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We analyze a general market for an industry of competing service facilities. Firms differentiate themselves by their price
levels and the waiting time their customers experience, as well as different attributes not determined directly through
competition. Our model therefore assumes that the expected demand experienced by a given firm may depend on all of the
industry’s price levels as well as a (steady-state) waiting-time standard, which each of the firms announces and commits
itself to by proper adjustment of its capacity level. We focus primarily on a separable specification, which in addition
is linear in the prices. (Alternative nonseparable or nonlinear specifications are discussed in the concluding section.) We
define a firm’s service level as the difference between an upper-bound benchmark for the waiting-time standard � �w� and
the firm’s actual waiting-time standard.
Different types of competition and the resulting equilibrium behavior may arise, depending on the industry dynamics

through which the firms select their strategic choices. In one case, firms may initially select their waiting-time standards,
followed by a selection of their prices in a second stage (service-level first). Alternatively, the sequence of strategic choices
may be reversed (price first) or, as a third alternative, the firms may make their choices simultaneously (simultaneous
competition). We model each of the service facilities as a single-server M/M/1 queueing facility, which receives a given
firm-specific price for each customer served. Each firm incurs a given cost per customer served as well as cost per unit of
time proportional to its adopted capacity level.
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1. Introduction and Summary
We analyze a general market for an industry of com-
peting service facilities. Firms differentiate themselves by
their price levels and the waiting time their customers
experience, as well as by different attributes not deter-
mined directly through competition. A given firm’s demand
volume may depend on all prices and all (steady-state)
waiting-time standards in the industry. The latter may be
specified as the expected steady-state waiting time or a
given (e.g., 95th) percentile of the waiting-time distribution.
In some settings, the waiting-time standard is explicitly
announced, possibly with monetary compensation offered
if a customer’s waiting time exceeds the standard. In other
cases, it is the waiting-time performance as observed by
the clientele or reported by independent organizations.
Either way, each firm commits itself to the chosen stan-
dard by adopting a sufficiently large capacity level. Dif-
ferent types of competition and equilibrium behavior arise,
depending on the industry dynamics through which the
firms make their strategic choices. In one case, the firms
make all choices simultaneously: simultaneous competi-
tion (SC). Alternatively, firms may initially choose their
waiting-time standards, selecting their prices in a second
stage: service-level-first competition (SF). As a third alter-

native, the sequence of strategic choices may be reversed:
price-first competition (PF).
Numerous service industries use waiting-time stan-

dards as an explicitly advertised competitive instrument.
Domino’s has offered delivery free of charge if pizza deliv-
ery were to take more than 30 minutes. Restaurant chains
such as Black Angus offer free lunches if lunch is not
served within 10 minutes. Banks like Wells Fargo award $5
when a customer waits more than five minutes in line. Var-
ious call or contact centers promise that the customer will
be helped within one hour, possibly by a call back. Super-
market chains like Lucky launched a “3 is a crowd” cam-
paign, guaranteeing that no checkout-counter line would
have more than three customers waiting. Ameritrade made
major inroads into the online discounted brokerage market,
waiving commissions for certain types of trades if service
were to take more than 10 seconds. As a final example, air-
lines advertise waiting-time characteristics such as “on time
arrival percentage,” while independent government agen-
cies (e.g., the Aviation Consumer Protection Division of
the DOT), as well as Internet travel services (e.g., Expedia)
report, on a flight-by-flight basis, the average delay and per-
centage of flights arriving within 15 minutes of schedule.1

Mazzeo (2003) shows that “on time arrival percentages”
increase significantly with the number of competing carri-
ers on the flight link.
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Customers select a specific firm by trading off three cat-
egories of service attributes: (1) the price, (2) the waiting-
time standard, and (3) all other attributes. For example,
for overnight mail services, the “other attributes” include
the convenience of the pickup process, the ease with which
deliveries can be traced, and the likelihood of the packages
being damaged. In the restaurant and fast food industry, the
location, ambiance, and the quality of the food are impor-
tant components of “other attributes;” and for Internet ser-
vice providers, the frequency of service interruption and
the quality of the staff. Prior service competition models
assume that the first two attributes (i.e., price and waiting
time) can be aggregated into a so-called full price, usually
defined as the direct price plus a multiple of the expected
waiting time. This is tantamount to assuming that all cus-
tomers assign a specific cost value to their waiting time and
that the cost of waiting is simply proportional to the total
waiting time.
Many studies in the modern psychology, economics,

marketing, and operations literature have demonstrated
that both assumptions are often violated. Kahneman
and Tversky’s (1984) “calculator and jacket” experiment
showed that the amount of time an individual is willing
to spend to reduce an item’s purchase price by $1 varies
drastically with the item’s base price. This experiment, con-
firmed by many other papers (e.g., Leclerc et al. 1995 and
the references therein), shows that even on an individual
level, no uniform waiting-cost rate prevails. Carmon et al.
(1994) focus on the need to represent the cost of waiting as
a nonlinear function of the waiting time. Finally, Larson’s
(1987) experiments show that the “disutility” of waiting
varies in a highly nonlinear manner with the customer’s
delay as well as with many characteristics of the “queueing
environment.”
The full-price assumptions reduce the customers’ choice

to a trade-off between the full price and the “other at-
tributes.” Many prior models also assume that all customers
select a firm with the lowest full price, albeit that different
customers may be attracted to different firms because of
differences in their waiting-time cost rate. This, of course,
amounts to assuming that the firms’ services are perfect
substitutes, i.e., no attributes other than price and wait-
ing time matter, reducing the customers’ multidimensional
trade-off process to the full price as the single criterion.
Defining a firm’s service level as the difference between

a given upper-bound benchmark for the waiting-time stan-
dard and the actual waiting-time standard, we represent a
firm’s demand rate as a function of all prices and service
levels in the industry. (We focus primarily on a separable
specification that is, in addition, linear in the price vector.)
This class of demand models represents general trade-offs
between the above three categories of attributes. Price and
waiting time are treated as truly independent attributes, in
that, in general, a change in a firm’s waiting time (distri-
bution) cannot be compensated for by a price change that
leaves all firms’ demand volumes unchanged. We model

each firm as an �M/M/1� queueing facility, which receives
a given firm-specific price and incurs a given cost per cus-
tomer served. Each firm incurs a cost per unit of time pro-
portional to its adopted capacity level, determined to satisfy
the waiting-time standard under the expected demand rate.
We characterize the equilibrium behavior in the above

three possible ways in which prices and service levels may
be selected, i.e., (SC), (PF), and (SF). We show that in all
three settings an equilibrium pair of price and service-level
vectors exists, in full generality, provided the waiting-time
benchmark is not excessively large. When characterizing
the equilibrium behavior in these markets, we assume that
the set of firms is given; in other words, we do not con-
sider the possibility of firms exiting or entering the indus-
try. We also develop efficient procedures to compute the
equilibria in the various competition models.
These existence results are in stark contrast to the

known behavior in existing service competition models.
For example, the seminal model, due to Luski (1976)
and Levhari and Luski (1978), confines itself to two ser-
vice providers and assumes that all customers choose their
provider strictly on the basis of the full price—i.e., the price
plus the expected waiting time multiplied with a customer-
specific cost rate. Customers’ cost rates are independent
and identically distributed (i.i.d.). With service rates exoge-
nously given, the competition between the two firms is con-
fined to their price choices only. Whether an equilibrium
exists in this elementary model remained an open question
until it was answered in the affirmative by Chen and Wan
(2003) for the case in which the firms’ service rates are
identical, while under nonidentical service rates an exam-
ple is given where no (pure) Nash equilibrium exists. The
same example shows that the equilibrium behavior is very
unstable: As the total market size varies from 1.2 to 1.3,
the industry moves from a unique equilibrium to no equi-
librium to an infinite number of equilibria.
Cachon and Harker (2002), again for the case of two ser-

vice providers, allows each firm’s demand rate to be spec-
ified as a function of both firms’ full-price values; in this
model, customers do not necessarily patronize the lowest
full-price provider (i.e., other attributes matter). When the
demand rate functions are linear, the known equilibrium
results merely exclude the existence of multiple equilib-
ria, and this only when the demand rates are sufficiently
large. See Allon and Federgruen (2004). When the demand
rate functions are (truncated) logit functions, the authors
examine a specific symmetric numerical instance. Varying
a single cost rate parameter, the industry moves from a sit-
uation with a unique equilibrium under which both firms
share the market, to one without any equilibrium, and next
to a situation with two equilibria, one with Firm 1 and the
other with Firm 2 as the monopoly provider.
To further appreciate the existence results for an equilib-

rium in the three competition models, note that they apply
to an arbitrary number of competing service providers.2

Also, in the (SC) model, the noncooperative game involves



Allon and Federgruen: Competition in Service Industries
Operations Research 55(1), pp. 37–55, © 2007 INFORMS 39

essentially multidimensional strategy spaces.3 Finally, in
the (PF) and (SF) models, the existence results pertain to
two-stage games. In the process of analyzing these two-
stage games, we characterize the price (service-level) equi-
librium that arises under a given vector of service levels
(prices) and show how the former vary as a function of the
latter. These second-stage “price only” and “service only”
competition models are of interest by themselves, in set-
tings in which one of the two strategic variables is specified
in a way different than through noncooperative competition.
We cannot guarantee that the equilibrium is unique. In

general, the existence of multiple equilibria is unsettling,
as it is hard to predict which of the equilibria is adopted by
an industry. We show, however, that in our model the set of
equilibria always has a componentwise largest and a com-
ponentwise smallest pair of equilibrium vectors. In other
words, there exists an equilibrium such that each firm’s
price as well as its service level is higher, and there exists
an equilibrium such that these are lower than his price
and service level under any other Nash equilibrium. Most
importantly, the componentwise largest pair of price and
service-level vectors is preferred by all of the firms. Finally,
the schemes used to compute an equilibrium can also be
applied to verify numerically whether multiple equilibria
exist. Evaluating thousands of instances across a broad
spectrum of parameters, we have never encountered a case
with multiple equilibria.
The set of equilibria is identical under the (SC) and

the (PF) models. Moreover, each firm’s equilibrium service
level in any such equilibrium is uniquely determined as a
function of that firm’s characteristics only, and it is a domi-
nant choice for this firm, i.e., with fixed prices, the equilib-
rium service level is the firm’s optimal choice, regardless
of what service levels are adopted by its competitors. In
contrast, the equilibrium in the (SF) model differs from that
in the other two competition models. Here, a firm’s equilib-
rium service level does depend, in general, on the charac-
teristics of the competitors. Assuming the (SF) model has a
unique equilibrium, we derive a simple sufficient condition
under which each firm adopts a higher price and a higher
service level while enjoying a higher demand volume, com-
pared to the other types of competition. In the presence
of multiple equilibria, the same uniform ranking applies
to the componentwise smallest equilibria. Thus, if firms
choose and announce their service levels before choosing
their price, this will result in higher, but more expensive,
service by all competitors. Because all firms’ demand vol-
umes increase as well, this type of competition appears to
benefit the consumer. It also suggests that value is added
to the consumer when government agencies, industry con-
sortia, or independent organizations periodically report on
service levels.
We briefly review several seminal papers (beyond those

by Levhari and Luski 1978 and Cachon and Harker 2002;
see above). We refer to Allon and Federgruen (2004)

for a systematic discussion of several variants and exten-
sions thereof, and to Hassin and Haviv (2003) for a gen-
eral survey of queueing models with competition. Kalai
et al. (1992) initiated a stream of papers in which ser-
vice firms compete in terms of their capacity choices with
exogenously given prices, in contrast to the Luski (1976)
and Levhari and Luski (1978) models, in which firms com-
pete in terms of their prices, with fixed capacity levels.
They model the service industry as an M/M/2 system with
two competing servers, i.e., all customers are served on a
first-in-first-out (FIFO) basis from a single queue. (If a cus-
tomer arrives when both servers are idle, he is randomly
assigned to one of them.) The authors show that asymmet-
ric Nash equilibria of service rate pairs may arise, some-
times associated with infinite waiting times.
De Vany and Saving (1983) are the first to address a

