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Aflexible product is a menu of two or more alternative, typically substitute, products offered by a constrained
supplier using a sales or booking process. The supplier reserves the right to assign customers who purchase
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be an airline offering a morning flight consisting of specific flights serving the same market. Flexible products
are currently offered by a number of industries including air cargo, tour operators, and Internet advertising.
Flexible products have the advantage of increasing overall demand and enabling better capacity utilization at
the cost of potentially cannibalizing high-fare demand for specific products. This paper introduces the concept
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products and discuss extension of the approach to more general settings.
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1. Background and Introduction
We define a flexible product as a set of two or more
alternatives serving the same market such that a pur-
chaser of the flexible product will be assigned to one
of the alternatives by the seller at a later date. This
is in contrast to a specific product which, by definition,
consists of a single alternative. For example, an airline
passenger typically books a specific flight. If his first
choice is not available at an acceptable price, he may
book on a less preferred alternative or may choose
not to travel. However, in addition to these specific
products, an airline could also offer flexible products,
each of which consists of a set of two or more flights
serving the same market. A customer purchasing a
flexible product would be guaranteed service by one
of the alternatives, but the airline would not assign a
specific flight until a later date.1

As an example of a flexible product, consider an
airline with three morning flights from New York’s

1 The time at which the buyer of a flexible product is informed may
vary from a few weeks to a day before departure, depending on
airline policy.

Kennedy airport (JFK) to San Francisco International
airport (SFO). One flight departs at 8:00 a.m. and
arrives at 11:00 a.m., the second departs at 9:00 a.m.
and arrives at 12:30 p.m., and the third departs at
11:00 a.m. and arrives at 2:00 p.m. Customers can book
seats on any one of the three flights as usual. How-
ever, in addition to these three specific products the
airline might also offer a flexible product, say “JFK–
SFO morning,” at a discount. Customers purchasing
the JFK–SFO morning product would be guaranteed
a seat on one of the three flights, but they would not
be informed which flight until later. The airline would
have the luxury of observing specific demand for each
of the individual flights before assigning the flexible
passengers to the morning departures.
Although we have couched the definition in terms

of an airline, flexible products are common in a num-
ber of other industries, such as Internet advertising,
air cargo, tour operators, multiple property manage-
ment, and opaque fares.
Internet Advertising. Internet service providers (ISPs)

such as Yahoo, MSN, and Lycos sell capacity on differ-
ent properties to advertisers, where the properties con-
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sist of pages devoted to topics such as sports, finance,
weather, maps, etc. Advertisers can purchase space on
individual properties or they can buy capacity on a
cheaper run-of-network basis. If they purchase run of
network, the service provider can choose, effectively in
real time, which property will host the advertisement.
Some advertisers have a strong preference for a cer-
tain property: Nike might want its advertisements to
appear on the sports page whereas American Airlines
might want its ads to appear on the business page.
These advertisers will tend to purchase specific capac-
ity. Other advertisers who are more indifferent regard-
ing placement (or are simply more price sensitive) can
purchase the less expensive run of network and take
their chances on where their ads will be placed. The
total capacity of an ISP is fixed and equal to the sum
of the capacities of its individual properties. Thus, run
of network is a flexible product and individual prop-
erties are specific products. At least one ISP has set a
booking limit on its sales of run of network in order to
retain sufficient capacity to sell on a specific product
basis.
Air Cargo. The majority of air cargo is sold on a reser-

vation basis, similar to passenger sales. Shippers—
primarily forwarders and consolidators—book capac-
ity for their shipments on specific flights. This is
known as a flight-specific booking. In addition to flight-
specific bookings, however, some carriers offer time-
definite products, in which the carrier specifies only the
pick-up time and the delivery time. In this case, the
carrier has the option to choose the flights it pleases
to carry the shipment, subject only to the pick-up and
delivery requirements. Here, the time-definite offering
is a flexible product.
Tour Operators. European tour operators such as

Airtours and Thompson sell tour packages that
include both air transportation and lodging. For a
popular destination such as Ibiza or the Costa del Sol,
an operator will have space agreements with many
different hotels. When she books her tour, a customer
can specify a particular property within the resort. Or,
for a discount, she can specify a desired quality level
(say three stars) and the tour operator will choose
the property for her. Under this flexible product alter-
native, the tour operator will assign the customer to
whichever property will maximize profitability.

Multiple Property Management. Major hotel chains
such as Marriott, Sheraton, or Hilton often oper-
ate several properties within a single metropolitan
location such as Manhattan or San Francisco. These
chains have the opportunity to sell a general location-
based product to travellers who are largely indifferent
among the specific properties within the general loca-
tion. The Disney corporation faces a similar oppor-
tunity at Disney World, where it operates a number
of different hotels, some with specific themes. There
are travellers who strongly prefer a particular hotel,
whereas others may be indifferent as long as the hotel
is within Disney World.
Opaque Fares. Over the past decade, a number of

Internet travel sellers such as Priceline and Hotwire
have offered so-called opaque fares for hotels and air-
lines. Using an airline opaque fare, the purchaser
buys a ticket (often at a discount) for a particular
origin-destination and flight date without knowing
the itinerary, airline, or exact flight-departure and
flight-arrival times. He is informed of these details
only after the purchase is consummated. Opaque fares
were created specifically as an inferior product that
could fill capacity without excessively cannibalizing
full-fare demand.
Although opaque fares fit our definition of flexi-

ble products, it should be noted that currently they
are primarily offered by distributors such as Priceline
and Hotwire, rather than by the airlines themselves.
In this situation, an airline makes inventory available
to a distributor at a discount fare. The distributor can
then combine that inventory with other inventory in
the same market as an opaque product at a higher
fare. For example, Delta might quote a fare of $250
for some Altanta–Denver round-trip seats to a distrib-
utor. The distributor could then combine these seats
with inventory from another carrier (say United) and
offer an Atlanta–Denver opaque product at a fare of
(say) $270. The distributor allocates purchasers of the
opaque product among the inventory based on a pro-
cedure pre-agreed with United and Delta. In this sit-
uation, the problem facing Delta and United is how
many seats they should offer to the distributor at the
discount fare, which is no different from the standard
single-leg revenue management problem.
Flexible products could potentially be used in any

situation in which a company offers several products
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that some customers will consider as close substitutes,
whereas others have strong preferences for a specific
product. For example, in made-to-order manufactur-
ing sellers could offer options under which a cus-
tomer could either choose a specific slot or choose a
less expensive flexible option under which delivery is
guaranteed by some future date but the seller has the
choice to choose the actual slot within that date.
Flexible products offer two advantages to sellers:

Risk Pooling. Flexible products can improve capac-
ity utilization because customers can be assigned
to products after demand uncertainty about spe-
cific products has been largely resolved, allowing
the supplier to hedge against demand and capacity
unbalances.

