MANAGEMENT SCIENCE

Vol. 55, No. 4, April 2009, pp. 619-634
155N 0025-1909 | E1ssN 1526-5501 | 09 | 5504 | 0619

[l lorms}

po110.1287/mnsc.1080.0946
©2009 INFORMS

Competition in Service Industries with
Segmented Markets

Gad Allon

Kellogg School of Management, Northwestern University, Evanston, Illinois 60208,
g-allon@kellogg northwestern.edu

Awi Federgruen

Columbia Business School, Columbia University, New York, New York 10027,
af7@columbia.edu

We develop a model for the competitive interactions in service industries where firms cater to multiple
customer classes or market segments with the help of shared service facilities or processes so as to exploit
pooling benefits. Different customer classes typically have distinct sensitivities to the price of service as well
as the delays encountered. In such settings firms need to determine (i) the prices charged to all customer
classes; (ii) the waiting time standards, i.e., expected steady state waiting time promised to all classes; (iii) the
capacity level; and (iv) a priority discipline enabling the firm to meet the promised waiting time standards
under the chosen capacity level, all in an integrated planning model that accounts for the impact of the strategic
choices of all competing firms. We distinguish between three types of competition: depending on whether firms
compete on the basis of their prices only, waiting time standards only, or on the basis of prices and waiting time
standards. We establish in each of the three competition models that a Nash equilibrium exists under minor
conditions regarding the demand volumes. We systematically compare the equilibria with those achieved when

the firms service each market segment with a dedicated service process.
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1. Introduction
We analyze the equilibrium behavior in service indus-
tries where firms cater to multiple customer classes
or market segments with the help of shared service
facilities or processes so as to exploit pooling benefits.
Different customer classes typically have rather dis-
parate sensitivities to the price of service as well as to
the delays encountered. Conversely, from the firm’s
perspective it is vital to offer differentiated service
charges and levels of service to different customer
classes so as to maximize (long run) profits.
Examples of industries with the above character-
istics are numerous. Banks and credit card compa-
nies segment their customers into regular and VIP
or Gold and Platinum customers. Computer software
and hardware firms often segment their customers,
for example, into Home and Home Office users,
Small Businesses, Large Businesses and the Govern-
ment, or Education and Health Care sectors, using
an integrated pool of technical support personnel to
serve the different customer segments according to
a specific priority discipline; each customer segment
is associated with a specific price and waiting time
expectation. Finally, overnight delivery services use
their planes and trucks to deliver letters, boxes, and
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cargo, each with different prices and delivery time
standards. In many service industries, waiting time
standards are used as a primary advertised compet-
itive instrument. For example, most major electronic
brokerage firms (e.g., Ameritrade, Fidelity, E-trade)
prominently feature the average or median execution
speed per transaction, which is monitored by inde-
pendent firms. Some firms go so far as to provide
an individual execution time scorecard as part of the
customer’s personal account statements. As a second
example, in the airline industry, independent govern-
ment agencies (e.g., the Aviation Consumer Protec-
tion Division of the DOT), as well as internet travel
services (e.g., Expedia) report the average delay on a
flight by flight basis.

In this paper, we propose and analyze a model in
which firms select all or part of the following: (i) the
prices charged to all customer classes, (ii) the wait-
ing time standards promised to all classes, (iii) the
capacity level, and (iv) a priority discipline enabling
the firm to meet the promised waiting time standards
under the chosen capacity level. We define the waiting
time standard offered by a given firm to a given market
segment as the maximum expected steady state waiting
time in system the firm guarantees. As to the priority
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discipline, modern call centers or computerized ser-
vice processes allow for the easy adoption of very
general priority schemes, whereas traditional “brick
and mortar” service facilities may, for psychological
or other reasons, be confined to simple priority rules
such as FCFS or absolute priority schemes with an
absolute priority ranking among the customer classes.

We distinguish between three types of competi-
tion: (i) Price competition—here, all waiting time stan-
dards are exogenously given and the firms compete
on the basis of their prices only; (ii) Waiting time
competition—here, all prices are exogenously given
and the competition is in terms of waiting time stan-
dards; and (iii) Simultaneous competition—all prices
and waiting time standards are selected simultane-
ously. Prices and waiting time standards are the only
two essential strategic instruments. Once these are
chosen by all service providers, each firm can deter-
mine a combined capacity level and priority scheme
that minimizes its own cost without affecting the rev-
enues or the costs of its competitors.

We first (§5) represent the demand rate faced by
a given firm for a given market segment (customer
class) as a separable function of all prices and wait-
ing time standards offered to this segment in the
industry, which in addition is linear in the price vec-
tor. This representation assumes that the customers
are completely segmented. Each individual potential
customer unambiguously belongs to one of the mar-
ket segments without being able to switch between
segments or to misrepresent his segment identity.
In this context, a consumer is defined as an indi-
vidual service-requiring unit, for instance, an indi-
vidual box or letter rather than the household or
firm that selects the service provider, possibly select-
ing one provider for its letters and a different one
for its parcels. Complete segmentation is possible, for
example, on the basis of (i) geographic differentiation
(internet and mail delivery services or banking ser-
vices); (ii) different product features (boxes versus let-
ters, different financial products handled by electronic
brokerage firms); (iii) age (senior citizens, children,
and others); and (iv) the business sector (education,
government, and the commercial sector).

In §6, we outline how our model and results can be
generalized to settings where customers can select
which class they wish to belong to, and the demand
volumes are specified as functions of all prices
and waiting time standards offered to all seg-
ments throughout the industry. The demand mod-
els allow us to represent general trade-offs between
(i) prices, (ii) waiting time standards, and (iii) all
other attributes. For example, for competing mail ser-
vices, the “other attributes” include the convenience
of the pick-up process, the ease with which deliv-
eries can be traced, and the likelihood of the pack-
ages being damaged. For internet service providers,

customers consider the frequency of service interrup-
tion and the quality of the support staff along with the
price and waiting time. Electronic brokerage services
monitor and advertise execution price, price improve-
ment, and effective spread as “other attributes” along
with the commission and execution speed (see, for
instance, www.fidelity.com). We treat price and wait-
ing time as truly independent attributes: in general, a
change in a firm’s waiting time (distribution) cannot
be compensated for by a price change that will leave
all firms” demand volumes unchanged.

Because the waiting time standard is a guarantee, the
actual expected waiting time experienced by the cus-
tomers may sometimes be lower—but never higher—
than the waiting time standard. The actual expected
waiting time must match the standard exactly if cus-
tomers can apprise themselves of the actual expected
waiting time their class experiences, e.g., if it is
monitored (perhaps by an independent organization)
or if one assumes that an individual customer has
unbounded rationality and is able to compute the
expected actual waiting times that arise in equilibrium
under optimal capacity levels and optimal dynamic
priority schemes. Note that our representation of the
demand rates as being dependent on stated (or adver-
tised) prices and waiting time standards imposes a
weaker assumption on individual customers’ ability
or willingness to process competitive information. At
the same time, the waiting time standards are believ-
able when customers can apprise themselves of the
actual average waiting time either by the aforemen-
tioned independent monitoring or when they can
develop their own estimates via repeated usage of the
service.

We model each service provider asan M/M/1 queue-
ing facility. Each customer class generates an inde-
pendent Poisson stream of customers to this service
provider at the rate determined by the aforemen-
tioned demand functions. Its service times are inde-
pendent and identically distributed (i.i.d.) with a firm
and class dependent service rate proportional to the
firm’s capacity level. Each firm incurs a given class-
dependent cost per customer as well as a cost per unit
of time proportional to the adopted capacity level.
(Generalizations to settings where the capacity cost
depends on the capacity level according to a gen-
eral convex function are straightforward.) Each firm
attempts to maximize its own expected profits.

We derive an analytical expression of the capacity
level each firm needs to adopt to accommodate a
given vector of demand volumes and waiting time
standards under an optimal associated dynamic pri-
ority rule. We show that this capacity level is the max-
imum of a number of closed form capacity bounds,
one for each subset of the customer classes. Interest-
ingly, for arbitrarily specified waiting time standards,
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the maximum may be achieved for a strict subset of
the collection of all classes, the so-called bottleneck set;
in this case, strategic idleness times, i.e., artificial
after-service delays, may be adopted for the so-called
residual classes outside the bottleneck set. The capacity
function displays economies of scope; i.e., it is always
beneficial for a firm to pool service processes of dif-
ferent collections of customer classes. The capacity
function is always jointly convexly decreasing in all
of the segments’ waiting time standards. The capacity
function exhibits economies of scale for the customer
classes with relatively large waiting time standards,
i.e., those receiving relatively low service. At the
same time, it exhibits diseconomies of scale for the
customer classes with relatively small (i.e., demand-
ing) waiting time standards. More specifically, when
we express a customer class’s waiting time standard
as a multiple of the expected amount of work per
customer—the so-classed normalized waiting time—
the marginal capacity cost decreases (increases) with
a segment’s demand volume, if the segment receives
worse (better) than average service, i.e., if the seg-
ment’s normalized waiting time is above (below) the
firm’s waiting time benchmark, a weighted average
of the normalized waiting times among all classes.
Thus, unless all normalized waiting times are iden-
tical (and there is no need to segment the classes),
the capacity cost function is always concave in some
of the segments” demand volumes and convex in the
others.