richer type of competition in which firms compete with
several rather than a single strategic instrument. This paper
addresses a variant of the Levhari and Luski (1978) model,
with an arbitrary number of identical firms who simultane-
ously choose a price and service rate. All customers share
the same waiting-cost rate, but the total demand volume in
the industry is given by a general function of the lowest full
price. The authors establish the existence of a symmetric
equilibrium.
All of the above papers assume that customers either

have no choice in selecting their service provider, or make
the selection on the basis of the full price only. So (2000)
and Cachon and Harker (2002) are the first to consider dif-
ferentiated services, i.e., to analyze a model in which other
service attributes matter along with the full price. In con-
trast to the latter, So (2000) establishes the existence of a
unique equilibrium with an arbitrary number of competing
M/M/1 service firms, when the demand rate functions are
specified as a special type of attraction model. See Bell
et al. (1975). Here, each firm is characterized by an attrac-
tion value specified as a function of the firm’s price and
waiting-time standard. With a fixed total market size, each
firm’s market share is given by the ratio of its attraction
value and the sum of the industry’s attraction values. So
(2000) specifies the logarithm of the firms’ attraction values
as a common positive linear combination of the logarithms
of the prices and the waiting-time standards, plus a firm-
dependent constant. As in Cachon and Harker (2002), all
firms’ profit functions can be expressed as a function of the
vector of full prices only; in So (2000), it is the attraction
value that represents the full price. Afeche and Mendelson
(2004) address a single-firm model in which customers
aggregate price and waiting time via a full-price measure,
now specified as a function of the price and two characteris-
tics of the waiting-time distribution. Ours appears to be the
first competition model to address differentiated services
while treating the prices and waiting-time standards as fully
independent attributes. This allows for different customers
to exercise different explicit or implicit trade-offs.
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The model and notation are introduced in §2. The three
competition models are analyzed in §§3–5. Section 6 estab-
lishes the above comparisons of the equilibrium in the three
competition models. Section 7 completes the paper with
numerical investigations and generalizations.

2. The Model
Consider a service industry with N competing service
firms, each acting as an M/M/1 facility.4 Each firm i posi-
tions itself in the market by selecting a price pi as well as
a service level 	i. The latter may be defined in terms of
the expected (steady-state) waiting time wi = Ɛ�Wi�, or in
terms of a given, say, � fractile of the waiting-time distri-
bution, wi���, 0< �< 1. For a given service rate i and
demand volume �i, it is known that

wi =
1

i−�i
� wi���=

ln
(
1/�1−��)
i−�i

� (1)

(Note that ��Wi � w0i � = 1 − e−�i−�i�w0i , from which the
expression for wi��� in (1) readily follows.) The service
level 	i is defined as the difference between a benchmark
upper bound �w or �w���, and the actual waiting time stan-
dard wi or wi���, respectively, i.e., 	i = �w − wi or 	i =
�w��� − wi���. For example, no Internet access provider
would offer an expected waiting time for access above one
minute (say). Similarly, no contract would offer a guar-
anteed call-back time above 24 hours. Thus, in these two
examples, �w= one minute and �w= 24 hours could be used
as the upper-bound benchmark.
Each firm i is able to select its capacity or service rate

so as to guarantee any given waiting-time standard between
0 and �w (or 0 and �w��� when standards are specified in
terms of the � fractile of the waiting-time distribution).
Thus, 	i ∈ �0� �w�. Assuming �i > 0, the required value of
i is easily obtained from (1):

i = �i+
1
wi

or i = �i+
ln
(
1/�1−��)
wi���

� (2)

(When �i = 0, i = 0 as well.) The two terms in (2) rep-
resent the two components of which the required capac-
ity consists: The first, volume-based capacity, is the base
capacity ensuring that the service process is stable; the sec-
ond component enables the desired waiting-time standard
and is referred to as the service-based capacity.
Each firm i incurs a given cost ci per customer served

and a cost �i per unit of capacity, per unit of time. If
the waiting-time standard is based on the � fractile of the
waiting-time distribution and firm i offers to pay a penalty
Ci to any customer whose waiting time is in excess of the
stated wi���, this adds an expected cost per customer �1−
��Ci. Such penalties are therefore easily incorporated into
the analysis, simply by replacing ci by ĉi = ci+ �1−��Ci.
The price pi may be chosen from an interval �p

min
i � pmaxi �,

i = 1� � � � �N . Clearly, firm i selects a price pi that results

in a nonnegative gross profit margin pi − ci − �i. (By (2),
ci + �i is the marginal cost per unit of demand.) Thus,
without loss of generality, we select

pmini = ci+�i� i= 1� � � � �N � (3)

As to pmaxi , it is chosen to be sufficiently large as to have
no impact on the equilibrium behavior. In full generality,
the demand rates would be specified as general functions
of all prices and waiting-time standards (i.e., �i = �i�p� 	�)
that obey obvious monotonicity properties. We focus pri-
marily on specifications in which the demand rate (when
positive) is a separable function of the prices and service
levels, which, in addition, is linear in the price vector

�i�p� 	�=
[
ai�	i�− bipi−

∑
j �=i
�ij �	j�+

∑
j �=i
�ijpj

]+
� (4)

where x+ = max�x�0�. This quasiseparable specification
enables tractable analyses and estimation procedures, as
with standard linear equations. The functions ai�	i� are
assumed to be three times differentiable, increasing, and
concave in the service level 	i, i.e., equal size reductions
in the waiting-time standard result in progressively smaller
increases of the demand volume. As to the cross-term func-
tions �ij�	j�, they are merely assumed to be nondecreasing
and differentiable. Without loss of practical generality, we
assume that a uniform price increase by all N firms cannot
result in an increase in any firm’s demand volume, and that
a price increase by a given firm cannot result in an increase
of the industry’s aggregate demand volume, i.e.,

(D) bi >
∑
j �=i
�ij � i= 1� � � � �N �

�D′� bi >
∑
j �=i
�ji� i= 1� � � � �N �

This condition is usually referred to as the “dominant diag-
onal” condition.
Alternative specifications of the demand functions in-

clude:
(i) The attraction models (ATT):

�i�p� 	�=
vi�pi� 	i�∑N

j=1 vj�pj� 	j�+ v0
�

with v0 a positive constant and vi�·� ·� a function that
is decreasing in its first argument and increasing in its
second. Within the latter broad class of models, sup-
ported by axiomatic foundations, it is prevalent to choose
a log-separable specification of the attraction value vi, i.e.,
vi�pi� 	i�= �i�pi��i�	i�, a natural extension of the multi-
nomial logit (MNL) model.5

(ii) The natural extension of the Cobb-Douglas specifi-
cation (CD):

�i�p� 	�=
ai�	i�∏
j �=i �ij �	j�

p
−bi
i

∏
j �=i
p
�ij
j �
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(iii) Generalized CES models:

�i =M
p
bi−1
i 	ia∑N

j=1 p
bj
j 	

a+1
j

� i= 1� � � � �N �6

In §6, we discuss how our results carry over to these classes
of nonlinear demand models.
Under all of the above specifications (i)–(iii), a firm

maintains a positive market share irrespective of how
extreme and uncompetitive its price and service-level
choices are. In contrast, (4), in addition to enjoying ana-
lytical simplifications, specifies a firm’s demand to be zero
under such extreme choices; this appears to be more realis-
tic in most industries. We show that in all of the competitive
models considered, the firms’ equilibrium choices induce a
positive market share for each. To guarantee that this is the
case, it suffices in the (PF) and (SF) models to assume that

�i�c+��	� > 0� i= 1� � � � �N ∀	 ∈ �0� �w�N � (5)

i.e., any firm i can achieve a positive market share, at least
when willing to operate with a zero-variable profit margin,
i.e., when pi = pmini = ci + �i. (5) guarantees that under
this price, �i > 0, regardless of the competitors’ choices.

7

However, other price service-level combinations may result
in zero demand. In the two remaining competition models
((SC) and (PF)), a somewhat stronger condition is needed,
namely,

�i�p� 	� > 0 ∀p ∈ N×
i=1
�pmini � pmaxi �� 	 ∈ �0� �w�N �8 (6)

(As mentioned, (6) is satisfied, without any parameter
restrictions, for any of the nonlinear demand functions
mentioned above.)
As is well known from the literature on oligopoly models

with product differentiation, systems of demand equations
need not, but often can, be obtained from one of sev-
eral underlying consumer utility models, in particular, the
representative consumer model, the random utility model,
and the address model. See, e.g., Anderson et al. (1992).
Similarly, (4) may, e.g., be derived from a representa-
tive consumer model with utility function U���	� ≡ C +
�1/2��T B−1�−�T B−1ā�	�, where the N ×N matrix B has
Bii =−bi and Bij = �ij , i �= j , ā�	�≡ ai�	i�−

∑
j �=i �ij �	j�,

and C > 0. ((D) ensures that B−1 exists and is negative
semidefinite, giving rise to a jointly concave utility func-
tion.) The demand functions (4) arise by optimizing the
utility function subject to a budget constraint.
Thus, if the waiting-time standards are expressed in

terms of the expected waiting time, each firm i’s long-run
average profit #i for i= 1� � � � �N is given by the function

#i�p�	�=



�i�pi− ci−�i�−

�i
�w− 	i

if �i > 0�

0 otherwise�

(7)

A firm i may thus avoid a loss by adopting a sales volume
�i = 0. Losses may, in principle, still occur when �i > 0,

in case the cost associated with the service-based capacity
dominates the gross profits. As mentioned in Endnote 4, we
do not consider the possibility of firms exiting the industry;
in particular, we do not impose a participation constraint
for the firms.
If the waiting-time standard is expressed in terms of the

� fractile of the waiting-time distribution, the profit func-
tions #i are identical to those in (7) except that the last
term to the right of (7) is given by

�i ln
(
1/�1−��)

�w���− 	i
�

In view of the close similarity between the profit functions
under the expected waiting time and waiting-time fractile-
based standards, we henceforth confine ourselves to the
former case. Finally, one may envision settings in which
customers are sensitive to both the expected waiting time
and a given � fractile of the waiting-time distribution, giv-
ing rise to demand equations of the form

�i =
[
aEi �wi�+ aTi �wi����− bipi

−∑
j �=i
��Eij �wj�+�Tij �wj�����+

∑
j �=i
�ijpj

]+
� (8)

Because

wi���=wi ln
(

1
1−�

)
�

(8) is equivalent to (4) with

ai�	i�≡ aEi � �w− 	i�+ aTi
(
ln
(

1
1−�

)
� �w− 	i�

)
and

�ij�	j�≡ �Eij � �w− 	j�+�Tij
(
ln
(

1
1−�

)
� �w− 	j�

)
�

This general setting with customers sensitive to multiple
waiting-time standards can thus be reduced, without loss of
generality, to a model with a single waiting-time standard.
As mentioned in §1, Cachon and Harker (2002) consider,

in the case of a duopoly, a demand model of the form �i =
Ai − biFi + �ijFj , j �= i, where Fi = the full price paid by
customers of firm i, i.e., Fi = pi + kwi.9 This specification
is based on two important assumptions: First, all potential
customers aggregate the price and waiting-time standards
into a single aggregate measure (the full price). Second,
every unit of time waited has the same dollar value k for
all potential customers, regardless of how long the total
waiting time is. We retrieve the full-price model from the
general demand model (4) by adopting the following spe-
cial choices:

ai�	i�= a0i + a1i 	i( �ij�	j�= �1ij	j ( i �= j� (9)

a1i = kbi� �1ij = k�ij � i �= j� (10)

