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We analyze a planning model for a firm or public organization that needs to cover uncertain demand for a given item by
procuring supplies from multiple sources. Each source faces a random yield factor with a general probability distribution.
The model considers a single demand season. All supplies need to be ordered before the start of the season. The planning
problem amounts to selecting which of the given set of suppliers to retain, and how much to order from each, so as
to minimize total procurement costs while ensuring that the uncertain demand is met with a given probability. The total
procurement costs consist of variable costs that are proportional to the total quantity delivered by the suppliers, and a fixed
cost for each participating supplier, incurred irrespective of his supply level. Each potential supplier is characterized by a
given fixed cost and a given distribution of his random yield factor. The yield factors at different suppliers are assumed to
be independent of the season’s demand, which is described by a general probability distribution.

Determining the optimal set of suppliers, the aggregate order and its allocation among the suppliers, on the basis of
the exact shortfall probability, is prohibitively difficult. We have therefore developed two approximations for the shortfall
probability. Although both approximations are shown to be highly accurate, the first, based on a large-deviations technique
(LDT), has the advantage of resulting in a rigorous upper bound for the required total order and associated costs. The
second approximation is based on a central limit theorem (CLT) and is shown to be asymptotically accurate, whereas the
order quantities determined by this method are asymptotically optimal as the number of suppliers grows. Most importantly,
this CLT-based approximation permits many important qualitative insights.
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1. Introduction and Summary
Standard supply chain management texts discuss the bene-
fits of consolidating the set of suppliers in the chain. These
benefits include economies of scale in the production costs
as well as statistical economies of scale due to the pooling
of demand risks. Recently, many corporations and govern-
ments alike have recognized a variety of risks associated
with external disruptions of the supply process. These pro-
vide a powerful argument against (maximal) consolidation.
Such disruptions may arise because of “natural” disasters,
e.g., fires in production plants or the need to shut down a
facility because of violations of quality regulations or stan-
dards. Disruptions may also occur because of labor strikes,
or planned acts of sabotage resulting from terror attacks,
among others. Although these disruptions may be rare, their
consequences can be catastrophic for an individual firm as
well as for a region or a country as a whole.

In the private sector, “planning for disaster” has become
one of the foci of supply chain planning; see, e.g.,
Longitudes 04 (2004). This conference report describes,
e.g., a case study of Ericsson, which, in contrast to Nokia,

suffered major and long-term losses in profits and market
shares for its cellular phone business due to its unhedged
dependence on a single chip supplier in New Mexico and
its lack of preparedness to switch to alternative suppliers
in response to a major fire disabling this chip supplier.
Terrorist-generated disasters targeted at universally critical
component suppliers such as chip manufacturers may have
a crippling effect, not just on this industry sector, but on
many other major sectors of the economy as well.

Similarly, in the Fall of 2004, the United States saw
half of its supply of flu vaccines cut out when the Chiron
plant in Liverpool had to be closed down because of vio-
lations of FDA standards. In a year without vaccine short-
ages, no fewer than 36,000 deaths—12 times the number of
9/11 victims—and 200,000 hospitalizations are attributed
to influenza and its complications. In terms of productivity,
between $11 billion and $20 billion is lost annually due to
influenza. The sudden elimination of one of only two man-
ufacturers and half the national vaccine supply was hardly
an unforeseeable or rare event because numerous Senate
testimonies and General Accounting Office reports have
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documented recurring supply problems with this and other
vaccines; see, e.g., Heinrich (2001a, b; 2004). In 2004, the
Centers for Disease Control and Prevention (CDC) iden-
tified a target population of 100 million individuals who
should have been vaccinated with the flu vaccine. Remark-
ably, the United States was dependent on just two sup-
pliers, whereas England, with a target population of only
14 million, had its supply spread over six suppliers. More-
over, the vulnerability experienced with respect to the flu
vaccine is hardly unique. Similar problems have arisen
repeatedly over the last decade with respect to other per-
haps even more crucial vaccines such as those required to
immunize the children’s population against highly conta-
gious diseases.1

As a final example, oil is arguably the most critical
commodity for the functioning of our economy. Its sup-
ply is primarily limited by existing refinery capacity. In the
past 20 years, as the real-valued U.S. gross domestic prod-
uct grew by 86.5%, the number of refineries decreased by
more than 50%. This consolidation occurred because var-
ious types of economies of scale drove smaller refineries
out of the market; other refineries identified the abovemen-
tioned benefits of pooling capacity and of running refiner-
ies at near 100% utilization. (In July and August of 2004,
U.S. refineries were operating at 97% of available capac-
ity.) Moreover, in case of a domestic supply disruption,
little recourse can be expected from overseas refineries: the
push of oil prices to record high levels this year is generally
attributed to a lack of global refinery capacity. The Depart-
ment of Energy predicts that current “financial, environ-
mental, and legal considerations make it unlikely that new
refineries will be built in the United States” (see Depart-
ment of Energy 2005, p. 2). Most ominously, close to half
of our capacity is located in a relatively small region on
the Gulf Coast; disruption of its refinery and distribution
process, the result of Katrina-like hurricanes, for example,
could have a crippling effect on our economy. Since the
1950s, all U.S. administrations have intervened in the mar-
ket by maintaining a stockpile of strategic reserves so as to
mitigate the impact of sudden supply problems. However,
the stockpile is largely in terms of crude oil, whereas refin-
ery capacity has become the true bottleneck in the system.
It is also the most vulnerable part of the oil supply chain
because repairs of refinery equipment can take months to
years to be completed. This puts into question whether the
strategic reserves should not be replaced or complemented
by incentives to expand the refinery base in different parts
of the country.

In this paper, we study the multisourcing problem with
unreliable suppliers, when stochastic demand needs to be
covered with at least some prespecified probability. More
specifically, we analyze a planning model for a firm or pub-
lic organization that needs to cover uncertain demand for
a given item by procuring supplies from multiple sources.
Each source faces a random yield factor with a general
probability distribution on the unit interval. An important

special case is where this distribution has a positive mass
at zero, representing the possibility of a complete shutdown
due to an unplanned disruption. The model considers a sin-
gle demand season. As in the case of the flu vaccine or
other items with long production or distribution leadtimes,
all supplies need to be ordered before the start of the sea-
son. The planning problem amounts to selecting which of
the given set of suppliers to retain and how much to order
from each, so as to minimize total procurement costs while
ensuring that the uncertain demand is met with a given
probability. The total procurement costs consist of variable
costs that are proportional to the total quantity delivered
by the suppliers—without loss of generality with a cost
rate of one—and a fixed cost for each participating sup-
plier, incurred irrespective of his supply level. Each poten-
tial supplier is characterized by a given fixed cost and a
given distribution of his random yield factor. The yield fac-
tors at different suppliers are assumed to be independent
of the season’s demand, which is described by a general
probability distribution. Thus, let:

N = number of all available suppliers;
Ki = fixed cost of operating at supplier i� i =

1� � � � � N ;
Xi = random yield factor at supplier i’s facil-

ity, with c.d.f. Gi�·	, mean pi, variance �2
i ,

and coefficient of variation �i = �i/pi, i =
1� � � � � N ;

D = uncertain demand during the season, with a
strictly increasing continuous c.d.f. F �·	, com-
plementary c.d.f. �F �·	, inverse c.d.f. F −1�·	,
mean �, variance �2, coefficient of variation
�D = �/�, and finite moments;

I 0 = initial inventory at the beginning of the
season;

�D = D − I 0 = uncovered demand with coefficient
of variation � �D = �/�� − I 0	;

� = maximum permitted probability of a shortfall
(�0�5);

U = a standard Normal random variable with c.d.f.
��·	, complementary c.d.f. �̄�·	, and z� =
�−1�1 − �	;

pmin[pmax] = mini pi�maxi pi�.

Without loss of generality, we assume that Pr�D > I 0�
> �; otherwise, it is optimal not to order. We num-
ber the suppliers in increasing order of the coefficient
of variation (c.v.) values of their yield distributions, i.e.,
�1 � �2 � · · ·� �N . We initially assume that the yield fac-
tors at the different suppliers are also independent of each
other. However, to cover settings like oil refineries in close
proximity being potentially hit by a common storm (e.g.,
Hurricane Katrina) or a common terrorist attack, we dis-
cuss in §7 how our results can be generalized to allow for
dependent yield factors. Another important assumption is
that the variable purchase price is identical for all suppli-
ers. This assumption is appropriate when the suppliers offer
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(close to) perfect substitutes, as in the case of vaccines and
refined oil products, but may fail to hold in other settings.

Determining the optimal set of suppliers, the aggregate
order and its allocation among the suppliers on the basis of
the exact shortfall probability is prohibitively difficult. We
have therefore developed two approximations for the short-
fall probability. Although both approximations are shown
to be highly accurate, the first, based on a large-deviations
technique (LDT), has the advantage of resulting in a rigor-
ous upper bound for the required total order and associated
costs. The second approximation is based on a central limit
theorem (CLT) and is shown to be asymptotically accurate,
whereas the order quantities determined by this method are
asymptotically optimal as the number of suppliers grows.
Most importantly, when analyzing the problem under the
CLT-based approximation, the following important qualita-
tive insights emerge: First, whether a set of suppliers allows
for a feasible solution, depends not just on its cardinal-
ity but also on each supplier’s predictability, as measured
by the c.v. of his yield distribution. Defining a (hypotheti-
cal) supplier with a c.v. value of one as a “base supplier,”
a supplier with c.v. = � represents �−2 base supplier equiv-
alents (BSEs). A set of suppliers is feasible under general
demands if its total number of BSEs is in excess of a
critical number, given by a simple function of the permit-
ted shortfall probability �, only. Under Normal demands,
this condition is necessary as well, as long as the start-
ing inventory is below the mean demand. When the initial
inventory exceeds the mean demand by s standard devia-
tions of demand, this minimum threshold is reduced by s2.
In particular, whether a set of suppliers is feasible or not
does not depend on the shape of the demand distribution
or any of its moments, the mean and standard deviation
included, as long as the starting inventory is below the
mean. (If the starting inventory is above the mean, feasibil-
ity of a set of suppliers depends on the demand distribution,
only via the single measure s.) It follows that the minimal
number of required suppliers is given by the smallest num-
ber n for which the total number of BSEs among the first
n suppliers exceeds the critical threshold. The number of
required suppliers can be reduced by improving their reli-
ability; moreover, as a supplier with c.v. = � contributes
�−2 BSE’s, the benefits of reductions of the c.v. value of
a yield distribution become progressively larger. This gives
support to management philosophies such as “Six Sigma,”
which advocate that companies should strive for near per-
fection, rather than terminating their quality improvement
program when a “reasonable” level of quality or reliability
is reached. The allocation scheme that splits the aggregate
order in proportion to the suppliers’ mean-to-variance ratio
of their yield distribution has the best chance of enabling
feasibility: if a feasible solution fails to exist under this
scheme, it fails to exist under any.

Additional BSEs beyond the minimum number help to
reduce the variable procurement costs. We refer to this
surplus as the suppliers’ safety margin. If the demand
distribution is Normal, the minimal procurement cost for

a given set of suppliers can be given as a closed-form
expression that depends on the set of suppliers and their
yield distributions via a single measure, i.e., the number
of BSEs. Moreover, this minimum cost value is a convex
decreasing function of the number of BSEs that converges
to � + z�� − I 0 = ��1 + z��D	 − I 0, the classical optimal
order quantity under a single reliable supplier. To appreciate
the price paid for dealing with unreliable suppliers, con-
sider, for example, the case where the starting inventory is
below the mean demand. Here, the asymptotic lower bound
needs to be adjusted in two ways: first, the mean � needs to
be increased by a factor given by (#BSE’s)/(the suppliers’
safety margin); second, the coefficient of variation �D needs
to be increased to � ′

D =√�2
D + �1 − z2

��2
D	/�#BSE’s	.2 The

correction factor for the mean and the correction term for
� ′

D decrease to one and zero, respectively, as the number
of BSEs grows.

Under Normal demands, the above allocation scheme,
which splits orders in proportion to the suppliers’ mean-to-
variance ratio, is not just the best guarantee for feasibility,
but it minimizes variable procurement costs as well. The
choice of the allocation scheme is particularly important
when the number of suppliers is small, but its importance
vanishes as n tends to infinity. Finally, we show that the
problem of selecting a set of suppliers that minimizes fixed
plus variable costs, is NP-complete, even under the CLT-
approximation. However, we show that a procedure that
builds the set of suppliers greedily comes very close to
achieving the optimum, both in terms of worst-case and
average behavior. (The worst-case optimality gap is 36.8%.
In a numerical study involving 5,637 instances, the opti-
mum is found in 98.5% of the cases, whereas the average
optimality gap is 0.015%.)

The managerial implication is that if a firm or govern-
ment organization wishes to expand its supplier base grad-
ually, e.g., by adding a supplier in each of several seasons,
little, if anything, is lost compared to the situation where
the steady-state set of suppliers can be established all at
once.

