	
� (8)

Most attraction models assume a specific structure for the
functions ai�·� ·	, most commonly the “Multiplicative Com-
petitive Interaction” structure which, when applied to the
pair of instruments �pi� fi	, is of the form ai�pi� fi	 =
cip

−(i
i f

)i
i or the MNL model, where

ai�pi� fi	= exp�)ifi −(ipi� (9)

(for constants (i�)i� ci > 0). See Anderson et al. (1992) or
Mahajan and van Ryzin (1999) for a discussion of how the
MNL model arises from either a random utility model or
a set of choice axioms, similar to, though somewhat more
restrictive than, those of Bell et al. (1975).11

Below we pay special attention to the following gener-
alization of (9):

ai�pi� fi	= exp�bi�fi	−(ipi�� (10)

where the functions bi�·	 are twice differentiable, increas-
ing, and concave, permitting us to represent settings where
the marginal increase in a firm’s attraction value due to an
increase in its fill rate is nonnegative, but decreasing in fi.
Alternatively, if a firm wants to maintain a given attraction
value, it needs to compensate for a price increase with ever
larger increases in its service level.

5.1. Analysis of the General Attraction Model

For the single-stage price game under a given vector of ser-
vice levels f , we need the following lemma, which follows
by simple calculus. Let ãi = logai and d̃i = logdi.

Lemma 2. Assume that the mean sales volumes �di�pi� fi	�
are given by the attraction model (8).

�di

�pi

= �ãi

�pi

di

(
1− di

M

)
�

�di

�pj

=−�ãj

�pj

didj

M
� j �= i�

�di

�fi

= �ãi

�fi

di

(
1− di

M

)
�

�di

�fj

=−�ãj

�fj

didj

M
� j �= i�

Note that condition (D) requires that

ai∑N
j=0 aj

<
�ai/�pi∑
j �=i �aj/�pj

for all i = 1� � � � �N � (11)

Theorem 2. Consider under the general attraction model
(8) the single-stage pricing game that arises when the vec-
tor of service levels f is fixed.
(a) The price game has a Nash equilibrium. The set of

Nash equilibria is a lattice and, therefore, has a smallest
p�f 	 and a largest �p�f 	 element.
(b) The Nash equilibrium is unique, i.e., p�f 	= �p�f 	=

p∗�f 	 under (D) if the function ãi is concave in pi for all
i = 1� � � � �N .

The proof of Theorem 2 shows that the single-stage price
game is supermodular. One of the implications of this char-
acterization is that a simple, so-called tatônnement or round
robin scheme, converges to p�f 	��p�f 	 provided it starts
with an arbitrary price vector p0 � �� p�f 	��p�f 	 . In the
kth iteration, each firm i determines which price level pk

i

maximizes its expected profits, assuming all competitors
maintain their prices from the vector pk−1. When all ai�·	
functions are log-concave in p and (D) holds, there is a
unique equilibrium p∗�f 	, by Theorem 2(b). In this case,
starting with an arbitrary price vector p0, the sequence
pk converges to p∗�f 	. In view of (25) and the fact that
the profit function �!i is strictly concave in pi (see (26)),
this gives rise to the following simple iterative scheme. In
iteration k, determine for each firm i the unique root of
the equation

p=wi+ki�fi	−
(

�ãi�p�fi	

�pi

)−1
M

M−di�p�pk−1
−i �fi	

� (12)

The left-hand side of (12) is increasing and the
right-hand side decreasing in p, because M/�M −
di�p�pk−1

−i � fi		 is decreasing in p while the same is true for
−��ãi�p� fi	/�pi	

−1, as ãi is concave in pi. Thus, instead of
solving a system of N nonlinear equations in N unknowns,
p∗ can be obtained by iteratively solving N independent
single equations in a single unknown.
For general attraction functions �ai�, it is difficult to pre-

dict how a change in the service levels f impacts the equi-
librium prices. It is, for example, reasonable to expect that
if a firm increases its service level, its equilibrium price
will increase as well, but this can only be guaranteed for
certain classes of attraction models, e.g., the generalized
MNL model (10), analyzed below. We now turn our atten-
tion to the (simultaneous) reduced single-stage game, in
which the retailers choose their prices and service levels
simultaneously.

Theorem 3. Under the general attraction model, assume
that all ãi-functions are jointly concave.
(a) The simultaneous single-stage (reduced) game has a

Nash equilibrium �p∗� f ∗	 and any Nash equilibrium is a
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solution to the system of equations

� �!i

�pi

= 1
pi −wi − ki�fi	

+ �ãi

�pi

(
1− di

M

)
= 0�

i = 1� � � � �N � (13)

k′
i�fi	

�ãi

�pi

+ �ãi

�fi

= 0� i = 1� � � � �N � (14)

In particular, f ∗
i > h−

i /�h−
i +h+

i 	 for all i = 1� � � � �N .
(b) Assume that all ãi-functions are submodular. Then,

a change in some of Retailer i’s characteristics �wi� ki�·	�
ai�·� ·	� causes the equilibrium price and service level of
any of the competitors to move in opposite directions, i.e.,
each firm either simultaneously increases its price and
decreases its service level, or it decreases its price while
increasing its service level.

Remark. The proof of Theorem 3(b) and the fact that (14)
is independent of wi also establish that a change in Retailer
i’s wholesale price causes his own equilibrium price and
service level to move in opposite directions, just like those
of his competitors.

The simultaneous game fails to be supermodular, even
for special cases such as the MNL model. Therefore, lit-
tle can be said in general about the structure or cardi-
nality of the set of Nash equilibria. The case where the
functions �ãi� are of the form ãi�pi� fi	 = bi�fi	+ (i�pi	,
with (i�·	 and bi�·	 concave, represents one of the impor-
tant special cases of the conditions in Theorem 3. Sepa-
rable functions �ãi� are appropriate when the percentage
increase in the attraction value of a firm due to a marginal
change in its price is independent of the prevailing ser-
vice level and vice versa. Under separable functions �ãi�,
we have that any retailer’s equilibrium price and service
level always move in opposite directions if an infinitesimal
change occurs in any of the competitors’ characteristics,
i.e., the retailer responds either by being more or less com-
petitive along both the price and service dimensions. In
case of interdependence, i.e., when ãi fails to be separable,
this result continues to hold as long as �2ãi/�pi �fi � 0,
i.e., as long as ãi is submodular. On the other hand, in
the case of interdependence, one often expects that ãi be
supermodular (�2ãi/�pi �fi > 0), reflecting decreased sensi-
tivity of the attraction values to price changes when operat-
ing in a higher service-level regime. If ãi is supermodular,
�f ∗

i /�p∗
i > 0 may occur; see (29). That is, the equilibrium

price and service level of a retailer may move in the same
direction in response to a change in the characteristics of
some of the competitors: the retailer may respond by being
more competitive along one strategic dimension but less
along the other.
Theorem 3(b) answers the important question of whether

each Retailer i can choose its service level f ∗
i simply

on the basis of its local characteristics only, i.e., its cost
function ki�·	 and the attraction function ai, which cap-
tures the revenue implications of improved service levels.

This would imply, in particular, that f ∗
i is invariant to

changes in the characteristics of any of the competitors,
an invariance result often assumed in standard inventory
models. Theorem 3(b) shows that it applies if and only
if (in equilibrium) �2ãi/�p

2
i = 0 and �2ãi/�pi �fi = 0. The

only attraction functions ãi that satisfy these two condi-
tions globally are those that are separable in pi and fi and
linear in pi. This gives rise, precisely, to the generalized
MNL structure (10). Finally, for general attraction mod-
els, little can be said about the equilibrium behavior in the
two-stage game where prices and service levels are chosen
sequentially.