Demand Induction. Flexible products will be
viewed as inferior to specific products by most con-
sumers. This potentially allows them to be sold at
a lower price than the specific products without
excessively cannibalizing specific product demand.
At sufficiently low fares, flexible products may induce
demand from a segment of the population that would
have not purchased a specific product.2

Although flexible products offer advantages, there
is the risk is that poorly managed flexible products
could lead to revenue deterioration through canni-
balization of higher fare demands. Sellers of flexible
products will need new approaches in order to maxi-
mize profitability and prevent excess cannibalization.
We investigate the case of a supplier with fixed

perishable capacity offering a combination of flexi-
ble and specific products. In this case, the problem of
managing and pricing flexible products belongs to the
widely studied field of revenue management. A sum-
mary of the extensive revenue management literature
can be found in Talluri and van Ryzin (2004). Because
the majority of this literature relates to airlines, we
will pose our analysis in terms of an airline. However,
the reader should bear in mind that the concept is
much more broadly applicable and, in fact, Internet
service providers and tour operators, among others,

2 The idea of offering an inferior product at a lower price to stimu-
late demand is not new: It is the motivation behind airline discount
fares with advance-purchase and Saturday-night-stay restrictions.
Moreover, airlines limit the availability of the discount fare inferior
products to reserve capacity for full-fare demand.

are currently utilizing flexible products more widely
than the airlines do.
Airlines, hotels, and other service providers have,

of course, long been aware of the risks presented by
the combination of uncertain demand and immedi-
ately perishable capacity and a number of mecha-
nisms have been proposed to help manage this risk.
The most venerable of these mechanisms is over-
booking—accepting more bookings on a flight than
available capacity. Typically, overbooking has been a
way for airlines to hedge against the risks of cancel-
lations and no-shows. For this reason, overbooking
models usually assume that the denied boarding cost
of refusing a booked passenger is greater than the
highest fare Rothstein (1971). If the denied boarding
cost is less than the highest fare, an optimal policy
allows overbooking—even in the absence of cancella-
tions or no-shows. In this case, overbooking is done
with the purpose of improving revenues by bumping
lower-fare passengers in favor of higher-fare passen-
gers. However, this bumping strategy is inconvenient
for passengers, inflexible for airlines, and can result in
high costs associated with involuntary denied board-
ing and reaccommodation if bumped passengers need
to be rebooked on a competing flight.
Another relevant mechanism is the sale of deeply

discounted stand-by tickets. Stand-by passengers are
only accommodated if there are fewer shows from
guaranteed bookings than the available capacity. If a
stand-by passenger is not accommodated on the flight
she booked, she will be accommodated on a future
departure for the same destination that has available
capacity. Stand-bys are similar to flexible products,
with the difference that the stand-by ticket purchaser
is not a priori guaranteed accommodation on one of
a given set of flights. Thus, stand-bys are usually ana-
lyzed as a form of hedge against no-shows and over-
bookings, as in Rothstein (1971), rather than as a way
to improve capacity utilization.
Talluri (2001) has proposed a flexible-booking

approach for the case in which passengers are
indifferent among a number of routing alternatives
between an origin-destination pair. He calls a collec-
tion of such alternatives a route set. He proposes an
immediate acceptance and routing heuristic for cus-
tomers seeking to purchase a route set based on cur-
rent leg bid prices. A booking request for a route set
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would be accepted if and only if its fare exceeded the
minimum total bid price among alternatives within
the route set. A customer who purchased from the
route set would immediately be routed (and booked)
on the alternative within the route set with the min-
imum total bid price. The flexible product approach
we propose is considerably more general than the
route set concept. Specifically, we do not assume that
passengers are necessarily indifferent among the alter-
natives within a flexible product. In addition, we
allow the airline the ability to route passengers pur-
chasing flexible products near departure rather than
at the time of booking.
Although flexible products appear to offer many

advantages, it is not immediately clear how availabil-
ity of these products should be managed by a seller
offering both flexible and specific products. An air-
line offering only flexible products, each of which
consists of a disjoint set of specific products, could
manage each flexible product as a single flight with
capacity equal to the total capacity of the constituent
specific products. However, when a supplier offers a
combination of flexible and specific products, it is not
clear what kind of booking limits or nesting structures
should be used. In this paper, we show that there
can be significant differences in profitability, depend-
ing on the booking control mechanism used. We also
show that, under reasonable assumptions, the bene-
fits from offering flexible products can make it worth-
while to consider them as part of the overall market
offering.
To our knowledge, the problem of managing flex-

ible products has not been previously studied. The
network management problem for specific products
has been extensively studied in the airline by a num-
ber of authors including Phillips (1993), Talluri and
van Ryzin (1998), Gallego and van Ryzin (1997),
and Bertsimas and Popescu (2003), and in the hotel
context by Bitran and Gilbert (1996), among others.
However, these network management models do not
incorporate the possibility of flexible bookings. In fact,
flexible products can be considered an extension of
the classic network management problem studied by
these authors in a very specific fashion: Flexible prod-
ucts enable customers to purchase combinations of
specific products linked by a Boolean “exclusive or”
operation. Each specific product is a set of one or

more resources linked by a Boolean “and” opera-
tion.3 Thus, the concept of flexible products can be
seen as extending the scope of revenue management
to include combinations of resources linked by an
“exclusive or” operation.
In this paper, we analyze in detail the two-period,

two-flight case for an airline offering a flexible
product in addition to specific products. We com-
pare different control structures for flexible and
specific bookings and derive algorithms for determin-
ing booking limits. We show that, under some condi-
tions, it is optimal for a carrier to allow overbooking
when managing flexible bookings, even in the absence
of no-shows or cancellations. We present a consumer
choice model that includes both the demand induc-
tion and cannibalization that would result from offer-
ing a flexible product. We use simulation to compare
results under the various control structures and for
different pricing scenarios, and provide insights into
both the demand induction and risk-pooling bene-
fits that an airline could achieve from offering flexi-
ble products. Finally, we discuss the extension of our
analysis to full airline networks with arbitrary specifi-
cations of flexible products. Although we develop our
model in the context of passenger airlines, the results
extend directly to any industry that accepts bookings
for multiple products or services using constrained
capacity or inventory.

2. Two-Product Problem
Assume that an airline has two flights, say A and
B, serving the same market, e.g., from the same ori-
gin to the same destination. Passengers book in two
periods. In the first period, the airline sells flexible
product �A�B� in addition to specific products at dis-
counted fares. In the second period the airline sells
specific products A and B, but not the flexible product
�A�B�. At some time after the end of the first period,
the airline can allocate the customers who purchased
�A�B� among flights A and B as it wishes. However,
they must be accommodated on either flight A or
flight B or the airline pays a denied boarding penalty

3 This is a very general characterization; in practice, specific prod-
ucts usually consist of a sequence of flights connecting to an origin
and a destination, whereas each flexible product would include pri-
marily flights (or flight sequences) serving a particular market.
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to each passenger denied space. In addition, specific
passengers must be accommodated on the flight that
they choose or the airline must pay a denied boarding
penalty to each unaccommodated passenger.
Notice that our model does not allow the sale

of flexible products during the second period. This
reflects the fact that customers who arrive in the sec-
ond period are willing to pay a premium, in the form
of higher fares, for the privilege of selecting the spe-
cific product they want late in the booking process.
Offering flexible products to these customers might
backfire because the discount needed to induce them
to purchase a flexible product can be large, and flex-
ible sales would then cannibalize full-fare demand.
Another reason not to sell flexible products during
the second period is that the time lag between the
booking of a flexible product and the resolution of
allocation is part of what makes a flexible product an
inferior product.
We will study the problem of managing bookings

for both flexible products and specific products in this
simple setting under two scenarios: when the airline
allows overbooking and when it does not.
Define

cA� cB = Capacity of flights.
g = Fare paid by flexible passengers during first

period.
gA�gB = Fare paid by specific passengers during first

period.
f A� f B = Fare paid by specific passengers during sec-

ond period.
Y = Demand for flexible passengers during first

period.
Y A�Y B = Demands for specific passengers during

first period.
DA�DB = Demands for specific passengers during

second period.
b = Maximum number of flexible bookings

accepted during first period.
bA
1 � bB

1 = Maximum number of flight specific book-
ings accepted during first period.

bA� bB = Maximum number of flight specific book-
ings accepted during second period.

d = Gross penalty for each passenger denied
boarding.