We start with the fully symmetric case where all
N potential suppliers have identical fixed costs and yield
distributions. We show that, even in this symmetric case, it
may, for general demand distributions, fail to be optimal to
order equal quantities from the different participating sup-
pliers. Nevertheless, it is, in the symmetric case, reasonable
to restrict oneself to the use of equal order sizes. Even so, it
is important to invoke the LDT- or the CLT-based approx-
imation, even in the fully symmetric case, and this is for
two reasons: First, calculation of the optimal order quan-
tity becomes increasingly more tedious as the number of
suppliers grows. Second, the structural dependence of the
exact optimal total order quantity—under the above restric-
tion of equal order sizes—with respect to N may exhibit
local irregularities that are smoothed out by employing the
approximations. For example, although we show that under
the above restriction the optimal average order quantity
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per supplier always decreases when the supply process is
shared among additional sources, the optimal total order
quantity may sometimes increase. In contrast, we show that
the total order quantity always decreases, and convexly so,
when determined by the LDT-based approximation. Like-
wise, the CLT-based approximation is always decreasing
in N , and convexly decreasing in N if the demand distri-
bution is Normal. These properties allow for a simple char-
acterization of the optimal number of suppliers, n∗ � N ,
under either one of the two approximations.

We proceed with the general case where firms may have
different fixed costs and different yield factor distributions.
In this case, it may be with considerable loss of optimality
to order equal quantities from each of a given set of suppli-
ers. As a consequence, all possible allocation schemes for
the aggregate order quantity must be considered, and it is
therefore no longer feasible to determine the optimal order
quantities on the basis of the exact shortfall probability.
However, in the approximate model that arises, under either
one of the two approximations, optimal order quantities can
be determined via simple numerical procedures. Moreover,
under Normal demands, the CLT-based approximation per-
mits closed-form expressions for the optimal set of orders,
and, as mentioned, the total order quantity is again con-
vexly decreasing in the number of BSEs represented by the
set of suppliers.

The remainder of this paper is organized as follows:
In §2, we review the related literature. In §3, we character-
ize, for the case of identical suppliers, the required orders
on the basis of the exact shortfall probability. The LDT- and
CLT-based approximations, as well as the structural proper-
ties of the order quantities determined by these approxima-
tions, are developed in §§4 and 5, respectively. Section 5
concludes with numerical comparisons of the exact order
quantities and those determined by the two approximate
methods. The general model with nonidentical suppliers is
analyzed in §6. Section 7 summarizes our main conclusions
and completes the paper.

2. Literature Review
Yano and Lee (1995) and Grosfeld-Nir and Gerchak (2004)
provide surveys of a large literature on inventory systems
with random yields. Almost all studies assume a single
supplier. Of particular importance is Henig and Gerchak
(1990), which characterizes the structure of an optimal
ordering policy in a standard single-item periodic-review
system, where only a random fraction of any order is
usable. Most recently, Lewis et al. (2005) apply a standard
single-supplier model with Markov-modulated lead times
to study the impact of supplier disruptions. See also Zipkin
(2000, §9.4.8).

Several papers have demonstrated the benefits of dual
sourcing in the presence of supply uncertainty: Yano
(1991) appears to have been the first to demonstrate the
potential of dual sourcing as an insurance against catas-
trophic failures. Gerchak and Parlar (1990) and Parlar and

Wang (1993) consider a variant of the economic order
quantity (EOQ) model, in which orders can be split among
two suppliers, each with a random yield factor. (In the
EOQ model, a single item is sold continuously at a con-
stant deterministic rate.) The authors determine the optimal
split of the total order quantity between the two suppli-
ers. Parlar and Wang (1993) also consider a variant of our
model with two suppliers, supplier-dependent variable costs
but no fixed costs. They developed closed-form expres-
sions for an approximate solution that empirically comes
within 10% of the optimal objective value. Tomlin (2006)
considers a model with one unreliable supplier and one
completely reliable but more expensive supplier, which is
used during supply disruptions of the former. Most recently,
Chopra et al. (2005) consider a single-period model with
a known demand quantity and two suppliers, one of which
is again completely reliable, whereas the other may either
completely fail or deliver a random fraction (possibly larger
than one) of the requested order. The authors determine
the optimal order quantities when the uncertain yield of
the unreliable supplier is correctly characterized as a mixed
distribution with a positive mass at zero, as well as when
the yield factor is approximated by a single continuous
distribution with matching first and second moments.

Anupindi and Akella (1993) and Swaminathan and
Shanthikumar (1999) consider the special case of the model
treated here, along with multiperiod extensions, where there
are N = 2 suppliers and the order sizes are determined so
as to minimize end of the period overage and underage
costs (as opposed to meeting a service-level guarantee). It
appears that only Ilan and Yadin (1985) have addressed a
model with an arbitrary set of potential suppliers where,
as in our paper, the question is how many suppliers to
use, in which specific combination, and how to allocate the
aggregate supply quantity among them. In reviewing this
paper, Yano and Lee (1995, p. 329) write: “This problem
is extremely complex, and hence it is difficult to obtain
structural results.”

Our work is also related to the literature on multidi-
mensional newsvendor problems and that on assembly sys-
tems with random yields for the component manufacturers.
For the former, see Harrison and Van Mieghem (1999),
Van Mieghem (1998), Rudi and Zheng (1997), and Van
Mieghem and Rudi (2002). The latter stream of papers was
initiated by Yao (1988) and includes Singh et al. (1990),
Gerchak et al. (1994), Lee (1996), and Gurnani et al. (1996,
2000) as important contributions. Yao (1988), for example,
considered the problem of minimizing the cost of procuring
the components subject to a service-level constraint, i.e.,
subject to achieving a fixed target quantity from the assem-
bly stage with a minimum probability. Although demand in
his model is assumed to be known, the service-level con-
straint bears similarity to that in our model. In both types
of models, supply levels need to be determined for several
suppliers, whose products act as complements for the deliv-
ery of one or more final consumer goods with uncertain
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demand. In our model, the different suppliers provide sub-
stitutes and the need for operational hedging and diversifi-
cation arises because of uncertain yields.

3. Identical Suppliers
We first consider the base model where all suppliers share
identical cost parameters and yield distributions. We there-
fore omit the subscript i from the cost parameters and G�·	-
distributions. Because the suppliers are indistinguishable,
assume that we place identical orders of size y with each of
a selected set of n � N suppliers, for a total order Y = ny.
(Below, we give conditions under which identical order
sizes are indeed optimal.) The probability of satisfying the
season’s demand can thus be expressed by

Pr
(

I 0 + y
n∑

i=1

Xi � D

)
=
∫ n

0
F �I 0 + yu	 dG�n	�u	� (1)

where G�n	�·	 denotes the n-fold convolution of the G�·	
distribution. This probability clearly increases with y, so
that the order size that minimizes variable procurement
costs is given by

y∗�n	 = min
{

y 
∫ n

0
F �I 0 + yu	 dG�n	�u	 � 1 − �

}
� (2)

Let Y ∗�n	
def= ny∗�n	 denote the minimum total order size.

For example, in the important special case3 where the
yield factor is a Bernoulli random variable, i.e., the yield
distribution G�·	 is concentrated on the values zero and
one, with p the probability of a successful completion of
an order, (2) may be replaced by

y∗�n	 = min
{

y 
n∑

i=0

(
n
i

)
pi�1 − p	n−iF �I 0 + iy	 � 1 − �

}
�

(3)

For any given value of y, it is possible, although some-
times tedious, to evaluate the left-hand sides of the inequal-
ities in (2) and (3). The optimal order size y∗ can thus
be computed by a simple bisection search. Clearly, if n is
sufficiently small and a source may fail completely with
positive probability, i.e., G�0	 > 0, no order quantity may
be large enough to meet the service-level constraint. The
following theorem provides a tight lower bound for n, the
number of eligible suppliers, to guarantee that the service-
level constraint can be met, i.e., an optimal order quantity
y∗ exists. When G�0	 > �, because with probability G�0	
any given supplier is unable to deliver anything, the ser-
vice constraint is violated, irrespective of the order sizes, as
long as the number of suppliers n is sufficiently small, i.e.,
�G�0	�n �F �I 0	 > � or n < n = �ln �− ln �F �I 0	�/ ln�G�0	�.
Thus, n � n is necessary for a feasible solution, and
the next theorem also shows that n > n is sufficient as
well. It also shows that as n grows beyond this minimum
number of suppliers, y∗ decreases, whereas the minimum

total order quantity Y ∗�n	 = ny∗�n	 approaches the limit
�F −1�1 − �	 − I 0�/p. In other words, when n is large, the
required total order approaches what would be ordered
from a single completely reliable supplier who delivers a
fraction p = EX of any order, with probability one.

Theorem 1. (a) If I 0 � F −1�1 − �	, y∗ = 0.
(b) Assume that I 0 < F −1�1 − �	. Let n

def= �ln �F �I 0	 −
ln ��/�− ln G�0	� if G�0	 > 0, and n

def= 0, otherwise. If
n < n, no optimal order quantity exists. Conversely, if
n > n, an optimal order quantity exists.

(c) Assume that I 0 < F −1�1 − �	. For n > n, y∗ is
decreasing in n.

(d) Assume that I 0 < F −1�1 − �	. limn→+� Y ∗�n	 =
�F −1�1 − �	−I 0�/p.

Proof. (a) Part (a) is immediate.
(b) If n < n, the shortfall probability is bounded from

below by G�0	n �F �I 0	 > �, and no order quantity is large
enough to satisfy the service-level constraint. Let #

def=
�X � X > 0	. If n > n, the shortfall probability is

Pr
(

I 0 + y
n∑

i=1

Xi < D

)

=G�0	n �F �I 0	+�1−G�0	n	Pr
(

I 0+y
n∑

i=1

Xi <D

∣∣∣∣ n∑
i=1

Xi >0
)

� G�0	n �F �I 0	 + �1 − G�0	n	Pr�I 0 + yX < D � X > 0	

= G�0	n �F �I 0	 + �1 − G�0	n	E#
�F �I 0 + #y	 < �

for y sufficiently large. The first equality follows by con-
ditioning on the event that all n suppliers face a com-
plete breakdown and the complementary event that at
least one of them does not. If

∑n
i=1 Xi > 0, there

exists a supplier 1 � k � n, with Xk > 0 and
Pr�y

∑n
i=1 Xi + I 0 < D �∑n

i=1 Xi > 0	 � Pr�yXk + I 0 < D �
Xk > 0	 = E#

�F �#y + I 0	, which explains the first inequal-
ity. The second inequality follows from n > n and
limy→� E#

�F �#y + I 0	 = E# limy→� �F �#y + I 0	 = 0, using
the dominated convergence theorem.

(c) Pr�I 0+y
∑n

i=1 Xi < D	 � Pr�I 0+y
∑n+1

i=1 Xi < D	.
Thus, (2) implies y∗�n	 � y∗�n + 1	.

(d) Let �F �·	 denote the c.d.f. of �D/p and �Fn�·	 the
c.d.f. of �D/��1/n	

∑n
i=1 Xi	. Let �F −1�·	 denote the inverse

c.d.f. of �F and �F −1
n �·	 the generalized inverse of �Fn, i.e.,

�F −1
n �u	 = min%y �Fn�y	 � u&. It follows from Chow and

Teicher (1997, p. 272, Corollary 2) that limn→� �Fn�x	 =
�F �x	 for all x because �1/n	

∑n
i=1 Xi → p a.s. Thus, by

the continuity of �F , it follows (see Thorisson 2000, p. 24)
that limn→� Y ∗�n	 = limn→� �F −1

n �1 − �	 = �F −1�1 − �	 =
�F −1�1 − �	 − I 0	/p. �

Remark. In general, when n = n, no feasible order quan-
tity y exists because usually there is a positive probability
of a shortfall under any order quantity y, even in the event
where at least one supplier avoids a complete breakdown.
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The only exception arises when D has bounded support
and the yield distribution G�·	 is discontinuous in zero,
such that a supplier avoiding a complete breakdown can
guarantee itself a minimum yield factor #0 > 0.

Theorem 1(c) shows that as the number of suppliers
increases, y∗�n	, the order size per supplier, decreases. One
might conjecture that the total order quantity, ny∗�n	, also
decreases as the supply risks are diversified among addi-
tional suppliers. Various numerical examples show, how-
ever, that this may fail to hold. The surprising lack of
monotonicity of the total supply is explained as follows:
contrary to our facile assumption, assigning equal order
sizes to different suppliers may fail to minimize the total
order size, and hence the costs, even when the suppliers
have completely identical characteristics. To illustrate this,
consider an example with Normally distributed demand
(� = 100, �D = 0�05), Bernoulli yields with p = 0�975,
I 0 = 0, and � = 0�05. It is easily verified, e.g., using (3),
that the shortfall probability is exactly 5% when an order
for ��1+1�94�D	 = 109�7 units is placed with a single sup-
plier. However, two suppliers each ordered to deliver half
the quantity (54.85 units) will result in a shortfall probabil-
ity of 7.4%. Thus, even when two suppliers are available,
a single source results in a lower order than if the total
order is spread equally between the two suppliers. Clearly,
if optimal (possibly nonidentical) allocations of the total
order are considered, the minimum total supply is nonin-
creasing in the number of suppliers. (When going from n
to n + 1 suppliers, the option to assign a zero-size order
to the �n + 1	st supplier remains feasible.) Only when the
p.d.f. of the demand distribution is nonincreasing are equal
order sizes guaranteed to minimize the total order size, i.e.,
the total order size Y ∗�n	 is necessarily nonincreasing.