The optimal capacity level is to be complemented
with a randomized absolute priority rule. While resid-
ual customer classes may arise under arbitrary exoge-
nous expected waiting time standards, they do not
when these waiting times are endogenously deter-
mined by the firms in any of the competition mod-
els, below in which these waiting time standards are
(part of) the strategic choices.

In each of the three competition models, we estab-
lish that a pure Nash equilibrium exists under minor
conditions regarding the demand volumes, and we
characterize how the equilibrium varies as a function
of the cost parameters and other exogenously speci-
fied parameters. (Although of theoretical interest, ran-
domized Nash equilibria are far more difficult to
implement and hence less likely to be adopted.) These
existence results are in stark contrast to the known
behavior in existing service competition models. For
example, the models of Levhari and Luski (1978) and
Li and Lee (1994) both consider two service providers
and a single class of customers and assume all cus-
tomers choose their provider strictly on the basis of
the full price, i.e., the price plus a cost rate times
the waiting time. The former paper assumes the full
price is based on the steady state expected waiting
time, with customer-specific i.i.d. cost rates, whereas

Li and Lee (1994) assume that each arriving customer
considers his expected waiting time based on the pre-
vailing queue sizes at both firms (under a uniform
cost rate). With service rates exogenously given, the
competition between the two firms is, in both models,
confined to their price choices only, and a pure equi-
librium often fails to exist. See Chen and Wan (2003)
for the complete analysis of Levhari and Luski (1978).

We compare the equilibria with those achieved
when the firms service each market segment with a
dedicated service process, i.e., without pooling service
resources. In the price competition model, for exam-
ple, the equilibrium is obtained, under both service
pooling and dedicated service facilities, when for each
class the relative markup vis-a-vis the marginal cost
equals the reciprocal of the demand elasticity. This
generalizes the well known Lerner index rule, derived
for simple price competition models (see, e.g., Vives
2000). The marginal cost per customer per unit of time
always consists of the variable service cost plus the
marginal capacity cost (per unit of time). When ser-
vice is provided with dedicated facilities, the marginal
increase in the required capacity equals the expected
amount of work per customer of the considered class.
Under service pooling it is zero for residual classes
and less (more) than this benchmark value depending
on whether the customer class receives worse (better)
than average service.

Our numerical studies show that firms are always
better off under service pooling. Do the consumers
benefit as well? More specifically, are the members
of a given customer class charged less throughout the
industry when the firms service the various customer
classes in dedicated facilities as opposed to pooling
the service processes? The answer is affirmative if
the given customer class is in the bottleneck set and
receives better than average service, at all firms; i.e., its
normalized waiting time is, at all firms, lower than the
above waiting time benchmark. In all other cases, if
the customer class receives worse than average ser-
vice or is in a residual class, its members benefit from
service pooling. In other words, VIP customer classes
in the bottleneck set, demanding better than average
service under service pooling, are made to pay for
the additional capacity cost their relatively demanding
service standards impose on the firms beyond what
they would pay in the absence of service pooling.
All other customer classes benefit from service pool-
ing. The same conclusions apply if only part of the
industry pools the service processes, at least as far as
the equilibrium prices of the service pooling firms are
considered.

Similar conclusions prevail under waiting time
competition. Under this type of competition, we show
that all customer classes are in the bottleneck set.
(Thus, the necessity to introduce strategic delays is,
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in our setting, confined to the case of price compe-
tition with exogenously specified waiting time stan-
dards.) Those receiving worse than average service
at a given firm under service pooling can be con-
soled by the fact that their waiting time standard,
although worse than the weighted average among
all customer classes, is still better than what they
would receive in the absence of service pooling. Con-
versely, if a customer class receives better than aver-
age service at a given firm under service pooling,
its equilibrium waiting time standard would be even
better if the firms employed dedicated facilities for
the different customer classes. These results can be
guaranteed when the normalized waiting time of a
customer class is, percentage-wise, not too far from
the firm’s benchmark value; our numerical study
shows that the results hold throughout. More strongly
than the results under price competition, to guaran-
tee a particular ranking of a customer class’s waiting
time at a specific firm, with and without service pool-
ing, it suffices to know whether at this firm (class)
the customer class enjoys better or worse than aver-
age service. Under simultaneous price and waiting
competition, all customer classes are in the bottleneck
set at all firms, as is the case under strict waiting
time competition. Numerical examples show that the
above comparisons between service pooling and ser-
vice in dedicated facilities may fail to apply: even
when a customer class receives better than average
service at all firms, its equilibrium waiting time stan-
dards may be smaller under service pooling as com-
pared to service with dedicated facilities. The reason
is that under smaller simultaneous competition, such
a customer class may may be charged considerably
more under service pooling. Finally, one might conjec-
ture that higher paying customer classes are always
compensated by receiving better service, but this con-
clusion may fail to hold under both price and waiting
time competition.

Section 2 provides a review of the relevant litera-
ture. Section 3 introduces the model and notation. The
capacity choice and associated priority rules are dis-
cussed in §4. For the case of completely segmented
markets, the equilibrium behavior in the competition
models is characterized in §5. In §6, we outline how
our results can be extended to the general model, in
which customers can choose which class they want to
join (or which firm to patronize). Section 7 provides
additional insights obtained through numerical exam-
ples. Section 8 summarizes our major conclusions and
outlines possible generalizations of the model.!

! Proofs of Theorems 4.1 and 5.1 are provided in the appendix, and
the remaining proofs are provided in the online appendix, which
can be found in the e-companion (http://manscijournal.informs.

org/).

2. Literature Review

In this section, we provide a brief review of the rel-
evant literature on models with multiple customer
classes.

Mendelson and Whang (1990) addressed the prob-
lem of how an M/M/1 service provider with a given
capacity or service rate should select service charges
and an optimal priority rule so as to maximize the
expected social welfare, defined as the firm’s revenues
plus the consumer welfare minus the customers’ wait-
ing cost for multiple customer classes. The demand
rate of each class is given by a decreasing function
of the full price defined as the service charge plus a
class-specific multiple of the expected waiting time.
The optimal priority rule is a simple cu rule, and the
solution is shown to be incentive-compatible in set-
tings where customers are able to misrepresent their
class identity. (A solution is incentive-compatible if
no individual customer has an incentive to feign a
class identity different from his own.) Recently Afeche
(2004), dealing with the case of two customer classes,
has shown that the unrestricted optimal policy may fail
to be incentive-compatible when the firm’s revenues
rather than social welfare are maximized. (This unre-
stricted policy continues to employ the above cu rule.)
Conversely, no absolute priority rule may be used
as part of an optimal incentive compatible policy;
in addition, such a policy may require the use of the
aforementioned strategic idle times.

In the economics literature Gal-Or (1983), Champ-
saur and Rochet (1989), and Johnson and Myatt (2003)
deal with price competition among oligopolists offer-
ing a menu of related products or services with dif-
ferent quality levels. As in our §6 model, these papers
assume that the market cannot be segmented at all.
However, in contrast to our model, they assume no
interdependencies among the costs incurred for the
different quality variants. We refer to Hassin and
Haviv (2003) and Allon and Federgruen (2007) for
a review of the literature on oligopolistic competi-
tion models in which the firms” demand rates depend
on the customer expected steady state waiting times
in system. The papers reviewed there, and here, all
assume that customers aggregate the price and the
waiting time standard into a single full price measure;
most papers assume in addition that all customers
select the service provider with the lowest full price,
disregarding any other service attributes. Allon and
Federgruen (2007) deal with the special case of our
model in which all customers belong to a single cus-
tomer class, with each firm offering a uniform price
and waiting time standard to all.

