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We consider the problem of scheduling n jobs, each with a specific processing requirement, 
release time and due date on m uniform parallel machines. It is shown that a feasible schedule 
can be obtained by determining the maximum flow in a network, thus permitting the use of 
standard network flow codes. Using a specialized maximum flow procedure, the complexity 
reduces to O(tn3) operations when t is the number of distinct machine types. Previous 
algorithms solve the feasibility problem in O((m + log n)(m2n3 + n4)) operations. In addition 
to the feasibility problem, we describe algorithms for the maximum lateness criterion. Here we 
develop a bound which compares even more favorably to the best previous bound. We also 
show how other criteria with respect to the amount of work completed on each job prior to its 
due date or the amount of work scheduled in each of a sequence of periods can be optimized 
by similar path augmenting techniques. 
(PREEMPTIVE SCHEDULING; POLYMATROIDAL NETWORK FLOW; NETWORK 
FLOW) 

1. Introduction and Summary 

We consider the problem of scheduling n jobs, each with a specific processing 
requirement, release time and due date on m parallel machines. The machines are 
assumed to be uniform in the sense that they merely differ in processing speed. 
Machines can work on only one job at a time and each job can be processed by at 
most one machine at a time; however preemptions are allowed. The feasibility problem 
consists of determining a feasible schedule (if one exists). In this paper we show that 
the feasibility problem can be solved as a classical maximal flow problem. A special- 
ized maximal flow algorithm by Gusfield et al. (1985) allows for a complexity bound of 
O(tn3) where t is the number of different machine types (speeds). 

We also show how various performance measures may be optimized by similar path 
augmenting algorithms applied to an appropriately chosen network. These include: 

(a) the maximum lateness problem: minimize the maximum lateness (= completion 
time - due date) over all jobs, in case no feasible schedule exists. This problem may be 
solved by verifying the existence of a feasible schedule for at most O(logn + 
log Pmax + logs1) lateness values where Pmax denotes the maximum integer processing 
time and s1 the largest integer machine speed. This results in an O(tn3(logn + 
log Pmax + logs,)) algorithm. 

(b) the (weighted) minimum completion problem: For each job, define the completion 
rate as the fraction of work completed prior to its due date. Find a schedule which 
maximizes the (weighted) minimum completion rate. Preemptive scheduling models 
apply e.g. to batch production systems where each batch consists of a large number of 
units. The minimum completion criterion is particularly relevant for such applications 
especially when due dates are unextendable. If a feasible schedule completing all jobs 
fails to exist, a fair rationing scheme is sought by allocating the scarce productive 
capacity so as to fill as large a (weighted) percentage of as many jobs (orders) as 
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possible. A path augmenting algorithm applied to an appropriately chosen network 
solves the problem in 0(tnl3pmax) operations. 

(c) the (weighted) maximum utilization problem: For a given collection of disjoint 
time-intervals, find a feasible schedule which minimizes the (weighted) maximum 
amount of work assigned to each of these intervals. This criterion is particularly 
relevant when attempting to create a maximum amount of slack capacity in each of 
the considered time-intervals, e.g. as a buffer against underestimated processing times 
or unanticipated "last-minute" jobs. (See ?4 for additional applications.) A path 
augmenting algorithm (again applied to a slightly modified network) solves the 
problem in O(tn3Pmax) operations. 

For the special case of identical machines, our feasibility algorithm reduces to the 
network flow procedure of Horn (1974) which determines a feasible schedule in O(n3) 
operations. Labetoulle et al. (1979) have shown that this feasibility algorithm can be 
used in a 0(n3mintn2, logn + log Pmax}) procedure to resolve the lateness problem 
using binary search on the optimal value of the maximum lateness. Gonzalez and 
Johnson (1980) derived an 0(mn) procedure for the lateness problem with arbitrary 
release times but identical machines and due dates. Sahni and Cho (1980) deal with the 
special case of common due dates (but uniform machines); their feasibility algorithm 
requires 0(n log n + mn) operations. Sahni and Cho (1979) and Labetoulle et al. (1979) 
propose an 0(n logn + mn) procedure for the lateness problem with identical release 
and due dates. Gonzalez and Sahni (1978) have an 0(n + m log m) procedure for the 
feasibility problem with identical release and due dates. Bruno and Gonzalez (1976) 
and Labetoulle et al. (1979) also deal with the two-machine model. 