Corollary 1. Assume that the p.d.f. of D is nonincreasing
on �+. Equal-size orders are optimal and the total order
quantity Y ∗�n	 = ny∗�n	 is nonincreasing in n.

Proof. As explained above, it suffices to show that equal
order sizes are optimal. Let yi be the order placed with sup-
plier i. The probability of satisfying demand is given by:
E%X1�����XN &F �

∑n
i=1 yiXi + I 0	. Let 
y denote an optimal vec-

tor of orders, minimizing the total order quantity
∑n

i=1 yi,
subject to ensuring that the probability of a shortfall is
no more than �. If 
y has nonidentical components, all
permutations of this vector %
y�1	� � � � � 
y�M	& are optimal as
well, i.e., these permutations also minimize the order quan-
tity and yield a shortfall probability of no more than �.
Let y0 = �1/M	

∑M
l=1 
y�l	. E%X1�����XN &F �

∑n
i=1 y0

i Xi + I 0	 �

�1/M	
∑M

l=1 E%X1�����XN &F �
∑n

i=1 
y�l	
i Xi + I 0	 = 1 − � because

F is concave by our assumption regarding the p.d.f. of D.
Because y0 has the same total order size as each of the
optimal solution %
y�l	&, y0, with identical components, is
optimal as well. �

Other than the exponentials and uniform distributions on
an interval [0� a], very few distributions have nonincreas-
ing p.d.f.s. Moreover, the determination of y∗ in (2) may

already be somewhat tedious when n is large or when con-
volutions of the G�·	 distributions are hard to compute. Fur-
thermore, to calculate the exact shortfall probability under a
given set of nonidentical order sizes—as required for most
demand distributions—is considerably harder, let alone to
determine the optimal vector of orders. It is for this rea-
son that we now discuss two approximation methods, one
based on a large-deviations technique and one based on a
central limit theorem.

4. An Approximation Based on
a Large-Deviations Technique

We develop an approximation based on a large-deviations
technique (LDT). Let X̂i

def= 1 − Xi denote the loss factor
experienced by supplier i, i = 1� � � � � N , each with c.d.f.
�G�·	, mean q ≡ �1−p	, and variance �2. Let L�-	

def= E�e-X̂�

and l�-	
def= ln E�e-X̂� denote the moment-generating func-

tion and cumulant-generating function of the loss factor dis-
tribution, which exist for all - > 0 because �G has bounded
support. A cumulant-generating function is known to be
convex. For example, because4

l′�-	 = EX̂�X̂e-X̂�

EX̂�e-X̂�
� (4)

l′′�-	 = %EX̂�X̂2e-X̂�EX̂�e-X̂� − E2
X̂
�X̂e-X̂�&/E2

X̂
�X̂e-X̂� � 0,

by the Cauchy-Schwarz inequality applied to the pair of
two random variables U = X̂e-X̂/2 and V = e-X̂/2. (The
interchange of the differentiation and expectation operators
is justified in a similar way as in Endnote 4.) Because D
has finite moments, there exists some 0 < -̄ �� such that
the moment-generating function M�-	

def= E�e- �D� and the
cumulant-generating function m�-	

def= ln E�e- �D� exist for all
0 < - < -̄. m�-	 � ln%Pr�D > I 0�E�e- �D � �D > 0�& � ln � +
ln E�e- �D � �D > 0�, so that lim-↑-̄ m�-	 = �. Thus, because
m�0	 = 0 and m�·	, as a cumulant-generating function, is
convex, it achieves every value in �+ exactly once. Thus,
let m−1�·	 �+ → �0� -̄	 denote its inverse function on the
positive half-line.

Allowing for nonidentical order sizes, let: wi = the frac-
tion of the total supply assigned to supplier i, i = 1� � � � � N .
For - > 0 and using Markov’s inequality, the shortfall
probability can then be bounded by

Pr
(

Y
n∑

i=1

wiXi < �D
)

= Pr
(

Y − Y
n∑

i=1

wiX̂i < �D
)

= Pr
( n∑

i=1

wiX̂i > 1 − �D
Y

)
= E �D

[
Pr
(
e-�

∑n
i=1 wiX̂i	 > e-�1− �D/Y 	

∣∣ �D)]
� E �D

{
e−-e- �D/Y

} n∏
i=1

L�wi-	

= e−-M

(
-

Y

) n∏
i=1

L�wi-	� (5)
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Unlike the exact probability, this upper bound is mini-
mized for any Y > 0 by spreading the total order equally
across the suppliers: The problem min%

∏n
i=1 L�wi-	 s.t.∑n

i=1 wi = 1; wi � 0& is equivalent to

min
{ n∑

i=1

l�wi-	 s.t.
n∑

i=1

wi = 12 wi � 0
}

= nl

(
-

n

)
� (6)

(Because l�·	 is convex, w∗
i = 1/n achieves the minimum in

(6).) Thus, for any - > 0, the upper bound in (5) equals �,
if Y satisfies the equation e−-M�-/Y 	�L�-/n	�n = �, or,
equivalently,

m

(
-

Y

)
= - − nl

(
-

n

)
+ ln �� (7)

Theorem 2 (Upper-Bound Approximation). Assume that
n > n. Let -0�n	 be the unique root of the characteristic
equation

Hn�-	
def= ln � − nl

(
-

n

)
+ - = 0� (8)

(a) For all - > -0�n	, (7) has a unique root �Y �-� n	 =
-/�m−1�- − nl�-/n	 + ln �	�, which is convexly decreas-
ing in n. Moreover, Y ∗�n	 � �Y ∗�n	

def= min->-0 �Y �-� n	 �
�Y �-� n	 for any - > -0�n	.

(b) �Y ∗�n	 is decreasing in n and �.
(c) If G�0	 > 0, �Y ∗�n	 = �Y �-∗� n	, with -∗ the unique

point - where a sign change occurs for

1
�Y �-� n	

m′
(

-

�Y �-� n	

)
+ l′
(

-

n

)
− 1� (9)

(d) Assume that G�0	 = 0. One of the following two
cases prevails 

(i) �Y ∗�n	 = �Y �-∗� n	, with -∗� -0�n	, the unique
point where a sign change occurs for (9).

(ii) �Y �-� n	 is monotonically decreasing and �Y ∗�n	 =
lim-↑� �Y �-� n	.

(e) Assume that D is Normal. For all - > -0�n	,

�Y �-� n	

=



�� − I 0	
-
(√

1 + 2�2
�DHn�-	 + 1

)
2Hn�-	

= �� − I 0	
-�2

�D√
1 + 2�2

�DHn�-	 − 1
if I 0 < ��

-�√
2Hn�-	

if I 0 = ��

�I 0 − �	
-
(√

1 + 2�2
�DHn�-	 − 1

)
2Hn�-	

= �I 0 − �	
-�2

�D√
1 + 2�2

�DHn�-	 + 1
if I 0 > ��

(10)

which is minimized in the unique point -∗ �>-0	 where the

function �−2
�D +2Hn�-	−�−1

�D
√

�−2
�D + 2Hn�-	−-+-l′�-/n	

changes signs. In particular, �Y ∗�n	 is of the form �Y ∗�n	 =
�� − I 0�4̄n��� �D�	, with 4̄n�·	 an increasing function.

Proof. (a) Hn has at most one root because, by (4),
H ′

n�-	 = −l′�-/n	 + 1 = 1 − EX̂�X̂e�-/n	X̂�/EX̂�e�-/n	X̂� > 0,
because EX̂�e�-/n	X̂� = �G�0	 + ∫ 1

0 e�-/n	ud �G�u	 � �G�0	 +∫ 1
0 ue�-/n	ud �G�u	 � EX̂�X̂e�-/n	X̂� and at least one of the two

inequalities must be strict. Moreover, Hn�0	 = ln � < 0 and

Hn�-	
def= ln � − n�l�-/n	 − ln e-/n�

= ln � − n ln�L�-/n	/e-/n�

= ln � − n ln
[(

G�0	e-/n +
∫ 1

0
e�-/n	ud �G�u	

)/
e-/n

]
= ln � − n ln

[
G�0	 +

∫ 1

0
e�-/n	�u−1	d �G�u	

]
�

Because lim-↑�
∫ 1

0 e�-/n	�u−1	d �G�u	 = 0, by the dominated
convergence theorem, we have

G�0	 = 0 ⇒ lim
-↑�

Hn�-	 = ��

G�0	 > 0 ⇒ lim
-↑�

Hn�-	 = ln � − n ln G�0	 > 0

for n > n�

(11)

Thus, the strictly increasing function Hn�-	 starts at a neg-
ative value and is positive for - sufficiently large, so that
it has a unique root -0. For - > -0, Y satisfies (7) if and
only if m�-/Y 	 = Hn�-	 ⇔ -/Y = m−1�Hn�-		 ⇔ Y =
-/m−1�Hn�-		 because Hn�-	 > 0 and m−1�·	 is defined
on �+. Next, write �Y �-� n	 = r�m−1�Hn�-			, with r�x	 =
-/x. The left-hand side of (6) is clearly decreasing in n
because the solution wi = 1/n, i = 1� � � � � n and wn+1 = 0
is optimal when there are n suppliers and feasible when
there are n + 1. This implies that Hn�-	 is increasing
in n, and it is concave in n by the convexity of l�·	; see
Boyd and Vandenberghe (2004, §3.2.6, p. 89). As shown
above, m�·	, as a cumulant-generating function, is con-
vex and increasing when positive. Thus, m−1�·	 is con-
cave and increasing on �+, and so is the composition
m−1�Hn�-		 as a function of n. Finally, because r�·	 is
convex and decreasing on �+, the composition �Y �-� n	 =
r�m−1�Hn�-			 is convex and decreasing in n as well.
Finally, by (5), Pr��Y �-� n	

∑n
i=1 wiXi < D	 � �, so that

Y ∗�n	 � �Y �-� n	 for all - > -0�n	.
(b) Immediate from the monotonicity of �Y �-� n	 in n

and � for all - > -0�n	. (The monotonicity of �Y �-� n	 in �
is immediate because m−1�·	 is an increasing function.)

(c) For - � -0�n	, - − nl�-/n	 + ln � > 0, and m−1�- −
nl�-/n	+ ln �	 is concave in - because the composition of
a concave increasing function and a concave function, and
�Y �-� n	 = -/�m−1�- − nl�-/n	 + ln �	� is quasi-convex
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in - because for all C > 0, the level sets %- �Y �-� n	 � C& =
%- m−1�- − nl�-/n	 + ln �	 − -/C � 0& are convex sets
because m−1�- − nl�-/n	 + ln �	 − -/C is concave in -.
This implies that �Y �-� n	 has at most one local minimum
in -. By (11), lim-↑� Hn�-	 < �, when G�0	 > 0, so that
by part (a), lim-↑� �Y �-� n	 = lim-↑� -/�m−1�Hn�-		� = �,
while lim-↓-0 �Y �-� n	 = �, by (7). Thus, �Y �-� n	 has a
unique local minimum -∗ �>-0	. Because �Y is quasi-
convex in -, -∗ is the unique value where 7�Y /7- changes
signs. Because -/�Y = m−1�- − nl�-/n	 + ln �	, m�-/�Y 	 −
- + nl�-/n	 − ln � = 0. By the implicit function theorem,

7�Y
7-

=
[ �Y 2�-� n	

-m′�-/�Y �-� n		

]
·
[

1
�Y �-� n	

m′
(

-

�Y �-� n	

)
+ l′
(

-

n

)
− 1
]
� (12)

Thus, -∗ is the unique point where (9) changes sign.
(d) �Y �-� n	 is quasi-convex in -, as shown in part (c).

Thus, because lim-↓-0 �Y �-� n	 = �, either (i) �Y �-� n	
has a unique minimum -∗ where (9) changes signs; or
(ii) �Y �-� n	 is monotonically decreasing in - and �Y ∗�n	 =
lim-↑� �Y �-� n	.

(e) When D is Normal, m�-	 = �� − I 0	- + �2-2/2.
Substituting this expression in (7), and multiplying both
sides with Y 2, we get the quadratic equation �- −
nl�-/n	 + ln ��Y 2 − �� − I 0	-Y − �2-2/2 = 0 for any
given - > -0�n	. By the proof of part (a), Hn�-	 =
�- − nl�-/n	 + ln �� > 0 for - > -0�n	, so that the
quadratic equation has one positive root: �Y = ��� − I 0	- +
-
√

�� − I 0	2 + 2Hn�-	�2�/2Hn�-	. The expressions in
(10) follow.

