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ABSTRACT

Although prices in financial markets play an important role in improving allocative

efficiency in the real economy, few models of securities markets explicitly incorporate

resource allocation decisions. In this paper, we study the equilibrium in a securities

market when the market price provides valuable information that can improve alloca-

tive efficiency. We show that a decision maker will subsidize liquidity in an illiquid

securities market to gather valuable information about her decision payoffs. We also

show that a decision maker’s liquidity subsidy improves expected social welfare by

enhancing allocative efficiency, but does not induce the socially optimal level of infor-

mation acquisition. Finally, we demonstrate that the mere act of linking the allocation

decision to the market price will typically enhance liquidity in the securities market.

Overall, our results highlight the potential of using securities markets for information

to improve public and private decisions.

1 Introduction

There is a growing body of theoretical and empirical research on securities markets for

contingent claims on uncertain events, often called prediction or information markets. A

key finding in this literature is that the prices in prediction markets can help to produce
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forecasts of event outcomes with a lower mean squared prediction error than conventional

forecasting methods. For example, incorporating the prices in prediction markets increases

the accuracy of poll-based forecasts of election outcomes (Berg, Forsythe, Nelson and Rietz

(2003)), official corporate experts’ forecasts of printer sales (Chen and Plott (2002)), and

statistical weather forecasts used by the National Weather Service (Roll (1984)).1

Several researchers emphasize the potential of prediction markets to improve decisions

(e.g., Hanson (2002), Hahn and Tetlock (2005), Sunstein (2006), and Cowgill, Wolfers, and

Zitzewitz (2007)). In principle, the range of applications is virtually limitless–from helping

businesses make better investment decisions to helping governments make better fiscal and

monetary policy decisions. For example, decision makers in the Department of Defense,

the health care industry, and multi-billion-dollar corporations, such as Eli Lilly, General

Electric, Google, France Telecom, Hewlett-Packard, IBM, Intel, Microsoft, Siemens, and

Yahoo, conduct internal prediction markets. The prices in these markets reflect employees’

expectations about the likelihood of a homeland security threat, the nationwide extent of a

flu outbreak, the success of a new drug treatment, the sales revenue from an existing product,

the timing of a new product launch, or the quality of a recently introduced software program.

While the particular stucture of these markets vary, many use some kind of subsidy. These

subsidies include endowing agents with allocations of cash, securities, or virtual currency,

and acting as a market maker who incurs losses. One possible reason for these subsidies is

to encourage trading.2

In this paper, we explicitly model a decision maker who optimally conditions her decision

on a securities market price, and intervenes in this market to obtain better information. Our

stylized model in Section 3 captures several of the essential features of the internal prediction

markets described above. To isolate the problem of obtaining better information, we assume

that the prediction market is based on an outcome variable that is economically relevant for

the decision maker, but that the decision maker cannot influence.

Our motivating example is the case of a farmer whose productivity is affected by local

rainfall, which is beyond her control. The farmer can set up and intervene in a rainfall

prediction market in a manner that enhances the informativeness of the market price. If

the farmer makes the prediction market internal, like the government and corporate markets

described above, she can exclude others from observing the price and fully appropriate the

1See Wolfers and Zitzewitz (2004) for a more comprehensive survey of research on prediction markets.
2An additional motive for subsidizing participation is to avoid vague prohibitions on gambling that may

or may not apply to internal prediction markets.
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benefits of the information it conveys.3 The problem for the farmer, then, is to choose an

optimal subsidy that balances her expected losses in the prediction market with the expected

gains from making a more informed production decision.

While few would dispute the potential of prediction markets, several scholars have noted

that there are fundamental theoretical challenges (see, e.g., Wolfers and Zitzewitz (2006) and

Ledyard (2006)). A key issue is whether linking a prediction market to a decision–what we

call a decision market–changes the strategies of various agents. For example, a trader who

has an interest in a decision based on a prediction market may behave differently in that

market if she knew that her behavior in the market could possibly affect the decision. We

need a theory to inform how to design such markets that explicitly includes the role of the

decision maker. Furthermore, we need a theory that helps to measure the extent to which

decision markets can be expected to improve individual decisions and social welfare.