We assume that 0 < g < min�gA�gB�. Note that we
have specified the overbooking penalty d as a gross

penalty, that is it is the sum of the ill-will cost, reac-
commodation cost, and direct cost paid per denied
boarding. We assume for simplicity that this cost is
independent of the number and the mix of denied
boardings. We further assume that d > f j > gj for
j =A�B. The assumption that the gross denied board-
ing cost exceeds all fares is standard, otherwise it
is optimal for a revenue-maximizing airline to set
no booking limit on a fare that exceeds the denied
boarding cost.
In this model, the airline needs to decide how

many units to make available for flexible and spe-
cific bookings during the first period and how to
manage the remaining capacity during the second
period. We assume that booking limits are set at the
beginning of a period and cannot change during that
period. The objective is to maximize the expected rev-
enue net of denied boarding costs. We assume that the
airline does not overbook in the first period; in other
words, bj

1 ≤ cj , j =A�B, b ≥ 0 and b+bA
1 +bB

1 ≤ cA + cB.
This assumption is realistic because airlines typically
reserve at least some capacity to satisfy the demand
for higher-fare products during the second period.
The expected revenue during the first period is

given by

gAEmin�Y A� bA
1 �+ gBEmin�Y B� bB

1 �+ gEmin�Y � b��

Let sj = min�Y j� b
j
1� denote the number of seats

booked by flight-specific passengers, j = A�B during
the first period, and let s =min�Y � b� denote the num-
ber of flexible seats booked during the first period.
Notice that �sA� sB� s� is known at the beginning of
the second period. Let r j ≡ cj − sj , j =A�B denote the
residual capacity of the flights at the beginning of the
second period and let

c�sA� sB� s�≡ rA + rB − s ≥ 0

denote the total residual capacity at the beginning of
the second period. (For brevity, we will often write
c for c�sA� sB� s�.) Given the vector r = �rA� rB� c� of
residual capacities, we want to determine how many
seats, bj ≥ 0, to make available for sale for flight
j =A�B during the second period. Under a static con-
trol policy, the parameters bj , j = A�B are decided
at the beginning of the second period before observ-
ing Dj , j = A�B. Later, we will consider the case
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where bookings over the second period are managed
dynamically.
Define

H�bA�bB�=f AEmin�DA�bA�+f BEmin�DB�bB� (1)

Ĥ�bA�bB�c�

=H�bA�bB�−dE
(
min�DA�bA�+min�DB�bB�−c

)+
� (2)

Then, when overbooking is not allowed, the optimal
expected profit during the second period is given by

h�rA� rB� c�≡max
bA� bB

H�bA� bB�

subject to integer bj , j =A�B, satisfying 0≤ bj ≤ r j and
bA+bB ≤ c. When overbooking is allowed, the optimal
expected profit is given by

ĥ�rA� rB� c�≡max
bA� bB

Ĥ�bA� bB� c�

subject to 0 ≤ bj ≤ r j , j = A�B. The last term in
Equation (2) represents expected denied boarding
costs.
If overbooking is not allowed in the second period,

the first-period problem is to select �bA
1 � bB

1 � b� to max-
imize the expected profit

��bA
1 �bB

1 �b�

= gAEmin�Y A�bA
1 �+gBEmin�Y B�bB

1 �+gEmin�Y �b�

+E
[
h�cA−min�Y A�bA

1 ��cB−min�Y B�bB
1 ��c

A+cB

−min�Y A�bA
1 �−min�Y B�bB

1 �−min�Y �b��
]
� (3)

where the maximization is over integers satisfying
0≤ bi

1 ≤ ci for i = A�B such that bA
1 + bB

1 + b ≤ cA + cB.
If overbooking is allowed in the second period, the
first-period problem is to maximize

�̂�bA
1 �bB

1 �b�

=gAEmin�Y A�bA
1 �+gBEmin�Y B�bB

1 �+gEmin�Y �b�

+E
[
ĥ�cA−min�Y A�bA

1 ��cB−min�Y B�bB
1 ��c

A+cB

−min�Y A�bA
1 �−min�Y B�bB

1 �−min�Y �b��
]
� (4)

It is evident that �̂ ≥� and that

lim
d→


�̂�bA
1 � bB

1 � b�=��bA
1 � bB

1 � b��

which implies that, for sufficiently large d, it will not
be optimal to overbook in the second period, and the

optimal first-period allocations will be the same with
and without overbooking.
We will concentrate on solving the second-period

problem and later return to address the first-period
problem. Throughout, we will assume that there are
no cancellations and that all booked customers show
up at the gate.

2.1. Second-Period Allocation Without
Overbooking

The problem without overbooking may arise either
as a policy choice by the airline or as a result of a
very high denied boarding cost d. Because the second-
period expected profit is increasing4 in bj ≤ cj − sj ,
j = A�B when bA + bB < c, it follows that any
optimal solution must satisfy bA + bB = c. Notice that
bA + bB = c is equivalent to assigning r j − bj of the s

first-period flexible bookings to flight j = A�B at the
beginning of the second period. Under this policy, the
airline could inform flexible customers of the alloca-
tion. Later, we will discuss dynamic policies where the
assignment may be done later in the booking process.
The second-period problem without overbooking is

h�ra� rb� c�=max
bA� bB

H�bA� bB�

s.t. 0≤ bj ≤ r j for j =A�B

bA + bB ≤ c

bA� bB integer�

Note that the objective function is concave. Let F j �x�≡
Pr�Dj ≥ x� and consider the expected marginal seat
revenues

EMSRj �x� ≡ f jEmin�Dj� x�− f jEmin�Dj� x− 1�

= f jF j �x� for x ∈ �1� � � � � r j �� j =A�B�

Let EMSR�k� rA� rB� be the kth largest value in the set
�EMSRj �x��1 ≤ x ≤ r j� j = A�B�. We will follow the
convention that sums over empty sets are zero.

Theorem 1.

h�rA� rB� c�=
c∑

k=1
EMSR�k� rA� rB�� (5)

4 We use the terms increasing and decreasing in the weak sense.
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Proof. Suppose that bA� bB is an optimal allocation.
Then

h�rA� rB� c� = f AEmin�DA�bA�+ f BEmin�DB� bB�

= f A
bA∑
k=1

F A�k�+ f B
bB∑

k=1
F B�k�

=
bA∑
k=1

EMSRA�k�+
bB∑

k=1
EMSRB�k��

We now argue by contradiction that EMSRA�k��k =
1� � � � � bA and EMSRB�k�; k = 1� � � � � bB represent, col-
lectively, the c largest EMSR values in the set
�EMSRj �x��1 ≤ x ≤ r j� j = A�B�. If not, then either
EMSRA�bA + 1� > EMSRB�bB� or EMSRA�bA� <

EMSRB�bB + 1�. In the former case, �bA + 1� bB − 1� is a
better allocation, and in the latter case �bA − 1� bB + 1�
is a better allocation, contradicting the optimality of
�bA� bB�. �

Finding the optimal allocation is similar to a bin-
packing problem that reserves c seats for the most
valuable second-period bookings, as measured in
terms of their EMSR values.
Example. If f A = $350, f B = $330, DA follows a

Poisson distribution with parameter 50, DB follows
a Poisson distribution with parameter 40, rA = 60,
rB = 38, and c = 83, then �bA� bB�= �47�36� is an opti-
mal allocation and

h�60�38�83� = $350Emin�DA�47�+$330Emin�DB�36�

= $27�470�09�

Moreover, EMSRA�47� = $239�16, EMSRB�36� =
$250�00, EMSRA�48� = $220�62, and EMSRB�37� =
232�21. Thus,

h�60+ i�38+ j�84� = h�60�38�83�+EMSRB�37�

= $27�702�30

for all nonnegative integers i and j . Finally,

h�60�38�82�=h�60�38�83�−EMSRA�47�=$27�230�93�

Theorem 1 suggests two simple algorithms to find
an optimal allocation depending on the size of s rela-
tive to c + s. If s = 0, then bj = r j , j = A�B is optimal.
This is, of course, the trivial single-period solution
when only specific products are offered. If s is small

relative to c+s, then it is efficient to seek the s smallest
EMSR values and subtract those from the allocation
r j . If c is small, however, then it is more efficient to
find the c largest EMSR values.