For the general problem with arbitrary machine speeds, processing requirements, 
due and release dates, the first polynomial algorithm is due to Martel (1982a, b) who 
showed that a feasible schedule may be determined by solving a polymatroidal 
network flow problem, cf. Lawler and Martel (1982), an extension of the classical 
maximal flow problem in which the flows are constrained by capacities of sets of arcs 
in addition to capacities on individual arcs. The resulting algorithm solves the 
feasibility problem in 0((m + log n)(m2n3 + n4)) operations. The same feasibility algo- 
rithm can also be used for the maximum lateness problem, performing a binary search 
over possible lateness values. The resulting maximum lateness algorithm terminates in 
0((m + logn)(m2n5 + n6)) operations. The complexity bounds of our algorithms com- 
pare favorably with Martel's. The fact that our formulation permits the use of standard 
network flow codes is, of course, an additional practical advantage. 

The minimum completion and the maximum utilization criteria have, to our 
knoWledge, not been studied in the scheduling literature. We refer to Lawler et al. 
(1982) for an excellent survey of the literature on alternative criteria (such as the 
makespan, weighted sum of completion times and due date violation penalties) as well 
as the complications that arise due to precedence constraints among the jobs. 

?2 describes our feasibility algorithm and ?3 discusses the maximum lateness 
problem. Alternative criteria are discussed in ?4. 

2. Solution of the Feasibility Problem 

We first introduce some notation. Each job j = 1, . .. , n is specified by a processing 
requirement pj, a release time r1 and a due date d4. There are t types of machines with 
speeds sI > s2 > ... > s, and cardinalities ml,... , mi; thus m = mi. (A job 
requiring p units of work can be processed on machine i in p/se units of time.) All 
parameters are assumed to be integer. 

Rank the release and due dates in ascending order and determine the (at most 
2n - 1) intervals between consecutive milestones. Let Tr be the starting time of the ith 
interval (i.e. -r1 is the ith smallest value of the release and due dates). A job]j is 
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available for processing (at time t) if rj < t and dj > t. Note that within each interval 
the set of available jobs does not change. A feasible schedule can now be constructed 
with the following two-stage procedure: first determine the amount of work to be 
performed on each job in each interval; next, construct a feasible schedule for each 
interval separately given the amount of work to be processed on each of the available 
jobs. Observe that scheduling the jobs within an interval is an instance of the special 
case of our problem where all release and due dates are identical and the Gonzalez- 
Sahni algorithm (1979) solves this problem in O(m log m + n) operations. 

Determination of the amount of work to be performed on each job in each interval 
is facilitated by the following result in Horvath, Lam and Sethi (1977): Let S, represent 
the cumulative speed of the 1 fastest machines: 

isl, 1 < ml, 

r r r r+1 

Si Emisi + I- Mi Sr+ I, Emi< 1 < mi; r= 1, t . .,t1 

Sm, I>m 

Lety1 denote the amount of work to be processed on job j in a given interval of length 
T. A feasible schedule exists for this interval if and only if the following set of 
constraints is satisfied: 

E y< TSIAI A c {1,** ,n}. (1) 

(In other words, the sum of the 1 largest y1 values needs to be less than or equal to TS,. 
The necessity of (1) is immediate; for the sufficiency see Horvath et al. 1977.) 

Consider now the following tripartite network (N, E) with an extra source 0 and 
sink O'. The first level has a node for every job (job nodes), the second level has a 
node for every period and machine type (machine-period nodes), and the third ' vel has 
a node for every period (period nodes). The source is connected with each job node, 
the arc to the jth node having capacity pj,j = 1, . . . , n. A job node is connected to all 
machine-period nodes for all periods during which the job, is available. All arcs which 
lead to -a machine-period node corresponding to machine type r and an interval of 
length T have capacity (Sr -sr+ ) T, with the convention s, = 0. Every node (r, i) 

2.f 52)h 6 1(51 52(1,2) 

s (m1+m2+(3) s3Ti 

""'_ 
~(I2) l,1nUs)T I 

level 0 level 1 level 2 level 3 level 4 

source Job nodes machine period period sink 
nodes nodes 

FIGURE 1. t=3. 
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corresponding to machine type r and period i of length Ti is connected with the period 
node i and has capacity (2n=imn)(Sr -sr+ 1) Ti, see Figure 1. Finally, all period nodes 
are connected to the sink with uncapacitated arcs. 

LEMMA. A feasible schedule exists if and only if the maximum flow in the network 
(N, E) equals 1jpj. 