In other words, all intercept functions are affine and their
slopes are proportional to the price effects b and �, with k



Allon and Federgruen: Competition in Service Industries
42 Operations Research 55(1), pp. 37–55, © 2007 INFORMS

as the “common proportionality factor.”10 Unless the spe-
cial relationships in (9) and (10) apply, prices and waiting-
time standards function as truly independent attributes. For
example, under affine ai�·� and �ij�·� functions, as in (9),
if firm i decreases its service level by one unit, it must
decrease its price by a1i /bi units to leave its demand vol-
ume unchanged. The net effect on firm j’s demand volume
is then an increase by �ji�a

1
i /bi� − �1ji �= 0, unless (10)

applies.
Because the full-price model arises as a special case of

the general model, all of our characterizations of the equi-
librium behavior that apply to the latter, apply, a fortiori, to
the former. This resolves an outstanding question in Cachon
and Harker (2002) of whether an equilibrium exists even in
the case of a duopoly. Our results for the attraction models
(ATT) confirm the possibility of nonexistence of equilibria,
as pointed out by Cachon and Harker (2002), while estab-
lishing conditions under which the existence of an equilib-
rium is guaranteed.
If the full price Fi is treated as the single strategic instru-

ment of firm i, this precludes the modeling of settings
where prices and waiting times are selected sequentially.
In §1, we discussed various a priori reasons and experi-
mental results that challenge the applicability of the full-
price model in specific settings. In addition, an upfront
restriction to the full-price model also invokes difficulties
when estimating the system of demand functions. First,
when specifying a linear dependence on the prices, it is, in
the full-price model, necessary to restrict oneself to affine
a�·� and ��·� functions as well. Moreover, while the firms’
prices and expected waiting times can be observed directly
and used as explanatory variables in a system of regression
equations, the full-price values are not observable because
they depend on the value of k. It is, of course, possi-
ble to estimate the parameters in (4) under the constraints
imposed by (9) and (10), but these constraints add signif-
icant (and apparently unnecessary) difficulties to the esti-
mation procedure. Finally, numerical experiments in Allon
and Federgruen (2004) suggest that the imposition of the
parameters constraints (10) may result in very significant
changes in the associated equilibria. In particular, Allon and
Federgruen (2004) show how when starting with a model
that satisfies (9) and (10)—i.e., that belongs to the full-price
model—large deviations in, for example, the SC equilib-
ria can be observed, resulting from relatively small devia-
tions in the ratios )a′i/bi(�

′
ij/�ij * i �= j+ from their common

value, or when appending nonlinear terms to the a�·� and
��·� functions.

3. Service-Level-First Model
Often, firms face significantly higher stickiness for their
service-level choices as compared to their ability to vary
prices, or vice versa. Relative stickiness of the former
may, for example, arise because of human resource prac-
tices, labor contracts, or long lead times for technology

purchases. Recall that a firm’s required capacity consists
of two components; because the service-based component
depends only on the firm’s own service level, at least this
part of the capacity investment can be fixed over a larger
horizon by selecting and maintaining a given service level.
In the airline industry, we observe that reservation call cen-
ters are typically designed to handle 80% of the economy
class passengers within 20 seconds. Airlines have stuck
with this waiting-time standard for years, while willing to
change prices daily. Conversely, some industries experience
a higher level of price rigidity. See Blinder et al. (1998)
and the many references therein for a comprehensive theo-
retical and empirical investigation of 12 factors underlying
price stickiness.
To address industries with relatively higher service-level

rigidity, we analyze the (SF) model in this section. In the
next section, we analyze the (SC) model, where firms select
or adapt their prices and service levels simultaneously. This
assumption is valid when it is equally easy or difficult to
adapt either one of the two strategic dimensions. Finally,
§5 analyzes the (PF) model to characterize settings with
higher price rigidity. To analyze the two-stage game (SF),
we start with the second-stage price game that arises under
a given vector of service levels 	0.

3.1. Price Competition Model

We show that the price competition game has a unique price
equilibrium p∗, which satisfies the first-order conditions

,#i

,pi
=−bi�pi− ci−�i�+�i� (11)

In matrix notation, this linear system of equations can be
written in the form

Ap= ā�	�+-� (12)

where the N ×N matrix A is specified by Aii = 2bi, Aij =
−�ij , i �= j , and where -i = bi�ci + �i�. We first state
the following properties of the matrix A that were shown
in parts (a)–(c) of Lemma 2 in Bernstein and Federgruen
(2004):

Lemma 1. (a) A is invertible, A−1 � 0, and every entry of
A−1 is nondecreasing in each of the �ij coefficients.
(b) Let .i ≡ bi�A

−1�ii. Then, 0�5� .i < 1.
(c) �A−1�ij � 1/bj .

We refer to .i as the degree of positive externality faced
by firm i and note from Lemma 1 that it is a dimension-
less index that varies between 0.5 and 1 and increases with
each of the � coefficients. The following theorem char-
acterizes the equilibrium in the price competition model
and shows how the equilibrium prices and demand rates
respond to changes in the cost parameters and service lev-
els. The proof uses the theory of supermodular games. A
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function f * �N →� is supermodular if it has the increasing
difference property

f �x1i � x−i�− f �x2i � x−i�
increases in x−i for all x

1
i > x

2
i � (13)

Theorem 1 (Price Competition Model). Fix a service-
level vector 	 and assume that condition (5) applies.
(a) The price competition game has a unique equilib-

rium that satisfies (12), i.e., p∗�	� = A−1�ā�	� + -� ∈
�pmin� pu ≡ A−1�a� �w�+ -��. The equilibrium demand vol-
ume for firm i is given by �∗

i ≡ �i�p
∗�= bi�p

∗
i − ci−�i� >

0 and the equilibrium profit for firm i is given by 1∗
i =

bi�p
∗
i − ci−�i�2−�i/� �w− 	i�.

(b) p∗ and �∗ are increasing in each of the cost parame-
ters )ci� �i, i= 1� � � � �N + with ,p∗

i /,ci = ,p∗
i /,�i = .i and

,�∗
i /,ci = ,�∗

i /,�i = bi�.i− 1� < 0, i= 1� � � � �N .
(c)

,p∗
i

,	j
= 1
bi

,�∗
i

,	j
= �A−1�ija

′
j �	j�−

∑
l �=j
�A−1�ila

′
lj �	j�� (14)

When the cross-term functions �ij�·� are linear or convex,
each equilibrium price and volume is a separable concave
function of 	.

Proof. (a) Under a given service-level vector 	, each
firm i has committed to a given positive service-level-based
capacity 1/wi = 1/� �w−	i�. Consider the modified game ��
with profit functions

�#i =
(
ai�	i�− bipi−

∑
j �=i
�ij �	j�+

∑
j �=i
�ijpj

)

· �pi− ci−�i�−
�i

�w− 	i
� (15)

We first show that �� has a unique equilibrium p∗�	�
with �i > 0, i = 1� � � � �N . ,2�#i/,pi,pj = �ij � 0, i.e., the
profit function �#i is supermodular in �pi� pj�; see (13).
Because the feasible action set of each firm is a closed
interval, the game is supermodular and possesses an equi-
librium. The fact that it has a unique equilibrium follows
from (D). See, e.g., Milgrom and Roberts (1990). Note
that each profit function �#i is concave in the price vari-
able pi; thus, if the first-order conditions (12) have a solu-
tion in the feasible set �pmin� pmax�, this solution must be the
unique equilibrium. However, (12) has the solution pmin =
c+ � � p∗�	�=A−1�a�	�+ -��A−1�a� �w�+ -�. (To ver-
ify the first inequality, (5) implies ā�	�i + bi�ci + �i� +∑

j �=i �ij �cj + �j� > 2bi�ci + �i�⇒ ā�	�i + -i+> 2bi�ci +
�i�−

∑
j �=i �ij �cj +�j�, i= 1� � � � �N . Thus, in matrix nota-

tion, ā�	�+ - > A�c + ��⇒ A−1�ā�	�+ -� > c + �, by
Lemma 1(a). The second inequality is immediate from the
properties of the a− and �− functions.) Rewriting (12) and
using (4), we obtain �∗

i = bi�p
∗
i − ci−�i� > 0.

To show that p∗ is an equilibrium in the original game �,
note that #i�pi� p

∗
−i� 	��#i�p

∗� 	� for all pi ∈ �pmini � pmaxi �.

If �i�pi� p
∗
−i� 	� = 0, #i�pi� p

∗
−i� 	� = −�i/� �w− 	i� �

�#i�p
∗�, where the inequality follows from �∗

i > 0 and
the equality from the fact that firm i precommitted to
the service-based capacity 1/� �w− 	i�. If �i�pi� p∗

−i� 	� > 0,
#i�pi� p

∗
−i� 	�= �#i�pi� p

∗
−i� 	�� �#i�p

∗
i � 	�=#i�p

∗
i � 	�.

It remains to be shown that � has no other equilib-
rium. However, any equilibrium p̃ with �i�p̃� 	� > 0 for
i = 1� � � � �N must satisfy the first-order conditions (12),
with p∗�	� as its unique solution. Thus, p̃ �= p∗�	� must
have �i = 0 for some i = 1� � � � �N . Because �i��ci +
�i� p̃−i�� 	� > 0 and because �i is a continuous function of
the price vector, there exists a price p̃i �= �p > ci + �i such
that �i�� �p� p̃−i�� 	� > 0. Thus, firm i can increase the first
term in the profit equation (7) without changing the second
term by switching to the price �p. (The second term does
not change because the firm is precommitted to the service-
based capacity 1/� �w−	i�.) This contradicts the assumption
that p̃ is an equilibrium.
Substituting �∗

i = b∗i �p
∗
i − ci−�i� into (7), we obtain

1∗
i �	�=#i�p

∗�	�� 	�= bi�p
∗
i − ci−�i�2−

�

�w− 	i
�

i= 1� � � � �N � (16)

(b) The fact that each equilibrium price p∗
i is increas-

ing in each of the cost parameters )cj� �j� j = 1� � � � �
N + is immediate from p∗ = A−1�ā�	� + -� because
A−1 � 0. Moreover, ,pi/,ci = ,pi/,�i = bi�A

−1�ii = .i by
Lemma 1(b). Finally, it follows from part (a) that ,�i/,ci =
,�i/,�i = bi�,pi/,�i− 1�= bi�,pi/,ci− 1�= bi�.i− 1�.
(c) Immediate from part (a). �

We conclude that pu is a uniform upper bound for all
feasible price equilibria. We henceforth assume

pmax � pu� (17)

specifying explicitly which choices of pmax are sufficiently
large so as not to influence the equilibrium behavior.
Thus, if one of the cost parameters ci or �i of firm i

increases, the equilibrium price p∗
i increases by at least half

as much, but never more than by the increase in the cost
parameter itself. Moreover, the marginal price increase is
given by the firm’s degree of positive externality .i and is
therefore increasing in any of the �-coefficients. For a fixed
vector of direct price effects b, we observe from part (b) of
Theorem 1 that under larger � coefficients—hence under a
larger value for firm i’s degree of positive externality .i—
this firm is willing to make a bolder price adjustment to any
increase in its cost parameters, thereby maintaining a larger
portion of its original profit margin. The reason is that
the firm’s competitors respond with larger price increases
themselves. Part (c) implies the existence of a critical value
0� 	0ij � �w such that as firm j increases its service level, p∗

i

and �∗
i are increasing on the interval �0� 	

0
ij � and decreasing

on �	0ij � �w�.
Below we provide a simple and broadly satisfied condi-

tion under which the equilibrium price p∗
i and equilibrium
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demand volume �∗
i vary monotonically with any of the ser-

vice levels, i.e., 	0ij = �w for all i, j .
Just like the equilibrium prices and volumes vary uni-

modally and often monotonically with any of the service
levels, the same can be said about the dependence of the
firm’s equilibrium profits on any of its competitors’ service
levels: It follows from (16) that

