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In a decentralized supply chain, with long-term competition between independent retailers facing randomdemands and buying from a common supplier, how should wholesale and retail prices be specified in an
attempt to maximize supply-chain-wide profits? We show what types of coordination mechanisms allow the
decentralized supply chain to generate aggregate expected profits equal to the optimal profits in a centralized
system, and how the parameters of these (perfect) coordination schemes can be determined. We assume that the
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and service competition.
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1. Introduction
We consider a decentralized supply chain with long-
term competition between independent retailers fac-
ing random demands and buying from a com-
mon supplier. In this setting, we investigate how
wholesale and retail prices should be specified to
maximize supply-chain-wide profits. The design of
effective coordination mechanisms in supply chains
has recently received considerable attention in the
operations management literature, following earlier
work in economics (see, e.g., Tirole 1988, Mathew-
son and Winter 1984) and the marketing literature on
channel coordination (see, e.g., Jeuland and Shugan
1983, Moorthy 1987). Ideally, a coordination mecha-
nism allows the decentralized supply chain to gener-
ate aggregate expected profits equal to those in the
first-best solution, i.e., the optimal profits in a cen-
tralized system. We refer to such mechanisms as per-
fect coordination schemes. This paper develops such
schemes for settings where the retailers compete in
terms of their pricing strategies, as well as for those
where they compete simultaneously in terms of their
prices and long-term service levels.

A variety of pricing structures and contractual
arrangements have been discussed in the operations
management literature (see, e.g., the surveys by
Lariviere 1999, Tsay et al. 1999, Cachon 2002).
This parallels innovations in many industries where
suppliers increasingly adopt nonstandard pricing
schemes to influence retail prices, retail sales, and
supply chain profits.1 For example, the adoption of
so-called revenue-sharing schemes has revolutionized
the video rental industry.
However, most of the literature considers coordi-

nation mechanisms for a supply chain with a sin-
gle retailer, thereby avoiding the complications that
arise under any type of competition between retail-
ers. As for the sparse literature on coordination mech-
anisms for supply chains with competing retailers,
a few papers (in particular, Padmanabhan and Png
1995, 1997; Deneckere et al. 1996, 1997; van Ryzin

1 See, e.g., Ailawadi et al. (1999) who report that, across 40 pack-
aged-good categories included in the Market Fact Book, no less than
37% of retail sales were made “on deal,” i.e., on the basis of one or
several such pricing schemes.

242



Bernstein and Federgruen: Coordination Mechanisms for Supply Chains
Manufacturing & Service Operations Management 9(3), pp. 242–262, © 2007 INFORMS 243

and Mahajan 1999; Cachon 2002; Bernstein and Fed-
ergruen 2005) address this question in a single-period
setting. Papers addressing infinite-horizon models
typically assume that demands occur at a constant
deterministic rate and that all demands are satisfied
fully and immediately—an ideal service level that
under deterministic demands can easily be guaran-
teed. Here, retailer competition is confined to price
or quantity competition. (See Chen et al. 2001, Bern-
stein and Federgruen 2003, and the references cited
therein.)
Under random demands, the competitive dynam-

ics among the retailers are considerably more com-
plex when viewed in a multiperiod or infinite-horizon
setting. First, each retailer needs to complement its
pricing strategy with an efficient strategy to replen-
ish its inventory from the supplier. Second, the dis-
tribution of the random demands faced by a retailer
depends, in general, on all the retailers’ prices and
service levels, i.e., the (steady-state) availability of
their products. We observe an increasing number of
industries in which some of the competing retailers
aggressively attempt to obtain larger market shares by
providing higher levels of service. For example, in the
fierce competition between amazon.com and barne-
sandnoble.com, the latter initiated a massive advertis-
ing campaign promising same-business-day delivery
in various parts of the country. These complications
result in significant challenges when designing a coor-
dination mechanism for the chain.
To analyze the mechanism design questions, we

focus on two-echelon supply chains with a single
supplier servicing a network of retailers. We assume
one of several systems of demand processes whose
distributions are functions of all retailer prices and
all announced service levels, quantified as firms’
no-stockout frequency, i.e., the fraction of time dur-
ing which a firm does not run out of stock.2 Bernstein
and Federgruen (2004b) consider alternative service
measures, e.g., the likelihood with which customers
receive delivery within a given promised time limit.
We analyze a periodic-review infinite-horizon model,
with the retailers facing a stream of demands that
are independent across time but not necessarily across

2 This is often referred to as the Type 1 service level (see, e.g., Nahmias
2001, §5.4.6).

firms. End-of-the-period inventories are carried over
to the next period. We assume that stockouts are back-
logged. Each retailer may place an order with the
supplier at the beginning of each period. Similarly,
the supplier may, at the beginning of the period,
replenish her inventory from an outside source. The
supplier fills the retailers’ orders from her own inven-
tory or, in case of stockouts, from an “emergency”
or “backup” source. Such emergency procurements
incur additional costs. The retailers and the supplier
pay facility-specific inventory-carrying and variable-
order costs. In addition, the retailers may incur out-
of-pocket backlogging costs, which are proportional
to the size of the backlogs. Contrary to most standard
inventory models, but more representative of actual
cost/service trade-offs experienced in practice, ours
does not require that direct backlogging costs exist.
Even in their absence, every firm has a proper incen-
tive to carry appropriate safety stocks, because a large
stockout frequency reduces the retailer’s average sales
and increases that of the competitors. We also show
that backlog penalties may need to be charged (or
paid) to the retailers as part of a coordination scheme.
The exact optimal strategy for the centralized chain
is unknown and of a prohibitively complex struc-
ture. We therefore define the first-best solution as the
optimal supply-chain-wide profits achievable under
an optimal pricing structure and assuming all facil-
ities adopt some base-stock policy—i.e., each facil-
ity increases its inventory position to some given
base-stock level whenever the inventory has dropped
below this level.
We first consider the case where the firms’ service

levels are exogenously specified. Here, we assume
that the retailers respond to a given wholesale pric-
ing scheme by noncooperatively selecting their retail
price along with a dynamic inventory replenishment
strategy. We initially assume that each retailer chooses
a stationary retail price to be used throughout the
planning horizon. This assumption is satisfied, for
example, when the model addresses supply chain
coordination for a given year or season, with daily
or weekly replenishment opportunities, during which
retail prices remain constant by managerial choice or
by necessity. Blinder et al. (1998) report on a detailed
and comprehensive survey of 200 firms in the United
States selected from a large variety of industries, firm
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sizes, and geographical regions to document how
rigid or sticky prices are and what factors explain this
stickiness. No less than 45% of the firms vary their
prices only on an annual basis, and 60% conduct a
price review, at most, twice a year. Correspondingly,
49% of the firms report making no more than a sin-
gle price change per item per year and 65% report
making at most two changes. The authors identify
12 distinct theories to explain this price stickiness.
Their book complements earlier econometric studies
documenting a pervasive trend of price rigidity, for
example, Carlton (1986), Cechetti (1986), and Kashyap
(1995).
Under a static price choice, there is a unique Nash

equilibrium of prices and associated inventory strate-
gies in response to a linear wholesale pricing scheme.
Because each firm’s inventory strategy only impacts
its own profit, the infinite-horizon stochastic game
can be reduced to a single-stage game in the sense
that both games share the same set of Nash equi-
libria. In other words, even though the base-stock
levels depend on the equilibrium prices and service
levels, the replenishment dynamics can be decoupled
from the strategic interactions. We use this to show
that the system can be coordinated with constant per-
unit wholesale prices specified, once and for all, at
the beginning of the infinite planning horizon. The
results contrast with those in the single-period model
in Bernstein and Federgruen (2005) in which stock-
outs are assumed to result in lost sales. There, per-
fect coordination cannot be achieved with a simple
linear wholesale pricing scheme. Instead, it is essen-
tial to combine such a scheme with a guarantee by
the supplier to buy back any unsold units at a given
(retailer-specific) buy-back rate. That paper presents
an alternative coordination mechanism, the so-called
price-discount sharing scheme, under which the sup-
plier subsidizes the retailer for part of the dollar
amount the retailer discounts its retail price from a
given list price. This scheme also needs to be com-
bined with a buy-back guarantee. Moreover, in Bern-
stein and Federgruen’s (2005) single-period model,
the stochastic demand functions do not depend on
the firms’ service levels. That model, therefore, does
not analyze how the equilibria and parameters of any
coordination schemes are affected by these service
levels.

We proceed with the full-equilibrium model in
which the retailers compete in terms of two distinct
strategic instruments: (i) their retail prices (or, equiv-
alently, their expected sales targets), and (ii) their
announced service levels (no-stockout frequencies).
(Each firm continues to select a dynamic infinite-
horizon inventory strategy along with these two
choices.) Under static pricing, the infinite-horizon
retailer competition game can again be reduced to a
single-stage game, now one in which each firm selects
a price and a service level.
Under combined price and service-level competi-

tion, a perfect coordination scheme can be designed
on the basis of a specific vector of constant per-
unit wholesale prices combined with a vector of con-
stant per-unit backlogging cost penalties to be paid
by the retailers to the supplier (or vice versa).3 This
type of coordination scheme was first introduced
by Celikbas et al. (1999) to coordinate the market-
ing and production functions within a single firm,
and by Lariviere (1999) in the context of a single-
retailer, single-period model in which the retail price
and, hence, the demand distribution, is exogenously
given. The scheme is also related to the “lost sales
transfer payment” scheme in Cachon (2002, §5) for a
setting with a single retailer facing an exogenously
specified (Poisson) demand process, with stockouts
resulting in lost sales: A given fee is paid by the
retailer to the supplier (or vice versa) for every unit in
lost sales. The backlogging penalties are most easily
implemented when they are negative, i.e., when they
are to be paid by the supplier to the retailer: Here,
the retailer is properly incented to report any back-
logs so as to recover the backlogging penalties. If the
penalty is positive, a possible way for the supplier
to monitor backlogs at the retailers would involve
rebate coupons to be distributed to customers (per-
haps along with the warranty or service registration
card) and to be sent in to the supplier or a third party.
In §6, we discuss how and to what extent our coor-

dinating mechanisms continue to apply when firms
are allowed to change their price in each period.
(Because the firms’ service levels are defined in terms