PROOF. Fix f, a maximal flow in the network and assume the flow value equals 

,Ejpj. Let x. denote the flow from job node j to period node i. We show 

E xU,? TiSIAI, A C {1, ... ,n}; alli, (2) 

so that, in view of (1), a feasible schedule exists. Thus, fix i and let J be the set of job 
nodes, and I the set of machine-period nodes corresponding to period i. Consider the 
subnetwork comprised by J U I U { i} as well as the arcs between them. Also reverse 
the direction of the arcs, so that period node i appears as the source and the job nodes 
as sinks (see Figure 2). Since the restriction of f to the subnetwork is feasible, it follows 
for all A c J, that 

sj E=A XU is bounded by the maximum flow from period node i to the 
job nodes in A. The maximum flow through machine-period node (i, r) is bounded by 
(see Figure 2): 

(mI + * * + mr)(sr-sr+)1T, if mi + * +mr < AI, 

IA I(sr -sr+ I)Ti, otherwise. 

Thus, 

t r 

x <6 Ti E min tIA |; mp (sr r-sr+ 1) = TiSIAI 
jEA r=1 p=l 

(The last identity can be shown by complete induction on IA 1.) This verifies (2) and the 
sufficiency part of the lemma. 

Conversely, for a feasible schedule, let x. denote the amount of work to be 
performed on job j in period i. In view of (1), (2) holds. Similar applications of the max 
flow min cut theorem verify the existence of a feasible flow in the network (N, E) with 

X. the total flow from job node j to period node i (see Lemma 4.1 in Megiddo (1974) 
for details). Q.E.D. 

0~F_(m,+m2)(S2- S3)111, 

"3" 

FIGURE 2. Reversed Subnetwork for Period i: t = 3; {jl. ji} C { 1, n} Set of Jobs Available in 
Period i. 
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level 0 level 1 level 2 level 3 

source job nodes period nodes sink 

FIGURE 3. Polymatroidal Network. 

Our network flow model is closely related to the one suggested by Martel (1982a, b). 
Martel's network avoids the level of machine-period nodes but imposes the upper 
bounds (2) on the collection of arcs pointing to the same period node, see Figure 3. 
Our expanded network can thus be viewed as a device to avoid the upper bounds on 
sets of arcs as given by (2). General transformations of this type are discussed in 
Federgruen and Groenevelt (1984b). Observe that our network has O(tn) nodes and 
O(tn2) arcs. Classical maximal flow algorithms, e.g. Malhotra et al. (1978) thus solve 
the feasibility problem in O(t3n3) operations, a significant reduction compared to the 
O((m + log n)(m2n3 + n4)) bound in Martel's procedure. (Note also that, in general, 
t ?< m.) A further reduction in the complexity bound to O(tn3) may be achieved by 
applying Gusfield et al.'s (1985) maximal flow procedure for multipartite gr-phs. In 
addition, our procedure allows for the use of standard maximal flow codes or even 
standard primal simplex network codes. (For a discussion of the practical advantages 
of the latter, see Glover et al. 1984a, b.) 

The feasibility algorithm can be used to solve several generalizations of the consid- 
ered problem. For example, each job may have a list of time intervals within which it 
can be processed (rather than a single such interval) and the machines may be 
available in certain time intervals only. We can divide the time line into a sequence of 
consecutive intervals such that within each interval the jobs and machines which are 
available, do not change. A network flow problem (constructed as above) solves the 
feasibility problem. 

Note that for the special case of unit processing times, the solution generated by any 
maximum flow algorithm avoids preemptions, hence is optimal in a nonpreemptive 
setting as well. (With integer speeds, release and due times, an integer solution is 
optimal.) Our feasibility algorithm solves this case in O(tn3/m) operations. (One easily 
verifies, cf. Lemma 2 in Simons and Sipser 1984 that the total length of all time 
intervals within which a specific job can be run, may be bounded by In/m I S n/rm + 

1. Each job node is thus connected with the machine-period nodes corresponding to at 
most (n/m + 1) periods. As n a m without loss of generality, the number of arcs in 
the network is thus O(tn2/m) and since the maximum flow is bounded by n, the 
complexity bound O(tn3/m) follows immediately, see Lawler 1976, p. 116.) Simons 
and Sipser (1984) treated the even more restricted case of identical machines (t = 1). 
Horn's original maximal flow algorithm (to which ours reduces) thus exhibits superior 
performance compared to their 0(n3) matching algorithm. Our algorithm, in addition, 
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solves the extension of the Simons and Sipser problem to the case of uniform 
machines. 