,1∗
i

,	j
= 2bi�p∗

i − ci−�i�
,p∗

i

,	j
� (18)

In particular, firm i’s profit increases as a result of the
service-level improvement by a competing firm j if and
only if the service-level improvement results in an increase
in firm i’s price. Thus, 1∗

i increases on the interval �0� 	
0
ij �

and decreases on the remaining interval �	0ij � �w�. As far as
the dependence of firm i’s equilibrium profit 1∗

i on its own
service level is concerned, a less clear-cut picture emerges.
The following general statement can, however, be made:
Because

,1∗
i

,	i
= 2bi�p∗

i − ci−�i�
,p∗

i

,	i
− �i
� �w− 	i�2

�

two cases prevail. If increasing the firm’s service level
from 	i = 0 to any positive service level results in a price
decrease, the firm’s equilibrium profits are a decreasing
function of its service level throughout, i.e., the firm is best
off providing minimal service (independent of the service-
level choices of any of its competitors). The second case
arises when an increase from 	i = 0 to a marginally positive
level allows the firm to charge a marginally higher price. In
this case, a value 	pri < 	0ii exists, such that profits decrease
when the service level exceeds 	pri . On the other hand, on
the interval �0� 	pri �, the equilibrium profit may, in general,
alternate arbitrarily between being increasing and decreas-
ing. However, if all intercept functions )ai�·�+ and all cross-
term functions )�ij+ are affine, ,1

∗
i /,	i can be shown to be

concave so that 1i, viewed as s function of 	i, possesses at
most two local optima in the interval �0� �w�. Combined with
the fact that lim	i↑ �w ,1∗

i /,	i < 0, this reveals that only one
of three patterns may emerge: (i) profits decline through-
out the feasible service-level interval �0� �w�; (ii) profits are
unimodal; and (iii) profits first decline, then increase, and
after reaching a local maximum, proceed to decline.

3.2. The Service-Level-First Model:
The Two-Stage Game

We now turn to the first-stage game in which firms first
select their service levels.

Theorem 2 (The Two-Stage Game). Assume that (5)
holds. Assume that �w is sufficiently small11 and the cross-
term functions )�ij � j �= i+ are linear or convex. The (SF)
model has an equilibrium 	∗ (and associated price equi-
librium p∗�	∗�).

Proof. Fix i = 1� � � � �N . Note from Theorem 1(c) that
,p∗

i /,	i is independent of the service-level choices of

firm i’s competitors; thus, ,p∗
i /,	i = p∗′

i �	i�. By (14),

,1∗
i

,	i
= 2bi�p∗

i − ci−�i�p∗′
i �	i�−

�i
� �w− 	i�2

(19)

and

,21∗
i

,	2i
= 2bi�p∗

i − ci−�i�p∗′′
i �	i�

+ 2bi�p∗′
i �	i��

2− 2�i
� �w− 	i�3

� (20)

The first term in (20) is negative under linear or convex
cross-term functions )�ij � j �= i+. Thus, 1∗

i is concave in 	i,
provided that 2bi�p

∗′
i �	i��

2 � 2�i/� �w− 	i�3—i.e., provided

2bi�p
∗′
i �	i��

2 �
2�i
�w3 ⇐⇒ �w�min

	i

3

√
�i

bi�p
∗′
i �	i��

2

=min
{

3

√
�i

bi�p
∗′
i �0��2

� 3

√
�i

bi�p
∗′
i � �w��2

}
� (21)

where the last equality follows from p∗′
i �	i� being decreas-

ing. Finally, the fact that p∗′
i �	i� is decreasing shows that

condition (21) is satisfied for �w sufficiently small. �

Arbitrary small or large utilization rates may arise for
any value of �w (firm i’s utilization rate is given by
�i/��i+w−1

i �� �i/��i+ �w−1
i �). The upper bound for �w is

required to guarantee that each of the first-stage profit func-
tions 1∗

i is concave. Our numerical investigations show,
however, that the qualitative properties of equilibrium are
maintained, even if �w is chosen at an arbitrarily large value.
Similar observations apply to the competition models in
§§4–5, where a similar upper bound for �w is required.
Theorem 2 does not guarantee that the two-stage game

has a unique equilibrium. In the following corollary, we
(a) characterize the set of Nash equilibria; (b) show that
it has a componentwise largest and a componentwise
smallest element 	̄SF , 	SF , respectively; and (c) show
that the following simple tatônnement scheme converges
to 	̄SF �	SF � when started at 0�� �w� � � � � �w�T �. Starting
with an arbitrary service-level vector 	0, determine in the
kth iteration of the scheme 	k such that ∀ i = 1� � � � �N ,
	ki = argmax	i 1∗

i �	i� 	
k−1
−i �, i.e., 	

k
i represents firm i’s best

response if all competitors adopt service levels from the
vector 	k−1. All three results are obtained by demonstrat-
ing, under condition (22) below (but without any condition
on �w), that the first-stage game is supermodular. Because
the feasible ranges are closed intervals, the game is super-
modular if and only if each of the reduced-profit functions
1∗
i �	� is supermodular.
It follows from (18) that 1∗

i is twice differentiable, so
that (13) is satisfied if and only if

,21∗
i

,	i,	j
= 2bi

,p∗
i

,	i

,p∗
i

,	j
� 0�

Thus, the first-stage game is supermodular if ,p∗
i /,	j has

a uniform sign for all i, j , throughout the feasible service-
level region ×N

i=1�0� �w�. As discussed above, in general, a



Allon and Federgruen: Competition in Service Industries
Operations Research 55(1), pp. 37–55, © 2007 INFORMS 45

firm’s equilibrium price fails to be monotone either in its
own service level or that of any of its competitors. By (14),
,�∗

i /,	j � 0⇔ ,p∗
i /,	j � 0, which is itself equivalent to

�A−1�ija
′
j �	j��

∑
l �=j
�A−1�il�

′
lj �	j� ∀ i� j = 1� � � � �N � (22)

In other words, condition (22) requires that the direct
impact of a service-level improvement by firm j on its own
demand volume be as large as a linear combination of the
indirect effects this service-level improvement has on the
demand volumes of the other firms. This condition bears
resemblance to (D′), which states that the direct impact
of a price increase by a firm on its own demand volume
is at least as large as the sum of the indirect effects the
price increase has on the demand volumes of the competi-
tors. (Recall that (D′) is equivalent to the highly plausible
assumption that a price increase by one of the firms cannot
result in an increase of the aggregate sales in the indus-
try.) Moreover, to the extent that the indirect service sensi-
tivities )�′

kj � k �= j+ are significant compared to the direct
service-level sensitivity a′j , this reflects a highly competi-
tive industry and is likely to be accompanied with indirect
price sensitivities )�kj+ being relatively large, compared
to the direct price sensitivity bj . However, the inequali-
ties �A−1�ija′j �	j��

∑
k �=j �′

kj �	j�/bk are sufficient for (22).
These inequalities are all the more easily satisfied as (any
of) the � coefficient(s) increase(s) because each of the
entries of the matrix A−1 is increasing in each of the �
coefficients; see Lemma 1(a).
Because the first-stage game is supermodular under (22),

the following corollary follows from Topkis (1998).

Corollary 1 (Service-Level-First Model: Charac-
terizations and Computation of Equilibria). Assume
that (5) and (22) hold.
(a) The first-stage game in the (SF) model is supermod-

ular, and it has a componentwise smallest and componen-
twise largest equilibrium 	SF , 	̄SF (with associated price
equilibria p∗�	SF �, p∗�	̄SF �).
(b) When starting at 	0 = 0 �� �w� �w� � � � � �w�T �, the

tatônnement scheme generates an increasing (decreasing)
sequence of service-level vectors that converges to 	SF
�	̄SF �. In the k + 1st iteration of the scheme, each firm i
determines the value of 	 that maximizes 1∗

i �	i � 	k−i� =
bi�p

∗
i �	i� 	

k
−i�− ci−�i�2−�i/� �w− 	i�.

In the two-stage competition model (SF), firms choose
their prices after all service levels are revealed. In this set-
ting, condition (22) has far-reaching implications: Not only
does it guarantee that a service-level improvement by firm j
results in price increases by all of the firms, but the same
applies to their volumes; see the first equality in (14). Even
the demand volume of a competing firm i increases, due to
the fact that the positive impact of firm i’s price increase
(along with those of the other firms j �= i) on �∗

i dominates

the negative impact resulting from the increase in the cross-
term �ij�	j� and that of p

∗
i ; see (4). In addition, a service-

level improvement by a firm results in a profit improvement
for all of its competitors (see (18)) because it positively
impacts on both their price and their demand volume, with-
out changing their cost structure. At the same time, the
impact of a service-level improvement on the firm’s own
profits remains ambiguous, as in the case of the general
model. However, for affine functions )ai+, )�ij+, because
,p∗

i �0�/,	i � 0, only patterns (ii) and (iii) can arise, i.e.,
the equilibrium profit is either unimodal in its service level
or it first declines, then increases, and after reaching a local
maximum proceeds to decline.

4. Simultaneous Competition
In this section, we show that under simultaneous com-
petition an equilibrium exists, as long as the upper-
bound benchmark for the waiting-time standard, �w, is
not excessively large. Let b = mini bi� � = mini �i, ��′ =
maxi �=j ·max	j �′

ij �	j�, and ā
′ = maxi a′i�0�. We henceforth

assume that condition (6) holds, i.e., over the feasible ser-
vice level and price range, each firm maintains some mar-
ket share. See §2 for a discussion and lower bounds for
the intercept values )ai�0�+, which are sufficient conditions
for (6).

Theorem 3 (Simultaneous Competition). Assume that
�w � 3

√
4b�/�ā′�2. There exists an equilibrium �p∗� 	∗�, in

the (SC) model, with pmin < p∗ < pmax, which satisfies the
system of equations

,#i

,pi
=−bi�pi− ci−�i�+�i = 0� i= 1� � � � �N � (23)

	i�pi�=




the unique root of a′i�	i��pi − ci −�i�=
�i

� �w− 	i�2
if pi � ci +�i

(
1+ 1

�w2a′i�0�
)
�

0 otherwise�

(24)

Conversely, any solution of (23) and (24) is an equilibrium.