3 These wholesale prices and backlogging penalties are again spec-
ified, once and for all, at the beginning of the infinite planning
horizon.
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of long-run average fill rates, it only makes sense to
treat them as static choices.) While under the assump-
tion of static pricing the competition model reduces
to a single stage game, it distinguishes itself from
prior models in the literature by its ability to incor-
porate demand and cost implications of long-term
service levels. Prior models of retailer competition
with stochastic demands consider a single period
and either assume that firms compete exclusively in
terms of their prices, or they assume that firms com-
pete in terms of their single-period inventory lev-
els under given prices. For example, van Ryzin and
Mahajan (1999) consider a single-period model in
which customers choose retailers based on the avail-
ability of stocks. The authors confine themselves to
linear wholesale pricing schemes with a constant per-
unit wholesale price, and investigate how close the
best such scheme comes to achieving the first-best
solution. In contrast, Cachon (2002, §5) shows that a
linear wholesale pricing scheme achieves perfect coor-
dination if the retailer demands are perfectly corre-
lated and arise in proportion to their initial stocks.
Deneckere et al. (1996, 1997) consider a model with
perfect competition and a (uniform) market-clearing
price that depends on the aggregate inventory of
the retailers according to one of two demand func-
tions, corresponding to two possible states of the gen-
eral economy. Once again, a linear wholesale pricing
scheme fails to coordinate the chain. The authors pro-
pose to combine it with a resale price maintenance
scheme instead, under which the retailers are obliged
to set their price above a given threshold. Padman-
abhan and Png (1995, 1997) exhibit the benefits of a
full returns policy in a two-retailer price competition
model with deterministic linear demand functions. In
other models, the strategic importance of the inven-
tory level consists of its ability to attract substitute
demand from competitors that have run out of stock,
while the primary demand functions are independent
of any measure of service or inventory availability
(see, e.g., Netessine and Rudi 2003).
Finally, as reviewed above, Bernstein and Feder-

gruen (2005) consider the general single-period price
competition model with lost sales. The current paper
relies heavily on Bernstein and Federgruen’s (2004b)
single-echelon model for price and service competi-
tion between retailers. See Bernstein and Federgruen

(2004b) for a literature review on earlier inventory
models with price and/or service-sensitive demand
processes.
The remainder of this paper is organized as fol-

lows. Section 2 presents the model and notation. Sec-
tion 3 characterizes the retailers’ equilibrium behavior
in response to a given wholesale pricing scheme as
well as the centralized solution. Section 4 derives
the proposed coordination mechanisms when service
levels are predetermined and §5 when the retailers
compete simultaneously in terms of their price and
service levels. Section 6 discusses how our results
can be extended to settings where dynamic pricing
is allowed. Section 7 reports on a numerical study.
Finally, §8 offers conclusions and a discussion of
extensions to our model. All proofs are deferred to
the appendix.

2. Model and Notation
Consider a two-echelon supply chain with a supplier
selling to N independent retailers, each facing ran-
dom demands. We analyze a periodic-review infinite-
horizon model in which, at the beginning of each
period, each retailer may replenish its inventory by
placing an order with the supplier, and the supplier
may choose a replenishment quantity to be procured
from an outside source. Each retailer i = 1� � � � �N
positions itself in the market by selecting a retail
price pi from a given interval �pmini � pmaxi �, as well as
a steady-state service level fi ∈ �0�5�1	, defined as its
(long-run) no-stockout frequency. (See Bernstein and
Federgruen 2004b for alternative service measures.)
For most of the paper, we assume that the retailers
are required to adopt a stationary price. In §6, we dis-
cuss how our results and analysis extend to settings in
which prices may, in principle, be varied each period.
The supplier must anticipate incoming orders with

an appropriate replenishment strategy. This situation
arises, for example, when the supplier’s procurement
mechanism is constrained by a capacity limit, or when
her replenishment orders fail to be filled instanta-
neously but become available during, or at the end
of, the period in which they are placed. When faced
with stockouts, the supplier takes advantage of a
backup or emergency source to fill the uncovered
part of the retailer orders. For example, the sup-
plier may subcontract at the last minute or sched-
ule overtime production. Thus, all retailer orders can
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be filled at the requested level, albeit that procure-
ments from the backup source are associated with
significant additional costs. Subsequent to the initial
price and service-level choices, decisions are made
in the following sequence: At the beginning of each
period, all retailers simultaneously determine their
order quantity for that period. Next, these orders are
filled immediately (when necessary, with the help of
an emergency order to clear a stockout at the sup-
plier), after which the supplier decides on the next
replenishment order.
Each retailer incurs holding costs that are propor-

tional to the inventory it carries. Stockouts at the
retailers are backlogged. In §8, we provide a discus-
sion of the case where stockouts result in lost sales.
A retailer may incur direct, out-of-pocket backlogging
costs. If so, these are proportional to the backlog size.
Thus, for each retailer i= 1� � � � �N , let
h+
i = the per-period holding cost for each unit carried
in inventory,

h−
i = the per-period direct backlogging cost for any
unit backlogged.

The supplier incurs variable “regular” procurement
costs as well as linear holding costs. The additional
procurement cost associated with any “emergency”
end-of-the-period procurement is given by a convex
function h−

0 �·	, reflecting increasing marginal costs:
h−
0 �x	= the additional cost of clearing an end-of-the-

period shortfall of x units.
Following Bernstein and Federgruen (2004b), the

demand faced by each retailer i in any period t has
a distribution that may depend on the entire vec-
tor of retail prices p as well as the entire vector of
announced minimum service levels f = �f1� � � � � fN 	.
We thus allow a firm to provide better than its
announced service level. We assume, however, that
customer demand for a given firm depends on its
specified rather than its actual service level, simi-
lar to it being dependent on the specified technical
quality of the product (e.g., the product’s expected
lifetime). (See Bernstein and Federgruen 2004b for a
review of how information about firms’ minimum
service level is available in a variety of industries,
and how customers can avail themselves of estimates
when service-level targets fail to be publicly avail-
able.) Moreover, we show that in the absence of direct

backlogging costs (i.e., when h−
i = 0), a firm will

always equate its actual service level to the minimum
specified level, rendering the distinction between the
two service-level concepts a moot point. Similarly,
when a backlogging penalty is charged to a retailer as
part of a coordination scheme (see §5), the retailer is
always induced to specify a (minimum) service level
that equals its actual (long-run average) service level.
Let Dit�p� f 	 be the random demand faced by retailer i
in period t, under the retail price vector p and the
service-level vector f , with general cumulative distri-
bution function (cdf) �Gi�x � p� f 	. An assumption with
important implications for firms’ equilibrium behav-
ior is that the demand variables are of the multiplica-
tive form, i.e.,

Dit�p� f 	= di�p� f 	�it� (1)

with �it a general continuous random variable whose
distribution is stationary and independent of the vec-
tors p and f . Thus, for all i = 1� � � � �N , the sequence
��it� has a common general cdfGi�·	with density func-
tion gi�·	, inverse cdf G−1

i �·	, and standard deviation si.
Without loss of generality, we assume E��it	=1 for all
i and t. Thus, EDit�p� f 	 = dit�p� f 	 and �Gi�x � p� f 	 =
Gi�x/di�p� f 		, so that di�p� f 	 represents the expected
demand for retailer i.
Under the multiplicative model, the absolute level

of any fractile of the demand distribution �Gi may
depend on the complete vector of prices p and ser-
vice levels f , but the ratio of any pair of fractiles is
independent of p and f . Another implication of the
multiplicative model is that the coefficient of varia-
tion of any one-period demand is the exogenously
given constant si, i.e., it is independent of p and f .
See Bernstein and Federgruen (2004a) for a discussion
of nonmultiplicative demand models with demand
functions that depend on the price vector p only. As is
standard in virtually all inventory models, we assume
that, for all i= 1� � � � �N , the sequence of random vari-
ables ��it� t = 1�2� � � � � is independent, so that the
same independence property applies to the sequence
�Dit�. In contrast, the demands faced by the retail-
ers in any given period may be correlated following
a general joint distribution. The mean sales functions
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satisfy the basic monotonicity properties:

�di�p� f 	

�pi

≤ 0� �di�p� f 	

�fi
≥ 0�

�di�p� f 	

�pj

≥ 0� �di�p� f 	

�fj
≤ 0� j 
= i�

(2)

i.e., a retailer’s demand volume decreases with its
own price and increases with the price of any of its
competitors, and it increases with its own service level
and decreases with those of the competitors. We also
assume that no firm’s sales increase under a uniform
price increase:

(D)
N∑
j=1

�di

�pj

< 0 for all i= 1� � � � �N �

Finally, we denote by

�i�p� f 	=
∣∣∣∣�di�p� f 	

�pi

pi

di�p� f 	

∣∣∣∣
the absolute price elasticity for retailer i.
As in Bernstein and Federgruen (2004b), we focus

on three classes of demand functions:
(I) The attraction model. Attraction models are

among the most commonly used market share mod-
els in empirical studies and in theoretical models (see,
e.g., Leeflang et al. 2000). Here, we assume a fixed
potential market size M with each retailer’s actual
market share determined by a vector of attraction
values a = �a1� � � � � aN 	. More specifically, retailer i’s
market share is given by ai/

∑N
j=0 aj , where a0 is a

constant representing the value of the no-purchase
option. In our context, we assume that retailer i’s
attraction value ai depends on its retail price pi and
service level fi according to a general function ai =
ai�pi� fi	. This gives rise to the system of expected
demand functions:

di�p� f 	=M
ai�pi� fi	∑N

j=1 aj�pj� fj 	+ a0
� (3)

Clearly, the attraction values are decreasing in the
price and increasing in the service variable:

�ai

�pi

≤ 0 and
�ai

�fi
≥ 0 for all i= 1� � � � �N � (4)

We assume that each attraction function ai is log-
concave. Let ãi = log ai. Common specifications
include the multinomial logit (MNL) model with
ãi�pi� fi	= bi�fi	−!ipi, where !i ≥ 0 and the functions

bi�·	 are twice differentiable, increasing, and concave
for i= 1� � � � �N . (See Anderson et al. 1992, van Ryzin
and Mahajan 1999 for surveys of many economet-
ric studies employing this specification.) The MNL
model is a special case of the more general class of
separable attraction functions, where ãi = bi�fi	+ !i�pi	.
A separable function ã is appropriate when the per-
centage increase in the attraction value of a firm due
to a marginal change in its price is independent of the
prevailing service level (or vice versa). Nonseparable
attraction functions are useful to represent increased
or decreased sensitivity of the attraction values to
price changes under a higher service-level regime.
(II) The linear model. The average demand functions

are linear in all prices and service levels, i.e., for pos-
itive constants bi� eij �#i, and $ij :

di�p� f 	 = ai − bipi +
∑
j 
=i

eijpj +#ifi −
∑
j 
=i

$ijfj�

i= 1� � � � �N � (5)

(III) The log-separable model. This demand model
assumes that a regular system of price-dependent
demand functions �qi�p	� is scaled up or down as a
function of the service levels f offered by the different
firms. This gives rise to the specification:

di�p� f 	= &i�f 	qi�p	� (6)

with qi and &i differentiable, satisfying the mono-
tonicity properties �&i�f 	/�fi > 0, �&i�f 	/�fj < 0,
�qi�p	/�pi < 0, �qi�p	/�pj > 0, j 
= i, and with the nor-
malization &i�f � f � � � � � f 	 = 1. That is, if the firms
choose identical service levels, their demands only
depend on the prices. We assume that each function
qi�p	 is log-supermodular in �pi� pj 	 and each function
&i�f 	 is log-supermodular in �fi� fj 	, i.e.,

�2 log qi�p	
�pi�pj

≥ 0 for all i 
= j(

�2 log&i�f 	

�fi�fj
≥ 0 for all i 
= j�

(7)

Also,

−�2 log qi�p	
�p2i

>
∑
j 
=i

�2 log qi�p	
�pi�pj

� i= 1� � � � �N( (8)

−�2 log&i�f 	

�f 2i
>
∑
j 
=i

�2 log&i�f 	

�fi�fj
� i= 1� � � � �N � (9)
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These are standard conditions to guarantee a unique
equilibrium in single-period competition models with
linear costs (see Vives 2000). Milgrom and Roberts
(1990) showed that virtually all standard classes of
demand functions, including the linear, logit, Cobb-
Douglas, and CES functions, satisfy (7)–(9) with minor
parameter restrictions.

