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We characterize supply chain settings in which perfect coordination can be achieved with simple wholesale
pricing schemes: either retailer-specific constant unit wholesale prices or retailer-specific volume discount

schemes. We confine ourselves to two-echelon supply chains with a single supplier servicing a network of retail-
ers who compete with each other by selecting sales quantities. We identify a key sufficient condition, in terms
of interdependencies between chain members’ operational decisions, under which perfect coordination via sim-
ple schemes is feasible, under general cost and demand functions. This condition, which we refer to as echelon
operational autonomy (EOA), states that the costs incurred by the supplier for a given vector of sales volumes
depends only on operational decisions she controls herself. At the same time, the costs incurred by the retail-
ers may depend on operational decisions controlled by the supplier, in which case, the supplier’s operational
decisions are made to minimize chainwide costs. We show how vendor-managed inventory (VMI) partnerships
create EOA and compare the resulting coordinating pricing schemes with those required in a traditional decen-
tralized setting (without EOA). We also discuss compliance issues with the coordinating schemes in view of the
Robinson-Patman act and provide remedies to overcome these issues.
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1. Introduction
The literature on decentralized supply chains has
focused on two extreme settings: (1) a fully decen-
tralized system in which each retailer chooses all
of its policy variables (its sales quantity as well as
its replenishment strategy), and (2) a fully central-
ized system in which all retailer sales quantities and
the complete chainwide replenishment strategy are
determined by a single decision maker. However,
between these extremes, there exist many intermedi-
ate or hybrid forms of centralization. For example, in
the vendor-managed inventories (VMI) partnership,
each retailer determines its sales quantity but dele-
gates the entire replenishment strategy to the supplier.
Sometimes, retailers continue to incur the inventory
carrying costs. Other, increasingly popular, VMI part-
nerships transfer all of the carrying costs to the sup-
plier.1 We refer to the former (latter) as VMI− (VMI+).

1 The capital costs of carrying inventory (usually, the bulk of these
costs) are transferred simply by having the retailer pay the sup-
plier only when the items are sold. Andel (1996, p. 55) states: “The
Wal-Marts of the world want to get to the point where they don’t
even own the goods sitting on the shelf. They want their vendors

The objective of VMI partnerships is to improve
the aggregate performance of the supply chain. For
example, the supplier typically sells the same or
related items to several independent retail organiza-
tions, each of which may have multiple storage facil-
ities. VMI permits the chain to exploit economies of
scale in the production and distribution process. Also,
by centralizing the replenishment process, invento-
ries can be managed on the basis of actual con-
sumer demands. Indeed, Buzzell and Ortmeyer (1995)
report that the introduction of VMI partnerships at
Dillard Department Stores, JCPenney, and Wal-Mart
has resulted in sales increases of 20% to 25% and 30%
inventory turn improvements. VMI is also believed to
have resulted in lower retail prices; see e.g., Nelson
and Zimmerman (2000).2

to capture the POS transaction which says: it’s been bought, so now
you can bill Wal-Mart.” Physical warehousing costs are sometimes
transferred by suppliers or their third-party logistics providers
owning or renting warehouse space in the proximity of the retailers.
2 This article illustrates the effect VMI partnerships have had on
supply chain performance with a description of the highly suc-
cessful partnership between Kimberly-Clark and various retailers
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Nevertheless, VMI partnerships are organization-
ally challenging and, among other drawbacks, often
require major investments in information sharing
technology and systems.3 At the same time, the indus-
trial organization literature has shown that aggregate
profits in a supply chain can be maximized to the
first-best level, simply by adopting an appropriate
pricing scheme for sales to the retailers. Moreover,
the coordinating pricing scheme is often based on
per unit wholesale prices that are constant or a sim-
ple decreasing function of the retailer’s order size. If
“clever pricing” is all that is needed to achieve supply
chain coordination, why do we need initiatives like
VMI that are costly to implement?
One reason is that simple pricing schemes, while

sometimes sufficient, fail to achieve perfect coordina-
tion in other seemingly simple cases. Consider, for
example, a supply chain with a single supplier dis-
tributing a product to several retailers over an infinite
horizon. Demands at each retailer occur at a con-
stant rate that is a decreasing function of this retailer’s
price. Due to fixed and variable procurement costs,
inventories are replenished in batches. In the special
case of identical retailers, a single quantity discount
scheme based on individual order sizes induces per-
fect coordination, as shown by Weng (1995). However,
Chen et al. (2001) show that in a traditional decen-
tralized setting, no nonlinear order quantity discount
scheme achieves perfect coordination when the retail-
ers are not identical.4 Instead, the authors show that
perfect coordination requires an upfront agreement
between the chain members to place all orders only at
a specific discrete set of epochs and it involves three
separate discount schemes, each based on a different
retailer attribute: (1) the size of the retailer’s orders,
(2) the frequency with which orders are placed, and
(3) the retailer’s cumulative sales volume. Bernstein
and Federgruen (2003) extend these results to the case
where retailers face price or quantity competition, i.e.,
each of their demands depends on all retailers’ prices.
We refer to this model as the standard inventory model.

such as COSTCO. The article quotes Richard B. Berner, chief U.S.
economist at Morgan Stanley Dean Witter, as stating that improved
supply chain management has played a major role in the continu-
ous decline of retail prices for general merchandise.
3 Wal-Mart spent billions to develop Retail Link, connecting its
stores with participating vendors via dedicated satellite commu-
nication systems; see Hornblower (2004). Recently, Wal-Mart has
required its 100 top suppliers to tag all of their pallets with the
new RFID tags to improve the performance of their VMI partner-
ship; see Barlas (2003). (This requires eight billion tags at a unit
cost of 20 cents.) Other companies need to rely on third-party soft-
ware and consulting services, e.g., PRC Consulting, Simpson, and
Knowledge Stores.
4 No all-unit or incremental discount scheme achieves coordina-
tion even when the demand rates and retail prices are exogenously
given, irrespective of how many discount price levels are used.