Proof. It suffices to show that the profit function #i is
jointly concave in �pi� 	i�. It follows from (4) and (7) that

,#i

,pi
=−bi�pi− ci−�i�+�i� (25)

,#i

,	i
= a′i�	i��pi− ci−�i�−

�i
� �w− 	i�2

� (26)

(By (6), �i > 0 and �i equals the right-hand side of (4),
without the � �+-operator.) Thus,

,2#i

,p21
=−2bi < 0�

,2#i

,	2i
= a′′i �	i��pi− ci−�i�−

2�i
� �w− 	i�3

< 0�

,2#i

,	i,pi
= a′i�	i��
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The determinant of the Hessian is given by

−2bi
(
a′′i �	i��pi− ci−�i�−

2�i
� �w− 	i�3

)
− �a′i�	i��2 � 0�

provided that

4bi�i
�w3 � �a′i�	i��

2 ⇐⇒ �w�min
	i

3

√
4bi�i

�a′i�	i��2
= 3

√
4bi�i
�a′i�0��2

�

where the last equality follows from a′i > 0 and a
′
i decreas-

ing. Because p∗ = p∗�	∗�, it is, by Theorem 1, in the
interior of the feasible region �pmin� pmax� and must there-
fore satisfy (23). Also, from (26), ,#i/,	i → −� as
	i ↑ �w, which leaves us with the two possibilities in
(24). (If a′i�0� � �i/� �w�2�pi − ci − �i�, #i is decreasing
in 	i on the entire interval �0� �w�; otherwise, the equa-
tion a′i�	i��pi − ci − �i� = �i/� �w− 	i�2 has a unique root
because lim	i↑ �w �i/� �w− 	i�2 = �, and this unique root
maximizes the function.) �

Thus, as in the (SF) model, the only condition necessary
for the existence of an equilibrium is that the upper-bound
benchmark for the waiting-time standard fall below a spe-
cific critical value. The upper bound for �w is a crude suf-
ficient condition for the determinant of the Hessian of #i

to be positive, and hence for #i to be jointly concave in
�pi� 	i�, so that the Nash-Debreu theorem can be used to
guarantee the existence of an equilibrium. Alternatively, as
is immediate from the proof, if service levels are measured
relative to an arbitrarily large benchmark �w, it is sufficient
that all service levels be chosen above a minimum threshold
value 	 > 0, or equivalently, that all waiting times be cho-
sen below a maximum value wmax. Condition (23) shows
that in equilibrium a firm’s variable margin pi − ci − �i is
proportional to its demand volume. In particular, when all
bi coefficients are identical, a service provider is able to
achieve a large demand volume if and only if it is able
to obtain a large profit margin. The equilibrium conditions
(23) may also be written in the form

pi− ci−�i
pi

= 1
�9∗ii�

�

where 9∗ii denotes the demand elasticity of firm i with
respect to changes in its own price pi. Thus, a firm’s
markup, expressed as a fraction of its sales price—often
referred to as the Lerner index (see Tirole 1989)—equals,
in equilibrium, the reciprocal of the absolute value of the
demand elasticity. The equilibrium conditions (23) thus rep-
resent a manifestation of the inverse elasticity rule noted in
simpler oligopoly models. See Tirole (1989, p. 70).
As to a firm’s equilibrium service level, note from (24)

that it only depends on its own characteristics and its
own price. Employing the implicit function theorem, one
observes that a firm’s equilibrium service level increases
with its equilibrium price: for pi > ci+�i�1+ 1/ �w2a′i�0��,

	′i�pi�=
a′i�	i�

a′′i �	i��pi− ci−�i�−�i/�� �w− 	i�2�
> 0� (27)

while

	′i�pi�= 0 for pi < ci+�i
(
1+ 1

�w2a′i�0�
)
�

Moreover, for

pi � ci+�i
(
1+ 1

�w2a′i�0�
)
�

	∗i increases concavely with p
∗
i , as follows directly from the

second derivative of 	i�·�. (24) may be used to substitute
all service-level variables in (23), resulting in a system of
nonlinear equations in the price vector p only. It is, unfor-
tunately, not easy to solve this system directly; moreover,
the possibility of multiple solutions cannot be excluded a
priori. In the next section, we will, however, design a sim-
ple algorithm to compute the equilibrium price vector(s) p∗

by showing that the same vector(s) is also an equilibrium in
the (PF) model. Again, once the equilibrium vector p∗ has
been computed, the associated equilibrium service levels
are immediately obtained from (24).

5. Price-First Model
To analyze the two-stage (PF) model, we need to start with
the second-stage game under which firms select their ser-
vice level under a given and commonly known vector of
prices p. We refer to the second-stage game as the service
competition model. This model is of interest, by itself, in
settings in which prices are specified in a way different
than through noncooperative competition.

5.1. The Service Competition Model

Corollary 2 below shows that a unique equilibrium exists
in the service competition model, which arises under any
given price vector p0. This equilibrium is, in fact, given by
	�p0� defined in (24). Moreover, the equilibrium is a domi-
nant solution, i.e., 	i�p

0� is an optimal service-level choice
for firm i, regardless of what choices its competitors make.

Corollary 2. Fix a price vector p0. 	�p0� is the dominant
solution in the resulting service competition game; more-
over, a firm’s equilibrium service level is independent of
any of its competitors’ cost or demand characteristics, their
prices, and the cross-term functions )�ij�·�+. Also, when
	i�p

0
i � > 0, the equilibrium service level 	i�p

0
i � is increas-

ing and concave in p0i with

	′i�p
0
i �=

−a′i�	i�
a′′i �	i��p

0
i − ci−�i�− 2�i/�� �w− 	i�3�

�

Proof. The fact that 	�p0� is a Nash equilibrium in the
service competition game follows as a special case of The-
orem 3 with the choice pmin = pmax = p0. The characteriza-
tion of 	�p0� in (24) shows that the equilibrium is in fact
unique and that it is a dominant solution because 	�p0� is
a function of pi, ci, and �i only. Finally, the monotonic-
ity and concavity properties of 	i�p

0� were obtained in the
discussion after Theorem 3 (see (27)). �
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5.2. The Price-First Model: The Two-Stage Game

Because by Corollary 2 	�p� is the unique equilibrium in
the (second-stage) service competition game under a given
price vector p, the firms face in the first-stage game the
following reduced (equilibrium) profit functions. For all i=
1� � � � �N ,

�1i�p�=#i�p�	�p��

=
[
ai�	i�pi��−

∑
j �=i
�ij �	j�pj��− bipi+

∑
j �=i
�ijpj

]

· �pi− ci−�i�−
�i

�w− 	i�p�
� (28)

We establish a simple one-to-one correspondence be-
tween the equilibria of the price-first competition model
(PF) and those of the simultaneous competition model (SC).
The equivalence follows from two properties of the equi-
librium of the service competition model: First, the model
has a dominant solution; second, the dominant choice for
firm i is independent of the price choices made by any of
its competitors.

Theorem 4 (Equivalence Between Price-First and
Simultaneous Competition).
(a) If p∗ is a Nash equilibrium in the first-stage game of

the (PF) model, then �p∗� 	�p∗�� is a Nash equilibrium in
the (SC) game.
(b) If �p∗� 	∗� is a Nash equilibrium in the (SC) game,

then 	∗ = 	�p∗� and p∗ is a Nash equilibrium in the first-
stage game of the (PF) model.

Proof. (a) Let 	∗ = 	�p∗�. Assume to the contrary that
for some firm i, a pair �pi� 	i� exists such that �1i�p∗� =
#i�p

∗� 	�p∗�� < #i�pi� 	i� p
∗
−i� 	

∗
−i� � #i�pi� 	i�pi�� p

∗
−i�

	∗−i� = �1i�pi� p∗
−i�, where the last inequality follows from

the fact that 	i�pi� is the optimal service-level choice for
firm i given the firm chooses the price pi. Also, for j �= i,
	∗j = 	j�p

∗
j � does not depend on firm i’s choices, thus veri-

fying the last equality. However, �1i�p∗� < �1i�pi� p∗
−i� con-

tradicts that p∗ is an equilibrium in the (PF) model.
(b) Note first that 	∗ is an equilibrium in the service

competition game under the price vector p∗. Thus, by
Corollary 2, 	∗ = 	�p∗�. Assume to the contrary that for
some firm i, a price level pi exists, such that #i�p

∗� 	∗�=
#i�p

∗� 	�p∗�� = �1i�p∗� < �1i�pi� p∗
−i� = #i�pi� 	i�pi�� p

∗
−i�

	�p∗�−i�=#i�pi� 	�pi��p
∗
−i� 	

∗
−i�. Thus, in the (SC) game,

firm i can profitably deviate from the equilibrium by select-
ing the pair �pi� 	i�pi��, a contradiction. �

Theorems 3 and 4 establish the existence of an equilib-
rium in the (PF) model.

Corollary 3. Let �w � 3
√
4b�/�ā′�2. There exists a Nash

equilibrium pmin < p∗ < pmax for the ( first-stage game of
the) (PF) model.

Corollary 3 does not guarantee that the equilibrium is
unique. In view of Theorem 4, all we know is that an

equilibrium p∗ must satisfy the system of N nonlinear
equations that results after substituting in (24) all variables
	i by the functions 	i�pi�. As mentioned in §4, it is not
apparent how this system is to be solved directly. However,
the next theorem states that the first-stage game is super-
modular (under a slightly different upper bound for �w), so
that p∗ can, again, be computed by a tatônnement scheme.

Theorem 5 (Price-First Model. Characterization
and Computation of Equilibria). Assume that �w �

3

√
2��/ā′ ��′.
(a) The first-stage game in the (PF) model is supermod-

ular.
(b) The set of equilibria is a sublattice of �N and, in

particular, has a componentwise largest and a component-
wise smallest element p̄� p, respectively.
(c) The tatônnement scheme converges to a Nash equi-

librium. When started with p0 = pmax �pmin�, this scheme
generates a decreasing (increasing) sequence of price vec-
tors converging to p̄ �p�.

Proof. (a) In view of (28), to show that �1i has the
supermodularity property, it suffices to show that ��ijpj −
�ij�	j�pj���pi is a supermodular function that holds if
and only if the function �ij�pj� = ��ijpj − �ij�	j�pj���
is increasing in pj . (Note that all other terms in (28)
depend on a single price variable only.) For pj < cj +
�j�1+ 1/ �w2a′j �0��, �ij�pj� is increasing because 	j�pj�=
0. Moreover, �j�pj� is continuous everywhere, and for pj >
cj +�j�1+ 1/ �w2a′j �0��, �ij�pj� is differentiable with

�′
ij �pj�= �ij +

�′
ij �	j�a

′
j �	j�

a′′j �	j��pj − cj −�j�− 2�j/�� �w− 	j�3�

� �ij −
�′
ij �	j�a

′
j �	j�� �w− 	j�3
2�j

� �ij −
�′
ij �	j�a

′
j �	j� �w3

2�j
� 0�

where the first inequality follows from the concavity of
aj�·� and the last inequality from the bound for �w. (b)
and (c): Follow from the supermodularity of the first-stage
game. See Topkis (1998). �

The tatônnement scheme reduces to the repeated opti-
mization of the single variable functions �1∗

i �· � pk−i�; see
(28). This remains somewhat complex, as these profit func-
tions in general fail to be concave, and in addition fail to be
given in closed form because the functions 	i�pi� are not.
In §6, we design an alternative and much simpler scheme
(based on Theorem 4’s equivalence result) that converges
to the equilibria of the (PF) model.
The following round-robin scheme provides an alterna-

tive iterative method that converges monotonically to p̄ �p�
when started at pmax �pmin�: Traversing the firms in a fixed
round-robin permutation, each firm selects a best-response
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price to the prevailing price choices of his competitors.
Note that the tatônnement (or round-robin) scheme can
be used to numerically verify whether multiple equilibria
exist; the equilibrium is unique if and only if the scheme
converges to the same limit when started at pmax and pmin.
Indeed, this test has always been met, i.e., a unique equilib-
rium does exist in each of thousands of numerical instances
we have evaluated. Furthermore, even if multiple equilib-
ria were to arise in some (yet undiscovered) instances, it
can be shown that the componentwise largest equilibrium p̄
is preferred by all firms, provided the upper-bound bench-
mark �w is bounded by �w� 3

√
4��/ā′ ��′, a bound similar to

the one assumed in Theorem 5. Verification of this state-
ment follows a general argument in Theorem 7 of Milgrom
and Roberts (1990): If p1 � p2 are a pair of Nash equilib-
ria, �1i�p1� � �1i�p2i � p1−i� � �1i�p2i � p2−i�= �1i�p2�. The first
inequality follows from the fact that p1 is a Nash equilib-
rium. The second inequality follows from the fact that �1i
is increasing in pj ; see the proof of Theorem 5(c).
The equivalence between the (PF) model and the (SC)

model, established in Theorem 4, also allows us to charac-
terize the equilibria of the latter.

Corollary 4. Assume that �w � 3
√
2��/ā′ ��′. The set of

equilibria in the (SC) model contains a componentwise
smallest pair �p� 	� and a componentwise largest pair
�p̄� 	̄�, i.e., for any equilibrium �p∗� 	∗�, pi � p∗

i � p̄i; 	i �
	∗i � 	̄i, i= 1� � � � �N .