To date, we are not aware of any paper that addresses these problems directly and only

one that does so indirectly (Holmstrom and Tirole (1993)). This paper attempts to fill

that void, focusing on the economic value that is created when decisions are made based

on better information (e.g., Blackwell (1951, 1953), Raiffa and Schlaifer (1961) and Raiffa

(1968)). Specifically, we are interested in how to use prediction markets to make better

private and public resource allocation decisions.

There are several rationales for exploring the linkage between prediction markets and

improved decisions. One, noted above, is that they are being used in practice. A second

rationale is that they may represent a relatively low-cost way of obtaining critical information.

For example, a decision maker may not require financing for a project, but could still benefit

from decision-relevant information revealed by a securities market price.4 Knowledgeable

experts without decision authority often have useful information about a project’s payoffs.

Sometimes it is too costly for the decision maker to write individually tailored contracts with

these experts. Furthermore, some experts will be more willing to reveal information if they

can remain anonymous.5 In such situations, prediction markets appear to be attractive.

3Alternatively, governments or other socially-minded agents could design mechanisms to promote public
prediction markets, which could be more socially efficient than spending time and money to elicit information
that others already know.

4Examples of models of securities markets that directly address investment and production decisions
include Diamond (1980), Holmstrom and Tirole (1993), Dow and Gorton (1997) and Subramanyam and
Titman (1999). In contrast to our study, these models focus on capital markets in which the entrepreneur
raises funding for a productive asset.

5Osband (1989) develops an insightful model of how a principal would write individual contracts with
non-anonymous agents who can acquire valuable information. Crawford and Sobel (1982) model how cheap
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To explore this possibility further, we model the equilibrium in a securities market when

the security price provides valuable information that can improve allocative efficiency. In

general, we show that a decision maker will provide a liquidity subsidy in a securities market

to enhance the informational efficiency of the security price and her production profits. The

liquidity subsidy, which equals her trading losses, is more than offset by the increase in her

production profits.

We make three contributions to the theory of securities markets. First, we demonstrate

how a rational decision maker will participate in a securities market for decision-relevant

information. We formally justify a direct liquidity subsidy as a means for improving decision

making. Our models show that a decision maker will provide a liquidity subsidy in situations

where a competitive market maker would provide very little or no liquidity. Our second

contribution is to show that the decision maker’s liquidity subsidy always improves expected

social welfare by enhancing allocative efficiency, but does not induce the socially optimal

level of information acquisition. Finally, we show how the mere act of linking a resource

allocation decision to the securities market price will typically enhance liquidity even when

the decision maker does not intervene in the securities market. Well-known theorems in

finance that imply trade between rational agents will not occur (e.g., Milgrom and Stokey

(1982)) do not apply to our models because these theorems do not consider the possibility

that rational agents will use the market price as a basis for resource allocation decisions.

The plan of the paper is as follows. Section 2 provides a brief overview of related work.

Section 3 introduces the modeling framework to be used throughout the paper. To illustrate

the structure of our models, we consider the situation of a profit-maximizing farmer, who

must choose how much effort to invest in managing her fields. The farmer can improve

her effort decision by learning from the equilibrium price in a rainfall futures market. We

formalize the farmer’s problem in a general model of a securities market for decision-relevant

information when there are only rational informed traders. In section 4, we add further

realism to the model by examining the equilibrium when there is an additional securities

trader whose payoff depends on the allocation decision. Section 5 highlights key findings

and discusses areas for future research.

talk can transmit information between parties. In our single-period setting, when experts’ preferences diverge
sufficiently from the decision maker’s preferences, cheap talk is not informative.
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2 Literature Review

Our treatment of decision market liquidity draws heavily on important results in finance.