3. Best-Response Policies and the
Centralized Solution

In this section, we describe how each chain member
optimally responds to chosen (infinite horizon) strate-
gies by the other firms. In addition, we analyze the
optimal solution in the centralized system.
Assume first that the supplier adopts an arbitrary

vector of constant wholesale prices w. Because the
supplier fills all retailer orders, *i (the long-run aver-
age profit for retailer i) depends on the infinite-
horizon strategies of the competing retailers and the
supplier only via �p−i� f−i	,4 the price and service-
level choices of the competing retailers. Given a
choice �pi� fi	, retailer i faces a stream of independent
demands, identically distributed like Di�p� f 	 so that a
simple base-stock policy with base-stock level yi opti-
mally complements the price and service-level choices
among all possible infinite-horizon inventory strate-
gies. Moreover, it is easily verified that under such a
strategy, firm i’s long-run average profit is given by

*i�p� f �yi	 = �pi −wi	di�p� f 	−h−
i �di�p� f 	− yi	

− �h−
i +h+

i 	E�yi −Di�p� f 	�
+� (10)

Given (1), the base-stock level y∗
i �p� f 	, which opti-

mizes the profit in (10) subject to the constraint of
providing a no-stockout probability at least equal to
the specified level fi, is

y∗
i �p� f 	 = di�p� f 	G

−1
i

(
max

{
fi�

h−
i

h−
i +h+

i

})
�

i= 1� � � � �N � (11)

Thus, the optimal base-stock level is a multiple of
retailer i’s expected single-period demand. This mul-
tiple depends on the variability of these demands (via
the distribution Gi�·	), the relative magnitude of the

4 For any vector x ∈�n, let x−i = �xj � j 
= i�� i= 1� � � � �N .

cost rates h−
i and h+

i , and the specified (minimum)
service level fi. The multiple does not depend on any
of the prices or the competitors’ service levels. Substi-
tuting (11) into (10) and regrouping terms, we get the
(reduced) profit functions


*i�p� f 	= �pi −wi − ki�fi	�di�p� f 	� (12)

where

ki�fi	 = h−
i −h−

i G
−1
i

(
max

{
fi�

h−
i

h−
i +h+

i

})
+ �h−

i +h+
i 	

·E
[
G−1

i

(
max

{
fi�

h−
i

h−
i +h+

i

})
− �i

]+
(13)

denotes the expected operational cost required to sup-
port one unit of sales (which in the multiplicative
model is independent of the sales volume).
Thus, under an exogenously specified vector of ser-

vice levels f 0, the retailers face an infinite-horizon
sequential game that can be reduced to a single-stage
game in which each firm i only chooses its price pi,
and with profit functions �
*i�p� f

0	�. Specifically, if p∗

is a Nash equilibrium in the single-stage game, the
price vector p∗ combined with the N -tuple of base-
stock policies with base-stock levels �y∗

i �p
∗� f 0	� i =

1� � � � �N � is an equilibrium of Nash strategies in the
infinite-horizon game (and vice versa). Similarly, if the
vector of service levels f is endogenously determined,
the retailers face an infinite-horizon game that can be
reduced to a single-stage game in which each firm i

chooses a price pi and a service level fi, with profit
function 
*i�p� f 	. Thus, we can restrict attention to the
single-stage game, which we refer to as the retailer
game.
From (12), note that 
*i is the product of the ex-

pected demand volume di�p� f 	 of firm i and its profit
margin �pi −wi − ki�fi	�. All service levels in f impact
on a firm’s expected demand, but only the firm’s
own service level impacts its profit margin. It is eas-
ily verified that the ki�·	 functions are differentiable
and increasing. We assume, without loss of general-
ity, that limp↗� 
*i�p	 = 0, and limp↗��� 
*i/�pi	�p	 < 0.
In particular, we assume that the vector of upper lim-
its pmax = �pmax1 � � � � � pmaxN 	 is chosen to be sufficiently
large that

� 
*i

�pi

�pmax	 < 0� (14)
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We now turn our attention to the supplier. As
shown above, it is optimal in a decentralized system
for all retailers to adopt some base-stock policy. Note
that the specific choices of the base-stock levels have
no impact on the revenues or costs incurred by the
supplier. Assuming that the retailers choose �p� f 	 as
their prices and service levels, the supplier faces an
i.i.d. stream of aggregate orders, the common distri-
bution of which equals that of the aggregate single-
period consumer demand in the system. Let D0�p� f 	
denote a random variable with this distribution. (The
cdf �G0�x � p� f 	 of D0�p� f 	 can be obtained from the
joint distribution of the ��i� variables. It depends on p

and f only via the vector of mean demands d, i.e.,
�G0�x � p� f 	= �G0�x � d	.) It is thus optimal for the sup-
plier to adopt a (modified) base-stock policy (see, e.g.,
Federgruen and Zipkin 1986). Under a modified base-
stock policy, the supplier increases her inventory posi-
tion each period to a level as close as possible to a
base-stock level. If no capacity limit prevails, the base-
stock level can be achieved in every period. In the
presence of a capacity limit, a full-capacity order is
placed when the difference between the base-stock
level and the period’s beginning inventory is equal to
or larger than the capacity limit.
It is easy to compute the supplier’s optimal base-

stock level y0�p� f 	 (see Zipkin 2000). Let C0�p� f 	

denote the expected holding and emergency procure-
ment costs incurred by the supplier under an opti-
mal (modified) base-stock policy. Because C0 depends
on �p� f 	 only via the cdf �G0 and because the lat-
ter depends on �p� f 	 only via the vector of mean
demands d, it is possible to write C0�p� f 	 = �C0�d	.
In some cases, �C0 can be obtained in closed form.
Consider, for example, the case where the supplier’s
orders are uncapacitated and her expediting costs are
linear with cost rate h−

0 . If the random demand com-
ponents ��i� i = 1� � � � �N � follow a general multivari-
ate normal distribution, D0�p� f 	 is normal itself and
its mean /0�p� f 	 and standard deviation s̃0�p� f 	 can
be obtained as a closed-form function of the func-
tions �di�p� f 	� and the variance-covariance matrix of
��i�. Moreover, because D0�p� f 	 is normal, C0�p� f 	=
�h−
0 + h+

0 	0�1−1�h−
0 /�h

−
0 + h+

0 			s̃0�p� f 	 (see Zipkin
2000, Chapter 6), with 0�·	 and 1�·	 the pdf and cdf

of the standard normal. For example, when the �i-
variables are independent,

C0�p� f 	= �C0�d	 = �h−
0 +h+

0 	0

(
1−1

(
h−
0

h−
0 +h+

0

))

·
√√√√ N∑

i=1
d2i �p� f 	s

2
i � (15)

In this case, � �C0/�di = �s̃i/s̃0	c
i
0, where ci0 represents

the supplier’s per-unit cost if she serves retailer i ex-
clusively and s̃i = disi is the standard deviation of
retailer i’s demand.
When designing coordination mechanisms, it is

essential to characterize the first-best solution that
arises when optimizing the centralized system. Such
a system would adopt a price and service-level vector
�pI � f I 	, but the accompanying fully optimal supply-
chain-wide replenishment strategy is unknown (see,
e.g., Federgruen and Zipkin 1986, Zipkin 2000). In
defining the first-best solution, we therefore restrict
attention to replenishment strategies under which
each retailer’s inventory is governed by some base-
stock policy.5 As shown above, the same (modified)
base-stock rule for the supplier’s inventory optimally
complements such retailer base-stock policies, regard-
less of whether one considers the supplier’s profit or
the aggregate profit in the supply chain. With this
restriction, let 
*I�p� f 	 denote the optimal systemwide
long-run average profit under the price vector p and
vector of service levels f . Note that


*I�p� f 	 =
N∑
j=1

�pj − cj − kj�fj 		dj�p� f 	−C0�p� f 	

=
N∑
j=1


*j�p�f 	+
{ N∑

j=1
�wj−cj 	dj�p�f 	−C0�p�f 	

}
�

where the expression within curled brackets repre-
sents the expected profit earned by the supplier. For
any f ∈ �0�5�1	N , let pI �f 	 denote a maximum of
the continuous function 
*I�·� f 	 on the compact cube

5 Many supply chain models with exogenously specified demands
are based on the assumption that all facilities adopt a base-stock
policy (see, e.g., Graves and Willems 2000, Ettl et al. 2000, and
the references therein). These models have been implemented suc-
cessfully at various product divisions of Eastman Kodak, IBM, and
other companies.
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XN
i=1�p

min
i � pmaxi � and let �pI � f I 	 denote a global maxi-

mum of the (continuous) function 
*I�·� ·	, which exists
because limfi↗1 
*I�p� f 	=−�, i= 1� � � � �N .

4. Coordination Under Price
Competition

In this section, we show that under exogenously
specified service levels f 0, perfect coordination can
be achieved with simple constant per-unit wholesale
prices. This coordinating vector of wholesale prices is,
in fact, unique. We also characterize its dependence
on f 0.

Theorem 1. Assume that the vector of service levels f 0

is exogenously specified. (a) There exists a vector w∗�f 0	
with

w∗
i �f

0	 = pI
i �f

0	− ki�f
0
i 	−

pI
i �f

0	

�i�p
I �f 0	� f 0	

≤ pI
i �f

0	− ki�f
0
i 	� (16)

such that pI arises as the unique price equilibrium in the
retailer game induced by this vector of wholesale prices
w∗�f 0	. Moreover, w∗�f 0	 is the only vector of constant
wholesale prices under which pI �f 0	 arises as a price
equilibrium. (b) Assume, in addition, that pI

i �f
0	 > ci +

ki�f
0
i 	 + � �C0�pI �f 0	� f 0	/�di, i = 1� � � � �N . Then, ci +

� �C0�pI �f 0	� f 0	/�di <w∗
i �f

0	.

In our basic model, holding costs are independent
of the wholesale prices. Because capital costs usually
are a major component of inventory carrying costs,
one may wish to assume that each holding cost rate
h+
i increases with the wholesale price wi as follows:

h+
i �wi	= 5iwi + h0i , i= 1� � � � �N . The above result also
holds under this assumption.
To compute the coordinating wholesale price w∗

i

for any given retailer i, it suffices to know its cost
structure and demand function along with the opti-
mal price vector pI �f 0	: ki is easily computable, merely
knowing retailer i’s distribution Gi�·	, cost parame-
ters h+

i and h−
i , and its service level f 0i , while the

price elasticity �i can be determined from the shape
of this retailer’s expected demand function di�p� f

0	

and the vector pI �f 0	 alone. Note that ki depends on
wi if h

+
i does. In general, computation of w

∗
i requires

the determination of the unique value of wi for which
wi + ki�f

0
i �wi		 crosses the value pI

i �1− 1/�i�p
I 		. Only

in the “basic” model, where h+
i is independent of the

wholesale price wi (i.e., when 5i = 0), is the identity
for w∗

i in the theorem a closed-form expression for w
∗
i .