To our knowledge, Loch (1991), Lederer and Li
(1997), and Armony and Haviv (2001) are the only
papers that have addressed competition models
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in which waiting-time-sensitive customers are seg-
mented into multiple classes. When considering mar-
ket segmentation, Loch (1991) considers an industry
with two M/M/1 service providers and two customer
classes, each with a given waiting cost rate and aver-
age service time. All customers within a class select
the firm that offers the lowest full price, where the
total demand volume in the class is given by a known
function of this full price value. Under quantity com-
petition, the author establishes the existence of a Nash
equilibrium under which the customers are prioritized
according to the cu rule. Lederer and Li (1997) gener-
alize this model to allow for an arbitrary number of
nonidentical M/G/1 firms and an arbitrary number of
customer classes. Assuming the firms engage in price
competition, the authors establish the existence of a
Nash equilibrium under which each firm, once again,
prioritizes customers according to the cu rule. The
existence result is based on the assumption that each
class’s expected waiting time at a given firm is a con-
vex function of all of the firm’s demand rates for the
different customer classes. Note also that whereas in
the Afeche (2004) monopoly model, the incentive com-
patible optimal policy frequently cannot be based on
the cu priority rule, cu priority rules are part of the
Nash equilibrium in the Lederer and Li (1997) perfect
price competition model (provided the above convexity
assumption is satisfied).

In the above oligopoly models with multiple cus-
tomer classes, prices or demand volumes are selected
by the service providers. Lee and Cohen (1985) con-
sider a model with exogenous prices, in which each
of the customer classes decides, as a single entity,
what fraction of its collective business to assign to
each of the service providers. The total demand rate
of each customer class is exogenously given, as are
the service rates of the M/M/1 (or M/M/c) service
providers who serve all customers on a FCFS basis,
irrespective of their class identity. The authors estab-
lish the existence of a Nash equilibrium for the allo-
cation decisions of the different customer classes. To
relax the assumption of the customer classes’ total
demand rate being independent of service charges
and waiting times, Armony and Haviv (2001) analyze
a two-stage competition model with two M/M/1 ser-
vice providers and two customer classes, each again
acting as a single entity in deciding what fraction of
its business to assign to each of the providers. In the
first stage, the two providers compete with each other
by announcing their service charges. In the second
stage, the customer classes compete with their alloca-
tion decisions. A pure price equilibrium may fail to
exist in this two-stage game.

3. Model and Notation

We consider a service industry with N competing
service providers in a market which is segmented

into | segments or customer classes. Let E={1, ..., J}.
Each firm i positions itself in the market by selecting
a vector of prices for the different customer classes as
well as an associated vector of expected steady state
waiting times. More specifically,

pi = firm i’s (service) charge for customers in class I,
i=1,...,N; l€E,

w! = firm i’s expected steady state waiting time for
customers inclass [, i=1,...,N; [I=1,...,].

Let p = {p!: i,1}, w={w!: i,1}, and for each I € E,
pr=,ph, ..., pN), and w' = (w], w), ..., w)) denote
the vectors of price and waiting time standards
offered to class [. As illustrated in the introduction, in
many service industries, the waiting time standards
are explicitly advertised by the service providers
themselves; in others, they are reported by indepen-
dent organizations. The standard should be viewed
as a (collective) guarantee allowing for the possibility
that the actual expected waiting time is lower than the
stated value. For each firm i=1, ..., N and customer
class I € E, the price p! and waiting time standard w!

. : 1 I, mi
are chosen from given closed intervals [p; ™, p; ™1,

[will,max’ wlll,min]

Each firm i faces a demand stream of customers of
class I, generated by a Poisson process with rate AL
In the most general model, the rates {A!} depend on
all prices and waiting time standards offered by the
various firms to all market segment, i.e., Al = f/(p, w),
i=1,...,Nand I =1,...,].

The amounts of work associated with customers of
class I are i.i.d. with rate »'. 1/2' is thus the average
amount of work each class | customer brings. Each
firm i selects a capacity level u; where capacity is
defined as the number of units of work that can be
processed per unit of time. Thus, customers of class !
who opt for service provider i experience service times
that are exponentially distributed with rate u;»'. Each
firm i selects its capacity level u; in conjunction with a
priority rule so as to be able to service each customer
class | with an expected steady state so;ourn time no
larger than w!, given demand rates {Af},_,. ; denotes
the per unit capacity cost rate of firm i. The only other
cost component is a variable service cost ¢! per cus-
tomer of class [ served by firmi=1,..., N.

As far as the priority rules are concerned, we con-
sider the complete class II of all rules with steady state
waiting time distributions that are non-anticipative, i.e.,
under which priorities are assigned, with possible ser-
vice preemption, on the basis of any part of the history
of the process. Note that priorities cannot be assigned
on the basis of the remaining service times of the cus-
tomers in service because this information does not
become available to firms until the actual service com-
pletions. At the same time, the priority rule may pro-
scribe that a server be idle while customers are in
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the system or that customers’ sojourn times are to
be extended with post-service strategic delays, a term
coined by Afeche (2004).

When discussing priority rules and their associ-
ated vectors of expected waiting time standards,
we invoke the following properties of set functions
f:2FE > R. A set function f(-) is called monotone if
f(S) < f(T), VS C T. 1t is called submodular [super-
modular, modular] if f(T U {j}) — f(T) < [>,=]
fSU{j)—f(S),Vj€T2S; ie., the increment in the
set function value due to the addition of a new ele-
ment {j} is smaller [bigger, identical], if this element is
added to a larger set T as compared to a smaller set S
(see, e.g., Nemhauser and Wolsey 1989 for equivalent
definitions). A polyhedron in R/ is a polymatroid if it
can be represented by the following set of constraints

Y X< f(S),

leS

VSCE 1)
X>0,

where the set function f is monotone and submodular
with f(@) = 0. The base of this polymatroid is the poly-
hedron described by (1) with the constraint for S =E
specified as an equality.

4. Capacity Choice and Associated
Priority Rules

Because a firm'’s capacity choice only affects its own
cost and profits, it is clearly optimal for each firm
to adopt the minimal capacity level that allows for a
priority rule under which the waiting time standards
{w!: I € E} can be accommodated under the projected
demand rates {Al: I € E}. To characterize this minimum
feasible capacity level w; for a given firm i, we first
address the inverse question of which set of vectors of
waiting time standards {W/: | € E} is achievable under
some priority rule in II for a given capacity level u!.

LemMma 4.1. Fix i=1, ..., N. Assume firm i adopts a
capacity level Y. The space of achievable vectors of waiting
time standards {W!: | € E} is a polyhedron I, described by

> PiW = b,(S),

leS

VSCE, @)

where pt = AL/ (udv'), and

s = (2

Al ) 1
= W2 ) 1= S (M ()

1 Al 1
] (ZZSI (V’)2) p = Cies(Ai/v!)

Lemma 4.1 immediately identifies what capacity
level u; allows firm i to offer a given vector of wait-
ing time standards {w!, | € E} under a given vector of

demand rates {Al: | € E}: in (2), replace u! by the vari-
able u;, and the variables {W}: | € E} by the specific
vector w, to obtain that the latter is achievable, under
some priority rule in 11, if and only if

Al 1 Al 1
e ;2> ., VSCE
les MiV BiN\ies (W) i = Lies (Ai/ V1)
Multiplying both sides of the inequality by w;(u; —

> es(Al/v!), we obtain, after some algebra, that a
capacity level u, is feasible if and only if

A Yies(A/ ()Y
,U«l' 2 Z _l + /\l 1 4
les V 2 es( /v )wi

CoroLLARY 4.2. (a) Fix i=1,..., N, given vectors of
waiting time standards {w!: | € E} and arrival rates

{Al: I € E}. The minimum feasible capacity level is given by

VSCE. (3)

*—max{ZM#— ! } 4)
" = ARUON§

SCE

where Wy(S) = s A/ (W)2) (@!v) ] T1es (AL (1)2).

(b) There exists a largest set S} that achieves the maxi-
mum in (4). We refer to this set as the bottleneck set (of cus-
tomer classes).

(c) If Sf = E, the capacity choice u} can be optimally
combined with a (possible randomization of ) absolute pri-
ority rule(s).

(d) If S} # E, the capacity choice u} can be optimally
combined with one of the following two priority rules:

1, A (possible randomization of ) at most | 4+ 1 abso-
lute priority rule(s) combined with strategic delays
{x': 1€ E\ S*} for the classes in E\ S;

ty: A (possible randomization of) at most | + 1 ab-
solute priority rule(s) under which the actual
expected sojourn time for classes I € S* is given by
w! and for classes 1 € E\ S* by w! —x'.