Milgrom and Stokey’s (1982) no-trade theorem is particularly relevant because it provides

conditions under which no transactions will occur in securities markets. Our model gives

rise to trade because the decision maker has an additional motivation for trading in the

securities market. The information she obtains from this market is then used to increase her

production profits. In this respect, our model is related to Glosten (1989) who argues that a

monopolist specialist may provide more liquidity than a competitive market maker because

the competitive market maker must expect to break even on his trades. The main difference

is that our model does not require any liquidity traders to keep the market open because the

decision maker in our model willingly expects to lose money on her trades.

We consider a securities market that is organized by either a competitive market maker

or a decision maker whose trading profits are constrained by competitive entry. We adopt

our notion of securities market directly from Kyle (1985), who defines the inverse of liquidity

as the price impact of aggregate order flow; however, we extend the Kyle (1985) model to

include a new type of trader, the decision maker, who values the information embedded

in informed traders’ order flow. The introduction of this additional trader is also the key

difference between our models and Milgrom and Stokey’s (1982) model.

Our model leads to a trade-off between the costs of providing liquidity and the benefits

of obtaining information similar to Holmstrom and Tirole (1993). Although both models

consider a profit-maximizing risk neutral decision maker, the decision maker in our model

directly subsidizes securities market liquidity–and she does so in the presence of a com-

petitive market maker, even when there are no traders with exogenous liquidity motives.

In Holmstrom and Tirole (1993), the firm owner indirectly subsidizes liquidity by issuing

underpriced capital to traders with exogenous liquidity needs, which would not be possible

if either a competitive market maker participates in the initial public offering or there are

no liquidity traders. In contrast, our model applies to competitive secondary equity markets

where there is frictionless arbitrage. Moreover, our model predicts there will be some trade

even when there are no liquidity traders because of the special role of the decision maker.

Our first model consists of a decision maker and a finite number of informed traders,

who can acquire information about the production output from the decision maker’s effort.

There is a market for securities that pay an amount related to the decision maker’s production

output. Following Grossman and Stiglitz (1980), we assume that informed traders optimally
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choose how much information to acquire about the payoff of the security based on their

expected trading profits and the cost of acquiring information.

Our second model includes the decision maker, an informed trader, and a stakeholder

whose payoff depends directly on the effort allocation decision. The results on liquidity in

this model build on Kumar and Seppi (1992). Our stakeholder model also resembles the

model of price manipulation developed by Hanson and Oprea (2004), except that our model

explicitly links allocation decisions to prediction market prices. By making this linkage,

we can identify how the decision maker should design a prediction market to maximize her

welfare. Our model of price manipulation is also related to a subsequent paper by Ottaviani

and Sorensen (2007), which models the interesting case of outcome manipulation where

traders can affect the probability that different contract payoffs are realized.

There are several papers in finance that study the interaction between allocative efficiency

in the real economy and informational efficiency in securities markets, including Diamond

(1980, Chapter 1), Dow and Gorton (1997), and Subrahmanyam and Titman (1999). Our

main contribution is to examine the impact of this interaction on securities market liquidity.

Most papers that address liquidity assume exogenous liquidity (or noise) traders, whereas

we treat liquidity as an endogenous variable determined by rational agents.

In a somewhat different context and framework, Sherman and Titman (2002) examine a

similar question to ours. The authors examine the bookbuilding process for an IPO order

book, assuming that an underwriter cares about how accurately he prices an issue. Sher-

man and Titman (2002) find that underwriters who care most about accuracy will tend to

underprice issues by the most. Their idea is similar in spirit to the liquidity subsidy idea

embodied in this paper.

Our description of the conditions under which trade will occur in securities markets is

related to earlier work by Diamond (1980, Chapter 1) and concurrent work by Bond and

Eraslan (2007). Both papers make the point that trade in securities markets can occur when

it releases information that is socially valuable for resource allocation, but both models differ

from ours in one important respect. A common feature of the models in Diamond (1980)

and Bond and Eraslan (2007) is that the efficient owner of the productive asset is unknown

in advance. This means that the existence of trade in their models depends crucially on

which agent possesses valuable production information and the agents’ initial endowments

of the asset. Both Diamond (1980) and Bond and Eraslan (2007) interpret their models as

describing the transfer of a controlling interest in a corporation.