This identity also shows that under the coordinating
wholesale pricing scheme, each retailer i incurs a total
per-unit expected cost equal to its retail price pI

i mul-
tiplied with a “discount” factor �1−1/�i�p

I 		, which is
an increasing function of the retailer’s price elasticity,
another manifestation of the “inverse elasticity rule”
(see Tirole 1988, p. 66).
The coordinating wholesale prices w∗�f 0	 charac-

terized in Theorem 1 can be complemented with the
use of fixed periodic payments or franchise fees to
allow for an arbitrary allocation of supply chain prof-
its among the supplier and the retailers.
The proof of Theorem 1 shows that the retailers can

be induced to adopt any desired vector of retail prices,
and this with a unique vector of wholesale prices w∗.
Assuming that a fixed vector of retail prices p0 is tar-
geted, it is of interest to investigate how the coordi-
nating wholesale prices will change in response to a
change in one of the firms’ service levels f 0:

Proposition 1. Assume that a specific retail price vec-
tor p0 is targeted. (a) If the service level f 0i of some retailer
i is increased, the corresponding wholesale price w∗

j is
increased for all of its competitors j 
= i in each of the
demand models (I), (II), and (III). (b) If the service level f 0i
of some retailer i is increased, this will result in a decrease
of its coordinating wholesale price w∗

i under the linear
and log-separable demand models (II) and (III). Under the
attraction model, w∗

i will decrease (increase) if

k′i�f
0
i 	+ �p0i −w∗

i − ki�f
0
i 	�

2 �2di

�pi�fi
≥ �≤	0� (17)

If the wholesale price is set to achieve perfect coor-
dination (as opposed to targeting a fixed retail price
vector), these monotonicities are less clear because the
optimal price vector pI in a centralized system has a
complex dependence on the given service level f 0.

5. Coordination Under Price and
Service Competition

Now consider the case where the retailers simultane-
ously compete in terms of their prices and service lev-
els. Here, service levels are endogenously determined
as part of the equilibrium strategies of the retailers,
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as opposed to being specified as exogenous input
parameters. In this setting, a simple linear whole-
sale pricing scheme no longer suffices to coordinate
the supply chain. However, perfect coordination can,
in general, be achieved if a linear wholesale pric-
ing scheme is combined with a backlogging penalty
scheme under which each retailer pays the supplier a
given (possibly negative) penalty for each unit back-
logged in each period.
To guarantee perfect coordination under a com-

bined wholesale price/backlog penalty scheme, we
need a restriction on the distributions of the ran-
dom factors ��i�. In particular, we need to ensure that
the functions ki�fi	 will be convex. Recall that ki�f 	

denotes retailer i’s expected inventory and backlog-
ging costs per unit of sales when guaranteeing a ser-
vice level f . The following lemma can be found in
Bernstein and Federgruen (2004b).

Lemma 1. (a) ki�·	 is increasing and differentiable,
with

k′i�fi	= 0� for fi <
h−
i

h−
i +h+

i

and

k′i�fi	=
�h+

i +h−
i 	fi −h−

i

gi�G
−1
i �fi		

� for fi ≥
h−
i

h−
i +h+

i

�

(b) ki�·	 is convex and limfi↑1 k
′
i�fi	=� for all distri-

butions Gi such that:
(PF2) Gi is log-concave or, equivalently, is a Polya fre-

quency function of order 2 �PF2	 for all x≥G−1
i �0�5	; and

gi has infinite support, where G
−1
i �·	 denotes the inverse of

the Gi−distribution.
Condition (PF2) is satisfied for all distributions

whose density function decreases beyond the median,
e.g., the normal and exponential distributions and
many specifications of the gamma and Weibull distri-
butions. In the remainder of this section, we assume
that (PF2) holds.
We now demonstrate that perfect coordination can

be achieved with a linear wholesale pricing scheme
combined with a constant set of backlogging penalties
per unit backlogged in each period. (These penalties,
when positive, are paid by the retailer to the supplier
and, when negative, by the supplier to the retailer.)
Let k∗i �fi	 denote firm i’s service-level cost function
when the backlogging cost rate h−

i is replaced by h−∗
i .

Theorem 2. Assume that the following condition holds:

h+
i ≥ $i�p

I � f I 	gi�G
−1
i �f I

i 		� i= 1� � � � �N� (18)

and let

w∗
i = pI

i − k∗i �f
I
i 	−

pI
i

�i�p
I � f I 	

≤ pI
i − k∗i �f

I
i 	� (19)

h−∗
i = h+

i f
I
i −$i�p

I �f I 	gi�G
−1
i �f I

i 		

1−f I
i

� i=1�����N� (20)

where the $i�p
I � f I 	 factors are given by

attraction model:

$i�p
I � f I 	=−�ãi�p

I
i � f

I
i 	

�fi

/
�ãi�p

I
i � f

I
i 	

�pi

�

linear model:
$i�p

I � f I 	= #i

bi
�

log-separable model:

$i�p
I � f I	=−� ln&i�f

I 	

�fi

/
� ln qi�pI 	

�pi

�

Then, the centralized solution �pI � f I 	 arises as a price
and service-level equilibrium in the retailer game under
the (constant) wholesale prices w∗ and backlogging penal-
ties h−∗. In other words, the scheme where retailer i is
charged the constant wholesale pricew∗

i and a penalty h
−∗
i −

h−
i for each unit backlogged in each period induces perfect
coordination.

The coordinating backlogging penalties are spec-
ified as affine functions of the holding cost values
�h+

i �, where the coefficient in the linear term is given
by f I

i /�1− f I
i 	. Note that the simplistic choice h−∗

i =
h+
i �f

I
i /�1 − f I

i 		, which equates the critical fractile
h−∗
i /�h−∗

i +h+
i 	 to f I

i , would result in too high a back-
logging penalty and would therefore likely result in
the retailer adopting a service level fi > f I

i . The sim-
plistic choice is coordinating when the demand func-
tions do not depend on the service levels. Because
a firm’s demand increases when it increases its ser-
vice level, a smaller backlogging penalty suffices to
induce the firm to adopt the service level in f I . Note
that the amount by which the simplistic choice is
reduced is proportional to the marginal demand sen-
sitivity with respect to the firm’s own service level.
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Finally, because in general k∗i �·	 
= ki�·	, the coordinat-
ing wholesale prices w∗ are different from those aris-
ing when the service levels are fixed a priori as f = f I ,
i.e., when firms compete in terms of their prices only.
The conditions in Theorem 2 thus guarantee that

the centralized solution �pI � f I 	 is an equilibrium set
of prices and service levels. In general, it is hard
to guarantee that this price and service-level vec-
tor arise as the only possible equilibrium choices.
One case where uniqueness can be guaranteed is the
important class of MNL models. For this class of
demand functions, Bernstein and Federgruen (2004b,
Theorem 4) establishes that the single-stage game
employed in the proof of Theorem 2 has a unique
Nash equilibrium. This equilibrium must be an inte-
rior point of the feasible action space and must there-
fore satisfy the first-order conditions as its unique
solution as well. Note from (12) that � log 
*i/�pi ↗�
as pi ↘ wi + ki�fi	 while �� log 
*i/�pi	�p

max
i � p−i	 ≤

�� log 
*i/�pi	�p
max
i � pmax−i 	 < 0, where the first inequal-

ity follows from �2 log 
*i/�pi�pj ≥ 0 (as is easily ver-
ified) and the second follows from (14). Moreover,
the first-order condition (27) takes the simple form
−!ik

′
i�fi	+ b′i�fi	= 0. By the proof of Theorem 2, this

implies that under the proposed coordinating scheme,
�pI � f I 	 arises as the only possible equilibrium. For
other types of attraction models, it is harder to guar-
antee that a unique Nash equilibrium exists. Based
on similar arguments as for the MNL model, one can
show that in the linear model �pI � f I 	 arises as the
unique price and service-level equilibrium (see Bern-
stein and Federgruen 2004b, Theorem 8).
In the log-separable model, if the functions qi�p	

and &i�f 	 are linear, logit, Cobb-Douglas, or CES
(with minor parameter restrictions), the single-stage
game in the proof of Theorem 2 is supermodular.
Thus, even if multiple equilibria exist, there is an equi-
librium �p̄� f̄ 	 that is componentwise largest among
all Nash equilibria and an equilibrium �p� f 	 that is
componentwise smallest. Moreover, the following
tatônnement scheme converges to �p� f 	 when start-
ing in �pmin� fmin	, with fmini = 0�5, and to �p̄� f̄ 	 when
starting in �pmax� fmax	, with fmaxi = 0�9999. In the
kth iteration, �pk� f k	 is obtained from �pk−1� f k−1	 by
determining �pk� f k	= argmaxpi�fi 
*i�pi� fi� p

k−1
−i � f k−1

−i 	.
Convergence of the scheme to the same point when

started in �pmin� fmin	 or in �pmax� fmax	 thus provides
an easy numerical test that the equilibrium is unique.
In the MNL and linear models, the equilibrium ser-

vice level of any retailer i is entirely independent of
any of the wholesale prices as well as any of the cost
rates pertaining to its competitors. This is immedi-
ate from the first-order conditions (26) and (27). For
i= 1� � � � �N , let f ∗

i denote retailer i’s equilibrium ser-
vice level in the absence of any backlogging penalty
imposed by the supplier. The following proposition
shows that the coordinating penalty for any retailer i,
h−∗
i − h−

i , is positive (negative) when f ∗
i is lower

(greater) than its optimal centralized service level f I
i .

The additional positive (negative) penalty increases
(decreases) the cost of backlogs, inducing the retailer
to adopt a higher (lower) service level. This equiva-
lence fails to hold for other types of demand func-
tions.

Proposition 2. Assume that the demand functions are
of the MNL or linear models and satisfy condition (18).
Then, h−∗

i −h−
i ≥ 0 if and only if f ∗

i ≤ f I
i , i= 1� � � � �N .