5.2. The (Generalized) MNL Model

We now give special attention to the generalized MNL
model (10). Under this structure, each function ãi is con-
cave in pi so that a unique Nash equilibrium p∗�f 	 exists
in the single-stage price game, under any fixed vector of
service levels f , assuming (D) holds (as is the case, for
example, when all (i = (, i = 1� � � � �N ; see (11)).
Similarly, the simultaneous single-stage (reduced) game

has a Nash equilibrium �p∗� f ∗	 because the conditions of
Theorem 3 are satisfied. Moreover, by (14), for all i =
1� � � � �N , the equilibrium service level f ∗

i equals f 0i , with
f 0i the unique root of the function +i�f 	, where

+i�f 	= k′
i�f 	− b′

i�f 	

(i

� (15)

By Lemma 1 and the concavity of the bi-functions, +i�f 	=
−b′

i�f 	/(i < 0 for any f � h−
i /�h+

i +h−
i 	, and +i increases

to +�, as fi ↗ 1. When an out-of-pocket rate h−
i prevails,

generally h−
i � h+

i , so that h−
i /�h+

i + h−
i 	 � 0�5. If h−

i = 0
or h−

i < h+
i , we assume that k′

i�0�5	 < b′
i�0�5	/(i to pre-

clude unrealistic settings where firm i is “best off” with a
fill rate of less than 50%. Either way, we have that f 0i >
max�0�5� h−

i /�h+
i +h−

i 	�.
The first term on the right of (15) represents the

incremental operational costs associated with a marginal
increase in the service level, while the second term denotes
the incremental retail price value, i.e., the price increase
that this marginal increase permits without altering the
attraction value of firm i. f 0i thus represents the unique ser-
vice level for which the incremental operational costs equal
the incremental retail price value. We conclude:

Theorem 4. Consider the MNL model and assume that
(D) holds. For every fixed service-level vector f , there
exists a unique Nash equilibrium p∗�f 	 in the price game.
The pair �p∗�f 0	� f 0	 is the unique Nash equilibrium in the
simultaneous single-stage (reduced) retailer game.

Note that each of the unique equilibrium service lev-
els f ∗

i = f 0i depends only on Retailer i’s characteristics
�ki�·	� bi�·	 and (i�; in particular, the equilibrium service
level f ∗

i is invariant to any changes in the characteristics of
the competitors and resulting changes in their equilibrium
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service levels and prices. This is in contrast to the general
attraction model; see Theorem 3(b). Similarly, the equilib-
rium service levels f 0 are entirely independent of the vector
of wholesale prices w. Furthermore, an increase in any of
the wholesale prices wi causes all equilibrium retail prices
p∗ to go up, while leaving the equilibrium service levels
unaltered. (This follows because p∗ = p∗�f 0	 is the unique
equilibrium in the price game under f = f 0 as the fixed
vector of service levels. This price game is supermodular
and �2 �!i/�pi �wi > 0 for all i. The monotonicity result fol-
lows from Topkis 1998.)
Observe, however, that in the simultaneous game the ser-

vice levels f 0 fail to be dominant. In particular, if some
of firm i’s competitors j choose retail prices pj �= p∗

j �f 	,
firm i’s best corresponding service level may depend on all
prices and service levels chosen by the competitors. This is
demonstrated in Example 1.

Example 1. Let N = 3�M = 100, and a0 = 0, wi = 10,
h+

i = 5, while h−
i = 0. Let bi�fi	 = 6fi� i = 1�2� b3�f3	 =

3f3, and assume all �-variables are Normally distributed
with mean 1 and standard deviation 0.3. The equilibrium
has f ∗ = �0�866�0�866�0�698	 and p∗ = �13�7�13�7�12�1	.
Assume all retail prices are frozen at their equilibrium
as is the service level f ∗

3 . If Retailer 2 deviates from its
equilibrium service level f ∗

2 to f̃2, p∗ �= p∗�f ∗
1 � f̃2� f

∗
3 	 and

Retailer 1 is best off adjusting his service level f1. For
example, if Retailer 2 varies his service level from 75% to
95%, Retailer 1 should modify his from 83�8% to 88�2%.

Returning to the single-stage price game, Theorem 5
below shows that in the MNL model, it is possible to fully
characterize whether a change in one of the firms’ service
levels will result in an increase or decrease in each of the
equilibrium prices.

Theorem 5. Under the MNL model, consider the single-
stage price game for a fixed vector of service levels f .
Assume that (D) holds.
(a) The price game has a unique equilibrium p∗�f 	,

where p∗ is a differentiable function of the ( fixed) vector of
service levels f , with ��p∗

i /�fj	
N
i�j=1 = A−1B. Here, A and

B are N ×N matrices with

Aii = (2i
M −di

M
and Aij =−(i(j

didj

M2
� j �= i�

Bii =
(2i �M −di	

2

M2
+i�fi	+

b′
i�fi	

(i

Aii and

Bij =
b′

j �fj	

(j

Aij � j �= i�

A−1
� 0 and A−1

ii <
M2

(2i �M −di	
2
� (16)

(b) p∗
i is strictly increasing in fi; p∗

j is strictly decreas-
ing in fi for fi < f 0i ; and strictly increasing in fi for
fi > f 0i .

When firm i decides to increase its service level, it will
always cause an increase in its own equilibrium retail price;
i.e., the firm is able to charge a higher retail price in
exchange for offering a higher service level. The impact
of the service-level increase on the competitors’ prices
depends, however, on whether the service level is below
or above the critical value f 0i . As long as firm i’s service
level is below this critical value, the competitors react by
decreasing their retail prices so as to “regain” their com-
petitive edge. (In other words, the competitive impact of
firm i’s service-level increase exceeds that of the firm’s
price increase.) At the same time, when firm i’s service
level is already above the critical value f 0i , the competi-
tive impact of the simultaneous increase in firm i’s price
and service level allows the competitors to increase their
prices along with (but not necessarily in the same amount
as) firm i. Recall that when fi > f 0i , a further increase in
firm i’s service level results in a larger increase in per-unit
operating costs than is recovered by the incremental “retail
price value.”
Theorem 6 below establishes that if firm i decides to

increase its service level, this will result in an increased
expected sales volume as well as increased expected prof-
its as long as the service level fi stays below the criti-
cal level f 0i . Any increase of the service level fi beyond
this critical level always results in a decrease of the firm’s
expected sales volume and profits. Thus, assuming that the
firms in the market adopt the unique equilibrium price vec-
tor p∗�f 	 in response to any given combination of ser-
vice levels f , it is optimal for each firm i to implement
the service level f 0i regardless of the service levels offered
by any of its competitors. In other words, assuming retail
prices are in (the unique Nash) equilibrium, the optimal ser-
vice level provided by any given firm can, under the MNL
model, be determined as in standard inventory models,
ignoring the competitive impact of service-level choices.
The above implies that the vector of critical service levels
f 0 is a dominant solution in the sequential two-stage game
in which firms first (simultaneously) select a service level
and in a second stage (simultaneously) decide on their retail
prices. For each i = 1� � � � �N , let d∗

i �f 	
def= di�p

∗�f 	� f 	 and
!∗

i �f 	
def= !i�p

∗�f 	� f 	 denote the expected sales volume
and profit value under the vector of service levels f , assum-
ing all firms adopt equilibrium retail prices.