2.2. Second-Period Allocation with Overbooking
Here we consider the situation where overbooking
is allowed and there is a finite value of the denied
boarding penalty d. To compute ĥ�rA� rB� c� in this sit-
uation we need to study the marginal expected rev-
enue for 0≤ bj ≤ r j , j = A�B. It is easy to see that an
optimal solution will satisfy bA + bB ≥ c and that
overbookings will occur only if bA + bB > c. The
restriction to bj ≤ r j is imposed without loss of gener-
ality because the expected marginal seat revenue net
of overbooking costs is negative for bj > rj because
f j < d.
We can write the second-period allocation problem

with overbooking as

ĥ�rA� rB� c�=max
bA� bB

Ĥ�bA� bB� c�

s.t. 0≤ bj ≤ r j for j =A�B

bA� bB integer�

For bA ≤ rA, bB ≤ rB such that bA + bB > c we can
write the different equations as

�AĤ�bA� bB� c� ≡ Ĥ�bA� bB� c�− Ĥ�bA − 1� bB� c�

= F A�bA� f A − dF B�c+ 1− bA�!

for bA ≤ rA (6)

�BĤ�bA� bB� c� ≡ Ĥ�bA� bB� c�− Ĥ�bA� bB − 1� c�

= F B�bB� f B − dF A�c+ 1− bB�!

for bB ≤ rB� (7)

To see why Equation (6) holds, notice that the bAth
booking will generate marginal revenue f A only if
DA ≥ bA, and will cause an additional denied board-
ing only if DA ≥ bA and DB ≥ c+ 1− bA.
From Equations (6) and (7) we can see that the func-

tion Ĥ�bA� bB� c� is unimodal with respect to bA and
with respect to bB, although not necessarily concave
in those variables. Notice further that Equation (6) is
independent of bB and Equation (7) is independent of
bA when bA + bB > c and bj ≤ r j , j =A�B.
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Because �AĤ�bA� bB� c� is independent of bB and is
decreasing in bA ≤ rA we can find the largest bA ≤ rA

such that �AĤ�bA� bB� c� ≥ 0. Similarly, we can find
the largest bB ≤ rB such that �BĤ�bA� bB� c�≥ 0.
We will present two ways of obtaining an opti-

mal solution for the second-period allocation prob-
lem with overbooking. The first will start from an
optimal solution without overbooking and sequen-
tially increase the allocation �bA� bB� as long as the
objective function Ĥ�bA� bB� c� continues to increase.
This approach has the advantage that it calculates the
incremental value of allowing overbooking as well as
the optimal allocation. The second approach is more
direct because it does not require calculation of the
optimal solution to the allocation problem without
overbooking. However, it also does not directly com-
pute the gain from allowing overbooking.
To develop the first algorithm, we require the fol-

lowing lemma:

Lemma 1. Let �bA� bB� be an optimal solution with-
out overbooking. Then, for any d > 0 there is an optimal
solution with overbooking, �b̄A� b̄B�, such that b̄j ≥ bj for
j =A�B.

Proof. Suppose this is not the case. Then, by inter-
changing the labels A and B if necessary, there exists
an optimal solution of the form �bA−k� bB+ j+k� with
j ≥ 0 and k > 0. Notice that

EMSRA�bA − k+ 1�≥ EMSRA�bA�≥ EMSRB�bB + j + k��

Moreover, the last quantity is strictly larger than the
expected marginal revenue minus denied boarding
cost of the bB + j + kth booking. This shows that
the allocation �bA − k + 1� bB + j + k − 1� has higher
expected net revenue than the allocation �bA − k�

bB + j + k�. By repeating this argument, if necessary,
we see that there exists an optimal solution of the
stated form. �

From Lemma 1, we know we can start our search
for an optimal allocation with overbooking from an
optimal allocation without overbooking. Starting at
the optimal allocation without overbooking, we can
increase the allocations as long as the expected net
marginal revenues calculated by Equations (6) and (7)
are positive. We can use this result to develop an algo-
rithm to calculate the second-period allocations when
overbooking is allowed.

Algorithm to Compute Optimal Second Period
Allocations and Optimal Expected Profit
with Overbooking
(1) Compute an optimal solution �bA� bB� to the

problem without overbooking as in Theorem 1. Let
� = f AEmin�bA�DA� + f BEmin�bB�DB� be the corre-
sponding expected profit.
(2) If bA = rA and bB = rb, stop. Otherwise, calculate

�iĤ�bA� bB� c� for i = A�B such that bi ≤ r i according
to (6) and (7). If both are less than or equal to zero,
then stop. Otherwise go to Step 3.
(3) Add the highest �iĤ�bA� bB� c� to � and update

the allocation to �bA� bB� ← �bA + 1� bB� if the highest
EMSR was from A, and �bA� bB� ← �bA� bB + 1� if the
highest EMSR was from B. Go to Step 2.
Example (cont’d). If rA = 60, rB = 38, c = 83, and

d = 450, then �b̄A� b̄B� = �48�38�. Note that the resid-
ual capacity at the beginning of the second period
is c = 83 seats, whereas the optimal allocation will
allow up to 48 + 38 = 86 bookings, meaning that it
is optimal for the airline to accept the possibility
of up to three denied boardings. The calculation
of �b̄A� b̄B� = �48�38� and the associated expected
profit, ĥ�60�38�83� can be illustrated in terms of the
steps from the optimal solution without overbooking,
�bA� bB� = �47�36�, as shown in Table 1. In this exam-
ple, the additional expected revenue net of expected
denied boarding costs from allowing overbooking is
equal to $21.63 or about 0.08% of the expected rev-
enue without overbooking.
There is another, more direct, characterization of

the optimal second-period allocations with overbook-
ing that can simplify the calculation of the optimal
allocations.

Theorem 2. Let xA be the smallest integer such that
F B�x� ≤ f A/d. Similarly, define xB as the smallest integer
such that F A�x�≤ f B/d. If xA+xB ≤ c+1, then an optimal

Table 1 Calculation of ĥ�60�38�83� in Example

Term Expression Value

“No overbooking” 350Emin�DA�47� $27�470�09
solution +330Emin�DB�36�

First additional seat �330− 450F A�47��F B�37� $15�84
Second additional seat �350− 450F B�36��F A�48� $5�73
Third additional seat �330− 450F A�46��F B�38� $0�06

Total $27�491�71



Gallego and Phillips: Revenue Management of Flexible Products
Manufacturing & Service Operations Management 6(4), pp. 321–337, © 2004 INFORMS 329

overbooking allocation is given by b̄j =min�r j� c+1−xj�,
j =A�B.

Proof. Suppose that xA + xB ≤ c+ 1, then b̄A + b̄B ≥
c+ 1, so the allocation �b̄A� b̄B� overbooks at least one
seat. The expected marginal revenue net of overbook-
ing costs of the b̄j th seat is nonnegative, and becomes
negative for the bj + 1st seat for j = A�B. Thus, it is
optimal to include the b̄j th seat for j = A�B, but it is
not optimal to allocate additional seats. �

Corollary 1. Suppose that �b̄A� b̄B� = �c + 1 − xA,
c + 1− xB� is an optimal overbooking allocation and that
xA + xB ≤ c, so the allocation overbooks at least two seats.
Then �b̄A − 1� b̄B − 1� is an optimal overbooking allocation
when we reduce the residual capacity from c to c− 1.