Proof. Let p̄ �p� denote the componentwise largest (small-
est) equilibrium in the (PF) model, which exists by The-
orem 5. Define 	̄ = 	�p̄� and 	 = 	�p�. By Theorem 4,
�p̄� 	̄� and �p� 	� are Nash equilibria in the (SC) model.
Consider any other equilibrium pair �p∗� 	∗� of this model.
Again by Theorem 4, 	∗ = 	�p∗�, and p∗ is an equilibrium
of the (PF) model with p � p∗ � p̄. Finally, the inequal-
ities 	 � 	∗ � 	̄ follow from 	 = 	�p�, 	∗ = 	�p∗�, 	̄ =
	�p̄�, and the monotonicity of the 	�·� vector function;
see (24). �

6. A Comparison of Equilibria in
the Three Competition Models

As shown in Theorem 4, the (PF) and (SC) models share
the same set of equilibria. Thus, prior knowledge of the
firms’ prices has no impact on their equilibrium service-
level choices. The same fails to be true, however, when
comparing the equilibria in the (SF) model with those in the
other two competition models. In this section, we show that
under a variant of condition (22), the (SF) model results
in higher prices, higher service levels, and higher demand
volumes for all firms.
Thus, if firms make their strategic decisions sequentially,

selecting service levels, hence waiting-time standards first,
this results in an equilibrium with higher service levels,
prices, and demand volumes, as compared to the equilib-
rium reached in the (SC) model. This phenomenon bears

close similarity to the “fat cat” effect, a term coined by
Fudenberg and Tirole (1984). Like a “fat cat,” the firms
are inclined to “overinvest” in service and capacity to deter
the competitors in the subsequent price competition. Inter-
estingly, the same phenomenon fails to occur in the (PF)
model; that is, when competitors learn up-front about the
firms’ price choices, this does not provide an incentive to
either “underprice” or “overprice” compared to the (SC)
model. Instead, the exact same equilibrium arises.
Theorem 5 and Corollary 1 show that both the (PF)

and the (SF) models have a componentwise smallest
equilibrium and that these equilibria arise as the limit of a
tatônnement scheme, started with p0 = p∗�0� and 	0 = 0,
respectively. To establish the above ranking of the equilib-
ria in the two models, we show that in each iteration the
tatônnement scheme for the (PF) model generates a price
and associated service-level vector that is componentwise
smaller than the price and service-level vector generated by
the tatônnement scheme for the (SF) model.
Let pki�PF and 	

k
i�PF = 	i�p

k
i�PF � denote firm i’s price and

service level, generated in the kth iteration of the tatôn-
nement scheme for the (PF) model, with p0PF = p∗�0�, i=
1� � � � �N . As explained in §5, it is somewhat cumbersome
to determine pk+1PF from pkPF directly by computing for each
i = 1� � � � �N the maximum of the function �1i�· � pk−i� PF �.
We first show that the sequence )pkPF + can be generated via
a simpler iterative scheme:

Lemma 2. Assume (22). Let 	0PF = 0 and p0PF = p∗�0�.
Consider the iterative scheme that starts at 	0 = 	0PF and
p0 = p0PF and in the k+ 1st iteration �k� 0� generates the
vectors 	k+1 and pk+1 as follows:

	k+1i = argmax
	i

�#k+1
i �	i � 	k−i�

= argmax
	i

{
1
4bi

(
ai�	i�−

∑
j �=i
�ij �	

k
j �

+∑
j �=i
�ijp

k
j −-i

)2
− �i

�w− 	i

}
�

pk+1i = ai�	
k+1
i �−∑

j �=i �ij �	kj �+
∑

j �=i �ijpkj +-i
2bi

�

Then, p0 = p0PF � p1 = p1PF � p2 = p2PF � · · · ↑ pPF and
0= 	0 � 	1 = 	1PF � 	

2 = 	2PF � · · · ↑ 	PF ≡ 	�pPF �.

Proof. By Theorem 5(c), )pkPF + ↑ pPF because p0PF =
p∗�0�� pPF . To verify the latter inequality, note from The-
orem 4 that �pPF � 	�pPF �� is an equilibrium in the (SC)
model so that pPF is the price equilibrium in the price com-
petition game, which arises under the fixed service-level
vector 	�pPF �. Thus, pPF = p∗�	PF �� p∗�0� by (22). We
now show, by induction, that for all k� 0,

pmin�p0=p0PF �p1=p1PF � ···�pk=pkPF �pu�
	0=	0PF �	1=	1PF � ···�	k=	kPF � � �w� �w����� �w�T � (29)
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By Theorem 1(a), (29) clearly holds for k = 0; assume
that it holds for some k � 0. To show that it holds for
k + 1 as well, note from Theorem 5(c) that pkPF � pk+1PF

and 	kPF = 	�pkPF � � 	�pk+1PF � = 	k+1PF , where the inequality
follows from the fact that the 	�·� function is increasing. It
thus suffices to show that

pk+1 = pk+1PF � 	k+1 = 	k+1PF � (30)

By definition,

pk+1i� PF = argmax
pi

�1i�pi� pk−i� PF �

= argmax
pi

#i�pi� 	i�pi�� p
k
−i� PF � 	�p

k
−i� PF ��

= argmax
pi

#i�pi� 	i�pi�� p
k
−i� 	�p

k
−i��� (31)

where the second equality follows from (28) and the last
one from the induction assumption. Therefore,

�pk+1i� PF � 	
k+1
i� PF �= �pk+1i� PF � 	i�p

k+1
i� PF ��

= argmax
pi� 	i

#i�pi� 	i� p
k
−i� 	�p

k
−i��� (32)

The first equality follows from the definition of 	k+1i� PF and
the second one from

max
pi

{
max
	i
#i�pi� 	i� p

k
−i� 	

k
−i�

}
=max

pi� 	i
#i�pi� 	i� p

k
−i� 	�p

k
−i��

=max
	i

{
max
pi
#i�pi� 	i� p

k
−i� 	

k
−i�

}
(33)

and the fact that pk+1i� PF is the largest maximizer of the func-
tion to the left of (31). Thus, to establish (30) and hence
to complete the induction step, it suffices to show that the
pair �pk+1i � 	k+1i � defined in the lemma represents the largest
maximizer of the function to the right of (33). Observe that
the function within braces to the right of (33) is a quadratic
function in pi, i.e., the unconstrained maximizer of this
function is

pk+1i �	i�≡
ai�	i�−

∑
j �=i �ij �	kj �+

∑
j �=i �ijpkj +-i

2bi
�

i= 1� � � � �N � (34)

and because

pmini = ci+�i �
āmini +∑

j �=i �ij �cj +�j�+-i
2bi

�
ai�	i�−

∑
j �=i �ij �	kj �+

∑
j �=i �ijpkj +-i

2bi

= pk+1i �	i��
ai� �w�+

∑
j �=i �ijpuj +-i
2bi

= pui � p
max
i � (35)

it is its constrained maximizer as well. (The first and last
inequalities follow from (5) and (17) and the second one

from the definition of āmini and pminj � pkj by the induction
assumption. The third inequality follows from the mono-
tonicity of a�·� and pkj � puj by the induction assumption.
The last equality follows from the fact that pu is the unique
solution of the equation Ax= a� �w�+-.) This implies that
the value of 	i that is the largest maximizer of the function
to the right of (33) is also the largest maximizer of(
ai�	i�−

∑
j �=i
�ij �	

k
j �− bipk+1i �	i�+

∑
j �=i
�ijp

k
j

)

· (pk+1i �	i�− ci−�i
)− �i

�w− 	i
= 1
4

(
ai�	i�−

∑
j �=i
�ij �	

k
j �+

∑
j �=i
�ijp

k
j −-i

)

·
(
ai�	i�−

∑
j �=i �ij �	kj �+

∑
j �=i �ijpkj −-i

bi

)
− �i

�w− 	i
= 1
4bi

(
ai�	i�−

∑
j �=i
�ij �	

k
j �+

∑
j �=i
�ijp

k
j −-i

)2
− �i

�w− 	i
�

In other words, the values �pk+1i � 	k+1i � defined in the
lemma represent the largest maximizers of the function
to the right of (33), and as argued, must coincide with
�pk+1i� PF � 	

k+1
i� PF �, thus verifying (30). �

In conclusion, to compute the equilibria in the (PF)
model (and hence in the (SC) model), it is considerably
easier to employ the scheme of Lemma 2 as opposed to
the basic tatônnement scheme applied to the (PF) model.
While this scheme continues to require that in each itera-
tion for each firm, a nonlinear single variable function be
maximized, at least this function is now given in a sim-
ple closed form. In the important special case in which the
ai�·� functions are affine, the roots of the first derivative of
each of the functions �#k+1

i �	i � ·�, hence its local optima,
can be found by solving a cubic equation. (The roots of a
cubic equation can be computed in closed form.) Finally, it
is easily verified that the lemma applies to the fully general
model, (without condition (22)) as long as one chooses to
start at p0 = p0PF = pmin.
We now establish the ranking of the equilibrium in the

(SF) model relative to that in the other two models. Let
	ki�SF and p

k
i�SF = p∗

i �	
k
SF � denote firm i’s price and ser-

vice level generated in the kth iteration of the tatônnement
scheme for the (SF) model, with 	0i� SF = 0, i = 1� � � � �N .
We need a slightly stronger version of condition (22),
which maintains the inequalities for i �= j , but restricts those
for i= j:

�A−1�ija
′
j �	j��

∑
l �=j
�A−1�il�

′
lj �	j� ∀i �= j=1�����N �

(
1− 1

2.i

)
�A−1�iia

′
i�	i��

∑
l �=i
�A−1�il�

′
li�	i�

∀ i= 1� � � � �N � (36)
Note from Lemma 1 that 0� 1− 1/2.i � 1/2.
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Theorem 6 (Comparison Between Equilibria). Assume
that (36) holds. The equilibrium pair �p∗�	SF �� 	SF � in
the (SF) model is componentwise at least as large as
the pair �pPF � 	PF �. In particular, if the (SC) model and
hence the (PF) model, have a unique equilibrium, all equi-
libria of the (SF) model are componentwise at least as
large.