Theorem 6. Consider the MNL model and assume (D).
(a) �d∗

i �f 	/�fi > 0 for fi < f 0i � �d∗
i �f 	/�fi < 0 for

fi > f 0i � i = 1� � � � �N .
(b) �!∗

i �f 	/�fi > 0 for fi < f 0i � �!∗
i �f 	/�fi < 0 for

fi > f 0i � i = 1� � � � �N .
(c) The vector f 0 is a dominant solution in the two-stage

game, with p = p∗�f 0	 the unique Nash equilibrium for its
second stage.

The above dominance result is in sharp contrast to set-
tings where retail prices fail to be in equilibrium, i.e.,
where the vector of prevailing retail prices p �= p∗�f 	.
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Here, each firm’s optimal service level may critically
depend on the service levels and/or retail prices offered
by the competitors. As discussed in Fudenberg and Tirole
(1991, Chapter 4), it is infrequent that a two-stage game
can be shown to possess a Nash equilibrium. It is even
more remarkable that the first-stage game has a unique
Nash equilibrium of the strongest possible kind: f 0 is a
dominant solution.
As mentioned in §2, Anderson et al. (1992) consider a

special case of the model, with fully identical retailers and
linear functions bi�fi	= .fi for some . > 0. These authors
focus on the sequential game and establish the existence
of a symmetric Nash equilibrium, which, in the case of
two firms, is shown to be the unique Nash equilibrium.
(It is easily verified that when the retailers have identical
demand and cost characteristics, the vectors f 0 and p∗�f 0	
have identical components as well.) The authors also note
(p. 241, Footnote 4) that the same symmetric solution is a
Nash equilibrium in the simultaneous game as well.

6. The Linear Model
We now consider the case where the average demand func-
tions d�p� f 	 are linear in all prices and service levels.
As mentioned in the introduction, this linear structure was
considered in Banker et al. (1998) and Tsay and Agrawal
(2000). Thus, let

di�p� f 	= ai − bipi +
∑
j �=i

cijpj +)ifi −
∑
j �=i

/ijfj �

i = 1� � � � �N � (17)

with bi� cij �)i, and /ij positive constants, to ensure that
the monotonicity properties in (2) are satisfied. Throughout
this section, we assume that (D) holds, which translates to
bi >

∑
j �=i cij , i = 1� � � � �N . As in the attraction models, we

start with the single-stage price game.

Theorem 7. Consider, for the linear model, the single-
stage price game that arises when the vector of service
levels f is fixed.
(a) The price game has a unique equilibrium p∗�f 	, with

p∗
i �f 	=

N∑
j=1

(ij �aj +bjwj +bjkj�fj	+.ijfj  � i=1�����N �

(18)

with �(ij  a matrix of nonnegative numbers and �.ij  a
matrix of general constants. In particular, each of the
equilibrium prices is a separable convex function of the
vector f .
(b) The equilibrium prices p∗ are increasing in each of

the wholesale prices �wj�, demand function intercepts �aj�,
and each of the holding cost values �h+

j �.
(c) For all i� j = 1� � � � �N , there exist critical service

levels f ∗
ij � 0�5 such that p∗

i is decreasing in fj for 0�5�
fj � f ∗

ij and increasing for fj � f ∗
ij .

As in the MNL model, if firm j’s service level fj goes
up, the retail price offered by every competing firm i �= j
decreases, as long as the service level stays below a criti-
cal level f ∗

ij , while resulting in a price increase for fj > f ∗
ij .

Contrary to the MNL model, a different critical level may,
however, prevail for each of firm j’s competitors and
f ∗

ij = 0�5 may arise, in which case a service-level increase
by firm j is always met by a price increase by com-
petitor i. In contrast to the MNL model, when a firm
increases its service level, this does not necessarily allow
the firm to increase its price. This prima facie surprising
phenomenon arises when the service-level increase causes
the firm’s competitors to reduce their prices by a signif-
icantly larger amount to offset the impact of the service-
level increase. It appears that this is most likely to occur
when a firm whose clientele is relatively price sensitive, but
insensitive to service, needs to compete with other firms
whose customers have the opposite attributes. As in the
MNL model, p∗�f 	 is easily computed via the tatônnement
scheme.
We now proceed with the simultaneous single-stage

game in which prices and service levels are chosen simul-
taneously. As in (15) for the MNL model, we assume that
k′

i�0�5	 < )i/bi to preclude unrealistic settings where firm i
is “best off” offering a fill rate of less than 50%.

Theorem 8. The simultaneous (reduced) single-stage
game for the linear model has a unique Nash equilibrium
�p∗�f 0	� f 0	, with f 0i the unique solution to the equation

k′
i�fi	=

)i

bi

� i = 1� � � � �N � (19)

As in the MNL model, the simultaneous single-stage
game has a unique Nash equilibrium, and the equilibrium
service level f 0i for firm i is the level at which the marginal
operational cost increase k′

i�fi	 equals the marginal increase
in retail price value. (The impact of an increase of firm i’s
service level by a basis point on the average sales volume is
identical to a decrease of the price by )i/bi units.) In par-
ticular, the (unique) equilibrium service level of a firm only
depends on that firm’s demand and cost functions. Thus, as
in the MNL model, but in contrast to the general attraction
models, a firm’s equilibrium service level is not affected
by the attributes or equilibrium prices and service levels of
any of its competitors.
The following represents a major contrast with the MNL

model. Recall that in the latter, f 0 arises as the unique
Nash equilibrium, and in fact the dominant solution in the
sequential two-stage game in which the firms first choose
their service levels and in the second stage select their retail
prices. In the linear model, this robustness result breaks
down. In fact, even though the closed-form solution for
p∗�f 	 in (18) permits us to specify the profit functions
!̂�f 	

def= !�p∗�f 	� f 	 in the first-stage game in closed form
as well, these functions do not appear to have any structure
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Table 1. Comparison of sequential and simultaneous
games.

d∗
1 d∗

2 d∗
3 !1 !2 !3

Sequential 19.77 13.63 13.63 55.86 46.45 46.41
Simultaneous 18.87 12.58 12.58 50.88 39.55 39.55

that guarantees the existence of an equilibrium. The follow-
ing example shows that f 0 fails to be a Nash equilibrium
in the first-stage game. We conclude, in particular, that the
equilibrium behavior of the industry may vary fundamen-
tally, depending upon whether service levels and price lev-
els are chosen simultaneously or sequentially.

Example 2. Let N = 3, with d1�p� f 	= 20− 7p1+ 2p2+
4p3+4f1− f2− f3�d2�p� f 	= 20+p1−4p2+2p3−8f1+
10f2 − f3, and d3�p� f 	 = 20 + p1 + 2p2 − 4p3 − 8f1 −
f2 + 10f3. Assume that all �-variables are Normally dis-
tributed with mean 1 and standard deviation 0.3. Let wi = 5,
i = 1�2�3, while h+