Proof. From Theorem 2, �c − xA� c − xB� = �b̄A − 1�
b̄B − 1� is an optimal allocation for c− 1. �

This means that over a certain range the optimal
overbooking allowance decreases by two seats for each
additional flexible seat sold during the first period.
Example (cont’d). Here xA = 36 and xB = 46 and

xA+xB =82≤84, so �b̄A�b̄B�= �84−36=48�84−46=38�
is an optimal overbooking allocation that overbooks
three seats. If we reduce c to 82, the new optimal allo-
cation is �47�37�. If we reduce c to 81 the new opti-
mal allocation changes to �46�36�, coinciding with the
allocation without overbooking.
Theorem 2 simplifies the computation of an opti-

mal policy, but it does not give us the expected opti-
mal profit. However, the expected optimal profit can
be computed as follows: Let �bA� bB� be an optimal
solution when overbooking is not allowed and let
�b̄A� b̄B� ≥ �bA� bB� be an optimal solution when over-
booking is allowed. Then, the additional expected rev-
enue from allowing overbooking can be calculated
simply by adding up the expected marginal seat rev-
enues, that is,

b̄A∑
k=bA+1

 f A − dF B�c+ 1− k�!F A�k�

+
b̄B∑

k=bB+1
 f B − dF A�c+ 1− k�!F B�k��

Corollary 2. Suppose that it is optimal to allow for
overbookings. Then there is an optimal allocation �b̄A� b̄B�

such that b̄A is increasing in f A, decreasing in d, and

Figure 1 Feasible Policies With and Without Overbooking

cB – s

cA – sA

cA + cB – s cA + cB – s

without overbooking with overbooking

bB bB

bA bA

(a) (b)

decreasing as the full fare demand DB stochastically in-
creases. A symmetric statement holds for b̄B.

Figure 1 shows why it may be optimal to set allo-
cations that allow overbooking in the second period,
even in the absence of no-shows and cancellations. The
shaded region represents the available capacity for an
airline that has flights with seating capacities of cA and
cB and has already accepted s flexible-product book-
ings. On the one hand, if the airline decides not to
allow overbooking, it is constrained to set its book-
ing limits bA and bB such that bA + bB = cA + cB − s.
On the other hand, if it allows overbooking, the
number of possible booking policies is significantly
expanded. Intuitively, allowing overbooking is opti-
mal if the expected incremental gain from expanding
the booking limits for the specific products outweighs
the expected incremental risk of outcomes that would
lead to bookings in the overbooking region.

2.3. Second-Period Dynamic Allocation
In this section, we consider dynamically allocating
seats in the second period. Suppose that the second
period consists of T time intervals, and assume that at
most one request for the high-fare product for either
A or B (but not both) occurs during each time inter-
val. This is similar to the booking model introduced
by Lee and Hersh (1998). We will let

h̃�rA� rB� c�= V �0� rA� rB� c�

denote the optimal expected revenue from dynam-
ically managing the residual capacity during the
second period, where V �t� r� can be calculated recur-
sively according to

V �t� r�= V �t + 1� r�+ ∑
j=A�B

pj  f j −�jV �t + 1� r�!+�
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where pj ≥ 0 is the probability of a type j arrival,
pA + pB ≤ 1, �jV �t� r� = V �t� r� − V �t� r − ej�, eA =
�1�0�1�, eB = �0�1�1�, V �T + 1� r� = 0, V �t� r� = 0 if
the total residual capacity, i.e., the third component
of r , is zero, and V �t� r� = −
 if either the first or
the second component of r is negative. Note that this
formulation assumes that a booking request of type j ;
j =A�B will be accepted in period t = 0�1� � � � � T only
if f j ≥�jV �t + 1� r�.
We remark that it is easy to expand the dynamic

formulation to time-varying arrival probabilities,
time-varying fares, and to the case where flexible
sales are allowed over the entire horizon, or a portion
thereof. We also note that the second-period dynamic
allocation approach will never result in overbooking.

2.4. First-Period Problem
We now turn to the problem of calculating the first-
period allocations. At the beginning of the first period
we need to determine the booking limits �bA

1 � bB
1 � b�.

Recall that the demands for discount flight-specific
products for A and B and flexible products in the
first period are denoted by Y A�Y B, and Y , respec-
tively, with corresponding fares gA�gB, and g. Define
Gi�x� ≡ Pr�Y i ≥ x� for i = A�B and G�x� ≡ Pr�Y ≥ x�.
Assume that overbooking is not allowed in the second
period. For r = �rA� rB� c� ≥ �1�1�1�, a simple conse-
quence of Theorem 1 gives

�Ah�r� ≡ h�r�−h�r − eA�

= max
(
EMSRA�rA��EMSR�c� rA� rB�

)
�Bh�r� ≡ h�r�−h�r − eB�

= max
(
EMSRB�rB��EMSR�c� rA� rB�

)
�F h�r� ≡ h�r�−h�r − eF �= EMSR�c� rA� rB��

Recall also that ��bA
1 � bB

1 � b� is the expected total
profit across both periods as specified in Equation (3).
Define the marginal profits by

�A��bA
1 � bB

1 � b� ≡ ��bA
1 � bB

1 � b�−��bA
1 − 1� bB

1 � b�

for bA
1 ≥ 1

�B��bA
1 � bB

1 � b� ≡ ��bA
1 � bB

1 � b�−��bA
1 � bB

1 − 1� b�

for bB
1 ≥ 1

���bA
1 � bB

1 � b� ≡ ��bA
1 � bB

1 � b�−��bA
1 � bB

1 � b− 1�

for b ≥ 1�

Then, we have, as an immediate corollary to Theo-
rem 1

Corollary 3.

�A��bA
1 �bB

1 �b� =
{
gA−ErB�c �

Ah�cA+1−bA
1 �rB�c+1�!

}
·GA�bA

1 �

= {
gA−ErB�c

[
max

(
EMSRA�cA+1−bA

1 ��

EMSR�c+1�cA−bA
1 +1�rB�

)]}
GA�bA

1 �

�B��bA
1 �bB

1 �b� =
{
gB−ErA�c �

Bh�rA�cB+1−bB
1 �c+1�!

}
·GB�bB

1 �

= {
gB−ErA�c

[
max

(
EMSRB�cB+1−bB

1 ��

EMSR�c+1�rA�cB+1−bB
1 �
)]}

GB�bB
1 �

���bA
1 �bB

1 �b� =
{
g−ErA�rB

[
�F h�rA�rB�rA+rB+1−b�

]}
·G�b�

= {
g−ErA�rB

·[EMSR�rA+rB+1−b�rA�rB�
]}

G�b��

Let us start by analyzing the case of high EMSR val-
ues. If EMSRj �cj � > gj > g for j =A�B, then it is easy
to verify that �bA

1 � bB
1 � b� = �0�0�0� satisfies the first-

order conditions. Consequently, it is only when the
EMSR values fall below gA and gB that we start seeing
action during the first period. To gain some intuition,
we will now study two special cases. The first is the
traditional case where we do not offer flexible prod-
ucts. In this case, b = 0, so