Our main goal is to characterize conditions under
which perfect coordination can be achieved with
possibly retailer-specific constant wholesale prices or
possibly retailer-specific volume discount schemes.
(Under a volume discount scheme, the wholesale
price is discounted as a function of the retailer’s
annual sales volume.) We consider two-echelon sup-
ply chains with a single supplier servicing a network
of retailers who compete with each other by select-
ing sales quantities.5 The costs incurred by different
chain members typically depend on operational deci-
sions such as their replenishment strategies. Given
basic regularity conditions that ensure the existence
of Nash equilibria, we show that constant unit whole-
sale prices achieve perfect coordination for general
cost structures, as long as each retailer’s operational
decisions impact only on its own costs. The sup-
plier’s operational decisions, on the other hand, may
impact the costs of the entire echelon, i.e., those of the
retailers as well as her own. If this is the case, it is
required that the supplier’s operational decisions be
made so as to minimize chainwide costs. This eche-
lon operational autonomy (EOA) condition is satisfied in
many settings but it fails to apply in the above stan-
dard inventory model when operating as a traditional
decentralized system: here, the supplier’s inventory
costs depend on her own replenishment strategy as
well as those of the retailers, while both VMI+ and
VMI− partnerships enable perfect coordination via a
simple pricing scheme, precisely by establishing EOA.
The ability to create EOA may therefore be seen as
another reason for companies’ investments in VMI
partnerships. We show, likewise, that under EOA, per-
fect coordination is achieved with a simple volume
discount scheme. This scheme has two benefits: it is
usable even when the regularity conditions required
under constant unit wholesale prices fail to apply, and
it allows for a continuous range of allocations of the
optimal total profits among the firms.
Each retailer’s coordinating constant wholesale

price equals the marginal cost it imposes on other
chain members, plus a markup which depends on
the retailer’s equilibrium sales volume or market
share. The nonlinear pricing scheme, similarly, adds
a markup to the per unit average cost this retailer
imposes on the other chain members. We give gen-
eral conditions under which the markups decrease
with the retailer’s market share. We thus provide an
alternative rationale for the prevalent practice of dis-
counting wholesale prices on the basis of annual sales
volumes; see e.g., Munson and Rosenblatt (1998). The
traditional explanation for why larger retailers get
lower wholesale prices is either because the cost of

5 Parallel results apply to the case of price competition; see
Bernstein et al. (1999).
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doing business with them is lower or because of their
larger bargaining power or superior information; see
e.g., Schiller and Zellner (1992). Our explanation does
not require any of these conditions.
Both schemes involve double marginalization, i.e., a

positive margin between the per unit wholesale price
for a given retailer and the marginal (or average) cost
it imposes on the other chain members, as well as one
between the wholesale price and the retail price. We
show that the first margin increases with the retailer’s
“competitive impact,” a measure for the degree of
competition this retailer presents to the market, and
decreases with its market share. The numerical study
in Bernstein et al. (1999) reveals that the adoption
of a coordinating pricing scheme may increase chain-
wide profits by more than 20% when operating under
VMI+, and by close to 30% in the case of VMI−, com-
pared to the case in which the supplier selects (con-
stant) wholesale prices so as to maximize her own
profits. Thus, a VMI partnership by itself allows only
part of the potential for efficiency improvements, but
it provides the foundation for maximum efficiency
improvements via a simple coordination scheme.
We refer to Aviv (2004), Cheung and Lee (2002),

and Netessine and Rudi (2004) for models invoking
VMI and the related “drop-shipping” arrangement,
and to Cachon (2003) for a survey of coordination
mechanisms for a wide range of supply chain mod-
els. Ingene and Parry (1995, 2000) consider a supply
chain with two nonidentical competing retailers fac-
ing linear deterministic demand functions. Each chain
member incurs costs proportional to its sales volume.
The authors show that perfect coordination cannot be
achieved by any uniform constant wholesale price.
Instead, they obtain perfect coordination by discount-
ing the (common) wholesale price as a linear function
of the retailers’ purchase volumes. It is unclear how
the scheme can be generalized for industries with
more than two retailers or more complex cost and
demand structures. Bernstein and Federgruen (2004,
2005) consider systems with an arbitrary number of
competing retailers facing random demands. In both
models, perfect coordination is achieved with a vector
of constant wholesale prices, and in both, EOA holds.
This paper is organized as follows. Section 2 devel-

ops the coordination schemes for the general model.
In §3, we apply our results to the standard inven-
tory model under VMI+ and VMI−, comparing the
coordination schemes with the more complex scheme
required in a traditional system (i.e., the standard
inventory model without a VMI arrangement).