1 = 1, h+
2 = h+

3 = 2, and h−
i = 0 for

i = 1�2�3.
The simultaneous game has �p∗�f 0	� f 0	 as its unique

Nash equilibrium, with p∗ = �7�90�8�86�8�86	 and f 0 =
�0�68�0�87�0�87	. At the same time, f 0 fails to be an equi-
librium in the sequential game. The first-stage profit func-
tions !̂�f 	 can, as mentioned, be obtained in closed form
and are, in this example, concave. The sequential game has a
unique service vector equilibrium f ∗ = �0�50�0�90�0�90	,
with corresponding price vector p∗�f ∗	 = �7�94�9�19�
9�20	. Table 1 compares the average sales volumes and
expected profits for the retailers in the sequential and simul-
taneous games.
Retailer 1’s clientele is relatively price sensitive, but

insensitive to service. Retailers 2 and 3, at the same time,
cater to a segment of the market that is willing to pay
higher prices in exchange for better service. Indeed, both
in the sequential and the simultaneous games, Retailer 1
adopts a lower service level and a lower price than its
more “upscale” competitors. Observe, however, that simul-
taneous determination of prices and service levels results
in significantly less differentiation between the compet-
ing retailers than in the sequential setting. Interestingly,
Retailer 1 adopts a significantly lower service level and a
somewhat higher price in the sequential, as compared to
the simultaneous game setting, correspondingly realizing
higher profits. Retailers 2 and 3, similarly, adopt higher
prices in the sequential setting, but they compensate for
their higher prices by offering better service. In the sequen-
tial setting, all retailers exploit their knowledge about all
competitors’ service levels to charge significantly larger
prices, to achieve somewhat larger expected sales volumes
and significantly larger profits. Finally, Figure 1 exhibits
the dependency of p∗

1�f 	 on f1, fixing f2 = f ∗
2 and f3 = f ∗

3 .
It illustrates Theorem 7(c), showing that for sufficiently
low service levels, i.e., f1 � f ∗

11 = 0�68, the equilibrium
price of Retailer 1 decreases in response to a service level

Figure 1. Dependence of p∗
1 on f1.
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increase, but increases for service levels above the critical
level f ∗

11.

7. The Log-Separable Model
Our third and final model for the average sales functions
d�p� f 	 assumes that a regular system of standard demand
functions �qi�p	� i = 1� � � � �N � is scaled up or down as
a function of the service levels f offered by the different
firms. This gives rise to the specification

di�p� f 	= 1i�f 	qi�p	� (20)

with �1i�f 	/�fi > 0� �1i�f 	/�fj < 0� j �= i, and with the
normalization 1i�f � f � � � � � f 	 = 1. We further assume that
the functions �1i�f 	� i = 1� � � � �N � are log-supermodular in
�fi� fj	, while the functions �qi�p	� are log-supermodular
in �pi� pj	, i.e.,

�2 log1i�f 	

�fi �fj

� 0 and
�2 logqi�p	

�pi �pj

� 0 for all i �= j�

(21)

Finally, to ensure a unique equilibrium in the reduced price
game, we need

�2 logqi�p	

�p2i
>
∑
j �=i

�2 logqi�p	

�pi �pj

for all i� (22)

As shown in Milgrom and Roberts (1990), many systems
of standard demand functions, i.e., demand functions of
price variables only, have the above log-supermodularity
property, for example:

(Linear) qi�p	= ai −)ipi +
∑
j �=i

)ijpj

with ai > 0�)i�)ij � 0 for all i and j �= i�

(Logit) qi�p	= �kie
−3pi 	

/(
Ci +

N∑
j=1

kje
−3pj

)

with 3 > 0 and Ci� ki > 0 for all i�

(Cobb-Douglas) qi�p	= aip
−)i
i

∏
j �=i

p
)ij

j

with ai > 0�)i > 1�)ij � 0 for all i and j �= i�

(CES) qi�p	= /pr−1
i

/( N∑
j=1

pr
j

)
with r < 0 and / > 0�
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Moreover, (22) is satisfied in all four cases, except that
in the linear case condition (D) needs to be satisfied, i.e.,
)i >

∑
j �=i )ij for all i.

One possible specification of the functions 1�f 	, analo-
gous to (Logit) is

1i�f 	= �
∑N

j=1 5j	e
6fi∑N

j=1 5je
6fj

� with 6�5 > 0� (23)

The price game that arises under a fixed vector of service
levels f is well known. Because, by assumption the func-
tions �qi�p	� are log-supermodular, the price game has a
unique Nash equilibrium p∗�f 	 (see Milgrom and Roberts
1990). It is also easily verified that the equilibrium price
vector is increasing in all of the service levels as it is in
all of the wholesale prices w and all of the holding cost
rates h+. For example, the fact that �p∗

i /�fj � 0 for all i� j ,
follows immediately from Topkis (1998) because

�2 �!i

�pi �fj

= �2 log�pi −wi − ki�fi	 

�pi �fj

= 0 if j �= i and

�2 �!i

�pi �fi

= k′
i�fi	

pi −wi − ki�fi	
� 0�

We thus proceed immediately to the analysis of the simul-
taneous reduced single-stage game in which prices and ser-
vice levels are selected simultaneously.

Theorem 9. Consider the log-separable model and as-
sume (21).
(a) The reduced price game under a given vector f , has

a unique Nash equilibrium p∗�f 	 that is increasing in all
of the service levels.
(b) The simultaneous single-stage game has a Nash

equilibrium �p∗� f ∗	.

Guaranteeing uniqueness of the equilibrium is more
complex in this case. While a sufficient condition similar
to (24) and involving various second-order derivatives of
!i can be derived, this condition does not appear to trans-
late into simple conditions for the qi�·	 and 1i�·	 functions.
However, as the single-stage game is log-supermodular,
even if multiple equilibria arise, they form a lattice, and
there is a largest equilibrium that is preferred by all
retailers.
In contrast to the MNL and the linear model, but in

accordance with the general attraction models, the equilib-
rium vector of service levels f ∗ can no longer be deter-
mined by identifying for each firm i at what service level
the marginal operational cost k′

i�fi	 equals the marginal
increase in “retail price value.” Indeed, the equilibrium ser-
vice level f ∗

i for firm i may now depend on the demand
and cost characteristics of all of its competitors. How-
ever, because the simultaneous game is log-supermodular,
an equilibrium pair �p∗� f ∗	 may be computed by a tatôn-
nement scheme similar to the one in §5.

Figure 2. Changes in prices and service levels.
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Example 3. Let N = 3. Assume that the mean demand
functions are of the form di�p� f 	 = �ai − 8pi +

∑
j �=i pj	 ·

�1 + fi − 0�5
∑

j �=i fj 	 and that all �-variables are Nor-
mally distributed with mean 1 and standard deviation 0.3.
We consider a symmetric base scenario in which wi = 5,
h−

i = 0, h+
i = 1, and ai = 80 for i = 1�2�3. This system

gives rise to a (unique) symmetric equilibrium in which
all retailers adopt a price p∗ = 8�85 and a service level
f ∗ = 0�942.
In Figure 2(a) we show for 10 scenarios how the equilib-

rium evolves when the holding cost rate for Retailer 1 (2, 3)
increases by 0 (7.5, 15)%, from one scenario to the next.
All three retailers react to the increased holding cost rates
by increasing their price and reducing their service level.
As expected, Retailer 3’s adjustments are larger than those
of Retailer 2, which in turn exceed those of Retailer 1. In
Figure 2(b) we repeat the same experiment, increasing the
wholesale prices from one scenario to the next by 0%, 5%,
and 10% for Retailers 1, 2, and 3, respectively, keeping the
holding cost rates at 20% of the wholesale price values. In
Figure 3, we show how the equilibrium evolves from the
base scenarios when the intercepts ai increase, from one
scenario to the next, by 2.5%, 5%, and 10% for Retailers 1,
2, and 3, respectively. The retailers respond with a simulta-
neous increase of their price and service level. This applies
even to Retailer 3, whose own demand and cost charac-
teristics remain unaltered; his moderate price and service-
level increases are clearly in response to the more extensive
changes by the competitors. We conclude that under the
log-separable model, a retailer’s equilibrium price and ser-
vice level may either change in the same or in opposite
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Figure 3. Increases in the base demands ai.
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directions in response to a change in the model’s inputs.
This is in contrast to the general attraction models where,
under the conditions of Theorem 3(b), a firm’s equilibrium
price and service level always change in opposite direc-
tions. The result is also in contrast to the (generalized)
MNL and linear models in which each retailer’s equilib-
rium service level is invariant to any changes in any of its
competitors’ characteristics.
As with the general attraction and linear models, little

can be said about the equilibrium in the two-stage game.
In general, f ∗ fails to be an equilibrium in the first-stage
game.