Finally, the existence of a coordinating scheme is
based on condition (18), which implies that h+

i +
h−∗
i ≥ 0, a condition necessary to guarantee that the
functions k∗i �·	 be convex. Condition (18) is generally
satisfied for sufficiently large service levels �f I

i �, pro-
vided that $i�p

I � f I 	 remains bounded. Indeed, note
that limfi↑1 gi�G

−1
i �fi		 = limx→� gi�x	 = 0 for any dis-

tribution with unbounded support because E��i	 =∫ �
0 xgi�x	dx = 1. Under the attraction model, the

$i�p
I � f I 	 factors remain bounded as fi ↑ 1 when, for

example, ãi is a separable function (as in the MNL
model) or when it is submodular, i.e., �2ãi/�pi�fi ≤ 0,
because in these cases the factor is positive and
decreasing in fi. For the case of the linear model,
the $i�p

I � f I 	 factors are constants independent of f I .
Finally, under the separable model, $i�p

I � f I 	 is
decreasing in f I

i because &i�·	 is log-concave by (7)
and (9).
Observe that the coordinating wholesale prices w∗

are always specified to provide the retailers with a
positive margin, i.e., pI

i − w∗
i − ki�f

I
i 	 > 0. In addi-

tion, they are decreasing in the retailer’s expected
sales volume. (In the case of the attraction model,
retailer i’s margin is also an increasing function of the
retailer’s market share di/M .) Thus, wholesale prices
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are discounted on the basis of expected sales volumes.
Our model thus provides an economic rationale for
this most prevalent type of discounting, even though
the cost structure may fail to exhibit any economies
of scale with respect to the retailer’s sales volume.
A similar observation was made in Bernstein and
Federgruen (2003) for an infinite-horizon model with
deterministic demands.

6. Dynamic Pricing
Thus far, we have assumed that each of the retail
firms selects a price at the beginning of the plan-
ning horizon and maintains that price thereafter. As
explained in §2, the upfront restriction to a con-
stant price is often a necessity or it is managerially
desirable, as evidenced by the fact that close to half of
the firms in the United States conduct a price review
no more often than annually, while 61% review their
prices at most twice a year. In other settings, the price
may, in principle, be varied in each period along with
the firm’s order quantity. It can be shown that the
same N -tuples of infinite horizon strategies, identi-
fied in Theorems 1 and 2, continue to represent Nash
equilibria in this relaxed strategy space. For example,
in the case of simultaneous price and service compe-
tition, assume that all of firm i’s competitors adopt
the service vector f ∗

−i and stationary pricing strate-
gies p∗−i along with infinite-horizon base-stock poli-
cies with base-stock levels y∗

−i. It is then optimal for
firm i to adopt the service level f ∗

i along with a con-
stant price p∗i and the infinite-horizon base-stock pol-
icy with base-stock level y∗

i �p
∗� f ∗	, even though the

price in each period may be changed. This result fol-
lows from Federgruen and Heching (1999, Theorem 7)
and Chen and Simchi-Levi (2004). Given the choices
of firm i’s competitors, firm i faces a combined pric-
ing and inventory planning Markov decision problem
in which it is optimal to select the constant price p∗i
as well as the above base-stock policy. Thus, while
Federgruen and Heching (1999) have shown that sig-
nificant profit can be gained by lowering (increasing)
the retail price when inventories are high (low), these
benefits arise only in nonstationary settings or in finite
horizon settings where the end-of-the-horizon trun-
cation of the planning process generates a type of
nonstationarity. Moreover, this N -tuple of strategies
is a subgame-perfect Nash equilibrium: Even if the

firms deviate from their policies for a finite number of
periods, resuming the N -tuple of stationary strategies
continues to be a Nash equilibrium thereafter.
In particular, even though price variations are al-

lowed, these equilibrium strategies continue to em-
ploy a constant, stationary price for each firm under
any given (stationary) pricing scheme by the supplier.
However, it is in general difficult to preclude the exis-
tence of alternative, more complex equilibrium strate-
gies, even if the associated single-stage games (see
the proofs of Theorems 1 and 2) can be guaranteed
to have a unique Nash equilibrium. Tirole (1988) and
Fudenberg and Tirole (1991) discuss the possibility of
infinitely many alternative Nash strategies based on
tacit collusion among the retailers. Thus, the existence
of those alternative Nash equilibria makes it less cer-
tain that the proposed pricing schemes in Theorems 1
and 2 result in perfect coordination, i.e., induce the
retailers to adopt the centralized optimal solution.
(Even so, much has been written about the extent to
which these alternative stratgies have practical rele-
vance; see, e.g., Shapiro 1989.)
Since the seminal paper by Maskin and Tirole

(1988), much of the economics literature on dynamic
oligopoly models has restricted attention to Markov
perfect equilibria (MPE) only (see, e.g., Ericson and
Pakes 1995, Fershtman and Pakes 2000, Curtat 1996).
Here, each firm’s strategy must prescribe actions as
a function of the prevailing “payoff sensitive” system
state only. The latter is defined as the minimal state
specification that is sufficient to describe future pay-
offs to the firms.6 In our case, the payoff sensitive
state vector in each period is the vector of station-
ary inventory levels in this period. Under the restric-
tion to MPEs, the uniqueness result is straightfor-
ward under the following modification of the rules
of engagement between the supplier and the retail-
ers: Assume that each firm is allowed to sell (part

6 Maskin and Tirole (1988, p. 553) motivate their restriction as fol-
lows: “We have several reasons for restricting our attention to
Markov strategies. Their most obvious appeal is their simplicity.
Firms’ strategies depend on as little as possible while still being
consistent with rationality. More relevant from our perspective is
that Markov strategies seem at times to accord better with the cus-
tomary conception of a reaction in the informal industrial orga-
nization literature than do, say, the reactions emphasized in the
repeated game (or “supergame”) tradition, the best-established for-
mal treatment of dynamic oligopoly to date.”
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of) its inventory at the beginning of each period back
to the supplier, with full credit, before determining
its price and replenishment decisions for the current
period. It is then a dominant strategy for each firm
to initially “sell back” all of its inventory and then
face its price and replenishment decisions with a start-
ing inventory level of zero. In other words, under
the credit option, the system starts each period in
the unique state where all starting inventory levels
are zero.7 Because the system returns in each period
to the same state, the above N -tuple of strategies is
the unique MPE in the modified system. (Assuming
that the firms start with a vector of inventory lev-
els below the vector of equilibrium base-stock levels,
these strategies can be implemented without any firm
ever using the sell-back option.)
Finally, in settings where the retailers may be able

to monitor and enforce an alternative equilibrium of
strategies based on tacit price collusion, any incen-
tive for them to do so (as opposed to adopting the
coordinating strategies) may be eliminated by real-
locating 
*I�p

I � f I 	, the maximum possible aggregate
supply-chain-wide profits, via periodic fixed transfer
payments in the form of franchise fees or supplier
allotments. More specifically, if firm i’s long-run aver-
age profit value under some alternative equilibrium
equals �*i (because

∑N
i=0 �*i ≤ 
*I�p

I � f I 	), it is possible
to identify transfer payments that, in conjuction with
the above pricing schemes, would induce all firms to
adopt the intended equlibrium and be better off.

7. Numerical Study
In this section, we report on a numerical study con-
ducted to provide a comparison of the supply chain
performance under price competition, under com-
bined price and service competition, and under an
optimal centralized solution. The goal is to under-
stand how firms operate in these settings under differ-
ent market conditions (e.g., customer sensitivities to
prices and service levels, variability of demand), and
how a retailer’s position in the market (as given by its
service levels) affects the resulting equilibrium strate-
gies relative to the centralized solution. In addition,

7 If a firm faces a backlog at the beginning of a period, it is clearly
optimal to bring the firm’s inventory level up to zero by making
an initial purchase to clear the backlog.

we assess the impact of changes in the supplier’s cost
structure. In all cases, we compute the parameters of
the coordination schemes and discuss the impacts of
their implementation.
The numerical study consists of a base scenario as

well as 13 alternative scenarios obtained by varying
1 (set of) parameter(s) at a time. All scenarios have
N = 3 retailers and assume linear demand functions
as in (5), and normally distributed variables ��i� i =
1� � � � �N � that are independent of each other and have
mean one and standard deviation si = 0�5. Recall that
under linear demand functions, a unique price equi-
librium p∗�f 0	 exists for any given vector f 0 as well
as a unique pair �p∗� f ∗	 under combined price and
service competition. As mentioned in §3, the choice of
normal distributions allows for a closed-form expres-
sion of the supplier’s expected cost C0. For base sce-
nario I, we have

d1�p� f 	= 50− 18p1+ 7p2+ 7p3+ 100f1− 20f2− 20f3�
d2�p� f 	= 50+ 3p1− 10p2+ 3p3− 20f1+ 100f2− 20f3�
and

d3�p� f 	= 50+ 3p1+ 3p2− 10p3− 20f1− 20f2+ 100f3�
That is, retailer 1 has a clientele that is significantly
more sensitive to price changes by any of the three
retailers than are those of its two competitors. On the
other hand, the customers of all three retailers exhibit
the same sensitivity to uniform price changes in the
industry. (Note that btot

i = 4 for all i = 1�2�3, where
btot
i = bi −

∑
j 
=i eij .)

The retailers face identical cost parameters ci = 10,
h+
i = 4, and h−

i = 0. Finally, h+
0 = 0�6 and h−

0 = 6, and
pmini = 0 and pmaxi = 30, i = 1�2�3. By choosing h−

0 = 6
and c = 10, we assume that the additional per-unit
cost to clear a shortage at the supplier is 60% of the
normal variable procurement cost. When evaluating
decentralized solutions, we assume that each retailer i
pays the supplier a constant per-unit wholesale price
wi = 13�5. (The supplier’s 35% markup corresponds
approximately with the profit-to-revenue ratio in the
centralized solution for the base instance.)
For each of the 14 scenarios, we have computed

the centralized and decentralized solutions, each for
all service-level combinations obtained by varying the
service level of each retailer on a grid from 0.5 to
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Table 1 Equilibrium Service Levels and Coordinating Schemes

Scenario f I w ∗(p-only) f ∗ w ∗(simultaneous) h−∗
1 h−∗

2 h−∗
3

I �0�75�0�98�0�98	 �13�2�17�0�17�0	 �0�79�0�90�0�90	 �13�4�16�5�16�5	 −2�1 147�6 147�6
II �0�75�0�96�0�99	 �13�3�16�0�18�2	 �0�79�0�90�0�90	 �13�4�15�5�17�6	 −2�1 52�9 342�7
III �0�73�0�95�0�97	 �12�6�14�3�15�0	 �0�79�0�90�0�90	 �12�7�13�9�14�5	 −2�8 34�8 84�0
IV �0�76�0�99�0�99	 �13�6�18�7�18�7	 �0�79�0�90�0�90	 �13�8�18�1�18�1	 −1�7 342�7 342�7
V �0�73�0�97�0�97	 �15�8�22�3�22�3	 �0�79�0�92�0�92	 �16�1�21�9�21�9	 −2�8 72�6 72�6
VI �0�77�0�99�0�99	 �11�6�13�0�13�0	 �0�79�0�87�0�87	 �11�7�12�4�12�4	 −1�3 351�6 351�6
VII �0�50�0�97�0�97	 �13�1�16�4�16�4	 �0�73�0�90�0�90	 �13�7�15�8�15�8	 −3�1 84�0 84�0
VIII �0�83�0�99�0�99	 �13�4�17�7�17�6	 �0�83�0�90�0�90	 �13�4�17�1�16�8	 −0�3 342�7 147�6
IX �0�50�0�96�0�96	 �12�4�14�7�14�7	 �0�79�0�90�0�90	 N/A N/A N/A N/A
X �0�74�0�97�0�97	 �14�9�16�7�16�7	 �0�79�0�90�0�90	 �15�1�16�2�16�2	 −2�5 84�0 84�0
XI �0�91�0�99�0�99	 �13�3�17�8�17�8	 �0�93�0�97�0�97	 N/A N/A N/A N/A
XII �0�86�0�99�0�99	 �13�3�17�5�17�5	 �0�89�0�94�0�94	 N/A N/A N/A N/A
XIII �0�81�0�98�0�98	 �13�3�17�2�17�2	 �0�84�0�92�0�92	 �13�4�16�8�16�8	 −2�8 135�5 135�5
XIV �0�70�0�98�0�98	 �13�2�16�8�16�8	 �0�74�0�87�0�87	 �13�4�16�1�16�1	 −1�4 155�7 155�7