2. The General Model
Consider a two-echelon supply chain with a supplier
distributing a single (or closely substitutable) prod-
uct(s) to N retailers who in turn sell the product to
the consumer market. All demands must be satisfied

in their entirety. For i = 1� � � � �N , let pi be the retail
price charged by retailer i, and qi its annual consumer
demand. The two sets of variables are related to each
other via general, continuously differentiable, inverse
demand functions pi = fi�q1� � � � � qN 	, i= 1� � � � �N . Let
qmax denote a nonrestrictively large upper bound for
the retailers’ annual demand volumes. For substi-
tutable products, each retailer’s price decreases when
it or any of its competitors increases its targeted sales
volume, i.e., 
fi/
qj ≤ 0, i� j = 1� � � � �N .
Our main assumption reflects the supply chain

members’ cost structures. Let 
i, i = 0�1� � � � �N ,
denote the complete set of operational decisions
which are controlled by firm i. For example, 
i may
denote a set of capacity decisions, possibly in combi-
nation with an infinite horizon replenishment policy.
EOA requires that each retailer i’s operational deci-
sions 
i impact its own cost only. However, the sup-
plier’s operational decisions 
0 may impact the costs
of all chain members. Under EOA, the chain mem-
bers’ costs depend on the vector q and the operational
decisions, and may be described by the following con-
tinuous functions:

h̃0�q�
0	= cost incurred by the supplier� (1)

h̃i�q�
0�
i	= cost incurred by retailer i�

i= 1� � � � �N � (2)

The supplier charges the retailers for their pur-
chases according to a given pricing scheme and deter-
mines her operational decisions 
0 so as to induce
perfect coordination. To do so, 
0 is chosen to mini-
mize aggregate costs.6 Decisions are made in the fol-
lowing sequence, at the beginning of the planning
horizon, and cannot be revoked thereafter:
Step 1. A wholesale pricing scheme is specified.
Step 2. The retailers simultaneously select their

sales volumes.
Step 3. The supplier chooses her operational deci-

sions 
0.

6 When each chain member’s operational decisions impact its own
costs only, as under VMI+, the same 
0 optimizes the supplier’s
as well as aggregate costs. Under VMI−, to achieve perfect coordi-
nation, it is essential to insist that 
0 optimize aggregate cost. All
VMI− arrangements we know about either impose this charter on
the supplier, or they specify bounds on inventory levels and deliv-
ery frequencies, usually determined cooperatively, with chainwide
costs as the guiding principle. Often the responsibility of monitor-
ing the replenishment process is delegated to a third party logis-
tics provider. See Bolch (2005) and Buzzell and Ortmeyer (1995,
p. 90). Gamble (1994) states, for example, “Vendor-directed inven-
tory management need not be linked to vendor-owned inventory,
sometimes called consignment sales. S. C. Johnson & Son Inc. now
literally manages the inventory of its products at Kmart, and both
parties are smiling. Kmart’s in-stock rate of 80% has now reached
the upper 90s, and inventory has dropped from enough wax to
cover 16 weeks on normal sales to 2–4 weeks.”
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Step 4. The retailers choose their operational deci-
sions 
i, i= 1� � � � �N .
Thus, for any given vector q, operational deci-

sions are determined as follows: the supplier selects

∗
0 �q	, taking into account each retailer i’s response


∗
i �q�
0	 to minimize its own cost h̃i. This gives rise

to reduced cost functions h0�q	 and hi�q	, i= 1� � � � �N .
Formally, let


∗
i �q�
0	= argmin


i

h̃i�q�
0�
i	

and


∗
0 �q	= argmin


0

{
h̃0�q�
0	+

N∑
i=1
h̃i�q�
0�


∗
i �q�
0		

}
�

Thus, h0�q	 = h̃0�q�

∗
0 �q		 and hi�q	 = h̃i�q�


∗
0 �q	�


∗
i �q�


∗
0 �q			. We assume that hi�·	 is increasing in qi,

i= 1� � � � �N . Let h−i�q	= h0�q	+
∑

j 	=i hj �q	 denote the
total cost incurred by all chain members except for
retailer i.
EOA arises, for example, in the standard inven-

tory model under VMI, as the supplier takes over the
retailers’ replenishment decisions, thereby influencing
their costs; see §3. Bolch (2005) provides a survey
of VMI partnerships both with and without consign-
ment, i.e., VMI+ and VMI−, respectively. This arti-
cle quotes an estimate that 30% of inventory at the
retail level moves through VMI partnerships, espe-
cially consumer product goods flowing to mass mer-
chants, grocery stores, drug stores, and some apparel
retailers. At the same time, EOA fails to hold in a tra-
ditional decentralized setting: effective replenishment
strategies for each of the chain members call for batch
replenishments at the end of intervals of constant
length Ti. In a traditional setting, each chain member
chooses its own replenishment interval. Because the
supplier’s inventory dynamics and costs depend on
all of the replenishment intervals, her costs h̃0 do not
just depend on 
0 but on �
i� i= 1� � � � �N � as well. In
contrast, a VMI arrangement empowers the supplier
to determine the retailers’ replenishment frequencies
and epochs, establishing EOA.
The EOA structure also applies to the models in

Bernstein and Federgruen (2004, 2005), where retail-
ers face a general system of stochastic demand func-
tions. These models assume that all retailers follow
a base-stock policy, while all retailer orders are
always filled upon receipt, either from the supplier’s
inventory or by a back-up source. Thus, the oper-
ational cost incurred by each of the channel mem-
bers only depends on its own operational decisions.
The authors show that the chain can be coordinated
with constant wholesale prices. As an alternative, con-
sider the case where the supplier does not have access
to a back-up source when running out of stock. In
this case, the lead time process experienced by each
retailer, and hence its inventory cost, depends on the