8. Conclusions
We have systematically characterized the infinite-horizon
equilibrium behavior under the three competition scenar-
ios: (1) price competition only, (2) simultaneous price- and
service-level competition, and (3) two-stage competition.
We have shown that in each of these scenarios a Nash equi-
librium of infinite-horizon stationary strategies exists under
which each retailer adopts a stationary price, fill rate, and
base-stock policy, provided a Nash equilibrium exists in a
(reduced) single-stage (Scenarios (1) and (2)) or two-stage
game (Scenario (3)).
As far as the reduced-price game characterizing Sce-

nario (1) is concerned, its equilibrium behavior is similar
across all of the classes of demand functions considered.
The price game always has a Nash equilibrium, and the
equilibrium is unique under widely satisfied conditions. The
dependence of the equilibrium prices on the vector of ser-
vice levels f varies, however, from one class of demand
function to the next: little can be said for the general
attraction model, but for the (generalized) MNL model,
Retailer i’s price p∗

i is always increasing in its own service
level and decreasing in the service level fj offered by any of
his competitors j �= i, as long as fj < f 0j (the unique service
level for which the incremental operational costs equal the
incremental retail price value), and increasing thereafter. In
the linear demand model, each Retailer i’s equilibrium price
p∗

i may no longer be increasing in his service level; instead−p∗
i is unimodal in its own and every competitor’s service

levels. Finally, in the log-separable model, each equilibrium
price is increasing in all service levels.

Turning to the simultaneous single-stage game that char-
acterizes the simultaneous competition Scenario (2), a Nash
equilibrium �p∗� f ∗	 exists for all of the considered classes
of demand functions under mild conditions: in the general
attraction model, it is sufficient that the attraction func-
tions be log-concave (which they are in the specification
of the MNL model), no restrictions are required in the lin-
ear model, while in the log-separable model, it is suffi-
cient that the functions 1i and qi be log-supermodular in
�fi� fj	 and �pi� pj	, respectively. In the generalized MNL
and linear models, f ∗ = f 0, the unique break-even service-
level vector, so that each retailer’s equilibrium service level
is completely invariant to changes in the characteristics
of any of the competitors. In the general attraction and
the log-separable models, at the same time, each retailer
needs to adjust his equilibrium service level in response
to changes in the competitors’ characteristics; in the for-
mer case, the adjustment is always in the opposite direction
of the adjustment of the equilibrium price, implying that
the retailer either becomes more or less competitive along
both the price and service dimensions. Numerical examples
show that under the log-separable model, the equilibrium
service level may move in the opposite or in the same
direction.
Little can be said about the two-stage competition Sce-

nario (3) except in the (generalized) MNL model, where the
vector of break-even service levels f 0 is again a Nash equi-
librium and, in fact, a dominant solution in the first-stage
game. Numerical examples for some of the other demand
classes show that the equilibrium service level in the two-
stage game may differ significantly from that which arises
as part of the simultaneous game equilibrium.
We conclude that when estimating a system of (stochas-

tic) demand equations, the proper class of demand models
must be chosen with great care, because the choice has pro-
found implications for the industry’s equilibrium behavior
in some or all of the considered competition scenarios. We
hope that future empirical work, based on equilibrium mod-
els as in this paper, will characterize how firms in different
industries position themselves in terms of their prices and
(service) quality levels and how the equilibrium in a given
industry evolves in response to an external change. Graham
et al. (1983) and Bailey et al. (1985) provide examples
of descriptive studies of this type in the airline industry.
Here, quality of service on a given route is measured by
the frequency of an airline’s flights on this route and the
probability of finding an available seat on the flight clos-
est to the passenger’s preferred departure time.12 Graham
et al. (1983) and Bailey et al. (1985) focus on the impact of
deregulation of the industry in 1978. They report that most
airlines responded to the industry’s deregulation by increas-
ing their load factors (thus reducing this measure of service
quality), while simultaneously decreasing their prices.13

Our model can be extended to the case where some
of the customers switch to a substitute retailer when they
encounter a stockout. One possible model with substitution
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demand incorporates an N × N matrix P . Here, Pij is
the probability that a customer of Retailer i switches to
Retailer j when faced with a stockout. The switching prob-
abilities in P would themselves depend on part or all of the
price and service-level vectors, i.e., P = P�p� f 	. It remains
an open question whether this or a similar model with sub-
stitution demands is tractable.

Appendix. Proofs

Proof of Theorem 1. Fix i = 1� � � � �N . Assume that all
retailers j �= i adopt a stationary retailer price pj and a fill
rate fj throughout the infinite horizon. Retailer i then faces
an infinite-horizon combined pricing and inventory con-
trol problem with, in each period, stochastic demand func-
tions Di�·� p−i� f−i	 = di�·� p−i� f−i	�i and with stationary
and linear procurement and holding costs. An immediate
adaptation of Federgruen and Heching (1999) shows that
it is optimal for Retailer i to adopt a stationary price pi, a
fill rate fi, and stationary base-stock policy with base-stock
level yi such that �pi� fi� yi	 maximizes the profit function
�i�· � p−if−i	, i.e., �pi� fi	 maximizes !i�· � p−i� f−i	. The
theorem thus follows from the fact that �p∗� f ∗	 is a Nash
equilibrium of the reduced single-stage game. �

Proof of Lemma 1. (a) For fi � h−
i /�h−

i + h+
i 	, ki�fi	 is

constant in fi; for fi > h−
i /�h−

i +h+
i 	,

k′
i�fi	=

�h+
i +h−

i 	fi −h−
i

gi�G
−1
i �fi		

� 0�

so ki is an increasing and differentiable function of fi.
(b) Because gi has infinite support, limfi↗1 k

′
i�fi	 = �.

For fi > h−
i /�h−

i +h+
i 	,

k′′
i �fi	=

[
�h+

i +h−
i 	g2i �G

−1
i �fi		− ��h+

i +h−
i 	fi −h−

i 	

· g′
i �G

−1
i �fi		

]
/g3i �G

−1
i �fi		� 0�

By condition (PF2) in (5), g′
i �G

−1
i �fi		 � g2i �G

−1
i �fi		/fi:

Changing variables xi = G−1
i �fi	 ∈ �G−1

i �0�5	��	, this
inequality can be written as g2i �xi	 � Gi�xi	g

′
i �xi	 ⇔

�logGi	
′′�xi	 = �Gi�xi	g

′
i �xi	 − g2i �xi	 /G

2
i �xi	 � 0. As

−��h−
i + h+

i 	fi − h−
i 	 < 0, k′′

i �fi	 � ��h+
i + h−

i 	fi − ��h+
i +

h−
i 	fi − h−

i 	 /�figi�G
−1
i �fi			 = h−

i /�figi�G
−1
i �fi			 > 0, so

that ki�·	 is convex on the entire interval �0�1	. We conclude
that ki is twice differentiable for all fi �= h−

i /�h−
i +h+

i 	. �

Proof of Theorem 2. (a) We show that the profit func-
tions !i�p� f 	 are log-supermodular in p, which means that
�!i�p� f 	

def= log!i�p� f 	 = log�pi − wi − ki�fi	 + d̃i�p� f 	
is supermodular in p. Because these functions are
twice differentiable, supermodularity is equivalent to
showing that �2 �!i�p� f 	/�pi �pj = �2d̃i�p� f 	/�pi �pj � 0
for all j �= i. It follows from Lemma 2 that �2d̃i/�pi �pj =
��ãi/�pi	��ãj/�pj	�di/M	�dj/M	 � 0. Because each
firm’s set of feasible price values is a compact lattice,

it follows that the price game is log-supermodular, estab-
lishing (a); see Topkis (1998) or Milgrom and Roberts
(1990).
(b) A unique Nash equilibrium p∗�f 	 is guaranteed, by

Milgrom and Roberts (1990), if

−�2 �!i

�p2i
>
∑
j �=i

�2 �!i

�pi �pj

� (24)

Note from (4) and Lemma 2 that

� �!i

�pi

= 1
pi −wi − ki�fi	

+ � logdi

�pi

(25)

�2 logdi

�p2i
=− 1

�pi −wi − ki�fi		
2

+ �2ãi

�p2i

(
1− di

M

)
−
(

�ãi

�pi

)2
di

M

(
1− di

M

)
�

(26)

Thus, (24) holds if

−�2 logdi

�p2i
>
∑
j �=i

�2 logdi

�pi�pj

�

Note that

−�2 logdi

�p2i
>

(
�ãi

�pi

)2
di

M

(
1− di

M

)

>
�ãi

�pi

∑
j �=i

�ãj

�pj

di

M

dj

M
=∑

j �=i

�2 logdi

�pi �pj

� (27)

where the second inequality is equivalent to

�ãi

�pi

(
1− di

M

)
<
∑
j �=i

�ãj

�pj

dj

M
or

�ãi

�pi

= �ai/�pi

ai

<
N∑

j=1

�ãj

�pj

dj

M
=
(∑

j �=i

�aj

�pj

)/( N∑
l=0

al

)
�

Thus, (27) follows from (D) and (11). �

Proof of Theorem 3. (a) By Fudenberg and Tirole
(1991), it suffices to show that all functions �!i�p� f 	 =
log�pi − wi − ki�fi		 + d̃i�p� f 	 are jointly strictly con-
cave in �pi� fi	. By Lemma 1, this property is immediate
for the first term. To verify concavity for d̃i, note from
Lemma 2 that �d̃i/�pi = �ãi/�pi�1−di/M	 and �d̃i/�fi =
�ãi/�fi�1−di/M	. Thus,

�2d̃i

�p2i
=
(
1− di

M

)[
�2ãi

�p2i
−
(

�ãi

�pi

)2
di

M

]
� 0 and

�2d̃i

�f 2i
=
(
1− di

M

)[
�2ãi

�f 2i
−
(

�ãi

�fi

)2
di

M

]
� 0
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by the concavity of ãi in pi and fi, while

�2d̃i

�pi �fi

=
(
1− di

M

)[
�2ãi

�pi �fi

− �ãi

�pi

�ãi

�fi

di

M

]
�

The determinant of the Hessian of d̃i equals(
1− di

M

)2{[
�2ãi

�p2i

�2ãi

�f 2i
−
(

�2ãi

�pi �fi

)2]
−
(

�ãi

�pi

)2
�2ãi

�f 2i

di

M

−
(

�ãi

�fi

)2
�2ãi

�p2i

di

M
+2 �2ãi

�pi �fi

�ãi

�fi

�ãi

�pi

di

M

}

=
(
1− di

M

)2{[
�2ãi

�p2i

�2ãi

�f 2i
−
(

�2ãi

�pi �fi

)2]

+ di

M

(
�ãi

�pi

√
−�2ãi

�f 2i
+ �ãi

�fi

√
−�2ãi

�p2i

)2

−2 di

M

�ãi

�pi

�ãi

�fi

[√
�2ãi

�f 2i

�2ãi

�p2i
− �2ãi

�pi �fi

]}

�0�

(The terms in square brackets are nonnegative by the joint
concavity of ãi.) Because of the joint concavity of the func-
tions � �!i�, a Nash equilibrium satisfies Equation (13) and

� �!i

�fi

=− k′
i�fi	

pi −wi − ki�fi	

+ �ãi

�fi

(
1− di

M

)
= 0� i = 1� � � � �N � (28)

Multiplying (13) by k′
i�fi	 and adding (28), we obtain (14).

Because k′
i�fi	= 0 for fi � h−

i /�h−
i +h+

i 	 and �ãi/�fi > 0,
it follows from (14) that f ∗

i > h−
i /�h−

i +h+
i 	.

(b) Note that each of the equations in (14) involves only
a single pair �pi� fi	. Thus, (14) implicitly determines f ∗

i

as a function of p∗
i , and by the Implicit Function Theorem,

�f ∗
i

�p∗
i

=−
k′

i�f
∗
i 	

�2ãi

�p2i
+ �2ãi

�pi�fi

k′′
i �f

∗
i 	

�ãi

�pi

+ k′
i�f

∗
i 	

�2ãi

�pi �fi

+ �2ãi

�f 2i

� 0� (29)

because all second-order derivatives are negative,
k′

i�f
∗
i 	 � 0, and 0 � k′′

i �f
∗
i 	, which exists because f ∗

i >
h−

i /�h−
i +h+

i 	. �

Proof of Theorem 5. (a) The price game has a
unique Nash equilibrium in view of Theorem 2, because
ãi�pi� fi	 = �bi�fi	 − pi	/6 is linear in pi and (D) holds.
Because p∗ is a Nash equilibrium, it follows that p∗

i maxi-
mizes the function �!i�pi�p∗

−i� f 	, which is strictly concave
in pi. Moreover,

� �!i�p� f 	

�pi

= 1
pi −wi − ki�fi	

−(i +(i

di

M
�

so that

lim
pi↘�wi+ki�fi	 

� �!i�· � p∗
−i� f 	

�pi

=+�� while

lim
pi↗+�

� �!i�· � p∗
−i� f 	

�pi

=−(i < 0�

because limpi↗+� di = 0. Thus, p∗
i is the unique root of the

equation

� �!i�p� f 	

�pi

= 1
pi −wi − ki�fi	

−(i +(i

di

M
= 0� (30)

Because the functions �� �!i�p� f 	/�pi� i = 1� � � � �N � are
continuously differentiable in p and f , it follows from the
Implicit Function Theorem that p∗ is a differentiable func-
tion of f . Thus, with +i�f 	 defined as in (15), we have
from (30) that

Aii =−�2 �!i

�p2i
= (2i

�M −di	
2

M2
+(2i

di

M

M −di

M

= (2i
M −di

M
� i = 1� � � � �N � (31)

Aij =− �2 �!i

�pi �pj

=−(i(j

didj

M2
� j �= i� (32)

Bii =
�2 �!i

�pi �fi

= k′
i�fi	

�pi −wi − ki�fi		
2
+ b′

i�fi	
(idi

M

(
1− di

M

)

= k′
i�fi	(

2
i

(
1− di

M

)2
+ b′

i�fi	
(idi

M

(
1− di

M

)

= (2i
M −di

M2

(
+i�fi	�M −di	+M

b′
i�fi	

(i

)
� (33)

Bij =
�2 �!i

�pi �fj

=−(i

b′
j �fj	didj

M2
� j �= i� (34)