EMSR�rA + rB� rA� rB� = min�EMSRA�rA��EMSRB�rB��

≤ f jF j �r j ��

This implies that

�j��bA
1 � bB

1 �0�=  gj − f jF j �cj + 1− b
j
1�!G

j�b
j
1��

so the traditional EMSR rule applies; namely to make
b

j
1 = �cj −xj�+ seats available for sale at fare gj , where

xj is the largest integer such that f jF j �xj � ≥ gj for
j =A�B.
Consider now, the case where only flexible products

are sold during the first period. In this case b
j
1 = 0 for

j =A�B, then

���0�0� b�=  g −EMSR�cA + cB + 1− b� cA� cB�!G�b��

This suggests that we set b = �cA + cB −x�+ where x is
the largest number such that EMSR�x� cA� cB�≥ g.
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The challenge is to extend the analysis to the case
when we allow both the forward selling of specific
and flexible products. One reasonable point of depar-
ture is the traditional EMSR solution that reserves xj

seats for specific demands for flight j during the sec-
ond period. This makes b

j
1 = �cj − xj�+ seats available

for sale at gj . Notice that if the demands Y j , j =A�B
were such that Gj�b

j
1�= 1, then we can sell all of the b

j
1

seats at gj and we would not want to offer the flexible
product. When the demands at gj are weaker, we may
end up selling sj � b

j
1 seats and we would regret not

allowing the sales of these seats at g. This suggests
that selling flexible seats is only interesting when the
demands Y j , j =A�B are not very strong.
The following proposition gives an upper bound on

b
j
1, j =A�B:

Proposition 1. b
j
1 ≤ �cj − xj�+ where xj is the largest

integer such that f jF f �xj �≥ gj for j =A�B.

Proof. Consider the gradient �Ah at �cA −xA�++1.
Then

�A�
(
�cA − xA�+ + 1� �cB − xB�+� b

)
≤ [

gA − f AF A�min�cA�xA��
]
GA�bA

1 �

≤  gA − f AF A�xA�!GA�bA
1 �

≤ 0�

A similar argument holds for flight B. �

Proposition 1 suggests a simple heuristic. Start with
b

j
1 = �cj − xj�+, j = A�B and search for the optimal
number of flexible bookings to allow during the first
period. The answer is the largest b such that

ErA� rBEMSR�rA + rB + 1− b� rA� rB�≤ g�

From this point, we can iterate between reducing the
values b

j
1, j = A�B for a fixed b and increasing b

for fixed b
j
1, j = A�B until total expected profit is no

longer increasing. Our simulations indicate that this
heuristic converges very quickly, usually after two
or three iterations, to what appears to be a globally
optimal solution.5 We use a similar heuristic for the
case where overbookings are allowed in the second
period, and when second-period bookings are man-
aged dynamically.

5 Our simulations also show that expected revenue is very flat
around this locally optimal point.

3. Numerical Results
In this section, we present numerical results for vari-
ous settings of the problem parameters with and with-
out overbooking. The purpose of these simulations is
to gain insight into the benefits that an airline might
achieve from flexible products, the relative magni-
tude of the risk pooling and demand induction ben-
efits of flexible products, and the benefits of allowing
overbooking.

3.1. Risk-Pooling Benefits
In the first set of simulations we focus on estimat-
ing the risk-pooling benefits from flexible products.
We consider two flights A and B with identical capac-
ities, cA = cB = 100 and two booking periods. In the
second period, only full-fare specific bookings are
received. The full fare is $200 and full-fare demand for
each flight follows independent Poisson distributions
with )A

2 = 75 and )B
2 = 25. We will compare the rev-

enue obtained from the case when the airline offers
only specific products in the first period to the case
where the airline offers only flexible products in the
first period. We will hold the expected total demand
for the first constant in both cases so that the differ-
ence in revenue between the two cases can be con-
sidered a measure of the risk-pooling benefits from
offering flexible products.
In the base case, we assume that only specific prod-

ucts are offered during the first period at a discount
(i.e., no flexible products are offered). Each discount-
specific passenger pays $150 and demands follow
independent Poisson distributions with )A

1 = 80 and
)B
1 = 40. In this case, the optimal booking limits for the

two flights are bA = 31 and bB = 78 and the associated
expected total revenue for both flights is $29,178.
We compare the base case to the situation in which

only the flexible product is offered in the first period
(i.e., no specific products are offered in the first
period). We assume that the demand for the flexi-
ble product is the sum of the low-fare demands for
the specific products. More precisely, we assume that
the demand for the flexible product is Poisson with
mean )

f
1 = )A

1 +)B
1 = 120. Because the flexible product

is inferior to the specific products, we anticipate that
we would have to sell it at a discounted price to keep
the demand at the same level as it was. Suppose that
to achieve this we need to sell the flexible product at
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Table 2 Expected Revenue for Different Flexible Fare Levels,
Assuming No Demand Induction

Static control Change from Dynamic control Change from
Alpha revenue ($) base (%) revenue ($) base (%)

1 34�123 17�0 34�306 17�6
0.9 32�516 11�4 32�774 12�3
0.8 30�944 6�1 31�224 7�0
0.7 29�410 0�8 29�701 1�8
0.6 27�914 −4�3 28�205 −3�3

Note. The base case is offering only discount flight-specific products in the
first period with a corresponding total revenue of $29,178.

fare f f = $150* where * ≤ 1. We will compute the
expected profit for different *s and compare this to the
expected profit of offering only specific products dur-
ing the first period. The difference can be considered
a measure of the benefit of risk pooling net of the dis-
count needed to keep the aggregate demand constant.
The Static Control Revenue column in Table 2 shows

the expected maximum revenue that could be gained
from both flights assuming that only flexible products
are offered in the first period and that static control
without overbooking is applied to full-fare bookings
in the second period. In other words, booking limits
bA and bB are set optimally at the beginning of the
second period with bA + bB = cA + cB − s where s is
the number of flexible bookings accepted in the first
period. Full-fare bookings for each flight in the sec-
ond period are then given by min bi�Di! for i =A�B,
where Di is unconstrained demand. The Dynamic Con-
trol Revenue column shows the expected maximum
revenue that could be achieved from full dynamic
control of second-period full-fare bookings using the
dynamic program described in §2.3. Revenue under
both control mechanisms is compared against the base
case under which specific products are offered at a
discount in the first period. As expected, the expected
total revenue from dynamic control of full-fare book-
ings is greater than that achieved from static control.
It is interesting that in these cases, however, the vast
majority of the benefits from flexible products can be
achieved through static control.
Table 2 shows that the risk-pooling benefits pro-

vided by flexible products can be significant, even
in the absence of any induced demand. Under static
control, offering flexible products in the first period
provides higher revenue than offering specific prod-
ucts, as long as the fare for the flexible products is

greater than 70% of the specific fare—assuming that
total expected demand remains the same.