inventory policy adopted by the supplier, while the
expected inventory cost of the supplier only depends
on her own operational decisions. Thus, EOA is main-
tained, but because the retailers’ costs depend on 
0,
it is now essential that the supplier or a designated
third party determine 
0 to minimize chainwide costs.
In Cachon’s (2001) two-echelon model, N identical
retailers face Poisson demands with a given rate.
Because each facility manages its inventory with an
�R�Q	-policy, the operational costs of the supplier
depend on the retailers’ operational decisions and
EOA fails to apply. The author shows that the system
can be coordinated but only by charging the supplier
a penalty for its backorders and the retailers a penalty
for consumer backorders, unless a VMI− arrange-
ment is introduced. The supplier’s objective under
this arrangement amounts to minimizing chainwide
costs.7 As a final example, consider the one supplier-
one retailer model in Cachon and Zipkin (1999). Both
firms follow a base-stock policy. To provide an incen-
tive to carry inventory, the supplier is charged a frac-
tion of the backlogging costs due to stockouts at the
retailer. In this model, the operational costs of both
firms depend on each other’s base-stock level, so that
EOA fails to apply. Indeed, the proposed coordination
mechanism involves period-by-period transfer pay-
ments from the supplier to the retailer, which depend
on the retailer’s inventory level and the backorder
size at both firms. Simple pricing schemes fail, even
though the lower echelon of the chain consists of a
single retailer.
Suppose now that EOA holds. Consider first the

centralized solution, where the quantity vector q is
chosen from the compact set � = �q� 0 ≤ qi ≤ qmax�
to maximize the supply chain wide profit function
�SC�q	=

∑N
i=1 fi�q	qi−h0�q	−

∑N
i=1 hi�q	, which is con-

tinuous by the continuity of the demand and cost
functions. Thus, �SC achieves its maximum in a vec-
tor qI (and pI = f �qI 	), without loss of generality an
interior point of �. (If qI is on the boundary, because
by assumption qIi < qmax, qIi = 0 for some i. Such a
retailer i can be eliminated from the system.) There-
fore, qI satisfies the first-order conditions

N∑
j=1

qIj

fj �q

I 	


qi
+ fi�q

I 	−
N∑
j=0


hj�q
I 	


qi
= 0�

i= 1� � � � �N � (3)

We now analyze the decentralized system. When
the supplier charges a vector of constant prices w,
retailer i’s profit function is given by �i�qi � q−i�wi	=
qi�fi�q	−wi	−hi�q	. The following Nash-Debreu con-
dition is sufficient for the existence of an equilibrium:

7 This paper discusses another successful VMI− partnership be-
tween Allegiance Healthcare and the Duke University Medical Cen-
ter, with the supplier chartered to minimize chainwide costs.
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(C) The profit functions �i are quasi-concave in qi,
i= 1� � � � �N .
If hi is linear in qi, the profit functions are log-

concave (and thus quasi-concave), for example, if
the inverse demand functions are themselves log-
concave in their own arguments, e.g., when they are
linear or Cobb-Douglas. The functions �i�·	 are con-
cave in qi if the demand functions are linear and
the cost functions hi are convex in qi. Concavity is
often maintained, even when hi is concave. Consider,
for example, under linear demand functions, the case
where hi�q	= �iq

�i
i and 0< �i ≤ 1.8 Then, (C) holds as

long as

��i� ≤
qifi�q	

hi�qi	

2
�i�1− �i	

� (4)

Here, �i is the demand elasticity for retailer i (as cal-
culated from the inverse demand function). Thus, the
profit functions are concave as long as

�i ≤ 8
qifi�q	

hi�qi	
≤ qifi�q	

hi�qi	

2
�i�1− �i	

�

This condition is usually satisfied as shown by the
empirical data in Bernstein and Federgruen (2003).
The equilibrium is unique for twice-differentiable
profit functions under (C) and

(U) − 
2�i

�
qi	
2
>
∑
j 	=i

∣∣∣∣ 

2�i


qi
qj

∣∣∣∣ for all i= 1� � � � �N �

If the centralized optimal sales vector qI is targeted
as an equilibrium in the Cournot retailer game under
a vector of constant wholesale prices wC , the first-
order conditions must be satisfied for q = qI , i.e.,

0= 
�i


qi
= fi�q

I 	−wC
i + qIi


fi�q
I 	


qi
− 
hi

qi

� or

wC
i = fi�q

I 	+ qIi

fi�q

I 	


qi
− 
hi�q

I 	


qi
< fi�q

I 	= pIi �

(5)

The vector qI satisfies (3), which may be written as

fi�q
I 	+ qIi


fi�q
I 	


qi
=

N∑
l=0


hl�q
I 	


qi
−∑

j 	=i
qIj

fj �q

I 	


qi
�

Subsituting this identity into �5	, we obtain


h−i�qI 	

qi

≤ wC
i = 
h−i�qI 	


qi
−∑

j 	=i
qIj

fj �q

I 	


qi

= 
h−i�qI 	

qi

+ Mi Q
I

[
1− qIi

QI

]
(6)

for i= 1� � � � �N , where QI =∑N
j=1 q

I
j and

 Mi =∑
j 	=i

qIj∑
l 	=i qIl

(
−
fj�q

I 	


qi

)
≥ 0

8 Functions of this type arise in the standard inventory model of §3.

is a weighted average of the marginal impacts a vol-
ume increase by retailer i has on its competitor’s
prices, which we refer to as retailer i’s competitive imp-
act. Each firm’s coordinating wholesale price is thus
given by the marginal cost it imposes on all other chain
members, plus a markup proportional to the firm’s
competitive impact. Using Lemma 2 in Milgrom and
Roberts (1990), as well as (5) and (6), Theorem 1 below
shows that this wholesale price is strictly below the
retail price, along with properties of the supplier’s
markup.

Theorem 1. Assume that (C) and (U) hold.
(a) The retailers adopt qI as the unique Nash equilib-

rium under the constant wholesale prices wC in (6), i.e.,
(6) induces perfect coordination.
(b) 
h−i�qI 	/
qi ≤wC

i < pIi for i= 1� � � � �N .
(c) The supplier’s markup "wC

i −
h−i�qI 	/
qi# increases
with  Mi , retailer i’s competitive impact, and, for a given
total sales volume QI , it decreases with this retailer’s mar-
ket share for i= 1� � � � �N .