To verify that the matrix A is indeed invertible for all pairs
of vectors �p∗�f 	� f 	 and that A−1 is a nonnegative matrix,
note that A may be written as A = 9�I − T 	, with 9 a
diagonal matrix with

9ii = (i

M −di

M
� i = 1� � � � �N �

and T a substochastic matrix, with Tii = 0 and
Tij =

(j

(i

didj

M�M −di	
for j �= i�

(T is substochastic, i.e., it is nonnegative and its row sums
N∑

j=1
Tij =

di

(iM

∑
j �=i (jdj

M −di

<
di

M
< 1 for all i = 1� � � � �N

because
∑

j �=i (jdj < (i�M −di	 by (D).) Thus, A is invert-
ible and

A−1 = �I − T 	−19−1 =
�∑

n=0
T n9−1

� 0� (35)

To verify the bound on the diagonal elements of A−1, let
cij denote the cofactor of the �i� j	th element of the matrix
�I −T 	 and det�I −T 	 its determinant. It follows from (35)
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and Cramer’s rule that

�A−1	ii =
M

(2i �M −di	

cii

det�I − T 	
� (36)

Because the matrix T is substochastic, it follows from
Theorem 2.3 in Seneta (1973) that cij � cii for all i� j . Thus,
developing det�I − T 	 along the ith row of the matrix, we
obtain

det�I − T 	= cii −
∑
j �=i

(j

(i

didj

M�M −di	
cij

� cii

(
1−∑

j �=i

(j

(i

didj

M�M −di	

)
�

Substituting this lower bound into (36), we obtain

�A−1	ii�
M

(2i �M−di	

1
1−∑j �=i�(j/(i	�didj/M�M−di		

= M2

(i�(iM�M−di	−di

∑
j �=i(jdj 

<
M2

(i�(iM�M−di	−di(i�M−di	 
= M2

(2i �M−di	
2
�

where the second inequality follows from
∑

j �=i (jdj <
(i�M −di	.
(b) Note that

B =A




b′
1�f1	/(1 · · · 0

� � �

0 · · · b′
N �fN 	/(N




+




(21
�M −d1	

2

M2
+1 · · · 0

� � �

0 · · · (2N
�M −dN 	2

M2
+N


 �

Thus,

�p∗
j

�fi

=�A−1B	ji=�A−1	ji

(2i �M−di	
2+i�fi	

M2
� i �= j� (37)

�p∗
i

�fi

= b′
i�fi	

(i

+�A−1	ii

(2i �M−di	
2+i�fi	

M2
� (38)

Thus, for all j �= i, �p∗
j /�fi has the same sign as +i�fi	;

i.e., �p∗
j /�fi < 0 for fi < f 0i and �p∗

j /�fi > 0 for fi > f 0i ,
which shows that p∗

j is decreasing (increasing) in fi for
all fi < �>	f 0i . As for �p∗

i /�fi, it is clearly positive for
fi > f 0i because b′

i � 0, A−1 is a nonnegative matrix (see
part (a)), and +i�fi	 > 0 for fi > f 0i . However, for fi < f 0i ,
+i�fi	 < 0. Thus, invoking the upper bound for �A−1	ii in
(16), we obtain �p∗

i /�fi � b′
i�fi	/(i + +i�fi	 = k′

i�fi	 > 0
for fi < f 0i , as well. Thus, p∗

i is strictly increasing in fi

over the complete interval �0�1	. �

Proof of Theorem 6. (a) Consider the matrix A defined
in Theorem 5. We first prove the following identity for all
i = 1� � � � �N :
di

∑
j �=i

(j

dj

M
�A−1	ji = (i�M −di	�A

−1	ii −
M

(i

� (39)

This identity is immediate from
∑N

j=1�Aij	�A
−1	ji =

Aii�A
−1	ii +

∑N
j �=i�Aij	�A

−1	ji = 1 by substituting (31) and
(32). It follows from Lemma 2 that

�d∗
i

�fi

= �di

�fi

+
N∑

j=1

�d∗
i

�pj

�p∗
j

�fi

= b′
i

M
d∗

i �M −d∗
i 	−(idi

(
1− d∗

i

M

)
�p∗

i

�fi

+ d∗
i

M

∑
j �=i

(jd
∗
j

�p∗
j

�fi

�

Let =ii = (2i �M − di	
2+i/M

2. Substituting (37) and (38),
we obtain
�d∗

i

�fi

= b′
i

d∗
i

M
�M −d∗

i 	−(i

d∗
i

M
�M −d∗

i 	

·
[

b′
i

(i

+ �A−1	ii=ii

]
+ d∗

i

6M

∑
j �=i

(jd
∗
j �A

−1	ji=ii�

Thus, substituting (39), we obtain

�d∗
i

�fi

==ii�A
−1	ii

[
−(id

∗
i �M−d∗

i 	

M
+(i�M−d∗

i 	

]
−M

(i

=ii

==ii

[
�A−1	ii(i

�M−d∗
i 	
2

M
−M

(i

]
� (40)

In view of (16), the second factor in (40) is negative. Thus,
�d∗

i �f 	/�fi has the opposite sign of =ii and hence the oppo-
site sign of +i�fi	. Part (a) now follows immediately from
the fact that +i�·	 is increasing with fi = f ∗

i as its unique
root.
(b) Note that

�!∗
i �f 	

�fi

=
[
�p∗

i

�fi

− k′
i�fi	

]
d∗

i + �p∗
i −wi − ki�fi	 

�d∗
i

�fi

�

Substituting (38) and (40), we obtain

�!∗
i

�fi

=
[

b′
i

(i

− k′
i + �A−1	ii=ii

]
d∗

i +
M

(i�M −d∗
i 	

�d∗
i

�fi

=−+id
∗
i

(i

+ �A−1	ii=iid
∗
i

+ =ii

M −d∗
i

[
�A−1	ii�M −d∗

i 	
2− M2

(2i

]

= �A−1	ii=iiM − +id
∗
i

(i

− =ii

(2i

M2

M −d∗
i

= �A−1	ii(i

�M −d∗
i 	
2

M2
+i −

+id
∗
i

(i

− �M −d∗
i 	

+i

(i

= +i

[
�A−1	ii(i

�M −d∗
i 	
2

M2
− M

(i

]
� (41)
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where the second equality follows from (40) and the fourth
equality by the definition of =ii. By (16), the second fac-
tor in (41) is always negative. Thus, �!∗

i �f 	/�fi has, once
again, the opposite sign of +i.
(c) Immediate from part (b). �

Proof of Theorem 7. (a) We first show that the price
game is log-supermodular. Because the feasible strategy
space >�f 	 = �p� wi + ki�fi	 � pi � pmaxi � i = 1� � � � �N �
is a compact sublattice of 	N , it suffices to show that
each of the functions �!i

def= log!i = log�pi −wi − ki�fi	 +
logdi�p� f 	 has the property

�2 �!i

�pi �pj

= �2 logdi�p� f 	

�pi �pj

� 0 for all i �= j�

Note that,

� logdi�p� f 	

�pi

=− bi

di�p� f 	
�

so that, indeed,

�2 logdi�p� f 	

�pi �pj

= bicij

d2i �p� f 	
� (42)

To prove that a unique equilibrium exists, it suffices to
show (Milgrom and Roberts 1990) that