3.2. Demand Induction and Cannibalization
For a more realistic estimate of the potential benefits
of offering flexible products, we simulated the case
when flexible products stimulated higher demand
but also cannibalized demand from discount-specific
products. To simulate the effect of offering a flexible
product, we use a simple consumer-choice model that
estimates both demand induction and cannibalization
in a consistent fashion. Specifically, we assume that
the fraction of buyers with a maximum willingness-
to-pay (w.t.p.) for specific products has a joint dis-
tribution over �2

+ of g�wA�wB�. We further assume
that the total number of buyers is a Poisson random
variable with parameter ) and that the w.t.p. distri-
bution is independent of the total number of buy-
ers. Finally, we assume that, for each customer, the
maximum w.t.p. for the flexible product is a function
of his w.t.p.s for the specific products according to

w�wA�wB�= pwA + �1− p�wB −,�

where p is the customer’s probability that he will be
assigned to flight A and ,≥ 0 is his reduction in w.t.p.
for the flexible product. Conceptually, , is the value
of information that the buyer of the flexible prod-
uct would pay to know to which flight she would
be assigned at the time of booking. In a fully general
model, both p and , would be random variables, pos-
sibly correlated with wA and wB. However, for sim-
plicity we assume that p = 1/2 (the maximum-entropy
assumption), and that both p and , are constant across
the population.
For this model, we have assumed no recapture

among products. That is, if a customer does not
find his first choice available, he does not purchase.
Although this is not fully realistic, it simplifies calcu-
lations and is fairly standard in revenue management
analysis. It is also a conservative assumption—it tends
to reduce the benefits of offering the flexible prod-
uct because we have assumed that the customers who
seek to buy the flexible product but cannot because of
the booking limit are lost, whereas in reality some of
them would be willing to buy the specific products.
For these simulations, we set the flight capacities

at cA = cB = 100. As before, we consider two periods.
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Table 3 Simulation Results for �= 10

Flexible Total Change
fare ($) �A1 �B1 �f1 bA bB b revenue ($) (%)

60�00 4�82 0�42 299�23 14 4 88 25�495 −12�73
70�00 14�36 4�75 244�09 26 12 75 27�450 −6�03
80�00 24�61 9�78 191�81 31 18 65 29�195 −0�06
90�00 34�86 14�82 145�21 31 19 60 30�335 3�84
100�00 45�12 19�85 104�30 31 22 56 31�187 6�76
110�00 55�37 24�89 69�09 31 26 52 31�925 9�29
117�54 63�10 28�69 46�31 31 36 48 32�257 10�42
120�00 65�62 29�93 39�57 31 42 48 32�126 9�97
130�00 75�88 34�96 15�74 31 56 36 30�506 4�43

Base 83�74 40�00 0 31 78 0 29�212 0�00

In the first period, both flexible products and dis-
count specific products are offered. The total popula-
tion of buyers in the first period has mean ) = 444.
The w.t.p. of buyers for flights A and B are given
by independent uniform distributions on �0�W A� and
�0�W B�, respectively. The appendix describes how
total demand for the flexible product and the two
specific products, including both induction and can-
nibalization effects, can be calculated for this model.
For our simulation, we set W A = 186 and W B = 168.
In the second period, only full-fare specific prod-
ucts can book. The full fares for each flight are $200
and the discount fares $150. The full-fare demands
were assumed Poisson with parameters )A

2 = 75 and
)B
2 = 25.
Tables 3 and 4 show the results for , = $10 and

, = $30, respectively. )i for i = A�B�f are the mean
demands for each product including induction and
cannibalization. bA� bB, and b are the optimal booking
first-period booking limits for A�B, and the flexible
product respectively. In each case, offering flexible
products at a very low fare leads to a loss in total

Table 4 Simulation Results for �= 30

Flexible Total Change
fare ($) �A1 �B1 �f1 bA bB b revenue ($) (%)

50�00 14�36 4�75 244�09 27 13 71 25�986 −11�05
60�00 24�61 9�78 191�81 31 19 64 27�917 −4�43
70�00 34�86 14�82 145�21 31 21 58 29�156 −0�19
80�00 45�12 19�85 104�30 31 23 54 30�089 3�00
90�00 55�37 24�89 69�09 31 25 51 30�878 5�70
97�54 63�10 28�69 46�31 31 37 47 31�368 7�38
100�00 65�62 29�93 39�57 31 42 46 31�344 7�30
110�00 75�88 34�96 15�74 31 56 36 30�191 3�35
Base 83�74 40�00 0 31 78 0 29�212 0�00

revenue because the loss from cannibalization exceeds
the gain from demand induction. However, at a suf-
ficiently high fare, offering flexibles begins to show
positive benefits. These benefits begin to decline when
the flexible fare becomes high enough that it is no
longer inducing enough new demand to outweigh
cannibalization. When the flexible fare is equal to
$150− ,, the benefit from offering flexibles drops to
zero, because they no longer induce any additional
demand. Total expected revenue as a function of flex-
ible fare for both cases is shown in Figure 2.
We note that, for , = 10, the expected demand for

all three products at any flexible fare g is the same as
the expected demands for ,= 30 at a fare g − $20�00.
However, for ,= 10 the value of b is higher at g then
for ,= 30 at g−$20�00, because flexibles are relatively
more valuable at the higher fare. Consequently, the
maximum achievable expected revenue is higher with
the lower value of ,. Similar reasoning shows that, for
this choice model, maximum achievable expected rev-
enue from offering flexible products is a decreasing
function of ,.

Figure 2 Expected Revenue as a Function of Flexible Fares
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4. Summary and Extensions
In this paper we introduced the concept of flexi-
ble products and derived some revenue-management
approaches for a supplier offering both flexible and
specific products. We showed that, under reasonable
assumptions, optimal booking limits can exceed the
total seating capacity available, even in the absence
of no-shows or cancellations. We derived simple algo-
rithms for computing booking limits on both specific
and flexible products in the two-flight, two-period
case, both when overbooking is allowed and when
it is not. We also formulated a dynamic program for
optimal acceptance of flexible and specific bookings
on a booking-by-booking basis. We used simulation
to illustrate the potential benefits of flexible prod-
ucts both in terms of pure risk pooling, and under a
consumer-choice model that represented both demand
induction and cannibalization. Although managing
flexible products adds complexity to the revenue
management problem, our simulation indicates that
offering flexible products can significantly improve
profitability. The increased profitability comes from
the following two sources.
• The lower price of the flexible product attracts ad-

ditional customers who would otherwise not choose
to purchase.
• Flexible products enable companies to wait for

uncertainty on specific product demand to be re-
solved before the flexibles are assigned to products.
This enables better usage of capacity.
Our simulations suggest that, under reasonable

assumptions, the benefits of offering flexible bookings
could be considerable—even when cannibalization
from discount-specific products is included. The ben-
efits vary widely depending on the unconstrained
demand for specific products and how specific
demand is distributed between flight alternatives. The
results indicate that flexible products would have the
highest benefit when the constituent-specific products
have total demand that is low relative to capacity and
when specific demand is unevenly distributed among
flights (again, relative to capacity). For the parameters
we chose, the value of overbooking was quite small
relative to total revenue. Further research is needed
to determine if this a general result.
The most immediate area for research is to extend

the approach to a full network consisting of many

flexible and specific products. Gallego et al. (2004)
consider a fluid model over a network for both the
independent demand model and for a class of con-
sumer choice model. This model considers the choice
of which flexible products should be offered before
departure, as well as the booking limits that should be
set in order to maximize expected revenue. The prob-
lem reduces to a linear program that can be efficiently
solved by column generation for an important class of
choice models. Gallego et al. (2004) also shows how
the benefits of offering flexible products changes as
a function of total demand for a network with fixed
capacity.
Further issues for future research include the

following.
(1) Incorporation of General Consumer Choice Models.