By part (b), the scheme induces double marginal-
ization. To illustrate part (c), consider a system with
two retailers and inverse demand functions p1 = a1 −
bq1−&q2 and p2 = a2−bq2−&q1, with a1 > a2 and b > &.
Note that  M1 =  M2 = &. If the supplier’s cost is linear,
i.e., h0�q1� q2	= c�q1 + q2	 and hi = 0, then qI1 > qI2 and
wC

1 <wC
2 . The coordination scheme (6) thus provides

a rationale for the widely prevalent practice of offer-
ing larger discounts to larger retailers (see §1) beyond
those that can be justified by economies of scale in the
costs. We are not aware of any industrial organization
models which justify this practice without relying on
asymmetric information or differences in bargaining
power.
The second perfect coordination scheme is based

on average (incremental) procurement costs incurred
for each of the retailers. This scheme applies to gen-
eral demand and cost functions, even in the absence
of condition (C). For i = 1� � � � �N , let �SC�q

I
−i� qi	 =

qifi�q
I
−i� qi	 +

∑
j 	=i qIj fj �q

I
−i� qi	 −

∑N
j=0 hj�q

I
−i� qi	 denote

the “marginal” chainwide profit function when all but
retailer i are committed to the sales volume in qI , and
note that it is maximized by qi = qIi . The same applies
to any increasing affine transformation of �SC ,

��SC�q
I
−i� qi	

= (i

{
qifi�q

I
−i� qi	+

∑
j 	=i
qIj "fj �q

I
−i� qi	− fj�q

I
−i�0	#

−hi�q
I
−i� qi	−

∑
j 	=i
"hj �q

I
−i� qi	−hj�q

I
−i�0	#

}

for 0≤ (i ≤ 1� (7)

When its competitors choose the volumes in qI ,
firm i’s profit function is given by

�i�q
I
−i� qi	= qifi�q

I
−i� qi	−wiqi −hi�q

I
−i� qi	� (8)
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Consider, in particular, the case where (i = 1. The
profit functions (7) and (8) coincide (hence share qIi as
their maximum) if the (nonlinear) per-unit wholesale
price is given by

Wi�qi	 =
h−i�qI−i� qi	−h−i�qI−i�0	

qi

−∑
j 	=i
qIj
fj �q

I
−i� qi	− fj�q

I
−i�0	

qi

= h−i�qI−i� qi	−h−i�qI−i�0	
qi

+QI Ai �qi	

[
1− qIi

QI

]
� where (9)

 Ai �qi	 =
∑
j 	=i

qIj∑
l 	=i qIl

fj �q
I
−i�0	− fj�q

I
−i� qi	

qi
�

Like  Mi ,  
A
i �qi	 is a measure of retailer i’s competitive

impact, i.e., a weighted average of firm i’s impact on
its competitors’ prices per unit of sales. The scheme,
similar to the constant prices in (6), is obtained by
replacing marginal costs by average incremental costs
and  Mi by  Ai �qi	. Using a proof similar to that of
Theorem 1, we have the following result.

Theorem 2. The vector qI arises as an equilibrium in
the retailer game induced by scheme (9). Thus, (9) gen-
erates a perfect coordination mechanism, and for all i =
1� � � � �N ,

h−i�qI 	−h−i�qI−i�0	
qIi

<Wi�q
I
i 	 < pIi

⇐⇒�SC�q
I 	 >

∑
j 	=i
qIj fj �q

I
−i�0	−

N∑
j=0

hj�q
I
−i�0	� (10)

i.e., if and only if aggregate first-best profits decrease when
retailer i departs from the system.

The nonlinear scheme again involves double margi-
nalization. The supplier’s markup for retailer i again
increases with the retailer’s competitive impact  A,
and decreases with its market share, for a given total
sales volume QI . By varying (i, a range of possi-
ble coordination schemes arises. Increasing (i shifts
profits from the supplier to the retailers. In contrast,
the constant pricing scheme allows only for a single
choice. Note that Wi�qi	 is a discount scheme (i.e.,
Wi�·	 is decreasing) if, for example, the hj -functions
are concave in each of their arguments and the inverse
demand functions fj are convex in each of the com-
petitors’ sales volumes. (The latter is satisfied, e.g., for
all linear and all Cobb-Douglas inverse demand func-
tions.) Finally, Nash equilibria other than qI may arise
under (9). In this case, more coordination is required
to steer the channel members to qI . The equilibrium qI

continues, however, to be the preferred equilibrium.
Since maximizing chainwide profits, qI also allows
retailers to achieve the best net profits after inclusion
of fixed transfer payments.
Under both the linear and nonlinear schemes, the

wholesale prices used for different retailers may be
different. In the United States, this may raise con-
cerns about compliance with the Robinson-Patman
act. However, except for the markups, all differences
are entirely due to differences in the marginal oper-
ating cost the retailer imposes on the chain. Such
differentials are permitted under the “cost justifi-
cation” provision in §2(a) of the act. The act pro-
vides several other defenses which may justify the
remaining differences. Also, the differences in the
markups tend to vanish when the number of retail-
ers increases. If the direct price effect 
fj/
qj and QI