The maximand in (4) represents a lower bound for the
capacity level required to meet the waiting time stan-
dards for the classes in the set S, under the projected
demand rates. This lower bound consists of two terms:
the first is }",.s(A})/v', the total workload demanded
by customer classes in the set S per unit of time, a
base capacity required to ensure stability of the sys-
tem irrespective of what waiting time standards are
offered. The second term 1/W;(S) represents a safety
margin given by the reciprocal of a weighted aver-
age of the so-called normalized waiting time standards,
{w!v'}, the waiting time experienced by a customer in
class I expressed as a multiple of the expected amount
of work demanded by the customer. The safety mar-
gin thus decreases with any of the waiting time stan-
dards. However, it may fail to be monotone in the
set S, and the same may be true for the complete
lower bound, even though its first term, the offered
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Figure 1 Capacity Cost Function Regions for Two Classes

0.08 T T T T T T

0.07 | .
0.06 .
0.05 | o th.2) .
£ 0.04} i
0.03| .
0.02} .

2
0.01} 1

0

0 0.01 0.02 0.03 004 005 0.06 0.07 0.08
Wy

load, does increase as more customer classes are con-
sidered in the bound. Consider, for example, the case
of two customer classes with fixed arrival rates A} and
A?, and v!' =v?=1. The capacity bound for the sin-
gle class 1 dominates over that for the set E when-
ever the waiting time standard for class 2 is chosen
to be in excess of a threshold value which increases
with w}, i.e.,, whenever w? > w! (Alw! +1)/(1 — A2w}) if
w} <1/A%. By symmetry, the bound for class 2 domi-
nates if w} is chosen to be in excess of a threshold value
that increases with w? and has a horizontal asymptote
at w? = 1/A}. Figure 1 thus exhibits that the positive
quadrant of the (w], w?) pairs can be partitioned into
three regions, with one of the possible sets of classes
representing the bottleneck in each. It is easily veri-
fied that the two switching curves intersect only in the
origin. We conclude that the bottleneck set S may be
a strict subset of E. In this case, it appears in general
to be preferable for all parties concerned to employ
rule r, as opposed to rule ;. However, if the customers
can apprise themselves of the actual average sojourn
times, either because they are monitored and reported
by independent firms (see the Introduction for exam-
ples) or because they are able to compute them by
themselves, customers become aware of the fact that
their actual expected sojourn time is lower than the
guaranteed value w!. This will result in increased
demand for the relevant customer classes and hence
increased congestion in the service facility, necessitat-
ing an increase in the capacity level. In this case, the
firm may need to opt for rule r,. This rule is easily
implemented without any adverse effects if the cus-
tomer is physically separated from the actual service
process, e.g., when service is provided via the internet
or in remote facilities. However, when able to observe
progress in the actual service process, customers may
resent their strategic delays. Strategic or intentional
delays were first introduced by Afeche (2004) and

have been used as an essential component of priority
schemes by Maglaras and Zeevi (2003) and Yahalom
et al. (2005). Because these papers address industries
with asymmetric information, i.e., the service provider
is unable to observe the class identity of its customers,
the essential use of strategic delays appears to be the
consequence of this asymmetry. We show that strate-
gic delays are a required mechanism when selecting
capacity levels and priority schemes, even in a setting
with symmetric information, assuming rules of type r,
are either infeasible or not desired. In the price com-
petition model, strategic delays may be a part of the
equilibrium strategy of the firm, as shown below. Note
that in the Afeche (2004) model, rules of type r, are
not an option because firms are assumed to announce
their complete scheduling policies, and customers are
capable of computing the resulting expected sojourn
times for all customer classes.

The following proposition identifies a number of
structural properties of the capacity function: We say
that at a given firm i, class I receives better (worse)
than average service if and only if its normalized wait-
ing time (w!v') < (>)W;(S}), the weighted average of
these normalized waiting times.

Prorosition 4.1. Fixi=1,...,N.

(a) Let E', E? denote two disjoint sets of customer classes
with given demand rates and waiting time standards,
{(AL, wh): 1 € EY and {(A}, w!): | € E?}. Let w!° denote the
capacity in a single facility that provides combined service
to E' and E?, and w}' (u) the capacity of a facility that
provides service to E' (E?) only. Then wi® < u' + ui?; ie.,
the capacity function always exhibits economies of scope.

(b) u; < LA/ +1/('w)).

(c) ! is decreasing and jointly convex in {w': I € E}.

(d) wr is increasing in the demand rates {Al: | € E}. If
class 1 is residual at firm i, the marginal capacity require-
ment is A} /IAL = 0. If class 1 is in the bottleneck set S}, the
marginal capacity requirement du} /! exists (assuming St
is the unique maximand in (7)), and

a/'lv;k _ l {1 + l Zmesf (/\I(Vl/(ym)Z)w;an - wle[ ZmGSf (Alm/(vm)Z) }
ax, vl (Snes; (] /v7))?
()

Thus, the marginal capacity requirement for a bottleneck
class is larger (smaller) than the expected amount of work a
marginal customer in the class adds if and only if the class
receives better (worse) than average service.

(e) Fix {Al,r #1} at a given firm i and a given cus-
tomer class 1. Assume the same bottleneck set S applies
for all demand volumes AL. Thus, the optimal capacity
level

independent of Al if class 1 ¢ S,

concave in A} if class | € S and receives worse

s than average service at firm i,
convex in A} if class | € S} and receives better

than average service at firm i.
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The condition in part (d) is satisfied everywhere
except for a set of measure zero, in which several
capacity bounds for different subsets of customer
classes are exactly equal and maximal among all
capacity bounds for all possible sets of E; see (10). The
condition in part (e) is satisfied wherever the wait-
ing time standards are endogenously determined as
part of a competitive model (for example, the wait-
ing time and simultaneous competition models, as we
will show, in these cases S; = E throughout). We con-
clude from part (d) that under service pooling, the
marginal capacity cost at a given firm for a given bot-
tleneck customer class is lower (higher) than its value
with dedicated service facilities if the class receives
worse (better) than average service at this firm. Part (e)
shows that under service pooling, the required capac-
ity level exhibits decreasing (increasing) marginal cost
to scale with respect to the demand volume of a bottle-
neck set if and only if this class receives worse (better)
than average service at the firm. When service is pro-
vided with dedicated facilities, the required capacity
level is always affine in any of the demand volumes.
Because by definition some classes receive better than
average and others worse than average service, the
capacity function always fails to be convex in all of
the demand volumes separately, let alone to be jointly
convex; the only exception is the trivial case where all
classes receive the same service (i.e., have the same
normalized waiting time), in which case no differenti-
ation between customer classes is required.

5. Competition Model: The Case of
Completely Segmented Markets

In this section, we analyze the competition models
under the assumption that the market is completely
segmented; i.e., each customer is unambiguously as-
signed to a specific customer class. See the introduc-
tion for a discussion of this assumption. The demand
rates for a given class are therefore entirely indepen-
dent of the prices and waiting time standards offered
to other customer classes and the interdependence
between the customer classes stems from the structure
of the joint capacity cost described above. More specif-
ically, we consider the following demand functions:

X', w') = ai(w)) = 3 agy(w)) — bipi + 3 Bipj;
j#i j#i
i=1,...,N. (6

Here 4! is a decreasing concave function reflecting the
fact that a waiting time reduction by a firm results in
an increase in its demand volume, however, with non-
increasing marginal returns to scale. The functions afj
are general decreasing functions, representing the fact
that firm i’s demand volume can only increase in

response to an increase in the waiting time standard
of any of its competitors.

Several relationships may be assumed regarding the
magnitude of b} compared with other parameters in
(6). First, prices may be scaled in units such that

dal(aw)
dw!

dal(0} ™)

dw!
i=1,...,N,leE.

(S) bl>  max =
wllf min 520! gwllf max

Also, without loss of practical generality, we assume
that a uniform price increase by all N firms cannot
result in an increase in any firm’s demand volume and
a price increase by a given firm cannot result in an
increase of the industry’s aggregate demand; i.e.,

(D) bj>>B; i=1,...,N,I€E;
j#i

(D) bzl' = Zﬁjw

Jj#

i=1,...,N,l€E.

The demand function (6), may, e.g., be derived from
a representative consumer model with utility function
U'(A, w') = C+IANT(B) A = AT (B) a(w), where the
N x N matrix B' has B, = —b! and ij = fj, i # 7,
a'(w) = aj(wj) — X, aj(w)), and C > 0. (D) ensures
that (B')~! exists and is negative semi-definite, giving
rise to a jointly concave utility function.) The demand
functions (6) arise by optimizing the utility function
subject to a budget constraint.