3. The Maximum Lateness Problem 

The lateness of a job is defined as the completion time - due date. The maximum 
lateness problem consists of finding a schedule which minimizes the maximum lateness 
over all jobs. As pointed out by Horn (1974), Labetoulle et al. (1979) and Martel 
(1982a, b), to solve this problem, we find the smallest value L, such that adding L to 
all due dates results in a feasible scheduling problem. This smallest value L can be 
found in two stages. First note that there are at most n(n - 1) critical values of L such 
that di + L = rj for some release time and due date. For values of L which lie between 
a pair of consecutive critical values, the same network topology describes the feasibility 
problem. Performing a binary search, first, over the O(n2) critical values of L, thus 
narrows the search to an interval [Lo, LI] such that the same network topology applies 
to the feasibility problem for all lateness values L E [Lo, LI]. This stage requires at 
most O(log n) calls to the feasibility routine. From this point on, several alternatives 
prevail. 

Continued binary search over the interval [Lo, LI] achieves any E-optimal solution in 
at most O(IlogEl) calls to the feasibility routine. An exact optimal schedule can in fact 
be generated in at most 0(log sI + log n + log Pmax) calls to the feasibility routine, as 
can be shown following an argument in Labetoulle et al. (1984) for the case of 
identical machines. Consider the network prevailing when the lateness L E [Lo, LI]. A 
cut in this network has capacity Cf + (L - LO)CV, where Cf and C, are integers. From 
Figure 1 we find by adding the capacities of all arcs to and from the machine-period 
nodes that ICJI = 0(n2s, + nEmisi) < 0(n2s, + nms,) = O(n2s,), since m < n. Since 
the minimum lateness has the form L* = Lo + (P - Cf)/v, where P = ,pj is the total 
processing requirement, L* can be found by conducting a bisection search until the 
remaining interval of uncertainty (L',L") is no longer than (n4s2)-> which is an 
upperbound on the difference of fractions of the form (P - Cf)Cv, when lCvl < n2s,. 
If C/ + (L' - LO)Cv is the capacity of a minimal cut for lateness L*, then L = Lo + 
(P - Ci)/ Cv. The bisection search can of course be performed in 0(log(Ps2n4)) 

= 0(logs, + log n + log pmax) time. This substantially improves Martel's bound of 
O(n2 + n logs, + log(dmax + P)) for the number of calls to the feasibility routine. 

As an alternative for the second stage, note that a lateness value L E [Lo, LI] affects 
the induced network flow problem only through the capacities on some of the arcs and 
the dependence is linear. Thus, an alternative procedure for determining the maximum 
lateness is to solve a linear program of the form: 

min L 
n 

s.t. Xi xl pi, (P) 
{I EE: 0 tail of I} j= I 

E xil- E xi = O, t E N\{O}, 
{1 eE: t head of 1} {1 e E: t tail of 1} 

x, < al + f3,L, Lo < L < LI . 

Note that (P) is a minimum cost network flow model with one extra variable. Simple 
network simplex codes solve this problem as efficiently as pure network problems 
using elementary basis partitioning techniques, see e.g. Glover and Klingman (1981). 

The above approaches may again be applied to the case where jobs (machines) have 
a list of time-intervals within which they are available. For the case of unit processing 
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times our procedure has an 0(t(n3/m)(logn + logs,)) complexity bound. (The proce- 
dure in Simons and Sipser, applicable for identical machines only, requires 0(n4) 

operations.) 

4. Alternative Criteria 

In this section we show how various performance measures may be optimized by 
path augmenting algorithms applied to an appropriate modification of the network in 
Figure 1. Consider a network (N, E), with a single source s, let T c N and let (Zj)jET 
be the vector of net inflows into the nodes of T. The following algorithm maximizes 
any separable concave objective function in (Zj)jI-T' see Federgruen and Groenevelt 
(1984a). (The same algorithm determines an optimal solution for certain classes of 
"concave"" nonseparable functions as well, see ibid.) 