remain bounded in N , then all  Mi -factors and the
entire markups decrease to zero.9 (When the cross-
elasticities in the demand functions are zero, so are
the  Mi -factors, resulting in unambiguous compliance
with the Robinson-Patman act.) In addition, to the
extent that differences in the markups continue to be
of concern, the concern applies equally to settings
with and without EOA. For example, in the stan-
dard inventory model, price differentials are needed
to ensure perfect coordination (in a chain with het-
erogeneous retailers) even in the traditional system
in which EOA fails to apply. To address the con-
cern regarding price differentials, one may wish to
confine to (an optimally selected) uniform markup,
both when EOA applies and when it does not. The
numerical study in Bernstein et al. (1999) shows
that in the standard inventory model this restriction
results in an average chainwide profit loss of no more
than 3%. Thus, the main result in the paper contin-
ues to apply when restricting to uniform markups:
EOA enables close-to-perfect coordination with sim-
ple pricing schemes, while, in general, this is not pos-
sible in the absence of EOA.
A concern, inherent to almost all pricing schemes,

is the possible emergence of “grey” markets, where
a retailer with a higher wholesale price orders “via”
one with a lower wholesale price. There are several
mechanisms to discourage this practice. For example,
customers may be required to send the service regis-
tration or warranty card with their item’s serial num-
ber to the supplier. This, or the RFID tags, allows the
supplier to check whether the unit is sold by the legit-
imate or by some other retailer. Finally, the existence

9 Because a firm’s price will generally not go up if all firms decide
to increase their sales target by the same amount, we have that∑

i 	=j �
fj/
qi� < −
fj/
qj . This implies that the individual terms
�
fj/
qi� → 0 as N → � because −
fj/
qj remains bounded as N
increases, and so do weighted averages among them.
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of point-of-sales information systems, as desired in
a VMI partnership, makes it difficult to “hide” grey
market shipments.

3. The Standard Inventory Model
In this section, we apply our results to the stan-
dard inventory model. In this infinite horizon model,
demands at retailer i arise at a constant, but control-
lable rate qi. The supplier replenishes her inventory
with production runs or orders from an uncapaci-
tated source. From there, the goods are shipped to
the retailers. Deliveries to and from the supplier incur
fixed and variable costs. Each location incurs car-
rying costs proportional with the inventory levels.
The supplier may incur an annual cost for manag-
ing each retailer’s needs and transactions, given by
a concave function of the retailer’s annual sales vol-
ume, to reflect economies of scale. Chen et al. (2001)
discuss such account management costs. Finally, there
may be costs to maintain the product while stocked
at the retailer or costs associated with its sales efforts,
all a function of the retailer’s sales volume. For i =
1� � � � �N ,

K0 = fixed cost incurred for each delivery to the
supplier,

Ki = fixed cost incurred for each delivery to
retailer i,

H0 = annual holding cost per unit of inventory at
the supplier,

�Hi = annual holding cost per unit of inventory at
retailer i,

Hi = �Hi −H0 ≥ 0, the incremental or echelon hold-
ing cost at retailer i,

c0 = cost per unit delivered to the supplier,
ci = transportation cost per unit shipped from the

supplier to retailer i,
-i�qi	= annual cost incurred for managing retailer i’s

account, with -i�·	 nondecreasing, concave,
and differentiable and -i�0	= 0,

si�qi	= annual cost associated with retailer i’s sales
effort and inventory maintenance needs; si�·	
is differentiable.

Many marketing studies represent the si�·	 func-
tions as power functions, i.e., si�qi	= �iq

�i
i with �i� �i >

0; see e.g., Corstjens and Doyle (1981) and Curhan
(1973). In a decentralized setting, the fixed cost Ki for
a delivery to retailer i may be shared by the supplier
and the retailer, with Ks

i and K
r
i their respective parts,

Ki =Ks
i +Kr

i .
In a traditional decentralized system, 
i, the opera-

tional decisions controlled by firm i include its replen-
ishment strategy, i.e., the epochs and size of its orders.
Retailer i’s inventory costs depend only on its own 
i.
However, while the input process of the supplier’s
inventory depends only on her own operational strat-
egy 
0, her output process depends on �
1� � � � �
N �.

For example, assume that each retailer i places orders
every Ti time units; such constant replenishment inter-
vals are, in fact, optimal for the retailer under constant
per unit wholesale prices. The supplier’s resulting
aggregate order stream is, in general, highly nonsta-
tionary. It is unknown what her optimal correspond-
ing replenishment policy looks like.
To achieve perfect coordination, one needs to

reduce the systemwide annual delivery and inventory
cost to its minimum level C�q	 in a centralized sys-
tem. This cost function, too, is hard to characterize,
but Roundy (1985) showed that the following func-
tion �C�q	 approximates C�·	 closely:

�C�q	=min� �C�q�T 	 � Ti = 2miTb�mi integer�

i= 0�1� � � � �N �� (11)

where
�C�q�T 	 =

N∑
i=1
�c0 + ci	qi +

K0

T0
+

N∑
i=1

[
Ki

Ti
+ 1

2
�HiqiTi

]

+ 1
2H0

N∑
i=1
qi"T0 − Ti#

+�

In fact, C�q	 ≤ �C�q	 ≤ 1�02C�q	. The function �C�·	
restricts the T -vectors to power-of-two multiples of
a base period Tb. For such power-of-two vectors T ,
�C�q�T 	 is the cost of a policy under which firm i
replenishes its own inventory every Ti time units: the
first term denotes the variable procurement costs, the
second and third terms the fixed replenishment and
retailers’ inventory costs, and the last term the sup-
plier’s carrying cost. Because C�q	 ≤ �C�q	 ≤ 1�02C�q	
and because �C�q	 is the cost of a simple (power-of-
two) policy, we use �C�·	 to represent C�·	. Let T ∗�q	 be
the vector of power-of-two values that achieves the
minimum in �11	, and T I = T ∗�qI 	.
The supplier’s carrying cost, i.e., the last term in