The expected profit for firm i is, by Corollary 4.2,
given by

mi(p, w) = Y (pl — cHA(P', w') — v, (i (A, w))

leE
=Y (pi — cHA(p', W)
leE
A, w!
“n(ma{ 2
s, @)/ (7)) )
+2,65<A5(p',wl>/vf>wf-} - @)

Even though the firms make selections for four types
of strategic decisions, i.e., prices, waiting time stan-
dards, the capacity level, and the priority rule, the
closed form expected profit function in (7) allows us to
represent each firm’s profit as a function of the price
vector p and waiting time standards vector w only. Let
A; 2 max; g (wv') —min, (wlv'),i=1,..., N, the span
of the vector of normalized waiting time standards,
denote the degree of service differentiation for firm i.
Note that the measure is dimensionless; it is, in par-
ticular, invariant with respected to the chosen time
unit. Finally, to allow for comparisons with systems
without service pooling, we assume that the minimum
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prices are set to ensure a positive variable profit mar-
gin under dedicated service; i.e.,

[, min 1 Y
pi’ > C; + ; (8)

5.1. Price Competition

In the price competition (PC) model, all waiting time
standards are exogenously given. Firms compete by
choosing a price list for the different customer classes
along with a capacity level and associated priority
rule. This type of competition arises when waiting
time standards are either chosen in a way different
from the way they are chosen in noncooperative com-
petition, or they are selected with lower frequency
than the prices. The PC model differs fundamentally
from earlier price competition models addressing seg-
mented markets, which assume that the firms’ cost
can be represented as a separable (linear or convex)
function of the demand rates. We have argued that,
without loss of generality (w.l.o.g.), pi ™" > c! + v,/v/;
see (8). The derivations of our results for the price
competition model are, however, simplified when

1/, min

expanding the feasible region by specifying p; ™" = cl.

THEOREM 5.1. There exist B; > 0 such that if for all i, 1
the demand volumes A\ > B,\/A; on the entire feasible price
region, the following results hold:*

(a) A price equilibrium p* exists and any such equilib-
rium is in the interior of the price region.

(b) For any price equilibrium p* and corresponding
demand vector A(p* | w), assume that firm i’s optimal
capacity level u! is achieved for a unique set S’ in (4),
i=1,...,N. Then p* and A(p* | w) satisfy the system of
equatzons )J bi(p! — ¢l — y;(dp;/9AY)).

(c) Any price equzlzbrzum p* is component-wise increas-
ing in each of the cost parameters {c!; v,}.

Thus, a price equilibrium exists, provided the de-
mand volumes are not too small. The theorem states
specific lower bounds as sufficient conditions derived
from (highly generous) bounding arguments. The
lower bounds are proportional to the square roots of
the degrees of service differentiation {A;}. The closer
the normalized waiting time standards for the dif-
ferent customer classes are to each other, the smaller
the lower bounds are. Also, the bounds decrease to
zero in the case of a single class or when the nor-
malized waiting time standards are identical for all
customer classes. Theorem 5.1 thus provides a full
generalization for the equilibrium existence result in
Allon and Federgruen (2007). The condition in part (b)
is satisfied almost everywhere on the feasible price

. I, I, i1e1 . .
region X, [pi™, pi’™]. Whereas equilibrium prices

2 The following conditions are easily verified to guarantee that the
condition in Theorem 5.1 is satisfied: aj(w}) — Y & (w}) = blp pomin

l
Yy ™ =

are monotone in each of the cost parameters, no such
monotonicity can be expected with respect to the wait-
ing time standards (even for sufficiently large demand
volumes). Allon and Federgruen (2007) established
this, even for the case where all customers belong to a
single segment, identifying a sufficient condition with
respect to the derivatives of the functions {a!} and
{a l/} under which prices decrease with waiting time
standards.

The equilibrium conditions are thus structurally
identical to those under dedicated service. In the lat-
ter case, the marginal capacity requirement du}/JA! =
1/v! for all customer classes. As shown in Proposi-
tion 4.1(b), under pooled service the marginal capacity
requirement is zero for residual class, and for bot-
tleneck classes it is either lower or higher than the
benchmark value (v')~! depending on whether the
class receives worse or better than average service at
firm i. The equilibrium conditions state that at each
firm and for each customer class the variable profit
margin equals the reciprocal of the demand elasticity.
This generalizes the so-called Lerner index condition,
derived for basic price competition models with linear
costs.

These observations give rise to the following propo-
sition, which compares the price equilibrium achieved
under pooled service with that arising when each firm
serves every class with a dedicated service facility.

PROPOSITION 5.1. Let pP denote the price equilibrium
that arises when each of the firms serves every class with
a dedicated service facility. Let S} be the bottleneck set of
customer classes for firm i under a price equilibrium p* for
the model with pooled service. Fix I € E.

(a) Assume class 1 € Sf, Yi=1,...,N, and receives
better than average service: v'w! < W;(S;y); i.e., its nor-
malized waiting time is less than or equal to the weighted
average of normalized waiting times in S;. Then pP' < p¥,
vi=1,...,N.

(b) Assume that for all i=1,..., N, either | & S or
l € S and receives worse than average service: v'w! >
W;(S}); i.e., its normalized waiting time is greater than or
equal to the weighted average of normalized waiting times
in Sf. Then p?' > p#,Vi=1,...,N.

(c) Assume only one of the firms, w.l.o.g. firm 1, pools
service for the | customer classes, and all other firms serve
their customers in dedicated facilities. Let p denote a price
equilibrium and S an associated bottleneck set for firm 1. If
leSande1<W1(S) thenpD’<p,,Vz_1 ,N.Ifl ¢
Sorles, but v'w! > W, (S), then pP! >pl,Vz_1,...,N.

Proposition 4.1 shows that all firms reduce their
cost structure by switching from dedicated to pooled
service. Proposition 5.1 shows, however, that these
cost savings do not necessarily result in price reduc-
tions for all customer classes. Indeed, if a customer
class gets better than average service (and belongs to
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the bottleneck set) at all firms, it is charged a higher
price under service pooling than under dedicated ser-
vice. The following provides some intuition behind
this result: assume all classes initially get identical nor-
malized waiting time standards; if class 1, say, subse-
quently bargains for a lower waiting time standard,
the cost for the other customer classes increases, for
which externalities class 1 is made to pay.

ExampLE. Let N =] =3 and w,™ =103, @ =
WM™ =4.1073, ph™ = 70, ph ™™ =105. Let al(w!) =
a) + o,a;log(w — w)) and aj(w)) = o),a;log(@w — w)),
while b} = 100,, Bj; = 4.50,. Thus, all classes share the
same intercepts 4! in the demand functions. Also, all
functions aj(w]) and «j; are proportional to the com-
mon function log(@w — wj) and log(w — wj) respec-
tively, with proportionality factors that are identical
across classes up to a class specific factor o’. The same
applies to the price sensitivity coefficients [b}; Bj],
which, in addition, are identical across firms. We con-
sider the parameter values: o, =2; 02 =1.5; 02 =1;
o, =1 0, =0, =1 (a],a,4a3) = (435,435,705);
(ay, a5, a;) = (100, 100, 100); @y, = oy = ag = az =40
while a;; = ay = 50. As to the cost parameters
(Y1, Y2, ¥3) = (35, 35, 50), ¢] = ¢c; =40 and ¢} = 25 while
cd=c3=¢ =c3=20and ¢} =c=>5. Finally, »' =4,
1?2 =2, v® =1. Thus, the classes are ranked in decreas-
ing order of their prices and waiting time sensitiv-
ities and in increasing order of their expected ser-
vice times. The instance may reflect an industry with
an established domestic firm and two entrant over-
sees competitors. The domestic firm 3 enjoys a larger
brand recognition, as reflected by larger intercepts of
the demand functions, and operates with a higher
capacity cost rate but lower per customer variable ser-
vice cost. The two oversees competitors have identi-
cal characteristics. Finally, variable service costs are
incurred for class 1 customers.

Table 1 exhibits the price equilibrium under both
dedicated and pooled service when all firms are
offered an identical waiting time standard of 3-10~°
time units. Under pooled service, classes 1 and 2 expe-
rience, at all firms, higher than average normalized
waiting times, which equal 4-107°,4-1073%,4.6-107° for
firms 1, 2, 3. Class 3 experiences a lower than average
normalized waiting time at all firms. It is a VIP class in
spite of its absolute waiting time standard being iden-
tical to those offered to the other classes. Consistent

Table 1 Price Competition Under Pooled and Dedicated Service
Firms 1 and 2 Firm 3
Class 1 Class2 Class 3 Class 1 Class 2  Class 3
Pooled 4l 65 80 72 69 4l

Dedicated ~ 97.37 82.9 79.70 10275  89.69 70.58

with Proposition 5.1, classes 1 and 2 benefit under
pooled service, but class 3 does not.