A flexible product is not only an economic substi-
tute for each of the specific products it contains—
those specific products are also substitutes for each
other. Thus, we could expect that closing any of the
availabilities of the products might increase demand
seen for the others. The implications of such substi-
tutability for optimal revenue management of single
flights has been studied to some extent (see Belobaba
and Weatherford 1996, Andersson 1998, Talluri and
van Ryzin 2004) but much less is known about the
impacts of cross-flight substitution of specific products
(see Belobaba and Hopperstadt 1999). An alternative
model has been proposed by Gale and Holmes (1992,
1993), who consider a model under which consumers
are initially uncertain about which flight they would
prefer, but whose uncertainty resolves at the begin-
ning of the second period.
A shortcoming of our consumer choice model is the

implication that customers whose first choice would
be to purchase the flexible product but who are not
able to do so do not purchase at all. In reality, some
fraction of those customers (in fact, all of those who
had been cannibalized from the discount specifics)
would be willing to purchase one of the specific prod-
ucts. Our model is consistent with the assumption of
the majority of previous revenue management stud-
ies that demand for all products is independent of
which other products and fare classes are open and
closed. A more-realistic model would explicitly repre-
sent the increased demand for specific products once
the flexible product was closed. Since this can only
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result in higher revenue, the benefits of offering flexi-
bles under the more-realistic model will only increase.
The benefits of offering flexible products under a gen-
eral model of consumer demand on a network is
addressed in Gallego et al. (2004).
(2) Competitive Models. In this paper, we have as-

sumed that offering low-price flexible products can
induce additional demand. In reality, much of this
induced demand would be drawn from competitors
who are not offering flexible products. In this case,
a competitor who is unable to offer flexible products
(due to a limitation in his booking system, say), might
retaliate by lowering his own specific fares. We could
also consider the case of two competing carriers: Both
can offer flexible products in a market but one has
more flight frequencies. Does the ability to offer flex-
ible products favor the carrier with greater flight fre-
quency? If so, by how much and to what extent can
the other carrier overcome this advantage by lower
prices?
(3) Alternative Control Structures. We have investi-

gated the benefits of offering flexible bookings when
they are managed by setting a limit on their total
availability. We believe this is the control structure
that would be easiest for suppliers to implement,
given existing reservation systems. Furthermore, we
would expect that different fare classes for the same
flexible product would be nested.
However, a simple limit on flexible bookings is not

necessarily the best approach in all cases. In some sit-
uations more revenue might be generated through an
alternative nesting approach. For example, in nesting
by fare all products, both specifics and flexibles, could
be nested on each leg according to total fare with a
flexible product closing entirely if it is closed on any
of its constituent legs. Although this approach might
generate additional revenue in some cases, it easy to
construct realistic cases in which it is inferior to the
booking limit approach. For example, if there is a high
level of anticipated full-fare demand for one specific
product (say A) and low level for another (say B) it
might be optimal to keep selling the flexible product
consisting of A and B even if all discount products
on A are closed—including those with higher fares.
Comparison of alternative control structures for flexi-
ble products and determination of which one is “best”
is an open issue, with the caveat that all such control

structures are always inferior to the ideal of dynami-
cally managing booking requests.
(4) Variations. In this model, we have assumed that

the airline has complete discretion on which specific
product to assign to a flexible customer. One vari-
ation would be to allow the flexible passenger to
rank her alternatives. The airline could use one of a
variety of schemes to match flexible customers with
available flights in a way that best accommodates the
customer’s stated preferences. Alternatively, airlines
could book the flexible passengers to a flight at the
time of booking, or any time thereafter. This is the
approach investigated by Talluri (2001) and actually
used by the discount sales brokers Hotwire and Price-
line. This approach unquestionably makes the flexi-
ble product more appealing to consumers, but this is
a two-edged sword—anything that makes the flexi-
ble product more appealing increases cannibalization
from the higher-fare specific products. Understanding
how these tradeoffs would work in order to design
the right portfolio of flexible products for an airline
to offer is an open research topic.
Finally, although we have presented our analysis of

flexible products entirely in a passenger airline con-
text, we believe that the concept is applicable to any
seller of products or services who uses different ele-
ments of capacity and faces uncertain demand. For
any such manufacturer or service provider, offering
flexible products has the potential to both increase
demand and better balance demand with capacity. We
are currently investigating the application of the flexi-
ble product concept to contract manufacturing, which
shares these characteristics.
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Appendix. Consumer Choice Model
The consumer-choice model assumes that fraction of buyers
with maximum w.t.p. for specific products A and B has a
joint distribution over �2

+ of g�wA�wB�. We further assume
that the total number of buyers is a Poisson random vari-
able with parameter ), and that the w.t.p. distribution is
independent of the total number of buyers. Let f i be the
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discount fare for flight i = A�B. Then, when only specific
products A and B are offered (i.e., no flexibles):

)A
1 �f A� f B�= )1

∫ 


f A

∫ wA−f A+f B

0
g�wA�wB�dwA dwB�

where )i
1�f

A� f B� is the Poisson parameter for demand for
flight i = A�B. A similar expression holds for )B

1 �f
A� f B�.

We assume that w.t.p. follows a joint uniform distribution
between 0 and W i for i =A�B. Let Si =W i −f i be the maxi-
mum surplus for i =A�B. We will assume that Si > 0. Then

)A
1 �f A� f B� = )1

[
�SA + f B�SA − 0�5�SA�2 − 0�5�SA − SB�2+

]
W AW B

)B
1 �f

A� f B� = )1

[
�SB + f A�SB − 0�5�SB�2 − 0�5�SB − SA�2+

]
W AW B

�

Assume now that we add a flexible product with fare
f < min�f A� f B�. We assume that the w.t.p. for the flexi-
ble product for a customer with specific w.t.p.s wA�wB is
w�wA�wB�= pwA + �1− p�wB −,, where p is the customer’s
probability that he will be assigned to flight A. , is the
reduction in w.t.p. for the flexible product. It is the value of
information that the buyer of the flexible product would pay
to know which flight he would be assigned to at the time of
booking rather than later. In a fully general model, both p
and , would be random variables, possibly correlated with
wA and wB . For this simple model, however, we will assume
that p = 1/2 (the maximum entropy assumption) and that ,
is constant across the population.
Now we can estimate the magnitude of the demand

induced by the flexibles as well as the amount of demand
cannibalized from each of the specific products. The
induced portion of demand for the flexibles is given by the
w.t.p.s that simultaneously satisfy the inequalities

wA +wB > 2�f +,�� wA < f A� wB < f B�

The mean induced demand is given by the integral of g over
this region times )1. Define / = f A + f B − 2�f + ,�. Note
that, for nonzero induction, we must have / > 0. In what
follows we will assume that this condition holds. Let )̂1 be
the mean of induced flexible demand. Then, in the uniform
case (recalling that Si > 0 for i = 1�2),

)̂1W
AW B =




)1 f
Af B − 2�f +,�2!

if 2�f +,�≤min�f A� f B�

)1 min�f A� f B��2/−min�f A� f B��!/2
if min�f A� f B� < 2�f +,�≤max�f A� f B�

)1/
2/2 otherwise.

We now turn to cannibalization. Given that we are offer-
ing a flexible product, the customers cannibalized from spe-
cific product A are those whose w.t.p.s satisfy the following
inequalities:

wA − f A + f B ≥wB ≥wA − 2�f A − f −,�� wA ≥ f A�

Similarly, cannibalization from B is given by

wA + 2�f B − f −,�≥wB ≥wA − f A + f B� wB ≥ f B�

We now determine the amount of cannibalization that
would occur assuming a uniform distribution of w.t.p.s.
Let )̂i

1 be the mean cannibalization from specific product
i =A�B. Then,

)̂A
1 = )1

[
/SA − 0�5min �SA�2� �/− f B�2+!− 0�5�SA − SB�2+

+ 0�5�SA −/− SB�2+
]/

�W AW B��

)̂B
1 = )1

[
/SB − 0�5min �SB�2� �/− f A�2+!− 0�5�SB − SA�2+

+ 0�5�SB −/− SA�2+
]/

�W AW B��

Then, for any value of f , we can write

)1�f �= )̂1 + )̂A
1 + )̂B

1

)A
1 �f �= )A

1 �f A� f B�− )̂A
1

)B
1 �f �= )B

1 �f
A� f B�− )̂B

1 �

where )1�f � is the mean flexible demand as a function of f
and )i

1�f � for i =A�B are the specific demands after canni-
balization, given f .
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