�C�q�T 	, depends on all of the T -values, i.e., on all
of the chain members’ operational strategies. Thus,
even when power-of-two policies are used, there is
no EOA in the traditional chain. More formally, in the
traditional system, 
i = �Ti� for i= 0� � � � �N ,

h̃i�q�
0�
i	= h̃i�qi�
i	= ciqi + si�qi	+
Kr
i

Ti
+ 1

2qi
�HiTi�

and

h̃0�q�
0�
1� � � � �
N 	=
K0

T0
+

N∑
i=1

(
c0qi +

Ks
i

Ti

)

+ 1
2H0

N∑
i=1
qi"T0 − Ti#

+ +
N∑
i=1
-i�qi	�

Thus, in the traditional system, �1	 and hence EOA
fail to apply. Indeed, the example in Theorem 1 in
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Chen et al. (2001) shows that no single quantity dis-
count scheme, i.e., no scheme under which the whole-
sale price w is specified as a decreasing function of
the sales volume, achieves coordination even in the
special case where the retailers do not compete. The
same example can be used to show that no scheme
with constant, although possibly retailer dependent,
wholesale prices induces perfect coordination:
Example. Let N = 2, K0 = 100, K1 = K2 = 10, H0 =

H1 = H2 = 1, c0 = 10, c1 = c2 = 1, -1�·	 = -2�·	 = 0,
s1�·	= 0, s2�·	= 0, q1�p1	= 10− 0�1p1, and q2�p2	= 20−
0�2p2. Chen et al. (2001) show that qI1 = 4�3, qI2 = 8�6,
T I
0 = 4, and T I

1 = T I
2 = 2. Assume now that a pair of

constant wholesale prices �w∗
1�w

∗
2� induces the retail-

ers to adopt qI1 and qI2. The retailers will respond by
adopting replenishment intervals �T1 =

√
10/qI1 = 1�52

and �T2 =
√
10/qI2 = 1�07 or �T1 = 2 and �T2 = 1 	= T I

2 if
confined to power-of-two values.
Bernstein and Federgruen (2003) show that, among

other arrangements, coordination requires that the
retailers agree up front to choose their replenishment
intervals from the set of power-of-two values in �11	.
In addition, coordination requires a nonlinear mul-
tipart discount pricing scheme, where the discounts
depend on several retailer attributes. The coordinat-
ing pricing scheme takes the form

WD
i �qi� Ti	=W

�1	
i �Tiqi	+W

�2	
i �Ti	+W

�3	
i �qi	� where

W
�1	
i �Tiqi	= c0 +

Ks
i

Tiqi
� (12)

W
�2	
i �Ti	= 1

2h0T
I
0 − 1

2h0 min�T I
0 �Ti��

W
�3	
i �qi	=

-i�qi	

qi
−∑

j 	=i


fj �q	


qi
qIj

= -�qi	

qi
+QI

(
1− qIi

QI

)
 Ti �qi	� with

QI =
N∑
j=1

qIj and  Ti �qi	=
∑
j 	=i

(
−
fj�qi� q

I
−i	


qi

)
qIj∑
l 	=i qIl

�

Thus, the coordinating wholesale price is the sum of
three discount schemes: W�1	

i discounts on the basis of
the retailer’s replenishment quantity Tiqi, W

�2	
i on the

basis of the replenishment frequency T −1
i , and W�3	

i on
the basis of the retailer’s annual sales volume qi. The
term  Ti is closely related to the competitive impact
measures  Mi and  Ai in §2. (Under linear demand
functions,  Ti is a simple constant.)

3.1. The Standard Inventory Model Under
a VMI Arrangement

Under VMI, the systemwide replenishment strategy
is relegated to the supplier, expanding her opera-
tional decision set to 
0 = �T �. Thus, under VMI,
the supplier’s cost only depends on 
0, establishing

EOA, where it fails to exist in the traditional system.
The form of the cost functions �hj�·	� differs between
VMI+ and VMI−.
VMI+—In this case, all delivery and inventory car-

rying costs are borne by the supplier:

hVMI+
0 �q	= �C�q	+

N∑
j=1

-j�qj 	�

hVMI+
i �qi	= si�qi	� i= 1� � � � �N �

(13)

VMI−—Without consignment, the supplier contin-
ues to select the same systemwide optimal replenish-
ment policy for any given sales vector q, but, as far
as inventory carrying costs are concerned, she bears
only those associated with her own inventory. For
i= 1� � � � �N ,

hVMI−
0 �q	= �C�q	+

N∑
j=1

-j�qj 	−
N∑
i=1

1
2
�HiqiT

∗
i �q	�

hVMI−
i �q	= si�qi	+ 1

2
�HiqiT

∗
i �q	�

(14)

The following result follows from Lemma 1 in Bern-
stein and Federgruen (2003).

Lemma 1. The chain members’ cost functions are all
differentiable, both under VMI+ and VMI−, almost every-
where on �q� 0 ≤ qi ≤ qmax, i = 1� � � � �N �, i.e., when-
ever (11) has a unique minimum T ∗�q	, and the derivatives
are given by


hVMI+
0


qi
= �c0 + ci	+ 1

2H0 max�T ∗
0 �q	� T

∗
i �q	�

+ 1
2HiT

∗
i �q	+-′

i�qi	�


hVMI−
0


qi
= c0 + ci + 1

2H0 max�T ∗
0 �q	� T

∗
i �q	�+-′

i�qi	

= 
hVMI+
0


qi
− 1

2HiT
∗
i �q	�


hVMI+
i


qi
= s′i�qi	�


hVMI−
i


qi
= s′i�qi	+ 1

2
�HiT

∗
i �q	�

In sharp contrast to the traditional system, per-
fect coordination is possible (under conditions (C)
and (U)) with constant wholesale prices, both under
VMI+ or VMI−. In §2, we show that the conditions
hold for broad classes of demand functions and cost
functions hVMI+

i and hVMI−
i . (The cost function hVMI−

i is
obtained from hVMI+

i by adding a piecewise linear con-
cave function. To the extent that hVMI−

i can be closely
approximated by a concave power function, (4) is a
sufficient condition for qI to arise as the equilibrium.)
The wholesale prices �wVMI−

i � and �wVMI+
i � are given by
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the following formulas, which result from (6), invok-
ing the derivatives in Lemma 1:

wVMI−
i = [

c0 + ci + 1
2H0"T

I
0 − T I

i #
+ +-′

i�q
I
i 	
]