�Y �-� n	 cannot be monotonically decreasing in -, for if
it were, there exists a level Y 0 such that �Y �-� n	 � Y 0 for
all - sufficiently large and, hence, for all - sufficiently
large, m′�-/�Y �-� n		/�Y �-� n	 + l′�-/n	 − 1 � �� − I 0 +
�2-/Y 0	/Y 0 − 1 because m′�-	 = � − I 0 + �2- > 0 for
- sufficiently large, and l′ � 0, by (4). The second fac-
tor in (12) is therefore positive for all - sufficiently
large; because the first factor is positive for - sufficiently
large, 7�Y /7- > 0 for all - sufficiently large, contradict-
ing the assumption that �Y is monotonically decreasing
in -. By parts (c) and (d), �Y �-� n	 has a unique mini-
mum -∗ �>-0	, where (9) changes signs. Substituting (10)
and m′�-	 = � − I 0 + �2- into (9), we obtain the desired
characterization of -∗. Finally, for I 0 < �, (10) implies
the representation �Y ∗�n	 = �� − I 0	4̄n�� �D	, with 4̄n�·	 =
min-�-�

√
1 + 2�2

�DHn�-	 + 1	/�2Hn�-		� increasing in � �D.

For I 0 > �, (10) shows that �Y ∗�n	 = �I 0 −�	4̄n��� �D�	, with
4̄n�·	 = min-�-�

√
1 + 2�2

DHn�-	 − 1	/�2Hn�-		� increas-
ing in �� �D�. �

Remark. As with the Normals, a closed-form expression
for �Y �-� n	 can be obtained from (7) for many other
classes of demand distributions. For example, when D has
a Gamma�8� 9	 distribution with scale parameter 8 and

shape parameter 9, m�-	 = 9�ln 8− ln�8−-		. The result-
ing Equation (7) can again be solved in closed form. More-
over, because lim-↑8 m′�-	 = �, it follows from the proof
of part (e) that �Y �-� n	 has, again, a unique minimum -∗

where the function in (9) changes signs.

5. An Approximation Based on
a Central Limit Theorem

A second approximation is obtained by writing the proba-
bility of a shortfall

Pn�Y � w1� � � � � wn	

def= Pr
(

Y − Y
n∑

i=1

wiX̂i < �D
)

= Pr
( n∑

i=1

wiX̂i > 1 − �D
/

Y

)

= Pr
[∑n

i=1�nwi	X̂i − nq

nW �n	�
>

�1 − �D/Y 	 − q

�W �n	

]
�

where W �n	
def=√∑n

i=1 w2
i . In Theorem 3 below, we invoke

a central limit theorem to replace the left-hand side of the
last inequality defining the shortfall event by a random vari-
able U with a standard Normal distribution (independent
of D). This gives rise to the approximate shortfall probabil-
ity: �Pn�Y � w1� � � � � wn	

def= Pr� �D/Y > p − UW �n	��. When
dealing with an ever larger set of potential suppliers, the
share of the aggregate order that is assigned to any given
supplier will, under a given allocation scheme, depend on
the total number of suppliers. We therefore, henceforth,
write wi� n to represent supplier i’s share when considering
the set of suppliers %1� � � � � n&. For example, the alloca-
tion scheme that splits the aggregate order equally among
all potential suppliers, has wi� n = 1/n for all i = 1� � � � � n.
The next theorem shows that the approximate probability
is asymptotically accurate and that the order quantity deter-
mined with this approximation is asymptotically optimal.

Theorem 3 (CLT-Based Approximation). (a) Consider
an arbitrary allocation scheme %wi� n& with

maxi wi� n

mini wi� n

� A for some constant A� (13)

i.e., the ratio of the largest and the smallest order size
remains bounded as n → �. For any 0 < = � 1

2 , there exists
a constant C= such that for all Y ,∣∣Pn�Y � w1� n� � � � � wn� n	 − �Pn�Y � w1� n� � � � � wn� n	

∣∣� C=n−=�

In particular, limn→��Pn�Y � w1� n� � � � � wn� n	 − �Pn�Y �
w1� n� � � � � wn� n	� = 0.

(b) Let Ỹ �n �w	
def= min%Y � �Pn�Y � w1� n� � � � � wn� n	 � �&.

Then, limn→� Ỹ �n � w	 = �F −1�1 − �	 − I 0�/p =
limn→� Y ∗�n	 for any allocation scheme %wi� n& that satis-
fies �13	.
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Proof. (a) Let >i

def= nwi� n�X̂i −q	. Note that E>i = 0 and

E>2
i = n2w2

i� n�2, so that s2
n

def=∑n
i=1 E>2

i = n2�2∑n
i=1 w2

i� n =
�2∑n

i=1�wi� n/n−1	2 = �2∑n
i=1�wi� n/�1/n	

∑n
j=1 wj� n	2 �

n�2A−2. Also, for any 0 < @ � 1, let m2+@

def=
�E�X̂ −q�2+@	1/�2+@	 < � because X̂, with bounded support,
has finite moments:

An

def=
( n∑

i=1

E>2+@
i

)�2+@	−1

= m2+@

( n∑
i=1

�nwi� n	2+@

)�2+@	−1

= m2+@

[ n∑
i=1

(
wi� n

�1/n	
∑n

j=1 wj� n

)2+@]�2+@	−1

� Am2+@n1/�2+@	�

Then, there exists a constant �C@ such that, with �F �·	 the
c.d.f. of �D,∣∣Pn�Y � w1� n� � � � � wn� n	 − �Pn�Y � w1� n� � � � � wn� n	

∣∣
�
∫ ∣∣∣∣Pr

[ n∑
i=1

�nwi� n	�X̂i − q	 > n

(
1 − �D

Y

)
− nq

∣∣∣∣ �D = d

]

− Pr
[
U >

p − �D/Y

W �n	�

∣∣∣∣D = d

] ∣∣∣∣d �F �d	

=
∫ ∣∣∣∣Pr

[ n∑
i=1

>i >sn

p−d/Y

W �n	�

]
−Pr

[
U >

p−d/Y

W �n	�

]∣∣∣∣d �F �d	

�
∫

sup
x

∣∣∣∣Pr
[ n∑

i=1

>i > snx

]
− Pr�U > x�

∣∣∣∣d �F �d	

� �C@

A 2+@
n

s2+@
n

� �C@

A2+@m2+@
2+@n

A−2−@�2+@n1+@/2

= { �C@A4+2@m2+@
2+@�−2−@

}
n−@/2 def= C@/2n

−@/2�

where the next-to-last inequality follows from the
Berry-Esseen theorem, for example, Theorem 3 on p. 322
in Chow and Teicher (1997), which applies in view of (13).

(b) As in the proof of Theorem 1(d), let �Fn be
the c.d.f. of �D/�

∑n
i=1 wi� nXi	. W 2�n	 = ∑n

i=1 w2
i� n =∑n

i=1�1/n2	�wi� n/�
∑n

j=1 wj� n	/n	2 � A2/n, so that
W �n	 � A/

√
n. It follows that the standard devi-

ation of �
∑n

i=1 wi� nXi	 = W �n	� � A�/
√

n, so that
�
∑n

i=1 wi� nXi	 → p in probability, for example, by the
Chebycheff inequality. It follows that �Fn converges
pointwise to �F , the c.d.f. of �D/p, and limn→� Y ∗�n	 =
limn→� �F −1

n �1 − �	 = �F −1�1 − �	 = �F −1�1 − �	 − I 0	/p,
where the second equality follows, again, from pointwise
convergence of the generalized inverse c.d.f.s and the
continuity of �F ; see Thorisson (2000, p. 24). The proof
of limn→� Ỹ �n � w	 = �F −1�1 − �	 − I 0	/p is analogous,
replacing �Fn by �Fn, the c.d.f. of �D/�p − UW �n	�	 because
�p − UW �n	�	 → p a.s. �

The approximate shortfall probability �Pn�Y �w	 =
Pr� �D/Y + UW �n	� > p� is considerably simpler to cal-
culate than the exact probability because it requires the

convolution of only two random variables. The CLT-based
approximation thus has the advantage of being asymptoti-
cally accurate for any order size and any allocation scheme
that satisfies (13). Moreover, the order quantity derived
under this CLT approximation is, under any such allocation
scheme, asymptotically optimal.5

We now show that the CLT approximation allows for
a simple characterization of when a set of suppliers is
feasible. With Normal demands, it also permits a closed-
form expression of the optimal order quantities. We develop
these results, here, for the special case where the starting
inventory I 0 = 0. The general case, with I 0 � 0, is devel-
oped in §6, in conjunction with the extension to general,
nonidentical suppliers. If I 0 = 0, we have that for a general
demand distribution, with support on the positive half-line,
�Pn�Y �w	 is continuously decreasing in Y for any allocation
scheme w. If R�n � w	

def= ��2�
∑n

i=1 w2
i� n	�

−1
< z2

�, no feasi-
ble order quantity exists because, by the dominated conver-
gence theorem, limY →� �Pn�Y �w	 = Pr�UW �n	� > p� > �.

The condition is equivalent to �
√∑n

i=1 w2
i� n/p > z−1

� , the
left-hand side of which represents the c.v. of the aggregate
supply. Thus, as long as this c.v. is in excess of z−1

� , no
feasible solution exists. At the same time, for any given
allocation scheme w, if R�n � w	 > z2

�, the optimal total
order quantity Y ∗ is the unique root of the equation

Pr
[

D

Y
+ Up√

R�n �w	
> p

]
= �� (14)

Conversely, for any given total order quantity Y , all allo-
cation schemes w result in the same cost value, but only
some may be feasible, i.e., satisfy the service constraint.
The random variable %D/Y + UW �n	�& has the same
mean �/Y for all allocation vectors w, and its variance
��2/Y 2 +W �n	2�2	 is clearly minimized when splitting the
order equally among the suppliers, i.e., under the allocation
scheme w∗, with w∗

i� n = 1/n, i = 1� � � � � n, for which

R�n �w∗	 = max
w

R�n �w	� (15)

(The convex function
∑n

i=1 w2
i� n attains its minimum on

� = %wi� n � 0 
∑n

i=1 wi� n = 1& for wi� n = 1/n.) However,
for a general demand distribution, the variance-minimizing
allocation vector does not necessarily minimize the com-
plementary c.d.f. value in the point p. Indeed, nonidentical
allocations may minimize the CLT-based shortfall proba-
bility �Pn, even though Theorem 3(b) shows that equal allo-
cations are asymptotically optimal (along with any other
allocation scheme satisfying (13)). A combined optimal
order quantity Ỹ ∗�n	 and corresponding allocation scheme
ŵ can be found by the following numerical procedure: note
that R�n � w	 may adopt any value in �−2�1� n� because
the convex, and hence continuous, function

∑n
i=1 w2

i� n has
a minimum value of 1/n and a maximum value of one
on the compact set � . Thus, feasible orders exist for
any R ∈ �max��−2� z2

�	� �−2n�, and the optimal aggregate
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order size can be found by minimizing the unique root
of (14) when varying R over this interval. Assuming the
minimum is achieved for R = R∗, an associated allocation
scheme ŵ can be found as follows: Let w1 be the allo-
cation scheme that assigns the entire order to supplier 1
and w2 the allocation scheme that spreads the order equally
among all n suppliers. Let ŵ = Cw2 + �1 − C	w1, i.e.,
ŵ1� n = C/n + �1 − C	 and ŵi� n = C/n, i = 2� � � � � n. It
is easily verified that

∑n
i=1�ŵi� n	2 = C2/n2 + �1 − C	2 +

2C�1 − C	/n + C�n − 1	/n2. Equating this expression to
1/��2R∗	 and multiplying both sides by n2, we obtain
after some algebra the quadratic equation C2 − C�2n − 1	/
�n − 1	 + n2�1 − �−2R∗−1	/�n − 1	2 = 0. The only
root between zero and one is C = �2n − 1	/
�2�n − 1	� −√4n2/��2R∗	 − 4n + 1/�2�n − 1	�. (Because
1/n � 1/��2R∗	 < 1, the discriminant �4n2/��2R∗	 −
4n + 1�/��n − 1	2� lies between �1/�n − 1	2� �2n − 1	2/
�n − 1	2	.)

When D is Normal, the random variable %D/Y +
UW �n	�& is itself Normal, so that �Pn�Y �w	 = �̄��p −
�/Y 	/

√
�2/Y 2 + W �n	2�2	, which is minimized by min-

imizing the expression in the denominator of �̄�·	 for
any Y such that �p − �/Y 	 > 0, i.e., for Y > �/p. (Note
that �Pn�Y �w	 � 0�5 if Y � �/p; thus, the desired aggre-
gate order quantity Y > �/p because � � 0�5.) Thus,
with Normal demand, it is optimal, under the CLT-based
approximation, to split the aggregate order equally among
the suppliers. This permits us to obtain a closed-form
expression for Ỹ ∗�n	 and to show that it is convexly
decreasing in n.

Corollary 2. Assume that I 0 = 0.
(a) For any demand distribution F �·	 with support on the

positive half-line, if n < z2
��2, irrespective of which alloca-

tion scheme w is used, there is no Ỹ �n � w	 that satisfies
the service constraint

�Pn�Ỹ � w1� n� � � � � wn� n	 � �2 (16)

if n > z2
��2, Ỹ ∗�n	 is decreasing in n.

(b) Assume that D is Normal. If n < z2
��2, irrespective

of which allocation scheme w is used, there is no Ỹ �n �w	
that satisfies the service constraint �16	. If n > z2

��2, then
equal-size orders are optimal and

Ỹ ∗�n	 = �

p�1 − z2
��2/n	

(
1 + z�

√
�2

D

(
1 − z2

��2

n

)
+ �2

n

)
= � �4n��D	� (17)

with �4n�·	 and Ỹ ∗�n	 convex in �D, decreasing in n, and
convexly decreasing in n if �D � 2

√
3/z�.