Proof. We show by induction that

	kSF � 	
k
PF � k= 0�1� � � � � (37)

p∗�	kPF �� p
k
PF � k= 1� � � � � (38)

By (37) and the monotonicity of p∗�·� under (36),
hence (22), this establishes pkSF = p∗�	kSF � � p∗�	kPF � �
pkPF . The theorem follows because the sequences )�pkPF �
	kPF �+ and )�p∗�	kSF �� 	

k
SF �+ converge to � pPF � 	PF � and

�p∗�	SF �� 	SF �, respectively.
Note first that the sequences )�pkPF � 	

k
PF �+ and )�p

∗�	kSF ��
	kSF �+ are componentwise increasing. The monotonicity of
the former sequence follows from Lemma 2, that of )	kSF +
from Corollary 1(b), and the monotonicity of )p∗�	kSF �+
then follows from (22). To prove (37) and (38), note that
the inequalities hold for k = 0. Assume that they hold for
some arbitrary k� 0. 	k+1i� SF is the largest maximizer of the
function 1∗�	i � 	k−i� SF �. Similarly, 	k+1i� PF is the largest max-
imizer of the function �#k+1

i �	i � 	k−i� PF �. Thus, to show that
	k+1SF � 	k+1PF , it suffices to show that for all i,

,1∗
i �	i � 	k−i� SF �
,	i

�
,�#k+1

i �	i � 	k−i� PF �
,	i

∀	i � 	ki�SF � (39)

To show the sufficiency of (39), recall that 	k+1SF � 	kSF . For
any 	k+1i� PF � 	� 	

k
i�SF ,

1∗
i �	

k+1
i� PF � 	

k
−i� SF �−1∗

i �	� 	
k
−i� SF �

=
∫ 	k+1i� PF

	

,1∗
i �x� 	

k
−i� SF �

,	i
dx

�

∫ 	k+1i� PF

	

,�#k+1
i �x � 	k−i� PF �

,	i
dx

= �#k+1
i �	k+1i� PF � 	k−i� PF �− �#k+1

i �	 � 	k−i� PF �� 0

because 	k+1i� PF is a global maximizer of �#k+1
i . The largest

global maximizer of 1∗
i �	i� 	

k
−i� SF � must thus be larger than

or equal to 	k+1i� PF .
In view of (16) and Lemma 4, (39) is equivalent to

2bi
,p∗

i �	i� 	
k
−i� SF �

,	i
�p∗

i �	i� 	
k
−i� SF �− ci−�i�

�
a′i�	i�
2bi
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ai�	i�−

∑
j �=i
�ij �	

k
j�PF �+

∑
j �=i
�ijp

k
j�PF −-i

)
�

Using Theorem 1(a) and (22), we obtain that (39) is equiv-
alent to

2bi

(
�A−1�iia

′
i�	i�−

∑
j �=i
�A−1�ij�

′
ji�	i�

)

·
((
ai�	i�−

∑
j �=i
�ij �	

k
j�SF �

+∑
j �=i
�ijp

∗
j �	i� 	

k
−i� SF �+-i

)
· �2bi�−1− ci−�i

)

=
(
�A−1�iia

′
i�	i�−

∑
j �=i
�A−1�ij�

′
ji�	i�

)

·
(
ai�	i�−

∑
j �=i
�ij �	

k
j�SF �+

∑
j �=i
�ijp

∗
j �	i� 	

k
−i� SF �+-i

)

�
a′i�	i�
2bi

(
ai�	i�−

∑
j �=i
�ij �	

k
j�PF �+

∑
j �=i
�ijp

k
j�PF −-i

)

∀	i � 	ki�SF � (40)

Both sides of the inequality are given as a product of two
factors. Because the factors to the left of the inequality are
easily seen to be positive, as is the first factor to its right,
it suffices to show that the first (second) factor to the left
dominates the first (second) factor to its right:

�A−1�iia
′
i�	i�−

∑
j �=i
�A−1�ij�

′
ji�	i��

a′i�	i�
2bi

∀	i � 	ki�SF � (41)∑
j �=i
�ijp

∗
j �	i� 	
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∑
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�ij �	

k
j�SF �

�
∑
j �=i
�ijp

k
j�PF −

∑
j �=i
�ij �	

k
j�PF � ∀	i � 	ki�SF � (42)

(41) coincides with the second inequality in (36), while∑
j �=i �ijp∗

j �	i� 	
k
−i� SF � −

∑
j �=i �ij �	kj�SF � = �∗

i �	i� 	
k
−i� SF � +

bip
∗
i �	i� 	

k
−i� SF � � �∗

i �	
k
SF � + bip

∗
i �	

k
SF � � �∗

i �	
k
PF � +

bip
∗
i �	

k
PF � = ∑

j �=i �ijp∗
j �	

k
PF � − ∑

j �=i �ij �	kj�PF � �∑
j �=i �ijpkj�PF −

∑
j �=i �ij �	kj�PF � verifies (42). (Here, �

∗�	�
is defined, as in Theorem 1, to denote the vector of
equilibrium demand volumes in the price competition
game under the service level 	. Both equalities are
immediate from (4). The first two inequalities follow from
the fact that under (36), and hence (22), �∗�·� and p∗�·�
are increasing while 	i � 	ki�SF and 	

k
i�SF � 	ki�PF , the latter

by the induction assumption. Finally, the last inequality is
immediate from the induction assumption as well.)
This completes the proof that 	k+1SF � 	k+1PF . To complete

the induction proof, note that

p∗
i �	

k+1
PF �

= ai�	
k+1
i� PF �−

∑
j �=i �ij �	

k+1
j� PF �+

∑
j �=i �ijp∗

j �	
k+1
PF �+-i

2bi
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�
ai�	

k+1
i� PF �−

∑
j �=i �ij �	kj�PF �+

∑
j �=i �ijp∗

j �	
k
PF �+-i

2bi

�
ai�	

k+1
i� PF �−

∑
j �=i �ij �	kj�PF �+

∑
j �=i �ijpkj�PF +-i

2bi

= pk+1i� PF �

so that (38) holds for k+ 1 as well. (The first identity fol-
lows from Theorem 1(a). The first inequality can be verified
in the same way as (42) because 	k+1PF � 	kPF . The second
inequality follows from the induction assumption, and the
last identity from Lemma 4.) �

Theorem 6 ranks the componentwise smallest equilibria
in the various competition models, and is therefore some-
what inconclusive with respect to other equilibria in case
the (SC) model fails to have a unique equilibrium. How-
ever, in all instances evaluated in our numerical study, the
(SC) model has a unique equilibrium and so does the (SF)
model; therefore, the former equilibrium is indeed compo-
nentwise smaller than the latter. The tatônnement scheme
can be viewed as a possible dynamic adjustment process by
which the firms adapt their choices and converge to an equi-
librium, in addition to it serving as an efficient algorithm
for its computation. Indeed, as stated in Vives (2000, p. 49),
“although this adjustment process can (and has) been criti-
cized for being ad hoc, it can also be interpreted as a crude
way of expressing the bounded rationality of agents.” The
proof of Theorem 6 shows that under this dynamic adjust-
ment process, the service levels and prices adopted under
the (SF) setting are larger than those under (SC) and (PF)
competitions, at each stage of the adjustment process, and
not just in equilibrium.
While we have argued that condition (22), and hence

(36), are likely to hold, it may sometimes be violated.
The following example shows that the ranking between
the equilibria in the three competition models, as specified
by Theorem 6, may fail to apply when condition (36) is
violated.

Example 1. In Example 1, consider an industry with N =
3 firms, �w = 100, and cost parameters c1 = c2 = 20, c3 =
5, while �1 = �2 = 20, �3 = 35. The example may, there-
fore, once again apply to a setting with Firm 3 an estab-
lished local service provider and Firms 1 and 2 competitors
that have entered the local market more recently from a
foreign or remote location, where capacity costs ��� are
lower, but the per-customer access costs �c� are higher.
In this example, firms experience identical price sensitiv-
ities, i.e., bi = 10 and �ij = 4�5 ∀ i �= j . Finally, ā1�	� =
145+ 0�1	1− 9	2−<	3, ā2�	�= 145+ 0�1	2− 9	1−<	3,
and ā3�	� = 235+ 0�1	3 − 9	2 − 9	1. Thus, as in Exam-
ple 1, Firms 1 and 2 have identical characteristics, and the
more-established Firm 3 captures under identical prices and
service levels a larger demand volume �ā3�	� − ā1�	� =
ā3�	�− ā2�	�= 90�. In Table 1, we evaluate six instances
by combining three values for < �< = 0�0�01�0�05� with

two values for 9 �9 = 0�0�04�, referring to the case < =
9 = 0 as the base case. Because Firms 1 and 2 are identi-
cal, we report equilibrium prices, demand volumes, waiting
times, and profits for Firms 1 and 3 under the (SF) and
(PF) models. In all instances, both the (PF) and (SF) mod-
els have a unique equilibrium because the respective tatôn-
nement schemes converge to the same limits irrespective of
their starting points.
Condition (22) is satisfied in all but the last instance, in

which the slopes of the cross-term functions are so large
that an exclusive service-level improvement by Firm 1 or
Firm 2 results in an increase of this firm’s demand volume
by an amount 10 times as large as when the service-level
improvement occurs on an industrywide basis. (Because all
ai�·�, �ij�·� functions are affine, both sides of the inequali-
ties of (22) are constants; the matrix A−1 has A−1

ii = 0�0575,
A−1
ij = 0�0169 for i �= j .) The stricter condition (36) is only
satisfied in the first two instances. In accordance with The-
orem 6, the (SF) competition model results in higher prices
and service levels for all firms in both cases. At the same
time, violations of this ranking arise in the remaining four
instances in which (36) is violated, even though all equi-
librium prices are higher under (SF) competition. In the
third (fourth and fifth) instance(s), Firm 3 (Firms 1 and 2)
offers (offer) a lower service level, while Firms 1 and 2
(3) offer(s) a higher service level under (SF) as compared
to the two other types of competition. In the last instance,
all firms offer a lower service level under (SF). One might
expect that the larger the cross-terms in the intercept func-
tions, the larger the competitive pressure to improve ser-
vice. The instances in Table 1 show, however, that the
opposite may occur. As either 9 or < is increased, the equi-
librium prices increase under (SF) competition, but they
decrease under (PF).

7. Numerical Investigations and
Generalizations

It is of interest to investigate how the equilibrium behavior
in the various competition models is affected by the number
of firms N . We illustrate this for the (SC) model in the
special case where all a�·� and ��·� functions are affine
and the model is symmetric, i.e., for all i = 1� � � � �N , and
given constants a0, a, b, �, and �,

�i=a0+a	i−
∑
j �=i
�	j−bpi+

∑
j �=i
�pj� i=1�����N � (43)

Moreover, for all i = 1� � � � �N , ci = c, �i = �, and
pmaxi = pmax for given constants c, �, and pmax. Let = ≡
�N − 1��/b and > ≡ �N − 1��/a. By (D), 0<=� 1. Sim-
ilarly, no firm experiences a reduction in its demand volume
if all firms increase their service level by the same amount,
i.e., 0<> � 1.
It follows from Theorem 3 that any solution of (23) and

(24) is an equilibrium, and that a solution to (23) and (24)
exist. This system of equations has a symmetric solution



Allon and Federgruen: Competition in Service Industries
52 Operations Research 55(1), pp. 37–55, © 2007 INFORMS

Table 1. Equilibria under different cross-term functions.

9, < Type (22) (36) p1 w1 �1 11 p3 w3 �3 13

0, 0 SF � � 65.55 5.18 105.46 1,105.48 69.22 5.38 142.19 2,012.48
SC 65.54 5.76 105.41 1,105.06 69.21 5.93 142.14 2,011.89

0, 0.01 SF � � 65.62 5.19 106.16 1,120.25 69.25 5.55 142.49 2,021.46
SC 65.47 5.78 105.65 1,100.23 69.18 5.94 141.82 2,002.95

0, 0.05 SF � 65.89 5.22 108.91 1,179.53 69.37 6.43 143.69 2,056.90
SC 65.19 5.86 106.61 1,080.58 69.06 5.96 140.56 1,967.40

0.04, 0 SF � 65.94 5.99 109.45 1,192.05 69.77 5.43 147.74 2,173.53
SC 65.13 5.88 105.11 1,059.35 68.65 6.05 144.07 1,958.85

0.04, 0.01 SF � 66.01 6.00 110.15 1,207.36 69.80 5.60 148.05 2,182.82
SC 65.07 5.90 105.35 1,054.46 68.62 6.06 143.75 1,950.05

0.04, 0.05 SF 66.29 6.03 112.90 1,268.74 69.92 6.48 149.24 2,219.48
SC 64.79 5.98 106.32 1,034.56 68.50 6.09 142.49 1,915.05

p∗
1 = · · · = p∗

N = peq and 	∗1 = · · · = 	∗N = 	eq , where peq

and weq = �w− 	eq satisfy

peq = a0+ a�1−>�� �w−weq�+ b�c+��
b�2−=� � (44)

weq =




the unique root on �0� �w� of C∗�w�

≡w3−w2 a
0+a�1−>� �w−�c+��b�1−=�

a�1−>�
+ �b�2−=�
a2�1−>�

if � �
a2�1−>�
b�2−=� � �w�

2

·
[
a0− �c+��b�1−=�

a�1−>� − �w
]
�

�w otherwise�

(45)