5.2. Waiting Time Competition

In some settings, prices are chosen exogenously, in
a manner different from how they are chosen in
noncooperative competition. Alternatively, prices may
exhibit significantly larger stickiness than service lev-
els. See Allon and Federgruen (2007) for a detailed dis-
cussion. In the waiting time (WT) competition model,
we thus assume that prices {p!, i, [} are exogenously
given and firms compete by selecting waiting time
standards.

In the following theorem, we establish the exis-
tence of an equilibrium in the WT competition model,
assuming that the minimum acceptable waiting time
standards {w; ™"} are not chosen to be excessively
small. In particular, we assume

[, min Yi
wi/ Z 3 7 (9)
\/4(295 —cl—y,/vha; P,

@

L@ _ s ) 2l (70l 12
where a; " = TN, i1 d*a;(w;)/d(w;)?|. (Note
the minimum acceptable waiting times decrease to

zero as the exogenously given prices increase.)

THEOREM 5.2. Assume (9) holds for a given vector of
prices {p!}. There exist lower bounds B; > 0 such that if
demand rates Al > B; throughout the feasible waiting time
region, a Nash equilibrium exists.

As in the case of the PC model, a simple condition
may be established to ensure that any Nash equilib-
rium of the WT model is an interior point of the feasi-
ble region and therefore satisfies the following system
of first-order conditions (see the proof of Theorem 5.2):

R N (R R A T 2 D)

where a!~!(-) denotes the inverse of the decreasing
function 4! (-). These equilibrium conditions generate
the following insights, assuming all classes have the
same marginal waiting time sensitivity functions a(-):
if two customer classes offer identical demand vol-
umes, the lowest waiting time is offered to the class
for which the profit margins per unit of work per cus-
tomer, i.e., [p; — ¢} — y,(du; /0Ny are highest. At the
same time, if two classes show the same profit margins
per unit of work per customer, the class generating
the higher volume of customers is associated with a
lower equilibrium waiting time standard. In general,
the equilibrium waiting times standards are ranked
in the same order as the ratios of the demand vol-
umes and the profit margins per customer per unit
of work Al/(p; — ¢! — y,(dut/9Al))v!. Conversely, if this
ratio is identical for a given pair of classes {k, [}, but

(10)
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class k has a point-wise larger waiting time sensitiv-
ity, i.e., |a¥'(-)| > |al ()|, then class k receives a lower
waiting time standard than class I. Finally, if firm i’s
capacity cost rate y; goes up, the firm compensates by
increasing the waiting time standards for all classes, as
opposed to only some.

In contrast to the PC model, in equilibrium all cus-
tomer classes belong to the bottleneck set, and as a
consequence, no strategic delays need to be imposed
on any of the classes.

PROPOSITION 5.2. Let w* denote an interior point equi-
librium in the WT competition model. Then, S =E, Vi=
1,...,N; ie., all customer classes are part of each firm'’s
bottleneck set and the vector of waiting time standards w*
can be achieved without imposing strategic delays on any
of the customer classes.

We conclude this subsection, again, with a com-
parison between the equilibrium under pooled versus
dedicated service. In the PC model, Proposition 5.1
showed that a customer class with better (worse) than
average service experiences a lower (higher) equilib-
rium price under dedicated versus pooled service. The
following proposition shows that for a customer class
with better (worse) than average service under pool-
ing, a move to dedicated service is, again, beneficial
(detrimental) but only if its normalized waiting time
is not too far below (above) the weighted average.

PROPOSITION 5.3. Let wP denote the waiting time equi-
librium that arises when each of the firms serves every class
with a dedicated service facility, and assume it is an inte-
rior point of the feasible waiting time space. Let w* denote
an interior point equilibrium under pooled service. Let A =
ZmeE()\?’/(Vm)z)'

(a) Assume class | € E receives moderately better than
average service under service pooling at a given firm i, i.e.,
VLA /(A (V)?) < wilv! JWH(E) <1, then wP! < w?.

(b) Assume class I € E receives moderately worse than
average service under service pooling at a given firm i, i.e.,
VLA /(AL (1)) = wilv! JWH(E) > 1, then wP! > w?.

(c) If firm i serves its customers with dedicated facilities,
its equilibrium waiting time standards are independent of
any of the competitors’ characteristics. In particular, a firm
with dedicated service is unaffected by the choice of any of
its competitors whether to adopt pooled or dedicated service.

No specific ranking of class I's equilibrium wait-
ing times under dedicated versus pooled service can
be guaranteed when class [ receives extremely better
[worse] than average service, i.e., wi'v'/W*(E) < [>]
min{vyIVA/(A/ (7)), 1} [max{ vV A/ A/ (7)), 1)].
In this respect, the ranking result is more limited than
its counterpart in Proposition 5.1; at the same time,
to guarantee a specific ranking for a given class at a

given firm, it suffices to compare this class’ normal-
ized waiting time with the average value at this firm
only. We expect that the results of parts (a) and (b)
continue to apply under more general demand func-
tions and queueing models for the firms’ facilities. In
contrast, the independence of each firm’s equilibrium
waiting time standards with respect to any of the com-
petitors’ characteristics is a consequence of three spe-
cific assumptions: (i) the demand function is separable
from the firms’ waiting time standards; (ii) each firm
services the different customer classes in a dedicated
facility; and (iii) the safety margin of a firm’s capac-
ity level is a function of its own waiting time standard
only.

5.3. Simultaneous Competition

When firms simultaneously compete in terms of their
prices and waiting time standards, the existence of a
Nash equilibrium can be guaranteed under conditions
very similar to those required in the waiting time com-
petition model. It suffices to replace (9) by

{,min > 3 Yi )
LT A - ¢ = yvha? 4 dag(wh ™) dw!]y,
(11)

w

Once again, the larger the minimum markups
(p! —c! — y;/v"), the lower the minimum waiting time
standard that may be chosen, ensuring that a Nash
equilibrium exists.

THEOREM 5.3. (a) Assume (11). There exist lower
bounds B; > 0 such that if demand rates A} > B; through-
out the feasible price-waiting time standard region, a Nash
equilibrium exists.

(b) If the equilibrium is an interior point, the bottleneck
sets Sf =E,Vi=1,...,N.

6. Competition Models for
Unsegmented Models

In this section, we discuss generalizations of the mod-
els in §5, to allow for settings where the market fails to
be presegmented; i.e., individual customers have the
option to select a service class along with the firm they
wish to patronize. The following is the natural exten-
sion of the demand model (6):

N
Ai(p, w) = aj(w;) = 3 ag(w)) = 3 3 ki, (wy,) = bip;

j#i kst m=1

N
+Y B+ YD e

il kAl m=1
i=1,...,N,1=1,...,], (12)

when the functions « () are again general decreas-

ing functions and the parameters ¢/¥ > 0, to reflect
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the fact that any increase of the price or waiting time
standard for a customer class k # I at firm i or any
of its competitors can only result in an increase of
the expected demand volume for service class | at
firm i. The demand model (6) clearly arises as a spe-
cial case of (12). Analogous to (D) and (D’), we assume
again, without loss of practical generality, that a uni-
form price increase by all firms and for all types of
customers (for a given firm and customer class) can-
not result in an increase of the demand volume for
any given customer class and any given firm (the total
demand volume).

N
(D) b >3 B+2 3 @i

j#i kel m=1
i=1,...,N,I=1...,];

N
(D) b} > ZBZ‘/‘ 20 i
j#i kAl m=1

THEOREM 6.1. There exists minimal demand thresh-
old Al such that if for all i, 1 the demand volumes A\ > A} on
the entire feasible price region, the following results hold:

(a) A price equilibrium p* exists and any such equilib-
rium satisfies the first-order conditions

au’t
I A i
OZAi_bi(pi_Ci_YiaA§>

- ou;
+Z€0iil<pzm_czm_% )\m)-

m#l

(13)

(b) Any price equilibrium p* is component-wise increas-
ing in each of the cost parameters {c!, v,}.

The equilibrium no longer specifies that the per-
centage profit margin should equal the reciprocal of
the demand elasticity, the generalization of the Lerner
index rule discussed in §5. Similarly, the condition
under which a given customer class is charged more
or less under pooled service as compared to service
with dedicated facilities is no longer as simple as the
condition in Proposition 5.1.

7. Examples

In this section, we illustrate our results and iden-
tify some important qualitative observations regard-
ing the equilibria in the three competition models.