0.99 with a width of 0.01. (It is difficult to determine
the global optimum �pI � f I 	 of the centralized system
because the centralized profit function *I typically
has many local optima.) We thus determine �pI � f I 	

as the service-level vector that along with the best
corresponding retail prices, results in the largest sys-
temwide profit value among all grid points.
Scenarios (II)–(VI) investigate the impact of differ-

ent customer price sensitivities. In scenario (II), we set
e12 = 5, e13 = 9, maintaining the total price sensitivity
btot . However, while in the base scenario (I) retailer 1’s
customers are equally sensitive to the prices charged
by retailers 2 and 3, in (II) they are considerably
more sensitive to retailer 3’s price, perhaps because
its product is a closer substitute or because it is geo-
graphically closer than retailer 2. In scenario (III), we

Table 2 Prices in the Centralized and Decentralized Systems

Scenario pI �f I 	 pI �f ∗	 p∗�f I 	 p∗�f ∗	

I �18�5�22�4�22�4	 �18�2�20�8�20�8	 �17�6�20�1�20�1	 �17�3�18�7�18�7	
II �18�6�21�6�23�2	 �18�3�20�4�21�3	 �17�6�19�7�20�4	 �17�3�18�7�18�7	
III �16�1�19�8�20�5	 �16�2�19�0�19�3	 �16�1�19�2�19�6	 �16�2�18�5�18�5	
IV �20�1�24�0�24�0	 �19�4�21�9�21�9	 �18�4�20�6�20�6	 �17�9�18�8�18�8	
V �22�7�30�0�30�0	 �23�3�30�0�30�0	 �18�8�23�6�23�6	 �18�7�22�3�22�3	
VI �16�0�17�8�17�8	 �15�6�16�1�16�1	 �17�0�18�2�18�2	 �16�5�16�5�16�5	
VII �16�8�21�7�21�7	 �17�1�20�4�20�4	 �16�1�19�9�19�9	 �16�4�18�6�18�6	
VIII �19�8�23�2�22�9	 �19�2�21�3�21�3	 �18�6�20�5�20�2	 �18�1�18�7�18�7	
IX �15�4�19�5�19�5	 �16�3�18�2�18�2	 �15�4�18�7�18�7	 �16�4�17�5�17�5	
X �19�2�22�1�22�1	 �19�0�20�9�20�9	 �17�4�19�8�19�8	 �17�3�18�7�18�7	
XI �18�3�21�3�21�3	 �18�4�20�9�20�9	 �17�3�18�6�18�6	 �17�4�18�3�18�3	
XII �18�5�21�8�21�8	 �18�4�21�0�21�0	 �17�5�19�3�19�3	 �17�4�18�5�18�5	
XIII �18�5�21�9�21�9	 �18�0�20�5�20�5	 �17�5�19�5�19�5	 �17�1�18�3�18�3	
XIV �18�6�22�8�22�8	 �18�0�21�1�21�1	 �17�6�20�6�20�6	 �17�1�19�0�19�0	

increase btot
1 from four to six by setting e12 = 5, e13 = 7.

Thus, retailer 1 now has a larger total price sensitivity
as well as larger sensitivities to price changes by indi-
vidual retailers. In scenario (IV), we reduce btot

1 from
four to three by setting e12 = 7�5 and e13 = 7�5, main-
taining the symmetry between retailers 2 and 3. Sce-
narios (V) and (VI) investigate the impact of reduced
and increased price elasticities for retailers 2 and 3 by
setting b2 = b3 = 8 and b2 = b3 = 12, respectively.
The first six scenarios assume that all retailers have

identical sensitivities with respect to their own ser-
vice levels. In scenarios (VII) and (VIII), we decrease
and increase this coefficient for retailer 1 from its
value in the base scenario, #1 = 100, to #1 = 80 and
to #1 = 120, respectively. The former case represents
a setting where retailer 1’s customers are significantly
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more price sensitive, but care less about service than
those of the competitors. In the latter case, retailer
1’s customers are more demanding with respect to
both attributes. Scenario (IX) specifies $ij = 30 for all
i 
= j and represents a setting with increased service-
level competition. Finally, in scenario (X), we assess
the impact of inventory-related cost parameters at the
supplier on the centralized and decentralized solu-
tions by setting h+

0 = 3�h−
0 = 30. In the last four scenar-

ios (XI)–(XIV), we investigate the impact of demand
variability, varying the coefficient of variation of the
demand distributions from 0.2 to 0.6.
Table 1 reports, for each of the 14 scenarios, the

optimal service levels in a centralized system f I ,
the coordinating wholesale prices under price com-
petition and exogenous service levels set at f I , the
equilibrium service levels f ∗, and the parameters of
the coordination scheme under simultaneous price
and service-level competition.
Table 2 exhibits, again for each scenario, the retail-

ers’ prices in the centralized and decentralized sys-
tems for f = f I and f = f ∗. (Recall that pI �f I 	= pI is
the optimal price vector under centralization, while
p∗�f ∗	 = p∗ represents the equilibrium price vector
under simultaneous price and service competition.)
The following general conclusions can be drawn

from the numerical study.
(A) Under price and service-level competition, retailers

differentiate themselves less than in a centralized system.
This pattern applies across all 14 scenarios (as well as
others we have evaluated, but whose results we do
not report in the paper). Here, we measure the degree
of differentiation in the service levels by the span of
the vector of service levels, i.e., maxi fi −mini fi. Sim-
ilarly, we measure the degree of differentiation in the
prices by the span of the price vector. As far as the
differentiation in the service levels is concerned, an
even stronger contrast arises between the centralized
and the decentralized systems: Across all scenarios,
the service level of the best service provider is lower,
and that of the worst service provider is higher, under
competition than in the centralized solution. In other
words, supply-chain-wide profits are maximized by
providing clearer and more distinct alternatives than
in a competitive setting. In the latter, retailers tend to
adopt clustered price and service-level profiles. This
phenomenon is reminiscent of the classical Hotelling

model under exogenously given prices, where the
retailers differentiate themselves by their location as
opposed to their service level. Similarly, Borenstein
and Netz (1999) have substantiated why airlines dif-
ferentiate their departure times less under competi-
tion compared to the centralized solution.
(B) Prices and service levels tend to be less sensitive

to parameter changes in the decentralized system than in
the centralized system. First compare the solutions in
each of the scenarios (II)–(X) with base scenario (I).
The observed pattern holds throughout except for
the service levels of retailers 2 and 3 in scenarios
(V) and (VI). Compared to scenario (I), these change
by one percentage point in the centralized system,
whereas they change by 2% and 3%, respectively,
in the equilibrium of the decentralized system. This
occurs because the operational cost functions ki�·	 are
convex and extremely sensitive to changes in the ser-
vice level when it is close to one. In scenarios (V) and
(VI), changes in the price sensitivities of retailers 2
and 3 affect their choice of service levels. However,
these changes are less pronounced in the centralized
system where the service levels are significantly closer
to one.
Turning next to the remaining scenarios (XI)–(XIV),

the same observation applies to the comparison of the
service levels for retailers 2 and 3. In addition, in these
scenarios changes in the demand variability tend to
have a somewhat stronger impact on the prices in the
decentralized, as opposed to the centralized, system,
even under fixed service levels. This can be explained
as follows. Systemwide profits in the centralized sys-
tem depend on the variability of the individual retail-
ers’ demands as well as that of the aggregate demand
through the supplier’s cost function C0�p� f 	. In con-
trast, in the decentralized system prices result from
a retailer game in which only the coefficients of
variation of the individual retailer demands matter.
For example, going from scenario (XI) to (XII) corre-
sponds to a 50% increase in the coefficient of variation
of demand faced by each retailer, while the coefficient
of variation of the aggregate demand experienced by
the supplier increases only by 22�5%.
(C) In the centralized solution, the retailers tend to

charge more than in the decentralized system. Two oppo-
site forces influence how prices compare in both
systems. On the one hand, double marginalization
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implies higher retail prices relative to those optimal in
the centralized system. On the other hand, competi-
tion among the retailers tends to lower their prices. In
most scenarios, the competitive effect dominates, con-
firming what is often assumed to be the case in classi-
cal oligopoly models in which firms only compete in
prices. In scenario (VI), however, pI �f I 	 < p∗�f I 	 and
pI �f ∗	 < p∗�f ∗	. In that case, the increased values of
b2 and b3 seem to reduce the relative effect that com-
petition has on these firms, so the effect of double
marginalization dominates.
(D) Competition may result in higher or lower service

levels compared with those arising in a centralized system.
Thus, while prices are generally higher in the cen-
tralized system, the same fails to be the case for the
retailers’ service levels. As mentioned in (A), all that
can be predicted is that the lowest service provider in
the centralized solution increases its service level in
the decentralized system, while the highest service-
level provider in the centralized system decreases its
service level under decentralization.
(E) The combined wholesale price/backlogging rate coor-

dinating scheme derived in §5 achieves perfect coordina-
tion in almost all scenarios, i.e., in almost all cases h+∗ +
h−∗ ≥ 0. In those cases where h+∗ + h−∗ < 0, we can iden-
tify coordinating wholesale price/backlogging rate schemes
under which aggregate supply chain profits come very close
to the first-best level. As discussed in §5 under simul-
taneous competition, the unique vector of wholesale
prices w∗ and backlogging penalty rates h−∗ coordi-
nate the supply chain if h+ + h−∗ ≥ 0. Proposition 2
shows that h−∗

i ≥ 0 if and only if f I
i ≥ f ∗

i . In all
scenarios, this inequality is satisfied for retailers 2
and 3, while f I

1 < f ∗
1 , implying that h

−∗
1 < 0. However,

h+
1 +h−∗

1 remains positive for all scenarios except (IX),
(XI), and (XII).
The general shape of the coordinating backlogging

rate in condition (20) shows that, at least under linear
demand functions, h−∗

i increases rapidly to +� as f I
i

approaches one. This is illustrated in Table 1 by some
of the large positive penalty rates charged to retail-
ers 2 and 3. The magnitude of h−∗

i is also influenced
by the difference between f ∗

i and f I
i . For example, the

equilibrium service levels for retailer 1 in scenarios
(IV), (II), and (III) differ from those in the central-
ized system by 1%, 2%, and 3%, respectively, and the
(absolute) value of h−∗

1 increases accordingly. Also, h
−∗
1

is very close to zero in scenario (VIII), where the cen-
tralized and decentralized service levels for retailer 1
differ only by a few decimal points, while in scenario
(IX), h+

1 +h−∗
1 < 0 as f ∗

1 exceeds f
I
1 by 29%, the largest

difference among all retailers and all scenarios. Sce-
narios (XI) and (XII) are the only other two in which
h+
1 + h−∗

1 < 0. These two scenarios have in common
that (i) f ∗

1 > f I
1 and (ii) f

I
1 is itself relatively high. It

follows from Proposition 2 that (i) implies that h−∗
1 < 0

and the expression in condition (20) shows that the
absolute value of h−∗

1 can be relatively large when f I
1

is relatively high.
Even if in scenarios (IX), (XI), and (XII) it is not

possible to achieve perfect coordination with the
linear wholesale price/backlogging penalty scheme
presented in §5, it is possible to come close to the first-
best solution. For example, we have observed that in
scenario (IX), when charging retailer 1 a wholesale
price of $12.40 and retailers 2 and 3 wholesale prices
of $14.70 along with backlogging penalties of −$3�50,
$52.90, and $84, we obtain an equilibrium that leads
to aggregate supply chain profits within 2.3% of the
first-best solution.
Finally, the difference between retailer i’s coordi-

nating wholesale price under simultaneous price and
service competition and that under price-only com-
petition is given by k∗i �f

I
i 	− ki�f

I
i 	 (see (16) and (19)).