−�2 �!i�p� f 	

�p2i
= 1

�pi −wi − ki�fi		
2
+ b2i

d2i �p� f 	

>
b2i

d2i �p� f 	
�

bi

∑
j �=i cij

d2i �p� f 	

=∑
j �=i

�2 logdi�p� f 	

�pi �pj

=∑
j �=i

�2 �!i

�pi �pj

� (43)

(The second inequality follows from bi >
∑

j �=i cij and the
second equality from (42).)
Because p∗�f 	 is a Nash equilibrium, it follows that for

all i = 1� � � � �N , p∗
i is a global maximum of the single vari-

able function �!i�p�p∗
−i� f 	= log�p−wi −ki�fi	 + log�ai −

bip+C , with C =∑j �=i cijp
∗
j +)ifi−

∑
j �=i /ijfj . It follows

that p∗
i is the unique solution to the equation

� �!i

�pi

= 1
p−wi − ki�fi	

− bi

ai − bip+C
= 0�

In other words, p∗ is the unique solution to the system of
equations

1
pi−wi−ki�fi	

− bi

di�p�f 	
=0 or

bipi−biwi−biki�fi	=ai−bipi+
∑
j �=i

cijpj +)ifi−
∑
j �=i

/ijfj �

i=1�����N � (44)

This is a linear system of equations in p, which in matrix
form can be written as

Ap =
[
ai + biwi + biki�fi	+)ifi −

∑
j �=i

/ijfj

]
� where

A=



2b1 · · · −c1N

� � �

−cN1 · · · 2bN


=9�I − T 	�

with 9= diag�2b1� � � � �2bN 	� and

T =




0 · · · c1N
2b1

� � �

cN1

2bN

· · · 0



is substochastic because

∑
j �=i cij

2bi

�
bi

2bi

< 1�

Thus, A is invertible with A−1 = �I − T 	−19−1 =
�
∑�

n=0 T
n	9−1 � 0 and

p∗
i �f 	=

N∑
j=1

A−1
ij �aj + bjwj + bjkj�fj	 

+
(

A−1
ii )i −

∑
j �=i

A−1
ij /ji

)
fi

+∑
j �=i

(
A−1

ij )j −
∑
l �=j

A−1
il /li

)
fj�

proving the claims in part (a). Parts (b) and (c) follow from
(18) and A−1 � 0. �

Proof of Theorem 8. We first verify that the profit
functions

�!i�p� f 	= log�pi −wi − ki�fi	 + logdi�p� f 	 (45)

are jointly concave in �pi� fi	. Because ki�f 	 is convex,
both terms to the right of (45) are jointly concave as the
composition of an increasing concave function and a jointly
concave function. This implies that any solution to the sys-
tem of first-order conditions

0= � �!i�p� f 	

�pi

= 1
pi −wi − ki�fi	

− bi

di�p� f 	
� (46)

0= � �!i�p� f 	

�fi

= −k′
i�fi	

pi −wi − ki�fi	
+ )i

di�p� f 	
� (47)

is a Nash equilibrium. Substituting (46) into (47), we obtain
(19), which has a unique solution f 0 because k′

i�0�5	 <
)i/bi and limfi↗1 k

′
i�fi	 = +�. Fixing f = f 0 in (46),

we obtain (44) for which the proof of Theorem 5 shows
that it has the unique solution p∗�f 0	. Thus, �p∗�f 0	� f 0	
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is the unique equilibrium on the interior of the action
space XN

i=1��pi� fi	� wi + ki�fi	 � pi � pmaxi �0�5 � fi < 1�.
One easily verifies that no point on its boundary is an
equilibrium. �

Proof of Theorem 9. Only part (b) requires a proof. To
prove the existence of a Nash equilibrium, it suffices to
show that the game is log-supermodular in the price and
service-level variables. Let �!i = log!i� i = 1� � � � �N . First,
note that the space of feasible strategies XN

i=1��pi� fi	� pi �

wi + ki�fi	� is a sublattice of 	2N because the set >i =
��pi� fi	� pi �wi+ki�fi	� is a sublattice of 	2: if �p1i � f

1
i 	 ∈

>i and �p2i � f
2
i 	 ∈ >i, then �max�p1i � p

2
i 	�max�f

1
i � f 2i 		 ∈

>i and �min�p1i � p
2
i 	�min�f

1
i � f 2i 		 ∈>i. The game is there-

fore supermodular provided that for all i = 1� � � � �N ,
�2 �!i

�pi�fi

= �2 log�pi−wi−ki�fi	 

�pi �fi

= k′
i�fi	

�pi−wi−ki�fi		
2
�0�

�2 �!i

�pi�fj

=0� �2 �!i

�pj �fi

=0�

�2 �!i

�pi�pj

= �2 logqi�p	

�pi�pj

�0�
�2 �!i

�fi �fj

= �2 log1i�f 	

�fi �fj

�0� �

Endnotes
1. Alternatively, the expected value or a given fractile of
the waiting time experienced by the customer may be used
as the service-level target; see Bernstein and Federgruen
(2002) for a treatment of this variant.
2. The model can be extended to the case where stock-
outs result in lost sales; the profit functions and resulting
analysis become somewhat complex.
3. Their comparatively high fill rates were enabled by
a novel revenue-sharing contract with the movie studios,
reducing the wholesale price per tape by a factor of 10,
approximately. Blockbuster’s strategic move to increase its
fill rates dramatically is generally credited for the com-
pany’s acquiring a dominating market share of close to 35%
and for its parent company Viacom seeing its stock doubled
during the first year of this initiative.
4. Independent software firms, such as Compliance Net-
works, provide retailers with tracking systems to monitor
the vendors’ compliance with the prespecified service tar-
gets as well as with data comparing groups of vendors’ fill
rates and on-time shipment performance (see Chain Store
Age 2002b).
5. See, for example, the recent survey of Bearing Point
(formerly KPMG Consulting) in Chain Store Age (2002a,
p. 5a), conducted in cooperation with Washington Inventory
Services.
6. Two examples are bizrate.com and resellerrating.com.
The former guides retailers on the basis of a number
of “post-fulfillment satisfaction” measures, in particular,
“availability of product you wanted” (defined as “product
was in stock at time of expected delivery”) and “on-time
delivery” (defined as “product arrived when expected”).

7. As with dynamic programs with a single decision maker,
it is rare that infinite-horizon stochastic games reduce to a
single-period stochastic game. When they do, the equiva-
lency greatly simplifies the identification and structure of
the infinite-horizon Nash equilibrium.
8. If a service level below 0.5 is used, customers are more
likely to experience a backlog than not; in this case, char-
acteristics of the customer waiting time, e.g., its expected
value or a given fractile of the waiting time, should be used
to characterize the customer service level (see Bernstein
and Federgruen 2002).
9. Similarly, aggregate sales usually decrease if one of
the firms increases its price:

∑N
j=1 �dj/�pi < 0 for all

i = 1� � � � �N .
10. As mentioned, this shape of the cost-service trade-off
function has been assumed ex ante in the service/quality
competition models of Anderson et al. (1992, p. 239),
Besanko et al. (1998), and Tsay and Agrawal (2000).
11. Recent econometric studies based on the MNL model
include Berry et al. (1995), Villas-Boas and Winer (1999),
and Besanko et al. (1998); see McFadden (1980, 1986),
Schmalensee and Thisse (1988), and Urban and Hauser
(1980) for reviews of earlier applications.
12. Empirical studies usually aggregate both dimensions of
quality via the average load factor, i.e., the total number
of passengers divided by the seats available on a route.
13. See Jaskow and Rose (1989, §25.8) for a general sur-
vey of the impact of economic regulation on equilibria in
a variety of industries.
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