These observations complement our theoretical results
and stem from extensive numerical experiments. For
the sake of brevity, we report here on the results of
one instance obtained from the example by modi-
fying the following parameters: o, = 1.5, v' =1* =
v? =1. Table 2 displays the equilibrium under pooled
and dedicated service for the simultaneous competi-
tion model. Unlike firm 3, firms 1 and 2 select, under
simultaneous competition, different service levels for
the three customer classes. The total variable cost per
customer is identical at all firms and all classes. The
greater brand recognition of firm 3 (intercepts in the
demand functions) permits it to charge classes 1 and 2
a higher price while providing inferior service. Nev-
ertheless, to increase its market share and revenues, it
offers class 3 a lower price along with superior service.
Table 3 (4) displays the price (waiting time) equilibria
for the price (waiting time) competition model.

First, one might conjecture that, under price com-
petition, the ranking of the equilibrium prices across
different classes is the reverse of the ranking of the
basic or the normalized waiting time standards. Con-
versely, one might expect that if class [ is charged a
higher price than class /', it is rewarded with a lower
waiting time in the waiting time competition model.
The results for firm 3 in Tables 3 and 4 disprove both
conjectures. For example, in the first (second) instance
of Table 3 (4) class 3 is charged the lowest price while
receiving the highest service. Proposition 5.1 shows
that a class with better (worse) than average service
by all providers is better (worse) off at all firms under
dedicated as opposed to pooled service. This leaves
open the question whether providing worse (better)
than average service to a specific customer class at a
specific firm ensures that this class has a lower (higher)
equilibrium price at this specific firm under pooled
versus dedicated service. The results for class 1, at
firms 1 and 2, in both instances of Table 3 disprove
this localized version of Proposition 5.1.

Next, Proposition 5.3 provides conditions under
which a given class at a given firm benefits or suf-
fers from service pooling under waiting time compe-
tition. These conditions fail to exhaust the spectrum
of possibilities, but our numerical experiments have
shown that, invariably, all classes benefit from pool-
ing. The same applies to all firms, under all three

Table 2 Simultaneous Competition Under Pooled and Dedicated Service
Firm 1 Firm 3
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Prices—Pooled 87.5 87.5 77 91 91 735
Waiting times—Pooled 25-10~ 19.10~ 28-10-4 25.10-4 25-10-4 25.10-4
Prices—Dedicated 87.5 83.3 80.15 89.6 88.8 70
Waiting times—Dedicated 32-10- 29.10 33-10 33-10 30-10 34.10°"
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Table 3 Price Competition Under Pooled and Dedicated Service
Firm 1 Firm 3
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Waiting times (exogenous) 25.10~* 30-10~* 35.10~* 35.10~* 30-10-4 25-10*
Prices—Pooled 90 83 76 84 90 77
Prices—Dedicated 91.21 82.9 77.12 86.1 89.7 75.8
Waiting times (exogenous) 22.10~* 30-10* 3710 3710 30-10~* 22.10~*
Prices—Pooled 95 82 73 79 89 81
Prices—Dedicated 93.7 82.9 74.79 81.7 89.7 78.8
Table 4 Waiting Time Competition Under Pooled and Dedicated Service
Firm 1 Firm 3
Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
Prices (exogenous) 85 85 85 85 85 85
Waiting times—Pooled 26-10~* 22.10~* 25.10~* 29.10* 2710~ 17.10-*
Waiting times—Dedicated 34.10~* 29.10~ 31-10~ 35-10~* 31.10~* 31.10*
Prices (exogenous) 85 90 90 90 90 85
Waiting times—Pooled 26-10~* 20-10* 24.10~* 26-10~* 26-10~* 20-10*
Waiting times—Dedicated 34.10~* 28-10~* 31-10~* 33-10~* 30-10~* 31.10*

types of competition. Although Proposition 4.1 shows
that a firm’s profit function under service pooling is
point-wise larger than under dedicated service, this
by itself does not guarantee that the same ranking
applies to the equilibrium profits. Invariably, all three
classes belong to the bottleneck set. (Recall that Propo-
sition 5.2 and Theorem 5.3(b) show that this must hold
for any interior point equilibrium in the waiting time
and simultaneous competition models.) Also, invari-
ably, a mixture of absolute priority rules is required to
meet the offered waiting time standards. For example,
in the first instance of Table 4, firm 1 [firm 3] needs to
mix the absolute priority rules (3—-1-2), (2—-3—-1),
(1-2-3);[3-2-1),2=1-3),(1 —3—2)] with
close to equal probabilities. (Under absolute priority
rule (A-B-C), class A receives absolute priority over
class B, and B over C.)

8. Conclusions and Extensions

We have developed a general model for the com-
petitive interactions between providers in a service
industry that cater to multiple customer segments
with the help of shared service facilities. Under mild
regularity conditions, we have established that a Nash
equilibrium exists in each of the three competition
models considered, i.e., the price competition (PC),
the waiting time (WT) competition, and simultane-
ous competition (SC) models. The existence conditions
merely preclude that demand volumes or minimum
waiting time standards are excessively low. We sys-
tematically compare the equilibria with those arising
under dedicated service: all firms always benefit from
service pooling, usually with major profit increases.

In the PC model, a class always pays a lower (higher)
price under dedicated service if, under pooled service,
it receives a better (lower) than average normalized
waiting time at all firms. In the WT model, for a class
to be better (worse) off under dedicated versus pooled
service at a given firm, it suffices that, under pooled
service, it receives better (worse) than average service
at this firm only.

We have also investigated various comparative stat-
ics results for the equilibria. For example, we have
proved that, under price competition, each firm’s equi-
librium prices are monotone in each of its cost param-
eters as well as those pertaining to its competitors.
However, equilibrium prices (waiting time standards)
may under the PC model (WT model) fail to be be
monotone with respect to the exogenous waiting times
(prices). Moreover, equilibrium prices may fail to be
ranked in accordance with the waiting time standards
the classes receive, and this is true in each of the com-
petitive models.

To achieve the above results, we have characterized
how a firm’s capacity level and associated priority
rule depend on the demand volumes it faces and the
waiting time standards it offers to the various cus-
tomer classes. The capacity level, for example, can
be expressed as a closed form function of the vector
of demand volumes and waiting time standards. The
capacity function, of importance in its own right, is
monotone and jointly convex in the waiting time stan-
dards, exhibiting economies of scope but not necessar-
ily of scale.

An important assumption in our model is that cus-
tomers are completely segmented and that their class
identity is given. In some settings, customers may be
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able to choose a class identity. To model this vari-
ant, the demand rate for a given customer class at a
given firm would need to be specified as a function
of all prices and all waiting time standards offered
to all classes (and by all firms) rather than just the
class under consideration. This generalization imposes
no additional difficulties on the characterization of
the required capacity level or priority schemes. The
above analysis methods can continue to be employed
to establish the existence of a Nash equilibrium in the
various competition models and to study its qualita-
tive properties. Only the existence conditions for the
Nash equilibria become more complex.

Future work will extend the above results to settings
where customers are primarily sensitive to the delay
they experience rather than to the full sojourn time,
those where service is best characterized as a fractile of
the waiting time distribution rather than its expected
value, and those where the service facilities need to
be described by more general queueing models. For
example, in the former case, it is possible to derive a
capacity cost function analogous to (8), i.e., where the
capacity is the maximum of (2/ — 1) closed form func-
tions of the demand volumes and the expected delays,
one for each subset of the classes of customers. (This
characterization requires a restriction to nonpreemptive
priority rules but allows for a general service time dis-
tribution scaled down in proportion to the invested
capacity.) The structure of the closed form capacity
bounds u? (such that p; = maxg. uf) is more complex
than that of the maximand in (8).

9. Electronic Companion

An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.

Appendix. Proofs

Proor orF THEOREM 4.1. Consider an arbitrary priority
rule r € IT and let W/(r) denote the expected steady state
sojourn time for class | customers under rule r at firm i.
We first verify that the vector {W!(r)} satisfies the con-
straints (2). Thus, select an arbitrary subset S C E. Note that
Yies(AL/(19v"))W!(r) denotes the aggregate expected steady
state amount of work for customers belonging to one of
the classes in S under rule r. The right-hand side of (2)
denotes the aggregate expected amount of work for classes
in S, under any rule which is nonidling and gives preemp-
tive priority to customers belonging to S over all others
(see, e.g., Federgruen and Groenevelt 1988). It therefore also
denotes the expected steady state amount of work in the
single class M/G/1 system that arises when all classes [ € S
are merged into a single class, no other customer classes
are admitted, and the server operates with no idling. Simi-
larly, " cs(A)/(uv") W!(r) denotes the expected amount of
work in the same single class M/G/1 system under a rule
that forces the server to idle while customers are waiting

whenever, in the original system, rule r assigns the server
to a customer not belonging to one of the classes in S or
prescribes him to be idle. Because in the single class M/G/1
system the amount of work is minimized by any nonidling
rule, the vector {W/(r): | € E} satisfies (2) for this set S.