+ Mi Q
I

(
1− qIi

QI

)
� (15)

wVMI+
i =wVMI−

i + 1
2
�HiT

I
i

= [
c0 + ci + 1

2
�HiT

I
i + 1

2H0"T
I
0 − T I

i #
+ +-′

i�q
I
i 	
]

+ Mi Q
I

(
1− qIi

QI

)
� (16)

Each of the pricing formulas in (15) and (16) con-
sists of two parts. The expressions within square
brackets denote the marginal costs the supplier incurs
for retailer i, while the second term is a markup, the
magnitude of which depends on the retailer’s com-
petitive impact  Mi . If the retailers do not compete,
i.e., when each retailer’s demand only depends on its
own price, the coordinating wholesale price is sim-
ply equal to the marginal costs the supplier incurs
on behalf of the retailer; the larger the cross-effects
�
fj/
qi� j 	= i�, the larger the markups. The marginal
cost components are, of course, different under VMI+

and VMI−, but the difference is a simple expression:
wVMI+
i −wVMI−

i = 1
2
�HiT

I
i > 0.

Finally, VMI also permits perfect coordination via
a (possibly retailer specific) single volume discount
scheme. Let W VMI+

i �qi	 and W VMI−
i �qi	 denote the

scheme for the cases of VMI+ and VMI−, respectively.
To define the schemes, let T ∗

i �qi � T I
0 	 denote the opti-

mal power-of-two replenishment interval for retailer
i’s inventory, given that the supplier uses T I

0 as her
replenishment interval. It only depends on retailer i’s
own sales volume qi, and it is piecewise constant and
decreasing. (Clearly, T ∗

i �q
I
i � T I

0 	= T I
i .) In the standard

inventory model, the general scheme (9) (which cor-
responds with the choice (i = 1), is given by

W VMI−
i �qi	

=
[
c0+ci+ 1

2H0"T
I
0 −T ∗

i �qi �T I
0 	#

+

+ Ki

qiT
∗
i �qi �T I

0 	
+ -i�qi	

qi

]

+ Ai �qi	QI

[
1− qIi

QI

]
�

W VMI+
i �qi	

=
[
c0+ci+ 1

2
�HiT

I
i + 1

2H0"T
I
0 −T I

i #
++ Ki

qiT
I
i

+ -i�qi	

qi

]

+ Ai �qi	QI

[
1− qIi

QI

]
�

The nonlinear schemes have again two compo-
nents. The first, given by the terms in squared

brackets in W VMI−
i �qi	 and W VMI+

i �qi	, is the average
cost the supplier incurs for retailer i, as opposed
to the marginal cost. The second component is the
markup  Ai �qi	Q

I
i "1 − qIi /Q

I # and is identical under
each of the schemes WD, W VMI− , and W VMI+ . The fact
that -i�qi	/qi ≥ -′

i�qi	, because -i�·	 is concave with
-i�0	= 0, permits the following comparisons:

Corollary 1.

WD
i �q

I
i � T

I
i 	≤WVMI−

i �qIi 	=WVMI+
i �qIi 	− 1

2
�HiT

I
i

≤WVMI+
i �qIi 	�

wVMI−
i =wVMI+

i − 1
2
�HiT

I
i ≤wVMI+

i �

WVMI−
i �qIi 	=

[
-i�q

I
i 	

qIi
−-′

i�q
I
i 	

]
+ Ki

qIi T
I
i

+wVMI−
i ≥wVMI−

i �

WVMI+
i �qIi 	=

[
-i�q

I
i 	

qIi
−-′

i�q
I
i 	

]
+ Ki

qIi T
I
i

+wVMI+
i ≥wVMI+

i �

In conclusion, the notion of “echelon operational
autonomy” arises as a general sufficient condition (in
addition to technical conditions ensuring the exis-
tence of Nash equilibria in the retailer competition
game) for the ability to coordinate the supply chain
with simple pricing schemes. This condition is also
necessary under many cost structures, e.g., the stan-
dard inventory model. When EOA fails to exist as, for
example, under the standard inventory model in a tra-
ditional chain, initiatives such as VMI play a funda-
mental role in creating echelon operational autonomy
and thus enabling coordination with simple pricing
schemes. We have exhibited the specific form of these
coordinating pricing schemes. We have also compared
and contrasted the coordination schemes with two
possible implementations of the general VMI part-
nership concept: (i) VMI+, where the supplier incurs
all inventory costs, and (ii) VMI−, where the retail-
ers continue to incur the costs associated with their
inventory. We have also compared these with the
much more complex scheme that is required in a tra-
ditional chain without a VMI partnership. Recall that,
to achieve perfect coordination, the supplier must
choose her replenishment decisions so as to mini-
mize supply-chain-wide replenishment costs which,
under VMI−, are different from the actual costs she
incurs. This discrepancy provides an argument for
implementing VMI with full inventory consignment
as in VMI+.
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