This procedure is a generalization of the well-known augmenting path algorithms for 
the maximal flow problem. In each iteration, labels are given to nodes of the form t + 

or t - where t E N. (Only the source s has a special label -.) A label t + [t - ] indicates 
that there exists a unit size augmenting path from the source to node qj in question and 
that (t, 71) [(7q, t)] is the last arc in this path. Let ei be the ith unit basis vector in R T. For 
any given feasible vector z = (Zj)j ET of supplies to the 0-level nodes T, z + e1 is 
feasible if and only if the labeling procedure succeeds in labeling node j, see 
Federgruen and Groenevelt (1984a). For all 1 E E, let xl represent the flow on this arc 
and let ul be the arc's capacity: 

CAPA: (Concave Objective Augmenting Path Algorithm) 
Step 1. Forj=1,. .., ndo zj:=0; forl E doxl:=0; 
Step 2. Give the source a special label-. 
Step 3. If all labeled nodes have been scanned, go to Step 5. 
Step 4. Fix a labeled but unscanned node t and scan it as follows: 
if 1 = (t, 71) E E, xl < ul and qj unlabeled, give qj the label t + 
if 1 = (71, t) E E, xl > 0 and qj unlabeled, give qj the label tl- 
go to Step 3. 
Step 5. Find a node j with j E T such that j is labeled and f(z + e}) > f(z + ek) 

for all labeled nodes k (1 < k < n). 
Step 6. If (no such node j exists) or f(z + el) < f(z) then stop. 
Step 7. Starting at nodej, backtrack an augmenting path; for a node qj on this path 

with label t + (t - ) increase (decrease) xz7 (x,,) by one; set Zj =Zj + 1; erase all labels 
and return to Step 2. 

Completion Criteria. 

Completion criteria are defined with respect to the vector (zj, j= 1,... , n } where 
zj represents the amount of work performed on job j prior to its due date. Consider the 
following modification of the network (N,E). At the zeroth level of the network, 
eliminate the source and its outgoing arcs and add a node j' for every j = 1, . .. , n. 
Connect node j' with job node j by an arc with capacity pj, see Figure 4. Reverse the 
direction of all arcs and let (N, E) be the resulting expanded network. This network 
has node O' as its unique source and the set of nodes T = ({':j = 1, . .. , n) as the set 
of sinks. Note that zj represents the inflow into sink j'. Note that CAPA requires no 
more than Ejpj < npmax iterations through Steps 2-7 and each iteration requires 

scanning of JEI = 0(tn2) arcs; hence the complexity bound 0(tn3pmax). 

The function g(z) = minjzj/pj (the minimum completion criterion discussed in the 
introduction) is not separable but an optimal solution may be obtained by optimizing 
the more selective criterion of lexicographic maximization of T(z), the vector of 
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< P 

FIGURE 4. Expanded Network (N, E) for Completion Criteria: (t = 3). 

completion rates (z1/p1} ranked in ascending order. Fujishige (1980) has shown that 
an optimal solution with respect to the latter criterion may be obtained by maximizing 
f(z3) = 2,Z- zf2/p1 which, of course, is separable and concave. 

CAPA applied to the network (N,EF) in Figure 4 thus results in a schedule which 
maximizes the minimum completion criterion. Similarly for given positive weights 
(Wj, j = 1, ... ., n } the minimum weighted completion criterion, gw(z) = min1w1z1/p1 
may be maximized by applying CAPA with the objective function 

fw(z) = t ( 2wk)Z,, 2- jj/p 

An algorithm in Fujishige (1980) solves the problem in O(t3n4). 

Utilization Criteria 

Let {I1 'K . ,} be a collection of disjoint time intervals and let y, be the amount 
of work scheduled for Ip Utilization criteria are defined with respect to the vector 
(yo,le= 1,.n. ., K}. Consider the following modification of the network (N,E ) in 
Figure 1. First, insert the starting and ending times of the intervals (II, l = 1, . . . , K } 
in the sorted list of release and due dates and determine the (at most 2n + 2Ka-a1) 
periods between consecutive milestones. Introduce a period node for each such period 
and use the list of period nodes and the corresponding list of machine-period nodes in 
levels 2 and 3 of the network (N, F), see Figure 1. Also replace level 4 by a string of 
interval nodes (one for each II). A period node i is connected with interval node I (by 
an infinite capacity arc) if the period is part of the interval. 

The function g(y) = maxiym (the maximum utilization criterion discussed in the 
introduction) is not separable but its minimum may be obtained by lexicographic 
maximization of T(y), the vector (y,,l= 1, . . ., K} ranked in ascending order, see 
Ichimori et al. (1982). As above, it follows in view of Fujishige (1980) that the 
maximum utilization criterion may be optimized by applying CAPA with f(y) 
= II(( .kPk)Y - I)be} (More generally, for given positive weights (wn,, = 1, . 
K}, the function g(y) = maxcwiya may be minimized by applying CAPA with the 
function f= ( K) = thef, (lnpm)(diwc)yi- 2 wty7 }N) 
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