Conversely, consider an arbitrary vector w £ {w! :
I € E} in the polyhedron described by (2). We show that a
rule r € I1 exists such that W/(r) = w!, forall I=1, ..., ]. Let
°W; C W denote the base polyhedron described by (2), how-
ever, with the constraint for S = E specified as an equality. If
w € W,, it is well known from Coffman and Mitrani (1980)
and Federgruen and Groenevelt (1988) that w is the vector
of expected sojourn times under a simple absolute priority
rule or a randomization of such rules. If w ¢ 77,, there exists
a vector x 2 {x',...,x/} >0 such that w' 2 w —x € W,. To
verify this, note that w —x °M7, iff

> pi(w!

leS

—x">b,S), SCE;

Zp(w —x')

= b,(E). (14)

Let X' 2 plx!, I € E. Thus, x >0 and w — x € W, iff

R / R
Y X'<b(S), SCE; Y X'=b(E); X=0, (15)
les 1=1
where b;(S) £ Y5 plw; — b(S), S C E. Theorem 2 in Feder-

gruen and Groenevelt (1988) shows that the set function b(-)
is supermodular, so that the set function lA7,-(-), as the dif-
ference between a modular function and a supermodular
function, is submodular. Moreover, Bi(S) >0 for all SCE
because w € W;. The set function lAJi(~) may fail to be mono-
tone; i.e., Ei(S) > i),»(T) may arise for some pair of sets SC T.
At the same time, it is easily verified that the polyhedron
described by (15) remains unaltered when replacing the
right-hand side b, :(S) by b;(S) £ miny_g b, i(T), SCE:

> X' <bi(S), ZX’ bi(E);

leS

SCE; X>0. (16)

The set function b;(-) is clearly monotone and non-negative
because i)i(~) > 0; it is also submodular (see, for instance,
Theorem 135 in Edmonds 2003). This implies that the poly-
hedron described by (16) is the base of a polymatroid which
is always nonempty. For example, the vector (b;({1}),...,
({1, ..., ) =bi({L, ..., 1=1]), ..., by({1, ..., JD) =by((1,
J— 1})) sahsﬁes (16) This shows the ex1stence of a Vector
x > 0 such that w' = w — x € W; for which we have pointed
out that a (possible randomization of) absolute priority
rule(s) r € II exists such that W(r) = w'. Let 7 denote the
rule obtained from r by extending the sojourn time of any
customer in class | by a post-service (strategic) delay x'.
Clearly, w=w'+x=W(7). O

Proor oF THEOREM 5.1. (a) The profit function ; can be
written as ;(p) = ming g 7} (p), where

7 (p) = 2 (pi — )P
leE
(M) | Ties(Aip)/ (1))
7<gs: v +Zzes()tf(P1)/V’)w5>'
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In view of the Nash-Debreu Theorem, to show the ex-
istence of an equilibrium p*, it suffices to verify that each
of the functions {?: S C E} is jointly concave in (p}, ..., p})
because in that case 7;, as the minimum of 2/ —1 jointly con-
cave function, is jointly concave itself. Let @; £ max,,.; w!",
v; £ min, v}, b; = max,sbl, b; = min,, b}, and (wy); =
min,, w'v™. Also let

B, =y vb;

VB /bmax{ 1/ (wr), (12017 +2 /(v 1.

Note that

S 9 S
i Mi
apl = )\5 - bf(pf - Cf) + ”[les]YibfTM-
Thus, for [ ¢S, &} /d(p})* = —2b}, and *=} /(3p}dpf) =0, for
k#L Let AW =X, cs (Al w!/v™).
For all I € S, 8%} /d(p})? = —2b! + §'l(p), where by (7), 5!l =

1

dm

17)

Yi(B)2 (817 /0(AD)) = 2,0} (0)* /(') (A (Loes (A} /(")) -

(" w) —viwy) < A/ (w),2ywi(0)}) /(W) (AE)?) <€, if

A > 271‘(1_71’)2Ai - ZYi(Bt)z(wzl/Vl)zAi
TV e(wr)? TV e(wr) (T es (@] /vm)?
N / 2y,(b)(w}/v)A,
~V e(wr)wip (T es (W) /v™))?

- Zyi(l;f)zwll'Ai
- \/exwv,-)(v’)S(zmes(w;“/vm))z’ 18)

where the inequality follows from the bound (A/
SN/l = 1/ (wp),), where A = X, (A1 /(v")2),
because the left-hand side of this inequality is the recipro-
cal of a weighted average of the normalized waiting time
standards.

Similarly, for k,l e S

AT [ TR

oot~ v (e L\ T )
T w™ wl
—2wk ! L 19
Then
s v:bibk [wk vk — wlvt|
1 < 171 1 - 1
dpiap; (¥'VF)2(AF)?

| 20t s A/ ) ey — iy
Wy Rg)

T @A Lvt () | T

. A,(b)y, 1 2
M=z \/ (s (@] /7)1, [i * (mx]

Abibly, 1 2w;
- \/(v’)Z(zmes<w;”/vm>)2vkei [2 - (M]' 20)

We conclude that for the chosen coefficients B;, (18) and (20)
hold for € = 2b;/]. In this case, the Hessian of = with
respect to the vector (p!, ..., p!) has negative diagonal ele-
ments and is diagonally dominant; i.e., the absolute value of
each diagonal element is larger than the sum of the abso-
lute values of the off-diagonal elements in its row. This
implies that the Hessian is negative-semidefinite, so that 7}
is jointly concave in (p}, ..., p!).

It remains to establish that any equilibrium p* must be
in the interior of the feasible price range. Given the choice
of p™, it suffices to show that p! > ¢! = pi'™" for all i and .
Assume to the contrary that for some pair (i, ) p;"' = .. The
profit function ; is only piece-wise smooth and may fail
to be differentiable in p*. We show that for any subgradient
g=1(g', ..., ¢)) of m; in the point p*, ¢’ > 0, thus contra-
dicting, by Proposition 5.1.2 in Mikeld and Neittaanmaki
(1992), the fact that p}' is an optimal price for firm i, when
all competitors charge according to the vector p*. Because
ar; is piece-wise smooth, any of its subgradients is a convex
combination of the 2/ — 1 gradients of 77, S CE; see, e.g.,
Lemarechal and Mifflin (1978). It thus suffices to show that
am? /ap! > 0 for any S C E. By (17), if I ¢S, then a7} /dp! =
AL>0.1f [ €S, by (17)

‘?7715 /\l + ’YIbf ZmeS(/\zmwlm/(VmVl)) - wfl;\s
apl T T A2
pi (A%)

oA Yibi (Lmes(A]'/ (™)) |w]" v — wiv'|

- (V’)2< A Ces A vm ]/ (v)2)) >

1 ’YibfAi
L) (wp) (wl /v

> Al — %‘BiAi l>0
7 N@ /AT

where A, = 3,5 A7"/(»™)? and where the third inequality
follows from the reciprocal of a weighted average of nor-
malized waiting times being smaller than the reciprocal of
the minimum value and Y",,.s A"w! /v™ > Alw!/v!. The last

inequality holds because A! > ( y,—?},- /(wv) ,-)JAT-, by the def-
inition of B;.

(b) Because w; is achieved for a single set S’ of cus-
tomer classes, m;(+) is differentiable in p*; and because p* is
an interior point of the feasible price region, dm,;(p*)/dp! =
(977145"* (p*)/dpt =0 for all i, . Thus p* satisfies (17).

(c) Let H denote the NJ x NJ matrix (6277,-5?/(8;756;91.‘))
and G denote the matrix G = diag(b}, ..., b{; bi, ..., bé;
bl ...,blL). Applying the Implicit Function theorem to (17),
we obtain, for A sufficiently large: (9p;'/dc}) = (~H)'G =0
because (—H = —H" + 0(A)), where the row correspond-
ing with (i,]) in (—H°) has 2b! as its diagonal ele-
ment, —,Béj in the column corresponding with (j, ), and
zeros elsewhere. Thus, (—H%) ™! > 0; see, e.g., Bernstein and
Federgruen (2002) and (—H)™' = (—H% ™! + o(A). Similarly,
(9p}'/9y;) = (=H)~'T, where the NJ x N matrix I'=T+0(})
and I°>0. O
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