Proof. (a) Immediate from the above procedure to calcu-
late Ỹ ∗�n	 because the feasible range for R is empty when
n < z2

��2 and increasing in n when n > z2
��2.

(b) Because

�Pn�Y �w	 = �̄
p − �/Y√

�2/Y 2 + W �n	2�2

is decreasing in Y for Y > �/p, the proof of part (a) can be
used to show that no feasible Ỹ �n � w	 exists if n < z2

��2,
and that Ỹ ∗�n	 is decreasing in n if n > z2

��2. If n > z2
��2,

because w∗
1� n = · · · = w∗

n� n = 1/n (see (15)), we show that a
unique value Y exists with

p − �/Y√
�2/Y 2 + �2/n

= pY − �√
�2 + �2�Y 2/n	

= z�� (18)

and hence �Pn�Y �w∗	 = �. Squaring both sides of the equa-
tion, we obtain the quadratic equation �pY −�	2 = z2

���2 +
�2Y 2/n	, only the larger root of which satisfies the orig-
inal equation (18). (The smaller root Ỹ ′�n	 solves the
equation pY − � = −z�

√
�2 + �2Y 2/n.) Grouping corre-

sponding terms, the quadratic equation can be written as
�p2 − z2

��2/n	Y 2 − 2p�Y + �2 − z2
��2 = 0 and

Ỹ ∗�n	

= [p� +√z2
��2�2/n + z2

��2p2 − z4
��2�2/n

]/
�p2�1 − z2

��2/n	�

= [� + z�

√
�2�2/n + �2 − z2

��2�2/n
]/

�p�1 − z2
��2/n	�

= �
[
1 + z�

√
�2

D�1 − z2
��2/n	 + �2/n

]/
�p�1 − z2

��2/n	��

Because n > z2
��2, �4n�·	 is increasing in �D; convexity in

�D follows by simple calculus: any function of the form√
A�2

D + B with A� B > 0 has a second-order derivative
AB�A�2

D + B	−3/2 > 0. Writing

Ỹ ∗�n	= �

p

(
1

1−z2
��2/n

+z�

√
�2

D

1−z2
��2/n

+ �2/n

�1−z2
��2/n	2

)
�

one verifies that each of the terms, inside and outside the
square root, is decreasing in n, so that Ỹ ∗�n	 is decreasing
in n. We refer to the online appendix for the convexity
proof. An electronic companion to this paper is available
as part of the online version that can be found at http://or.
journal.informs.org/. �

As with the exact analysis (see Theorem 1(a)), Corol-
lary 2(a) identifies a minimum value of suppliers to ensure a
feasible solution. At the same time, the condition n > z2

��2

is hardly restrictive. After all, in most applications, p � 0�5,
so that � �

√
�1 − p	/p � 1, where the first inequality

follows from the fact that for a given mean p, the vari-
ance of X is maximized by the two-point distribution with
Pr�X = 1� = p and Pr�X = 0� = 1 − p; see Müller and
Stoyan (2002, p. 57, Example 1.10.5). If � = 0�05, the con-
dition is satisfied for n � 3, and if � = 0�025 for n � 4, even
if each supplier is very unreliable with p close to 0�5. The
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condition �D � 2
√

3/z� is without any loss of practical gen-
erality. Even if the shortfall probability � = 10−3, the con-
dition is satisfied as long as �D � 3�4641/3�0902 ≈ 1�12; to
avoid a large probability of negative demands, the Normal
distribution is only appropriate when its c.v. is significantly
below one.

Recall that both Y ∗�n	 and Ỹ ∗�n	 decrease to an asymp-
totic limit �� + z��	/p = ��1 + z��D	/p. This reflects an
“ideal” situation where one can count on a fraction p of
the orders to become available. When the orders are spread
over n unreliable suppliers, the required total order is the
same as that under a fully reliable yield with a lower yield
factor p′ = p�1− z2

��2/n	 and a higher c.v. for the demand
� ′

D = �D

√
1 + �1/�2

D	 − z2
���2/n	 (see Endnote 1). Note

that both p′ and � ′
D approach p and �D as n increases.

We have seen that when the demand distribution is Nor-
mal, both the LDT-based and the CLT-based approxima-
tions �Y ∗�n	 and Ỹ ∗�n	 can be written in the form �Y ∗�n	 =
�4̄n��D	 and Ỹ ∗�n	 = � �4n��D	. The same applies to
the exact order quantity Y ∗�n	 because the integral
in (2) can be written as

∫ n

0 ���yu − �	/�	 dG�n	�u	 =∫ n

0 ���Yu/�n�	 − 1	/�D	 dG�n	�u	. Thus, 4n�·	, 4̄n�·	,
and �4n�·	 all depend on the parameters � and � only
via their ratio �D = �/�. In Figures 1(a) and 1(b), we

Figure 1. Total order quantity: Exact and approximate solutions.
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display these functions, along with the asymptotic limit
4��D	

def= �1 + z��D	/p, for instances with Bernoulli yields
with p = 0�9 and � = 0�05. Figure 1(a) (1(b)) displays the
curves for n = 4 (10) suppliers. Note that the CLT-based
approximation is remarkably close to the exact solution
even for small values of n, and certainly when n is larger, as
in Figure 1(b). Convergence of the CLT-based approxima-
tion to the asymptotic limit is also quite rapid. The gap for
the upper-bound curve 4̄n�·	 decreases as n increases, but
not necessarily to zero. Figures 1(c) and 1(d) display the
exact total order Y ∗�n	, the two approximations �Y ∗�n	 and
Ỹ ∗�n	 along with the asymptotic limit Y

def= ��1+ z��D	/p

for two values of �D: �D = 0�05 and �D = 1. The accuracy
of, in particular, the CLT-based approximation, again, is
remarkable even for small values of n. The above observa-
tions are robust across the spectrum of possible parameter
combinations. We recommend the CLT-based approxima-
tion as the estimate for the optimal order size, but suggest
the LDT-approximation to generate a rigorous bound.

Finally, considering total, i.e., fixed plus variable pro-
curement costs, the optimal number of suppliers n∗ is eas-
ily determined when using the LDT-based upper bound
approximation. For any given - > -0, Theorem 2(a) shows
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that �Y �n� -	 is convexly decreasing in n, so that n̄∗�-	 =
min%n �Y �n� -	 − �Y �n + 1� -	 � K&. (We have observed,
numerically, that the best approximation �Y ∗�n	 is, similarly,
always convex in n, even though a formal proof for this
property remains outstanding.) The same simple character-
ization for the optimal number of suppliers applies under
the CLT-based approximation, when the demand distribu-
tion is Normal; see Corollary 2(b). In contrast, when the
exact solution Y ∗�n	 is used, under equal order sizes, all
possibilities n = 1� � � � � N need to be evaluated because, as
mentioned, Y ∗�n	 may fail to be monotone, let alone con-
vexly decreasing. (We also show in §3 that the globally
optimal exact aggregate order size is decreasing in n, but it
is unknown whether this quantity is convexly decreasing.)

6. Supplier-Dependent Yield
Distributions and Fixed Costs

In this section, we consider the case where the suppliers are
differentiated in terms of their yield distributions %Gi& and
their fixed-order costs %Ki&. We again first consider, for a
preselected group of n suppliers (without loss of generality,
suppliers 1� � � � � n), which set of orders minimizes variable
procurement costs subject to meeting the service-level con-
straint. As mentioned, with nonidentical suppliers, it may
be with considerable loss of optimality to order equal quan-
tities from each of a given set of suppliers. If all possible
allocation schemes need to be considered, it is no longer
practical to determine the optimal order quantities on the
basis of the exact shortfall probability. However, this can
be done when replacing the exact shortfall probability by
either the LDT-based or the CLT-based approximation, both
appropriately generalized to allow for general nonidentical
suppliers. Online Appendix B gives a brief discussion of
the former, whereas the remainder of this section is devoted
to the latter.

Consider first an arbitrary scheme %wi� n& to allocate a
given total order Y among the n suppliers. Using the deriva-
tion preceding Theorem 3, the CLT-based approximation
for the exact shortfall probability Pn�Y � w1� n� � � � � wn� n	 is
now given by

�Pn�Y � w1� n� � � � � wn� n	

= Pr

[ �D
Y

>
n∑

i=1

piwi� n − U

√
n∑

i=1

w2
i� n�2

i

]
� (19)

The asymptotic accuracy of this CLT-based approxima-
tion and the asymptotic optimality of the order quantity Y
determined on the basis of this approximation can both be
derived, as a simple generalization of Theorem 3, for any
allocation scheme w that satisfies (13). As a consequence,
we confine ourselves to allocation schemes that satisfy (13).
We merely assume that the standard deviations of the yield
factors are uniformly bounded away from zero. (If any of
the suppliers, i, is completely reliable, i.e., �i = 0, it is, in the

absence of fixed costs, clearly optimal to use this supplier as
the single source and order a quantity �F −1�1 − �	 − I 0�/pi

because one only pays for the effectively produced units.)
Let Y ∗�n � w	

def= min%Y � Pn�Y � w1� n� � � � � wn� n	 � �& =
argminY %

∑n
i=1 piwi� nY � Pn�Y � w1� n� � � � � wn� n	 � �& denote

the total order quantity that minimizes variable pro-
curement costs under the service-level constraint, and
let Y ∗

E �n �w	
def=∑n

i=1 piwi� nY ∗�n �w	 denote the expected
available supply under this set of orders. Let Ỹ �n � w	
and ỸE�n � w	 denote the same quantities based on the
CLT-approximation �Pn for the shortfall probability. Also,
let R�n � w	

def= �
∑n

i=1 wi� npi	
2/�
∑n

i=1 w2
i� n�2

i 	� and �R�n	
def=

max%R�n �w	 
∑n

i=1 wi� n = 1; w� 0&. In the case of iden-
tical suppliers, R�n �w	 reduces to the function R�n �w	 =
��2�

∑n
i=1 w2

i� n	�−1, employed in §5. As in §5, let w∗

denote the allocation scheme that maximizes R�n � w	. In
online Appendix C, we show that �R�n	 = R�n � w∗	 =∑n

i=1�pi/�i	
2 =∑n

i=1 �−2
i , where

w∗
i� n = pi/�2

i(∑n
j=1 pj/�2

j

) � i = 1� � � � � n� (20)

Theorem 4 (CLT-Based Approximation for Nonidenti-
cal Suppliers). Consider an arbitrary allocation scheme
w = %wi� n& satisfying �13	. Also, assume uniform positive
lower bounds p and � such that pi � p and �i � � for all
i = 1�2� � � � �

(a) limn→� �Pn�Y �w1�n�����wn�n	− �Pn�Y �w1�n�����wn�n	�
= 0 for all Y .

(b) limn→�Y ∗
E �n�w	=F −1�1−�	−I 0 = limn→� ỸE�n�w	.

(c) Assume that D has a general c.d.f. F �·	 with support
on the positive half-line. If R�n � w	 > z2

�, ỸE�n � w	 is the
unique root of the equation

Pr
[ �D

ỸE�n �w	
+ U√

R�n �w	
> 1
]

= �� (21)

(d) A feasible solution exists, under some allocation
scheme, if �R�n	 > z2

�.

Proof. (a) Identical to that of Theorem 3(a), replacing
the identities s2

n = n2�2∑n
i=1 w2

i� n by s2
n � n2�2∑n

i=1 w2
i� n,

and m2+@

def= �E�X̂ − q�2+@	1/�2+@	 by m2+@

def= maxi%�E�X̂i −
qi�2+@	1/�2+@	& < �.

(b) Pr�
∑n

i=1 wi� nXiY
∗�n � w	 � �D	 = 1 − �. If the first

limit result fails, there exists a subsequence %nk&�
k=1 such

that F −1�1 − �	−I 0 �= limk→�
∑nk

i=1 wi� nk
piY

∗�nk � w	 =
L � �. W.l.o.g., assume that L < F −1�1 − �	−I 0. (The
case where L > F −1�1 − �	−I 0 is analogous.) Thus, for
some k∗ � 1 and for all k � k∗:

∑nk

i=1 wi� nk
piY

∗�nk � w	 �
1
2 �L + F −1�1 − �	−I 0	, so that

1−�=Pr
( nk∑

i=1

wi�nk
XiY

∗�nk �w	� �D
)

=Pr
( nk∑

i=1

wi�nk
piY

∗�nk �w	� �D
/∑nk

i=1wi�nk
Xi∑nk

i=1wi�nk
pi

)

�Pr
(

1
2

�L+F −1�1−�	−I 0	� �D
/∑nk

i=1wi�nk
Xi∑nk

i=1wi�nk
pi

)
� (22)
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Let >
�n	
i

def= nwi� n�Xi − pi	. Note that �Xi − pi	
2 � 1 a.s., so

that

�i =
√

E��Xi − pi	
2� � 1 (23)

Thus,
∑�

i=1 E�>
�n	
i �2/i2 = ∑�

i=1 n2w2
i� n�2

i /i2 = ∑�
i=1�wi� n/

�1/n	
∑n

j=1 wj� n	2�2
i /i2 � A2∑�

i=1 i−2 < �. The Strong Law
of Large Numbers (see Chow and Teicher 1997, Theo-
rem 1, p. 124), shows that limn→�

∑n
i=1 wi� n�Xi − pi	 =

limn→��1/n	
∑n

i=1 >
�n	
i = 0 a.s. Because

∑n
i=1 wi� npi � p,

we have limn→� �
∑n

i=1 wi� nXi −
∑n

i=1 wi� npi	/
∑n

i=1 wi� npi

= 0 a.s., i.e., limn→�
∑n

i=1 wi� nXi/
∑n

i=1 wi� npi = 1
a.s. The right side of (22) converges to F � 1

2 �L +
F −1�1 − �	−I 0	 + I 0	 < F �F −1�1 − �		 = �1 − �	, as
% �D/��

∑nk

i=1 wi� nk
Xi	/�

∑nk

i=1 wi� nk
pi		&

�
k=1 converges to �D

in distribution (see Chow and Teicher 1997, Corollary 2,
p. 272). Because the left-hand side of (22) equals �1 − �	,
this leads to a contradiction. The proof for the second limit
result is analogous to that of Theorem 3(b).