It is easy to verify that for a fixed service level f , the
function ki�f 	 given in (13) is strictly increasing in h−

i .
Then, k∗i �f

I
i 	−ki�f

I
i 	 > �<	0 if and only if h∗−

i > �<	h−
i .

In the scenarios investigated in this numerical study,
h−
i = 0, and h−∗

2 �h−∗
3 > 0 while h−∗

1 < 0. Thus, retailers
2 and 3 have to pay (sometimes hefty) backlogging
penalty fees to the supplier under simultaneous com-
petition, but their wholesale prices are lower than in
the setting where the service levels are exogenously
set at f I . At the same time, in the coordinating scheme
under simultaneous competition, retailer 1 is subsi-
dized for its consumer backlogs, thus providing an
incentive to reduce its inventory levels, but is charged
a higher wholesale price than it would be in a setting
where the centralized optimal service level is exoge-
nously determined.
We conclude this section with a discussion of the

sensitivity of the centralized and decentralized solu-
tions to the service levels, and of the firms’ relative
performance (in terms of market shares and profits)
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Table 3 Centralized Solutions

f 0 pI �f 0	 dI �f 0	 
�I�f
0	 w ∗�f 0	

f I = �0�75�0�98�0�98	 �18�5�22�4�22�4	 �65�5�12�5�12�5	 618 �13�2�17�0�17�0	
f ∗ = �0�79�0�90�0�90	 �18�2�20�8�20�8	 �56�8�15�2�15�2	 574 �13�2�17�0�17�0	
�0�50�0�98�0�98	 �17�4�22�3�22�3	 �60�7�14�2�14�2	 598 �13�2�16�8�16�8	
�0�99�0�98�0�98	 �20�4�21�9�21�9	 �49�1�16�5�16�5	 510 �13�0�16�1�16�1	
�0�75�0�70�0�98	 �17�8�19�1�21�7	 �56�4�13�3�12�6	 511 �13�0�16�3�16�3	
�0�75�0�99�0�98	 �18�6�22�7�22�4	 �66�9�10�3�13�0	 617 �13�2�17�0�17�0	

in both systems. To this end, Table 3 characterizes the
centralized solution under given service levels f I =
�0�75�0�98�0�98	, f ∗ = �0�79�0�90�0�90	, as well as four
other service-level combinations. These are obtained
by deviating from f I with two alternative service lev-
els for retailers 1 and 2 each. (Because in the base sce-
nario retailers 2 and 3 are symmetric, similar results
are obtained for retailer 3.) The table displays the opti-
mal prices and corresponding sales volumes for the
three retailers and the aggregate optimal profits in the
supply chain. The last column displays the coordinat-
ing wholesale prices (under the given vector of ser-
vice levels). In Table 4, we evaluate, for the same six
vectors of service levels, the unique equilibrium that
arises in the decentralized system. After listing the
equilibrium prices, we exhibit the equilibrium mean
sales volumes, the equilibrium expected profit of each
firm, and the percentage gap between the centralized
solution and the aggregate supply-chain-wide profits
in the decentralized uncoordinated system.
The centralized and the decentralized solutions can

be quite sensitive to the service levels. As far as
the former is concerned, the optimal aggregate prof-
its vary between $618 under f I and $266 under the
vector �0�99�0�5�0�5	 (not shown in Table 3), where
retailer 1 adopts an extremely high service level and
its competitors a very low one. Even when chang-
ing the service levels from f I to f ∗, the optimal cen-
tralized profit drops by around 7%. Interestingly, an

Table 4 Decentralized Solutions

f 0 p∗�f 0	 d∗�f 0	 
�∗�f 0	 
�∗
S�f

0	 gap (%)

f I = �0�75�0�98�0�98	 �17�6�20�1�20�1	 �50�9�25�5�25�5	 �123�63�63	 323 7.4
f ∗ = �0�79�0�90�0�90	 �17�3�18�7�18�7	 �42�4�27�6�27�6	 �83�69�69	 310 7.5
�0�50�0�98�0�98	 �16�5�20�2�20�2	 �46�7�26�5�26�5	 �102�68�68	 317 7.2
�0�99�0�98�0�98	 �20�0�20�2�20�2	 �33�5�26�9�26�9	 �61�70�70	 278 6.1
�0�75�0�70�0�98	 �17�1�17�1�19�8	 �42�2�25�6�23�0	 �82�55�51	 288 6.8
�0�75�0�99�0�98	 �17�6�20�4�20�1	 �52�2�23�3�26�0	 �130�53�66	 322 7.5

increase of one percentage point in the service level
of retailer 2 in f I has only a minor impact on aggre-
gate profits under centralized and decentralized con-
trol, while that increase may represent significantly
higher operational costs to that firm itself. In fact,
under price competition, retailer 2 experiences a con-
siderable decrease in its equilibrium profit (from $63
to $53).
Combined price and service competition causes all

retailers to reduce their prices p∗ = p∗�f ∗	 beyond
their equilibrium prices p∗�f I 	 under the exogenously
given service levels f I , which themselves are lower
than pI . This results, for example, in prices for retail-
ers 2 and 3 that are 17% lower than in the centralized
solution. The change in prices is, as discussed above,
associated with a reduction of the high-end retail-
ers’ service levels from 98% to 90% and an increase
of retailer 1’s service level from 75% to 79%. The
equilibrium sales volumes for retailers 2 and 3 under
combined price and service competition are approxi-
mately 8% higher than their values under price com-
petition with f 0 = f I , while those of retailer 1 decline
by approximately 16%. (Thus, aggregate sales are
close to equal in the two equilibria.) The retailers’
market shares vary dramatically under the three solu-
tions. That of retailer 1 is close to 72% under the cen-
tralized solution, but reduces to less than 50% under
price competition and f 0 = f I , and to 43% under
combined price and service competition. Retailer 1
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charges a significantly lower price than its competi-
tors, both in the decentralized and the centralized
solution. In both settings, the higher price sensitivity
of retailer 1’s customers results in its positioning itself
as the low-price/low service-level alternative in the
market.
The coordinating wholesale prices generate signifi-

cant gross profit margins �w∗ −c	 for the supplier that
are sometimes larger, but sometimes smaller, than the
gross retailer margins �pI −w∗	. For example, under
f 0 = f I , the margin vectors are ($3.20, $7.00, $7.00)
and ($5.30, $5.40, $5.40), respectively. Consider now
the impact of a change in one of the service levels on
the coordinating wholesale prices. As an example, set
f 0 = f I . With f 01 and f 03 fixed, as f

0
2 is increased from

0.7 to 0.99, its own coordinating wholesale price w∗
2

increases from $16.30 to $17.00 while the retail price
p2 increases from $17.10 to $20.40. In contrast, Propo-
sition 1 shows that if the targeted retail price p2 was
kept constant, w∗

2 would decrease.
Finally, note that the profit gap between the central-

ized and decentralized systems under fixed service
levels ranges in these examples from 6.1% to 7.5%.
In addition, while price-only competition with service
levels set at f I leads to a gap of 7.4%, simultane-
ous competition leads to a significantly higher gap
of 14.1% relative to the centralized system under f I .
Thus, the ability to prespecify the retailers’ service
levels at their system-optimal values may, under
decentralized control, be very beneficial for the over-
all performance of the supply chain.

8. Conclusions and Extensions
We have addressed a general model for two-echelon
supply chains with several competing retailers served
by a common supplier. Each retailer’s stochastic
demand function depends on its own retail price as
well as those of its competitors, but also on the service
levels guaranteed by all firms. The retailers’ service
levels are defined as their no-stockout frequency. Most
of our analysis has focused on three basic classes of
stochastic demand functions that depend on the vec-
tor of retail prices p and the vector of service levels f ,
i.e., the attraction models, the linear models, and the
log-separable models.
Focusing first on the case where the firms’ service

levels are exogenously specified, we have shown that

perfect coordination can be achieved by a simple lin-
ear wholesale pricing scheme (with constant per-unit
wholesale prices). When service levels are endoge-
nously determined, i.e., when the retailers simul-
taneously compete in terms of prices and service
levels, coordination can again be achieved with a lin-
ear wholesale pricing scheme, although this scheme
needs to be combined with a set of constant per-unit
backlogging penalties to be paid by the retailers to the
supplier (or vice versa). Finally, we derive a number
of managerial insights that arise from the numerical
study.
An important assumption in our paper common

to most stochastic inventory models is that stockouts
at the retailers are fully backlogged. It is of inter-
est to consider the alternative setting where stockouts
result in lost sales. Assume first that the retailers do
not guarantee any particular service level, so that the
mean demand functions depend only on the vector
of retail prices. In this case, a firm’s service level is
defined as the long-run frequency with which it does
not run out of stock at the end of a period. Simi-
lar to the proof of Theorem 1, it can again be shown
that under a vector of constant wholesale prices, a
Nash equilibrium of infinite-horizon strategies exists
in which each retailer adopts a given price and a
stationary base-stock policy, provided a Nash equi-
librium exists in a related single-stage game. This
single-stage game has been analyzed in Bernstein and
Federgruen (2005). There, Theorem 4 shows that this
single-stage game has a unique equilibrium vector of
prices that is monotone in the vector of wholesale
prices under a condition with respect to the shape
of the distributions of the error factors. (The condi-
tion is satisfied, e.g., for exponential and normal dis-
tributions with a coefficient of variation less than or
equal to one.) Under these conditions, it is possible to
show that, as in the case of full backlogging, perfect
coordination can be achieved with a linear whole-
sale pricing scheme. A situation similar to this lost-
sales model arises in our model with backlogging if
there are explicit out-of-pocket backlogging costs that
depend on the retail price (e.g., by being specified
as a percentage of the retail price). It is easily veri-
fied that the profit functions in the related single-stage
game are structurally similar to the profit functions
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discussed above. If the retailers guarantee specific ser-
vice levels, the situation is more complex, either when
these service levels are exogenously specified or when
the retailers engage in simultaneous price and service
competition and it is no longer possible to guaran-
tee the existence of a coordinating wholesale pricing
scheme. (The difficulty results from the fact that the
retailers’ profit functions no longer have increasing
differences in their own retail price and the wholesale
price charged by the supplier.)