((44) follows from (23) by substituting pi = peq and 	i =
�w − weq . Substituting the same identities, as well as (44)
into (24), we obtain (45).) Assume, in addition, that 2b >
a+>a+=b⇔ �2−=�b > �1−>�a, so that the �2N × 2N�
Jacobian of the first-order conditions (23) and (24) is neg-
ative semidefinite because each diagonal element is nega-
tive while its absolute value exceeds (dominates) the sum
of the absolute values of the off-diagonal elements in its
row. Thus, by the Gale-Nikaido theorem, the equilibrium
described by (44) and (45) is unique. (See, e.g., Vives
2000.)
How the equilibrium varies with N depends heavily on

how the parameters in the demand equations (43) depend
on N . Consider the case where the direct price and service-
level sensitivities, a and b, are independent of N , i.e.,
a�N� = a and b�N� = b for given constants a > 0 and
b > 0, while the same applies to = and > . (This means that
��N�= =b/�N − 1� and ��N�= >b/�N − 1�.) As to the
intercept a0�N �, in some industries a0�N � is increasing. In
the restaurant industry, for example, the base demand level
for a given restaurant under given price and service lev-
els, i.e., the intercept in its demand function, often grows

as additional restaurants are established in the area. The
same may apply when an individual’s utility of a service
grows as the total number of users in the market increases
(as is the case, for example, for Internet access). Typically,
a0�N � decreases in N , a phenomenon referred to as “busi-
ness stealing” in the industrial organization literature.
When a0�N � is increasing in N , weq�N � is decreasing

in N , while peq�N � is increasing in N . (Only the coeffi-
cient of the quadratic term in the cubic functions C∗�w�
depends on a0. Thus, if a0�N � increases in N , note that
the cubic functions C∗�w� for N = N1 and N = N2 with
N1 < N2 coincide when w = 0, while the former is point-
wise larger than the latter. Thus, if the former �N = N1�
has a root on �0� �w�, the latter �N =N2� has a smaller root.
Either way, weq�N2� � weq�N1�, and it follows from (44)
that peq�N2� � peq�N1�.) Thus, as more firms compete in
the market, they offer better service, but charge addition-
ally for the service. It follows from (23) that each firm’s
demand volume increases with N as well.
When a0�N � is decreasing, the effects are reversed:

peq�N � is decreasing in N , while weq�N � is increasing
in N . Thus, as more firms compete in the market, the
increased competition results in lower prices, but firms
compensate by providing lower service as well. Again, by
(23), decreasing equilibrium prices imply a lower demand
volume per firm. Whether aggregate sales decline or expand
(a phenomenon referred to as “market expansion”) depends
on the rate at which a0 declines with N . Consider the fol-
lowing numerical example:

Example 2. Consider the above symmetric model (with
demand functions (43)). Let a = b = 10, = = > = 0�2,
and c= � = 1. Finally, consider a0�N �= 1�000+ 105/N<,
< > 0. Tables 2 and 3 exhibit the equilibrium price,
waiting-time standard, sales volume, and profits per firm,
and the aggregate sales volume and profits for < = 1 and
<= 2.
Because both peq�N � and �eq�N � decrease, gross profits,

the first term in (7), decrease as well. While this may be
somewhat offset by a reduction in the cost of the service-
based capacity—the second term in (7)—we have, in all
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Table 2. Equilibria in the symmetric model, <= 1.
N peq weq �eq 1eq Aggregate demand Aggregate profit

2 2.83E+03 5.94E−03 2.83E+04 8.01E+07 5.66E+04 1.60E+08
3 1.91E+03 7.24E−03 1.90E+04 3.63E+07 5.71E+04 1.09E+08
4 1.44E+03 8.32E−03 1.44E+04 2.08E+07 5.77E+04 8.31E+07
5 1.17E+03 9.26E−03 1.16E+04 1.35E+07 5.82E+04 6.77E+07
10 6.10E+02 1.28E−02 6.08E+03 3.70E+06 6.08E+04 3.70E+07

of the numerical explorations, observed that the total profit
per firm reduces as well. Assuming that this is the case,
standard economic models would endogenize the number
of firms N ∗ as the largest value of N for which the profit
per firm exceeds a given critical level.
The numerical study in Allon and Federgruen (2004)

investigates a variety of instances obtained from the base
case in Example 1 (with 9= <= 0) by varying one parame-
ter at a time. The study focuses on three general managerial
questions (I)–(III):
(I) Do firms necessarily benefit when some of the

competitive choices can be made after other choices are
revealed? (This is the case in the (SF) and (PF) models,
compared to the (SC) model.)
(II) If a firm responds to a reduction of one of its cost

parameters by offering a lower price as well as a better
service level, will his competitors adjust their price and
service level in the same direction?
(III) If customers become increasingly sensitive to the

service level offered (as is the case in many service indus-
tries), will firms respond by offering higher prices and
higher service levels, and will they increasingly differenti-
ate themselves along the service dimension?
Regarding (I), firms do not necessarily benefit when

competing under (SF) or (PF) competition, compared to
(SC). This phenomenon may arise even in settings where
under (SF), say, firms are guaranteed to offer higher prices
(as well as service levels) along with higher demand
volumes. In these settings, the uniformly larger demand
volumes suggest that the customers do benefit from the
sequential competition process. Likewise, Hypothesis (II)
is rejected by many examples. We have noted, in partic-
ular, that the reduction of one of a firm’s cost param-
eters often allows this firm to simultaneously lower its
price and improve its service level. Its competitors gener-
ally adjust their prices downward, as well, but sometimes
need to compensate by compromising their service level.

Table 3. Equilibria in the symmetric model, <= 2.
N peq weq �eq 1eq Aggregate demand Aggregate profit

2 1.44E+03 8.32E−03 1.44E+04 2.08E+07 2.88E+04 4.16E+07
3 6.72E+02 1.22E−02 6.70E+03 4.49E+06 2.01E+04 1.35E+07
4 4.02E+02 1.58E−02 4.00E+03 1.60E+06 1.60E+04 6.40E+06
5 2.77E+02 1.90E−02 2.75E+03 7.57E+05 1.38E+04 3.78E+06
10 1.10E+02 3.01E−02 1.08E+03 1.18E+05 1.08E+04 1.18E+06

Finally, our admittedly limited numerical study confirms
Hypothesis (III).
Numerical explorations, reported in §2, have also shown

that relatively small deviations from a full-price instance
may result in important changes in the equilibrium behavior
of the industry. These instances, as well as many others
reported in Allon and Federgruen (2004), illustrate how the
impact of the “other attributes” may allow some firms to
position themselves with higher prices and lower service
levels than all its competitors and, nevertheless, maintain
significant and sometimes even dominant market shares.
We have also exhibited significant qualitative differences
in the equilibrium behavior between the case in which the
demand rates depend linearly on the service levels, and that
in which the dependence is nonlinear, reflecting decreasing
marginal benefits to scale.
Future work should explore whether the above results

continue to apply when service providers face more com-
plex (than M/M/1) queuing systems, or when the demand
functions follow one of the alternative specifications listed
in §1.
Our results to date indicate that the characterizations of

the equilibrium behavior in the (SC) model can be gen-
eralized for the Cobb-Douglas (CD) functions. As for the
attraction models (ATT), a Nash equilibrium can be guar-
anteed if the value functions are concave, but not if they
are merely log-concave, as in the MNL-type specification,
where logvi�pi� 	i� = ai	i − bipi, with ai and bi positive
constants. (Note that if the ratios ai and bi are identical,
we recover the MNL specification in Cachon and Harker’s
(2002) full-price model. These authors showed that, even
in this case, an equilibrium may fail to exist.) Leaving the
comparative static results in §§4.1 and 6.1 aside, the char-
acterization of the equilibrium behavior in the price com-
petition and the service competition models can, likewise,
be extended for the nonlinear demand structures (CD) and
(ATT), among others. At the same time, characterization
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of the equilibrium behavior in the sequential competition
models (SF) and (PF) is significantly harder to achieve.
We have, in fact, encountered examples where it appears
that a Nash equilibrium in the (SF) model, for example,
fails to exist. More specifically, the tatônnement scheme
for the (SF) model described in §4 can be used to identify
Nash equilibria: Whenever the scheme converges, its limit
point is necessarily a Nash equilibrium. For an attraction
model with

vi = a0i − bipi+ ai log�	i�� (46)

the tatônnement scheme cycles between eight distinct price
service-level configurations irrespective of its starting point.
(The starting point is generated randomly in the feasible
region; the experiment has been repeated 1,000 times.)

Example 3. Let N = 3, with demands given by the attrac-
tion model (46), where a01 = a02 = 1�800, a1 = a2 = 10, and
b1 = b2 = 15, while a03 = 2�700, a3 = 15, b3 = 20, and M =
1�000. The cost parameters are identical to those of Exam-
ples 1 and 2. The tatônnement scheme cycles between the
service-level triples �1�63�1�00�2�89�; �2�35�1�00�2�98�;
�5�05�1�09�3�34�; �8�02�1�18�3�43�; �8�20�1�27�3�52�;
�5�95�1�36�3�61�; �6�31�1�45�3�7�; and �1�00�1�00�2�80�.

We conclude that for some nonseparable demand struc-
tures such as (ATT), sequential competition may not just
result in a different equilibrium than simultaneous compe-
tition, but in fact may prevent the industry from settling at
a stable equilibrium in the first place. This is another man-
ifestation of how knowledge about the industry’s service
levels, while determining price levels, may hinder rather
than improve the industry’s performance. One implication
of the above observations is that when selecting a class of
demand functions, e.g., (4), (CD), or (ATT), one should be
guided not just by the tractability of estimation procedures
and goodness-of-fit characteristics, but also by the implica-
tions for the industry’s equilibrium behavior (and any prior
knowledge thereof).
Future work should also consider generalizations of our

model in which the firms’ service processes are represented
by more general queueing systems, or when customers are
partitioned into several segments, each with its own price
and service level for each firm. In addition, it would be
desirable to integrate entry and exit decisions into the com-
petition models.

Endnotes
1. Most industry observers recognize this as the dominant
dimension of service. See, e.g., Bowen and Headley (2001).
2. See, e.g., Vives (2000, p. 15) “non existence of a Nash
equilibrium in pure strategies is pervasive in oligopoly
models.”
3. A firm’s strategy space is essentially multidimensional if
each of the strategy variables (e.g., price and service level)
impacts on all firms’ profit functions and these strategy
variables cannot be replaced by a single aggregate variable
(e.g., the full price).

4. As mentioned, we do not model the possibility of new
firms entering or firms exiting the market to pursue differ-
ent opportunities.
5. See Bell et al. (1975).
6. The experiments in Kahneman and Tversky (1984) show
that the amount of time a typical consumer is willing to add
to the waiting time by switching to an alternative provider
depends primarily on the relative rather than the absolute
price reduction the switch accomplishes. The (CD) and
(CES) models are well suited to reflect this phenomenon.
7. (5) reduces to lower bounds for the intercept values
ai�0� >

∑
j �=i �ij � �w�+ bi�ci+�i�−

∑
j �=i �ij �cj +�j�.

8. (6) reduces to similar lower bounds for the intercept
values ai�0�.
9. This paper also considers nonlinear functions of F1
and F2.
10. The “winner take all” setting in which the firm with
the lowest full price captures the complete market does not
arise as a special case of the general model (4), even though
the parameters in (4) can be chosen to reflect settings in
which small differences in the full price can result in very
large differences in market share.
11. An upper bound for �w can be derived as the root of
a nonlinear equation; see (19). When the a�·� and ��·�
functions are linear,

�w� 3

√
�i

bi�A
−1
ii a

′
i−

∑
l �=i A−1

il �
′
il�

−1 �
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