(c) and (d) The proofs are analogous to the discussion
following Theorem 3. �

Thus, the CLT-based approximation of the probability of
a shortfall continues to be asymptotically accurate for any
set of orders, and the aggregate order determined by this
approximation is asymptotically optimal for any given allo-
cation scheme w that satisfies (13). When n is large, the
aggregate order again approaches what would be ordered
from a single supplier with a completely reliable yield
factor p =∑n

i=1 wi� npi given by the weighted average of
the expected yields of the suppliers. It is noteworthy that
part (c) applies for any allocation scheme w, not just those
satisfying (13), i.e., those under which the asymptotic prop-
erties of the CLT-based approximation can be guaranteed.
However, if, for some allocation scheme w, R�n �w	 > z2

�,
so that a feasible solution exists under the CLT approxi-
mation, it also exists under w∗, the scheme that allocates
orders in proportion to the mean-to-variance ratio of the
suppliers’ yield distribution. Note that in view of the uni-
form lower bounds for %pi& and %�i&, w

∗ satisfies (13). As
in the case of identical suppliers, for a feasible set of orders
to exist under any given allocation scheme w, it suffices
to show that R�n �w	 > z2

�. In particular, for a feasible set
of orders to exist, it suffices that z2

� < �R�n	 =∑n
i=1 �−2

i ,
the number of BSEs represented by the set of suppliers.
Under this condition, feasibility of a set of suppliers can
be assessed on the basis of a single measure characterizing
this supplier set, i.e., its number of BSEs. Moreover, the
condition is independent of the shape of the demand dis-
tribution, its mean and standard deviation included. It is,
in general, considerably harder to identify a simple neces-
sary condition for the existence of a feasible set of orders.
However, when I∗ = 0, i.e., in the absence of a starting
inventory, the inequality R�n �w	 � z2

�, is a necessary con-
dition for the existence of a feasible set of orders under
the allocation scheme w, whereas as mentioned, the strict

inequality R�n �w	 > z2
� is sufficient as well. The proof that

R�n � w	 � z2
� is necessary is analogous to that of Corol-

lary 2(a), itself based on the discussion proceeding that
corollary. For a given scheme w with R�n � w	 > z2

�, the
optimal aggregate order is given by the unique root of (21).
The optimal aggregate order under the best possible alloca-
tion scheme can thus be found, for a general demand distri-
bution, by minimizing the root ỸE�n � w	 over the feasible
range �max��−2

n � z2
�	�
∑n

i=1 �−2
i � for R�n � w	. If the mini-

mum is achieved for R�n � w	 = R∗, say, a corresponding
allocation scheme can again be found; see the discussion
following (14).

In some settings, we may be concerned about the likeli-
hood that the shortfall is in excess of some critical thresh-
old x, not necessarily x = 0. Let Pn�Y � w1� n� � � � � wn� n � x	
denote the exact probability of the shortfall being
larger than x, and �Pn�Y � w1� n� � � � � wn� n � x	 the approx-
imate probability based on the CLT-approximation, i.e.,
�Pn�Y � w1� n� � � � � wn� n � x	 = Pr�� �D + x	/Y >

∑n
i=1 piwi� n −

U
√∑n

i=1 w2
i� n�2

i �. The following corollary is immediate
from the proof of Theorem 4(a).

Corollary 3. Consider an arbitrary allocation scheme
w satisfying �13	. Also, assume uniform positive lower
bounds p and � such that pi � p and �i � � for all
i = 1� � � � � n. The difference between the exact and approxi-
mate probability of the shortfall being in excess of an arbi-
trary level converges to zero:

lim
n→�
[
Pn�Y �w1�n�����wn�n �x	− �Pn�Y �w1�n�����wn�n �x	

]=0

for all Y and all x�

Turning our attention to the case of Normal demands,
we now show that a simple closed-form inequality captures
the necessary and sufficient condition for the existence of a
feasible set of orders. Also, in this case, the optimal order
quantities are available in closed form, and various qualita-
tive insights can be gleaned from these closed-form expres-
sions. For all i = 1� � � � � N , let yi = wi� nY denote the order
for supplier i, under an aggregate order Y and the alloca-
tion scheme w. Let YE =∑n

i=1 piyi =∑n
i=1 piwi� nY denote

the expected effective supply resulting from this order. Any
set of orders can be characterized by the value YE and the
allocation scheme w (Y = YE/�

∑n
i=1 piwi	).

Theorem 5 (Normal Demand Distribution). Assume
that D is Normal with mean � and standard deviation � .
Under the CLT-approximation:

(a) A feasible solution exists if and only if it exists under
the allocation scheme w∗.

(b) A feasible solution exists if and only if condition (F)
is satisfied:

(F) �i	 If I 0 � �� �R�n	 =
n∑

i=1

�−2
i > z2

�2

�ii	 If I 0 > �� �R�n	 =
n∑

i=1

�−2
i � z2

� − �I 0 − �	2/�2�
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(c) Under (F), the optimal set of orders is given by the
allocation scheme w∗ and the expected effective supply
level:

Y ∗
E =



(
1− z2

�

�R�n	

)−1

·
[

��−I 0	+z�

√
��−I 0	2

�R�n	
+�2

(
1− z2

�

�R�n	

)]

if �R�n	=
n∑

i=1

�−2
i �=z2

��

[
z2

��2−�I 0−�	2
]
/
[
2�I 0−�	

]
if �R�n	=

n∑
i=1

�−2
i =z2

� and I 0 >��

(24)

Proof. (a) It suffices to prove the “only if” part of the
equivalency. By (19), under the CLT-approximation, the
service-level constraint can be written as

� � Pr

[
D − I 0 �

n∑
i=1

piwi� nY − U

√
n∑

i=1

�wi� nY 	2�2
i

]

= Pr

[
D − I 0 � YE − U

√
n∑

i=1

y2
i �2

i

]

= �

(
� − I 0 − YE√
�2 +∑n

i=1 y2
i �2

i

)
= 1 − �

(
YE + I 0 − �√
�2 +∑n

i=1 y2
i �2

i

)

⇔ YE + I 0 − �√
�2 +∑n

i=1 y2
i �2

i

� z� = �−1�1 − �	�

and this inequality is equivalent to the pair of inequalities

�YE − � + I 0	2 − z2
�

( n∑
i=1

�2
i y2

i

)
− z2

��2 � 0� (25)

YE � � − I 0 + z��� (26)

(25) can be written as �YE − � + I 0	2 − z2
�Y 2

E ·
�
∑n

i=1 �2
i w2

i� n	/�
∑n

i=1 piwi� n	2 − z2
��2 � 0, or

Y 2
E

(
1 − z2

�

R�n �w	

)
− 2YE�� − I 0	

+ �� − I 0	2 − z2
��2 � 0� (27)

Thus, if the pair �YE�w	 results in a feasible solution, i.e.,
satisfies (25) and (27), so does �YE�w∗	, because �R�n	 =
R�n �w∗	 � R�n �w	. This allows us to state the feasibility
conditions as a linear or quadratic inequality in the single
variable YE only, i.e., (26) in conjunction with

Y 2
E

(
1− z2

�

�R�n	

)
−2YE��−I 0	+��−I 0	2−z2

��2�0� �27′	

(b(i)) If �R�n	 > z2
�, the coefficient of the quadratic term

to the left of (27′) is positive, so that (26) and (27′) are

satisfied for YE bigger than or equal to the largest root of
(27′), i.e.,

YE �
� − I 0

1 − z2
�/ �R�n	

+ z�

√
�� − I 0	2/ �R�n	

�1 − z2
�/ �R�n	�2

+ �2

1 − z2
�/ �R�n	

�
� − I 0

1 − z2
�/ �R�n	

+ z��√
1 − z2

�/ �R�n	
� � − I 0 + z���

(
The other root equals

�1 − z2
�/ �R�n	�−1

·
[
�� − I 0	 − z�

√
�� − I 0	2/ �R�n	 + �2�1 − z2

�/ �R�n	�

]
= ��� − I 0	2 − z2

��2�

·
[
z�

√
�� − I 0	2/ �R�n	 + �2�1 − z2

�/ �R�n	� + �� − I 0	

]−1

� �� − I 0	2

[
�� − I 0	

+ z�

√
�� − I 0	2/ �R�n	 + �2�1 − z2

�/ �R�n	�

]−1

� �� − I 0	2/�� − I 0	 < � − I 0 + z���

)
Conversely, if �R�n	 = z2

� and I 0 < �, (27′) is equivalent to
YE � ��� − I 0	2 − z2

��2�/�2�� − I 0	� = ��− I 0	/2− z2
��2/

�2�� − I 0	� < � − I 0 + z�� , which is inconsistent with
(26). Similarly, if �R�n	 = z2

� and I 0 = �, (27′) fails
to hold for any value of YE . It remains to be shown
that a feasible solution does not exist when �R�n	 < z2

�.
In this case, the quadratic function to the left of (27′)
corresponds with a concave parabola, and a solution
to (26) and (27′) exists only if the quadratic func-
tion has a largest root � � − I 0 + z�� . However, the
largest root, if it exists, is given by �z2

�/ �R�n	 − 1�−1 ·
�z�

√
�� − I 0	2/ �R�n	 + �2�1 − z2

�/ �R�n	� − �� − I 0	� �

�z2
�/ �R�n	 − 1�−1�z�

√
�� − I 0	2/ �R�n	 − �� − I 0	� =

�z�/
√ �R�n	−1�−1�z�/

√ �R�n	+1�−1��−I 0	�z�/
√ �R�n	−1�

< � − I 0 + z�� .
(b(ii)) If �R�n	 > z2

�, (26) and (27′) are, again, satisfied
if and only if YE is bigger than or equal to the largest root
of (27′):

YE � �1 − z2
�/ �R�n	�−1

·
[
��−I 0	+z�

√
��−I 0	2/ �R�n	+�2�1−z2

�/ �R�n		
]

= �z2
��2 − �I 0 − �	2�/[
z�

√
�I 0−��2/ �R�n	+�2�1−z2

�/ �R�n	�+�I 0−�	
]

= �z2
��2 − �I 0 − �	2�
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/[
�I 0 − �	 + z�

√
��I 0 − �	2 − z2

��2�/ �R�n	 + �2
]

� �z2
��2 − �I 0 − �	2�/�z�� + �I 0 − �	�

= z�� − �I 0 − �	 = � − I 0 + z���

(The other root, �1 − z2
�/ �R�n	�−1��� − I 0	 −

z�

√
�� − I 0	2/ �R�n	 + �2�1 − z2

�/ �R�n	�� is negative.) If
�R�n	 = z2

�, (27′) is equivalent to YE � �z2
��2 − �I 0 − �	2�/

�2�I 0 − �	� = z2
��2/�2�I 0 − �	� − �I 0 − �	/2 =

z2
��2/�2�I 0 − �	� + �I 0 − �	/2 + �� − I 0	 � �� − I 0	 +

1
2 minx>0%�z2

��2	x + 1/x& = �� − I 0	 + z�� so that (26)
and (27′) are satisfied for YE larger than or equal to
this root. Finally, if �R�n	 < z2

�, the quadratic function
to the left of (27′) corresponds, as mentioned, with a
concave parabola achieving nonnegative values, only if the
discriminant of the quadratic function is nonnegative. This
verifies the necessity of the inequality in (F)(ii). To verify
its sufficiency, note that under this condition, the smallest
root of the quadratic function satisfies (26) as well because

�z2
�/ �R�n	 − 1�−1

·
[
�I 0 − �	 − z�

√
�� − I 0	2/ �R�n	 + �2�1 − z2

�/ �R�n	�
]

= �I 0 − �	�z2
�/ �R�n	 − 1�−1/[

1 − z�

√
1/ �R�n	 − �z2

�/ �R�n	 − 1	�2/�I 0 − �	2
]

= �I 0 − �	�z2
��2/�I 0 − �	2 − 1�/[

1+z�

√
�1/ �R�n		�1−z2

��2/�I 0 −�	2	+�2/�I 0 −�	2
]