Appendix. Proofs
Proof of Theorem 1. (a) Under any given vector of

constant wholesale prices w, the retailers face an infinite-
horizon noncooperative game. At the beginning of the
game, the retailers simultaneously select a price vector p ∈
7N

j=1�p
min
j � pmaxj �. Thereafter, each retailer i selects an infinite-

horizon (possibly history dependent) replenishment strat-
egy 8i. Let 8 = �81� � � � �8N 	. Firm i’s average profit 7i

depends on the price vector p and the N -tuple of strate-
gies 8 , i.e., 7i = 7i�p�8	. In the infinite-horizon game, a
Nash equilibrium is a vector p∗ and an N -tuple of inventory
strategies 8∗ such that 7i�pi�8i� p

∗
−i�8

∗
−i	≤7i�p

∗�8∗	 for all
i= 1� � � � �N . As explained in §3, given a specific price vec-
tor p and service-level vector f 0, each retailer i optimally
adopts a base-stock inventory policy with base-stock level
y∗
i �p� f

0	, and earns a long-run average profit of 
*i�p� f
0	

(see, (12)). This implies that the price vectors that are part of
an infinite-horizon Nash equilibrium are the same as those
that are Nash equilibria in the single-stage game in which
retailer i only selects a price pi ∈ �pmini � pmaxi � and earns prof-
its 
*i�p� f

0	. It therefore follows from Theorem 2(b), The-
orem 7(a), and Bernstein and Federgruen (2004b, Theorem
9(a)) for the attraction, linear, and log-separable demand
models (I)–(III), respectively, that the solution to the first-
order conditions

� log 
*i�p� f 0	

�pi

= 0 (21)

is the unique Nash equilibrium in the single-stage game
and, hence, the unique equilibrium prices chosen as part of
an equilibrium strategy in the infinite-horizon game.
Writing pI for pI �f 0	, this implies that pI is the unique set

of equilibrium prices if and only if for all i = 1� � � � �N , pI
i

satisfies the first-order condition (21), i.e.,

� log 
*i�p
I
i � p

I
−i� f

0 �w∗
i 	

�pi

= 1
pI
i −w∗

i − ki�f
0
i 	

+ �di�p
I � f 0	/�pi

di�p
I � f 0	

= 0� (22)

For the demand models (I)–(III), it is easily verified that
�2 log 
*i/�pi�wi > 0. In other words, the function � log 
*i/�pi

is strictly increasing in wi. To show the existence of a unique

coordinating wholesale price w∗
i ≤ pI

i − ki�f
0
i 	
def= �wi, under

which Equation (22) is satisfied, it thus suffices to verify that

lim
wi↘−�

� log 
*i�p
I
i � p

I
−i� f

0 �wi	

�pi

= �di�p
I � f 0	/�pi

di�p
I � f 0	

< 0�

while

lim
wi↗�wi

� log 
*i�p
I
i � p

I
−i� f

0 �wi	

�pi

> 0�

Finally, the identity for w∗
i �f

0	 is immediate from (22).
(b) Define w0i = ci + � �C0/�di. Note that

� 
*I�p
I � f 0	

�pi

= di +
(
pI
i − ci − ki�f

0
i 	−

� �C0
�di

)
�di

�pi

+∑
j 
=i

(
pj − cj − kj �f

0
j 	−

� �C0
�dj

)
�dj

�pi

= 0�

It then follows from our assumption and �dj/�pi ≥ 0 that
di + �pI

i − ci − ki�f
0
i 	− � �C0/�di	�di/�pi < 0. Therefore,

� 
*i�p
I � f 0 �wi =w0i 	

�pi

= di +
(
pI
i − ci − ki�f

0
i 	−

� �C0
�di

)
�di

�pi

< 0

and, hence,

� log 
*i�p
I � f 0 �wi =w0i 	

�pi

< 0�

The proof of part (a) shows that w∗
i �f

0	≥w0i . �

Proof of Proposition 1. Rewrite (22) as

1
p0i −w∗

i − ki�f
0
i 	

+ �d̃i�p
0
i � f

0
i 	

�pi

= 0� i= 1� � � � �N� (23)

where d̃i = logdi. It follows from the implicit function theo-
rem that the coordinating wholesale prices are differentiable
functions of the service levels, with the matrix
(
�w∗

i

�fj

)N

i� j=1

= diag (−�p01 −w∗
1 − k1�f

0
1 	�
2� � � � �−[

p0N −w∗
N − kN �f

0
N 	

]2)

×
(

k′i�f
0
i 	

�p0i −w∗
i − ki�f

0
i 	�
2
9ij +

�2d̃i�p
0� f 0	

�pi�fj

)N

i� j=1
�

Here, diag(:1� � � � �:N ) denotes a diagonal matrix, :i the
ith diagonal element, and 9ij the Kronecker delta, i.e., 9ij =
1 if i = j and 0 otherwise. Part (a) then follows, there-
fore, directly from the observation that �2d̃i/�pi�fj ≤ 0 in
each of the models (I), (II), and (III). This is immediate
in the log-separable model where this second-order par-
tial derivative is zero. In the linear model, �2d̃i/�pi�fj =
−bi$ij/d

2
i ≤ 0, and in the attraction model, �2d̃i/��pi�fj 	 =

�ai/�pi × �aj/�fj/�
∑N

l=1 al	
2 ≤ 0, by (4). For part (b), note that

�w∗
i /�f

0
i = −k′i�f

0
i 	 − �p0i − w∗

i − ki�f
0
i 	�
2�2d̃i�p

0� f 0	/��pi�fi	
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and k′i�·	 ≥ 0 imply that �w∗
i /�f

0
i < 0 in the linear

and log-separable models, where �2d̃i/�pi�fi = bi#i/d
2
i ≥ 0

and �2d̃i/�pi�fi = 0, respectively. In the attraction model,
�2d̃i/�pi�fi < 0 may occur. �

Proof of Theorem 2. Similar to the proof of Theorem 1,
under any given pricing scheme by the supplier, the retail-
ers face an infinite-horizon game. In this case, the retailers
simultaneously select, at the beginning of the game a vec-
tor of service levels f ∈ �0�1	N along with a price vector
p ∈ 7N

j=1�p
min
j � pmaxj �. Thereafter, each retailer i again selects

an infinite-horizon replenishment strategy 8i. Firm i’s aver-
age profit per period 7i now depends on the price vector p,
the service-level vector f , and the N -tuple of strategies
8 , i.e., 7i = 7i�p� f �8	. In the infinite-horizon game, a
Nash equilibrium is now a triple �p∗� f ∗�8∗	 such that
7i�pi� fi�8i� p

∗
−i� f

∗
−i�8

∗
−i	≤7i�p

∗� f ∗�8∗	 for all i= 1� � � � �N .
Following the arguments in Theorem 1, one observes that
the pairs �p∗� f ∗	 (of a price vector and a service-level vec-
tor) that are part of an infinite-horizon Nash equilibrium
are the same as those that are Nash equilibria in the single-
stage game, in which retailer i only selects a service level
fi ∈ �0�1	 along with a price p ∈ �max�pmini �wi +ki�fi	�� p

max
i �

and in which it receives a profit 
*i�p� f 	. We therefore again
first establish that a solution �p∗� f ∗	 to the first-order con-
ditions:

� 
*i

�pi

�pi� fi	= 0 and
� 
*i

�fi
�pi� fi	= 0� i= 1� � � � �N� (24)

is a Nash equilibrium in this single-stage game and is,
hence, part of an equilibrium strategy of the infinite-horizon
game. For the attraction and linear models, this result fol-
lows from Theorems 3(a) and Bernstein and Federgruen
(2004b, Theorem 8), respectively. As for the log-separable
demand functions, the result is obtained by showing that
for all i= 1� � � � �N , log 
*i = log�pi −wi − ki�fi	�+ log qi�p	+
log&i�f 	 is jointly concave in �pi� fi	. Joint concavity of the
second and third terms is immediate from (7)–(9); that of
the first term follows from the fact that the margin function
�pi−wi−ki�fi		 is jointly concave in �pi� fi	 by Lemma 1, and
therefore log-concave. Note from (20) that f I

i ≥ h−∗
i /�h+

i +
h−∗
i 	. Then, by Lemma 1 and the definition of h−∗

i ,

k∗
′

i �f
I
i 	=

�h+
i +h−∗

i 	f I
i −h−∗

i

gi�G
−1
i �f I

i 		
=$i�p

I �f I 	� i=1�����N � (25)

Next, note that the first-order conditions in (24) are equiv-
alent to

� log 
*i

�pi

= 1
pi −wi − ki�fi	

+ �di/�pi

di�p� f 	

= 1
pi−wi−ki�fi	

− �i�p�f 	

pi

=0� i=1�����N� (26)

k′i�fi	
�di

�pi

+ �di

�fi
= 0� i= 1� � � � �N � (27)

Straightforward algebra verifies that under the backlogging
penalties h−∗ and wholesale prices w∗, given by (20) and
(19), the centralized solution �pI � f I 	 satisfies this pair of
equations. It thus remains to show that for all i= 1� � � � �N ,
h−∗
i + h+

i ≥ 0, ensuring that the functions �k∗i �·	� are convex
and, hence, that each function log 
*i�p� f 	 is jointly concave
in �pi� fi	. However, h−∗

i +h+
i ≥ 0 is immediate by adding h+

i

to both sides of (20) and using (18). �

Proof of Proposition 2. In the MNL case, the equilib-
rium service-level vector f ∗ under a given wholesale price
vector w and backlogging rate cost vector h− satisfies the
first-order condition (27):−k′i�f

∗
i 	!i+b′i�f

∗
i 	= 0, i= 1� � � � �N .

From Lemma 1, k′i�f
∗
i 	 = ��h+

i + h−
i 	f

∗
i − h−

i 	/gi�G
−1
i �f ∗

i 		.
On the other hand, under the coordinating scheme in
this model, retailer i is charged the wholesale price w∗

i

and a penalty h−∗
i − h−

i = h+
i f

I
i /�1 − f I

i 	 − gi�G
−1
i �f I

i 		/�1 −
f I
i 	�b

′
i�f

I
i 	/!i	−h−

i . Then, f
∗
i < �>�f I

i implies that −k′i�f
I
i 	!i+

b′i�f
I
i 	 < �>� − k′i�f

∗
i 	!i + b′i�f

∗
i 	 = 0, because ki�·	 is convex

and bi�·	 is concave. This, in turn, implies that h−∗
i −h−

i > �<
��h+

i f
I
i −gi�G

−1
i �f I

i 		k
′
i�f

I
i 		/�1− f I

i 	−h−
i = 0. A similar argu-

ment applies to the linear model. �
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