� �I 0 − �	�z2
��2/�I 0 − �	2 − 1�/�1 + z��/�I 0 − �	�

= �I 0 − �	�z��/�I 0 − �	 − 1� = � − I 0 + z���

(The inequality follows from I 0 � � + z�� .)
(c) It is clearly optimal to choose the smallest feasible

value of YE , and to allocate the aggregate order according
to the allocation scheme w∗. The following expressions for
Y ∗

E in (24) are immediate from the proof of part (b). (All
allocation schemes are equally costly in this case, but as
shown above, the scheme w∗ has the best chance of achiev-
ing feasibility and is the only scheme when selecting the
smallest feasible value of YE .) �

Thus, under Normal demand, a minimum number of
BSEs arises as the necessary and sufficient condition for
feasibility, similar to the above sufficient condition for gen-
eral demand distributions. Also, as long as I 0 � �, the
minimum threshold is again given by z2

�. When the ini-
tial inventory I 0 > � includes a safety stock of s0 stan-
dard deviations of demand, whereas the permitted shortfall
probability calls for z� standard deviations, the minimum
number of BSEs is given by z2

� − �s0	2.
Also, when the demand distribution is Normal and

the starting inventory is less than the mean uncovered

demand �I 0 � �	, we have, for any number of sup-
pliers n, and similar to the case of identical suppli-
ers, that the minimum expected available supply is the
same as that required of a single fully reliable supplier,
with a yield factor p′ = �

∑n
i=1 w∗

i� npi	�1 − z2
�/ �R�n		 <∑n

i=1 w∗
i� npi, the actual expected yield factor, and

a larger c.v. of the uncertain uncovered demand√
�1/ �R�n		�1 − z2

�/ �R�n		−2 + �2
�D�1 − z2

�/ �R�n		−1 > � �D �

�D when �D < 1. The required total order is again propor-
tional to the mean uncovered demand and increases with its
c.v. It is now optimal to split the aggregate order in propor-
tion to the suppliers’ mean-to-variance ratio, irrespective
of the size of the aggregate order, the demand character-
istics, or the permitted shortfall probability �. The same
allocation scheme was shown to be optimal by Gerchak and
Parlar (1990) in their EOQ model in which orders can be
split among two suppliers, each with a random yield factor.
This scheme also provides the best opportunity to obtain a
feasible set of orders. Because the N potential suppliers are
ranked in increasing order of the c.v. of their yield factors,
the feasibility condition (F) translates into a simple equiv-
alent lower bound n for the number of required suppliers:

n = min
{

n 
n∑

i=1

�−2
i > z2

�

}
if I 0 � � and

n = min
{

n 
n∑

i=1

�−2
i > z2

� − �s0	2

}
if I 0 > ��

(28)

In the vaccine supply problem, it is striking that the United
States, with a target population of 100 million, relies on two
suppliers, whereas the United Kingdom, with a target pop-
ulation seven times smaller, employs six suppliers. Recall
that each season starts without any inventory. The indepen-
dence of the minimum number of suppliers in (28) with
respect to the size of the target population implies that this
counterintuitive situation could be optimal, but only if there
is reason to believe that U.S. suppliers are considerably
more reliable (or have considerably larger capacity) than
their British counterparts. Finally, it is immediate from (24)
that, at least when I 0 < �, the optimal expected available
supply, and hence the minimum (variable) costs, as deter-
mined by the CLT approximation, are increasing in the c.v.
of the uncovered demand and decrease whenever the set of
suppliers is expanded. It depends on the set of suppliers via
a single measure, i.e., the number of BSEs represented by
this set; Lemma 1 below shows that the optimal expected
supply is convexly decreasing in this number of BSEs.

We have conducted a numerical study to assess the accu-
racy of the CLT-based approximation. We have, in par-
ticular, compared the optimal expected available supply,
as determined by the CLT-based approximation, with that
obtained by an exact analysis, employing the same allo-
cation scheme w∗ in (20), that was shown to be optimal
under the CLT-based approximation. (Recall that it is pro-
hibitively difficult to identify the allocation scheme that is
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optimal under the exact shortfall distribution.) Figure 2 dis-
plays the comparison for instances with a Normal demand
distribution and � = 100, � = 0�025, and two-point yield
distributions with pi = Pr�Xi = 1	 and 1 − pi = Pr�Xi = 0	.
(All instances assume I 0 = 0.) For each supplier i, pi is
independently generated from a uniform distribution on
�0�9�0�95�. Figure 2(a) displays Ỹ ∗

E �n	 and Y ∗
E �n	 as func-

tions of �D for n = 4 and n = 10. Employing the same
parameter combination and �D = 0�2 and 0.4, Figure 2(b)
compares the same values as n is varied from n = 2 to
n = 12. The horizontal axis depicts the values of �R�n	; the
values of Ỹ ∗

E �n	 are displayed as a continuous function of
the �R value; see (24).

Our numerical study shows that the CLT-based approxi-
mation is quite accurate even for small or moderate values
of n. The accuracy increases with � and the values of pi.
As illustrated by Figure 2, the accuracy is rather insensi-
tive to the degree of demand uncertainty—i.e., the value of
�D—whereas, not surprisingly, it increases with the number
of suppliers, or the number of BSEs. Figure 2 also shows
that Y ∗

E is convexly decreasing in �R (as will be shown in
Lemma 1(a)) and convexly increasing in �D. (The latter
property is easily verified analytically from (24) whenever
I 0 � �.)

We now address the problem of selecting the best pos-
sible set of suppliers, considering the total of fixed and
variable operating costs. Confining ourselves to the case
of Normal demands and I 0 = 0, we design a heuristic,
prove its remarkable worst-case optimality gap, and demon-
strate its even more remarkable average performance on
the basis of an extensive numerical study. The algorithm
can be used for arbitrary demand distribution but the proof
of the worst-case optimality gap is specific to the case of
Normal demands. As mentioned, in terms of variable pro-
curement cost, it is best to rank the potential suppliers in
increasing order of the c.v.s of their yield distributions, and
each additional supplier lowers the cost. These results, of
course, may fail to hold when considering the fixed oper-
ating costs, particularly when these differ among the sup-
pliers. Indeed, it may be expected that suppliers who have
invested in more reliable production techniques and quality
control processes incur significantly higher fixed costs K
while benefiting from less-variable yield distributions.

In view of (24), the problem of selecting the optimal set
of suppliers S∗ ⊆ %1� � � � � N & may be formulated as

min
S

%z�S	 S ⊆ %1� � � � � N &&� (29)

where z�S	
def=∑i∈S Ki + C�

∑
i∈S��−2

i 		 and

C�R	
def=


�

�1 − z2
�/R	

(
1 + z�

√
�2

D

(
1 − z2

�

R

)
+ 1

R

)
if R > z2

��

�� if 0 < R � z2
��

(30)

More generally, we may wish to limit the number of sup-
pliers to some maximum N̂ � N , in which case the prob-
lem can be formulated as minS%z�S	 S ⊆ %1� � � � � N & and
�S�� N̂ &. We now show that the selection problem (29) is a
problem of minimizing a supermodular set function. (A set
function h 2%1�����N & → � is supermodular if h�T ∪ %j&	 −
h�T 	 � h�S ∪ %j&	 − h�S	 for all S ⊂ T and j � T .)

Lemma 1. Assume that �D � 2
√

3/z�. (a) The function
C�·	 is convexly decreasing.

(b) The set function z�S	 is supermodular.

Proof. (a) The monotonicity of C�·	 is immediate. To
show that C�·	 is convex on the positive half-line reduces to
showing that it is convex on the half-line �z2

���	: because
C�R	 has the same structural form as Ỹ ∗�n	 in Corol-
lary 2(b), this is immediate from Corollary 2(b). (b) Imme-
diate from part (a). �

As demonstrated in §5, the condition �D � 2
√

3/z� is
without any loss of practical generality.

The class of combinatorial optimization problems that
can be formulated as the minimization of a supermod-
ular set function is broad and has been studied inten-
sively; see, e.g., Nemhauser and Wolsey (1978, 1988),
Nemhauser et al. (1978), and Cornuejols et al. (1977). The
class includes, for example, the uncapacitated plant loca-
tion problem and, more generally, the problem of finding
a maximum weight independent set in a matroid. As such,
the class is NP-complete. In our case, the set function z�S	
is of the special type

z�S	 = f

(∑
i∈S

ai

)
+ g

(∑
i∈S

bi

)
(31)

for a given sequence of positive pairs %�a1� b1	� � � � �
�aN � bN 	& and with f  � → � ∪ %�& and g � → � ∪
%�& convex. Federgruen and Groenevelt (1986) refer to
this structure as “generalized symmetric” set functions. The
following proposition shows that even this subclass is NP-
complete.

Proposition 1. Consider the class � of all set function
minimization problems with set functions of the type �31	.
The class � is NP-complete.

Proof. It suffices to show that for every instance of the
knapsack problem: min%

∑N
i=1 aixi �∑N

i=1 bixi � B and xi =
0�1, i = 1� � � � � N &, there is an instance in � that reduces
to it. Choose f �x	 = x and g�x	 = 0 if x � B; whereas
g�x	 = � for x > B. The problem of selecting the set S
that minimizes (31) is clearly equivalent to the knapsack
problem. �

Because the class � is NP-complete, no exact poly-
nomial time procedure for the selection problem can
be expected. However, Cornuejols et al. (1977) and
Nemhauser et al. (1978) show that a simple greedy pro-
cedure has a low worst-case optimality gap; in practice, it
comes within a few percentage points of optimality.
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Figure 2. Total expected supply: Exact and approximate solutions.
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Normally, the greedy procedure for a set selection prob-
lem operates as follows: starting with the empty set, in
each iteration an element is added to the set whose addition
results in the biggest cost reduction. The greedy procedure
terminates after N̂ iterations (i.e., when the set reaches a
cardinality of N̂ ) or in an earlier iteration if no cost saving
can be achieved by adding a new element to the set. In
our case, a slight modification of the procedure is required
because z�S	 = � if �S� < n; see (28). Thus, the greedy
procedure cannot be started from the empty set, but must
be initiated from a minimum set of suppliers enabling a
feasible solution. We define a set S to be minimally feasi-
ble if

∑
i∈S �−2

i > z2
�, whereas

∑
i∈T �−2

i � z2
� for all T � S.

Let n̄ = min%n 
∑N

i=N−n+1 �−2
i > z2

�&. Clearly, all mini-
mally feasible sets of suppliers have a cardinality between
n and n̄.

Algorithm 1. Supplier Selection Algorithm

INPUT: p1� � � � � pN ; �1� � � � � �N ; K1� � � � � KN ;
�; �; �D; C�·	

STEP 0: n̄  = minn%
∑N

i=N−n+1 �−2
i > z2

�&
STEP 1: FOR i1  = 1 TO N DO

BEGIN
R  = �−2

i1
;

IF �R > z2
�	 THEN

add %i1& to �
ELSE

FOR i2  = i1 + 1 TO N DO

BEGIN
R  = R + �−2

i2
;

IF �R > z2
�	 THEN

add %i1� i2& to �
ELSE

FOR i3  = i2 + 1 TO N DO
���

ELSE
FOR in̄  = in̄−1 + 1 TO N

add %i1� i2� � � � � in̄& to �
ENDIF

���
ENDIF

END
ENDIF

END
STEP 2: For every set S in �, expand the set S greedily

until the set reaches cardinality N̂ or no cost
improvement can be achieved by adding a new
supplier to S.

Because �i � 1, n̄ � �z2
��. In practice, n̄ is usually much

smaller. For example, if all pi � 0�9, n̄ � �z2
�/9� � 2 with

� � 1�1045 × 10−5; if all pi � 0�8, n̄ � �z2
�/4� � 2 with

� � 0�0023. There are at most
(

N

n̄

)
minimally feasible sets

because every set of cardinality n̄ is feasible, but several
such sets may contain the same minimally feasible set. The
bound is tight in case all �i = �.
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Our proposed solution method consists of enumerating
the list � of all minimally feasible supplier sets and apply-
ing the above described greedy procedure to each of them.
The Supplier Selection Algorithm employs an efficient cre-
ation of the list �. Starting from a given minimally feasible
set S ∈ �, the greedy procedure requires O�N 2	 elemen-
tary operations and square root calculations because in each
of up to N iterations, up to N potential supplier sets have
to be evaluated. Because there are at most

(
N

n̄

)
minimally

feasible sets, the algorithm’s complexity is O�N n̄+2	. (As
mentioned, usually n̄ � 2 and the algorithm is of com-
plexity O�N 3	 or O�N 4	.) Let Z∗ denote the total cost
of the optimal set of suppliers and ZG the cost associ-
ated with the set of suppliers generated by the greedy-type
algorithm. Let M denote the maximum cost deterioration
due to the addition of a single supplier to an existing set.
By the convexity of the function C�·	, M = �maxi%Ki +
�C�
∑N

j=1 �−2
j 	 − C�

∑
j �=i �−2

j 		&�+. The following theorem
is immediate from Theorem 4.2 in Nemhauser et al. (1978).

Theorem 6.

�ZG − Z∗�

minS∈��z�S	 − Z∗ + N̂ M�
�

(
1 − 1

N̂

)N̂

� e−1�

Disregarding the correction term N̂ M, the optimality gap
�ZG − Z∗	/�z�S	 − Z∗	 is somewhat unconventional, but,
as argued in Cornuejols et al. (1977), it may actually be
more descriptive of the quality of the heuristic: it relates
the absolute gap between its cost value ZG and the optimal
cost value Z∗ to the span between Z∗ and the cost of an
arbitrary starting solution.

We have evaluated the optimality gap of the Supplier
Selection Algorithm for a collection of 5,637 instances,
4,800 with N = 10, 729 with N = 15, and 108 with
N = 20 suppliers. Recall that the optimality gap assesses
the difference in total costs, when the variable costs are
approximated with the help of the CLT-based approxi-
mation, throughout. This CLT-approximation depends on
the suppliers’ yield distributions only via the means and
standard deviations. All instances in our study employ
a Normal demand distribution with mean � = 100
and two-point distributions for the suppliers’ yields, i.e.

Table 1. Performance: Supplier Selection Algorithm.

N = 10 N = 15 N = 20

pmin ∈ %0�6�0�7�0�8& %0�6�0�7�0�8& %0�6&
pmax ∈ %0�85�0�9�0�95�1& %0�9�0�95�1& %0�9�1&
Nmin ∈ %0�25�0�5�0�75�0�9& %0�25�0�75�0�9& %0�25�0�9&
Nmax ∈ %1�2�3�4& %1�2�4& %1�2�4&
� ∈ %0�01�0�025�0�05�0�1�0�2& %0�01�0�025�0�05& %0�01�0�025�0�05&
�D ∈ %0�1�0�2�0�3�0�4�0�5& %0�1�0�3�0�5& %0�1�0�3�0�5&
Number of instances 4,800 729 108
Percentage of optimal solutions (%) 98.62 97.52 98.15
Average optimality gap (%) 0.01 0.02 0.01
Maximum optimality gap (%) 4.55 2.20 1.27

Pr�Xi = 1	 = pi and Pr�Xi = 0	 = 1 − pi. The values of pi

are selected randomly from a uniform distribution on an
interval �pmin� pmax�. By selecting a large number of dis-
parate pmin, pmax-values, we have evaluated a large spec-
trum of vector pairs %p� �&, the only characteristics of
the suppliers’ yield factors, to affect the cost approxi-
mations. Similarly, the fixed-cost values Ki are gener-
ated randomly from a uniform distribution on an interval
�C� �R�N 		/N 	�Nmin� Nmax�, i.e., the fixed operating costs are
specified as a multiple of the average optimal variable cost
per supplier. Table 1 exhibits the values of pmin, pmax, Nmin,
Nmax, �, and �D chosen for each of these sets of instances
with N = 10, N = 15, and N = 20 suppliers. (In each case,
all parameter combinations have been evaluated.) The table
displays for what percentage of instances the heuristic gen-
erates the optimal solution, as well as the average and the
maximum optimality gap. We conclude that the heuristic
is almost always generating the optimal solution and the
average optimality gap is negligible.

7. Conclusions and Extensions
Traditional supply chain management has emphasized the
benefits of consolidating supply sources. When there is
a significant probability that all or some of a manufac-
turer’s targeted supply does not become available because
of disruptions or quality problems, this provides a pow-
erful rationale to spread the supply over multiple suppli-
ers. This raises the questions of which set of suppliers to
patronize, how much to order in the aggregate, and how to
allocate the aggregate order among the selected suppliers.
Exact analysis reveals that, asymptotically as n → �, the
expected available supply under an optimal set of orders
equals what would be ordered from a single completely
reliable supplier. Moreover, asymptotically, all allocation
schemes which assume that relative market shares remain
bounded in the number of suppliers, are optimal. For small
or moderate values of n, the allocation scheme is, how-
ever, of major importance. We have shown that even in
the simplest case with identical suppliers, equal-size orders,
the intuitively best allocation scheme, are guaranteed to be
optimal only if the p.d.f. of the demand distribution is non-
increasing, and it is prohibitively difficult to determine the
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optimal allocation scheme on the basis of the exact shortfall
probabilities.

We have therefore developed an LDT- and a CLT-based
approximation method for the shortfall probabilities. Both
methods have been shown to be highly accurate. The
former (LDT) has the advantage of generating a rigor-
ous upper bound for the total order size and the vari-
able procurement costs. The CLT-based approximation is
asymptotically accurate and the order sizes determined
by this method are asymptotically optimal as the num-
ber of suppliers grows. With Normal demands, the optimal
total order size as well as the ones obtained by the two
approximations, are proportional to the mean uncovered
demand, with a proportionality factor that is an increasing
function of � or �D.

The CLT-based approximation method also permits many
important managerial insights. For example, we have, for
general demand distributions under the CLT approxima-
tion, derived a sufficient condition for a set of suppliers
to be feasible, which is completely determined by a sin-
gle measure, i.e., the number of BSEs represented by the
set. A set of potential suppliers is feasible if the total num-
ber of BSEs is strictly larger than z2

�, irrespective of the
characteristics of the demand distribution. (When I 0 = 0,
the number of BSEs being larger than or equal to z2

� is
also necessary.) As far as the shape of the suppliers’ yield
distributions is concerned, only the c.v. values of these dis-
tributions matter. Based on this feasibility condition, the
minimum number of suppliers required is thus given by
min%n �∑n

i=1 �−2
i > z2

�&. The suppliers’ safety margin, i.e.,
the additional BSEs beyond the minimum required number,
allows for a reduction of the variable procurement costs.
The above assumes that orders are split among the sup-
pliers in proportion to the mean-to-variance ratios of their
yield distributions. This allocation scheme is always opti-
mal in terms of facilitating feasibility: if a feasible solution
fails to exist under this allocation scheme, it fails to exist
under any other scheme as well. When the demand distri-
bution is Normal, the number of BSEs being strictly larger
than z2

� is, in fact, not only sufficient but also necessary
whenever the starting inventory is less than or equal to the
mean demand. When it is larger than the mean demand,
the same condition continues to be necessary and sufficient
except that the minimum number of BSEs, z2

�, needs to be
reduced by �s0	2; with s0 the number of standard deviations
of demand, the starting inventory is in excess of the mean.
We refer to §1 for a summary of many additional insights
obtained on the basis of the CLT-approximation.

Next, we have addressed the problem of identifying a set
of suppliers that minimizes all (fixed plus variable) costs,
along with the associated set of orders. We have shown
that under Normal demands, a greedy-type heuristic of low
polynomial complexity for a fixed value of � has a worst-
case optimality gap of 36.8%. An extensive numerical study
shows that the heuristic finds the optimal selection in 98.5%
of the 5,637 instances and has an average optimality gap

of only 0.015%. The managerial implication here is that
little, if anything, is lost when gradually expanding one’s
supplier base, as compared to establishing an “optimal” set
of suppliers at once.

The analysis in this paper has assumed that the yield
factors of the suppliers are independent. In some settings,
supply risks may be correlated, for example, when natu-
ral disasters (storms, floods) or sabotage by terrorists are
likely to hit multiple facilities in a given geographic region.
(Recall the oil refineries example in §1.) To address these
interdependencies, assume that the vector of yield factors
%Xi i = 1� � � � � N & has a general joint distribution, with
correlation factors Mij = corr�Xi� Xj	 1 � i �= j � N . The
analysis based on the CLT-approximation is easily adapted
to account for any interdependence of the yield factors. The
service constraint (19) is now to be replaced by

�Pn�Y � w1� n� � � � � wn� n	

= Pr
[ �D

Y
>

n∑
i=1

piwi� n − U
√
w′�w

]
� �� (32)

where the n × n-matrix � has Oii = �2
i and Oij =

�i�jMij . For any allocation scheme w, redefine R�n � w	 =
�
∑n

i=1 wipi	
2/w′�w. Part (c) of Theorem 4 and Theorem 5

continue to apply with this adjusted specification of the
function R�n �w	. Moreover, the allocation scheme w∗ that
maximizes R�n �w	 continues to simultaneously (i) provide
the best chance for the existence of a feasible solution, and
(ii) in the case of Normal demands, minimize variable pro-
curement costs. This allocation scheme w∗ continues to be
independent of any of the demand characteristics as well as
the permitted shortfall probability �. Moreover, it depends
on the suppliers’ yield distributions only via their vector
of means p and their variance-covariance matrix �. This
optimal scheme w∗ no longer allocates the aggregate order
in proportion to the mean-to-variance ratios of the suppli-
ers’ yield distributions because the correlation pattern now
impacts on the allocation. Although no longer available in
closed form, w∗ can still be computed efficiently: redefining
r∗�b	

def= min%w′�w/b2 � ∑n
i=1 wi� n = 12

∑n
i=1 piwi� n = b&,

�R�n	 = max%R�n � w	 � ∑n
i=1 wi = 1& continues to satisfy

the identity �R�n	 = 1/�minpmin�b�pmax
r∗�b	�. Note that for a

given value of b, evaluation of r∗�b	 now amounts to solv-
ing a quadratic convex program, identical to those solved
in the classical Markowitz mean-variance trade-off analysis
of financial portfolios; see Markowitz (1952) or any ele-
mentary finance textbook like Brealey and Myers (1996).
The computation of w∗ thus amounts to the solution of a
parametric quadratic program, with only two (linear) con-
straints. Most specifically, the closed-form expressions for
the minimum expected effective supply in Theorem 5 con-
tinue to apply, under Normal demands, merely replacing
�R�n	 =∑n

i=1 �−2
i by the above expression. Similarly, one

can continue to use Algorithm 1 to optimize total (fixed
plus variable) costs and the worst-case optimality gap in
Theorem 6 continues to apply.
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Finally, the approximation �Pn in (32) can still be justified
on the basis of a central limit theorem, provided the depen-
dence between the yield factors is sufficiently “weak.” Here
we need to be able to rank the suppliers in such a way
that the “degree of dependence” between any pair of sup-
pliers i and i + m declines to zero sufficiently fast as m
tends to infinity for any i � 1. The degree of dependence is
best quantified by the so-called ��m	 mixing coefficients;
see, for example, Definition 3.41 in White (1999). In this
case, the Wooldridge-White central limit theorem (see, e.g.,
Theorem 5.20 ibid) can be used to show that the short-
fall distribution, properly scaled and centralized, converges
to a Normal distribution. For example, if the interdepen-
dence between the suppliers’ yield factors arises due to
geographic proximity (as in the case of oil refineries), it is
natural to rank the suppliers in accordance with their geo-
graphic locations. It is then indeed reasonable to assume
that the degree of dependence between Xi and Xi+m, as
measured by the �-mixing coefficient, declines to zero suf-
ficiently fast. The sequence %Xn& may, for example, be
assumed to follow a general ARMA process, in which case
the �-mixing coefficients decline geometrically; see, e.g.,
Mokkadem (1988). We defer the many details required for
a formal proof to a future treatment.

Future work will address other various important gener-
alizations of the model, allowing, for example, for supplier-
dependent variable cost rates and capacity limitations,
as well as multiple replenishment opportunities over a
complete planning horizon.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Endnotes
1. “In recent years there have been many significant dis-
ruptions of vaccine supplies. Between November 2000 and
May 2003, there were shortages of 8 of the 11 vaccines
for childhood diseases in the United States including those
for tetanus, diphtheria, whooping cough, measles, mumps,
and chicken pox. There have been flu vaccine shortages or
miscues for four consecutive years.” See New York Times
(2004, p. A20).
2. This assumes � − z�� > 0, i.e., the probability of the
Normal demand distribution adopting a negative value is
itself less than �.
3. Several procurement models with unreliable suppli-
ers restrict themselves to this case, e.g., Anupindi and
Akella (1993) and Swaminathan and Shanthikumar (1999).
Bernoulli random yield factors represent settings where a
supply disruption results in a complete shutdown of the
facility, as in the case of hurricanes or contamination result-
ing in the closure of a vaccine supply plant.

4. The interchange of the differentiation and the ex-
pectation operators is justified by the fact that EX̂�e-X̂� =∫ 1

0 e-xd �G�x	. Assume first that there are m � 0 loss fac-
tors where %xi 1�2� � � � � m& such that Pr�X̂ = xi� = Pi

and let ĝ�·	 be the density of the continuous part of the
�G�·	 distribution. Thus, L�-	 = E�e-X̂� = ∑m

i=1 Pie
-xi +∑m+1

i=1

∫ xi

xi−1
e-xĝ�x	 dx, where x0 = 0 and xm+1 = 1. There-

fore, l′�-	 = ∑m
i=1 Pixie

-xi + ∑m+1
i=1

∫ xi

xi−1
xe-xĝ�x	 dx =

EX̂�X̂e-X̂�, where the interchange of the integration and dif-
ferentiation operators is justified by the fact that the two-
variable function �x� -	 → xe-xĝ�x	 is continuous on each
of the rectangles �xi−1� xi	 × �0� -̄�, i = 1� � � � � m + 1. The
remaining case with a countable number of values %xi& such
that Pr�X̂ = xi� = Pi is positive can be handled in a simi-
lar way.
5. Theorem 3(a) does not imply that the exact and approx-
imate shortfall probabilities are of the same order. The
asymptotic optimality result in Theorem 3(b) follows
nevertheless.
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