A concurrent paper by Dow, Goldstein and Guembel (2006) starts from a similar premise
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to ours that information may be underprovided in a securities market. These authors argue

that firms would like to commit to over-investing in certain projects to encourage informa-

tion production by market participants. In our simple model, the decision maker has no

such incentive because the security payoff is independent of the decision maker’s choice. In

general, however, the Dow, Goldstein and Guembel (2006) idea is a complementary means

for enhancing the informational efficiency of securities prices.

3 Markets with Only Rational Informed Traders

To illustrate the structure of the model, we consider the situation of a profit-maximizing

farmer, who must choose how much planting effort to put into her fields. We then formalize

the farmer’s problem by developing a general model of a securities market for production-

relevant information when there are only rational informed traders.

3.1 Modeling Framework

The farmer’s profit-maximizing quantity of planting effort depends on an uncertain quantity

of rainfall in her county this year. For simplicity, suppose that this particular farmer is the

only one who knows her land well enough to successfully produce crops, implying that she is

the efficient land owner. Within the farmer’s local community, suppose that there are several

weather experts who can acquire informative, but costly, signals about future local rainfall.

We assume that the experts’ payoffs do not directly depend on the farmer’s planting effort

decision.

We allow the farmer to set up an internal market for contingent claims on rainfall in which

these experts participate. The owner of a rainfall security receives a payment proportional

to realized local rainfall. In this simple example, ignoring other agents with possible hedging

motives, only the weather experts would want to participate in such a market. Uninformed

agents would fear that they will end up taking the other side of a transaction with the

weather experts. Thus, it would seem that a competitive market maker would be unwilling

to supply any liquidity in such a market and that the no-trade theorem of Milgrom and

Stokey (1982) would apply.

Indeed, the theorem would apply if the farmer were precluded from participating in or

making the market. However, even though the farmer is uninformed, she may want to

participate in the rainfall market because she can use the market price as the basis for
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her planting effort decision.6 Specifically, suppose the farmer acts as a market maker and

provides some amount of liquidity in the rainfall market. Anticipating that they could profit

by trading on rainfall information, the weather experts would be willing to incur positive

costs to acquire such information. After observing their signals, the weather experts would

buy rainfall securities in proportion to their signal realizations, obtaining expected profits

by trading with the farmer. Because the equilibrium rainfall price will depend on informed

traders’ orders, the price of rainfall can inform the farmer’s effort allocation decision.

Thus, the benefit of trading rainfall securities for the farmer is that the equilibrium price

provides valuable information. The farmer is willing to incur expected trading losses in

the rainfall market up to the point at which her expected marginal trading loss equals the

expected marginal benefit from obtaining better information through the rainfall market

price. Even in the absence of noise traders or other traders whose payoffs depend on the

farmer’s effort decision, there will be trading in the rainfall market between the farmer and

the informed traders.

We formalize the example of the farmer by considering two models: one with N informed

traders and no decision stakeholder, whose payoffs depend on the effort decision; and a second

with one informed trader and one stakeholder. The first model with several informed traders

illustrates that trade will occur even in the “extreme” case in which only experts participate

in the market. In section 4, we present a second model, which shows how adding another

decision stakeholder changes the equilibrium properties. We first present those aspects of the

decision maker’s problem that are common to both models. This is followed by a detailed

analysis of the equilibrium properties of both models.

We consider a securities market for contingent contracts, each yielding an uncertain

amount y, which is the realized productivity of the decision maker’s effort. For our main

results, it is only necessary that there is an informative signal about effort productivity that

can be verified ex post. In the example above, a farmer’s choice of planting effort in a given

year may depend on her best forecast of annual rainfall. After a year has elapsed, a verifiable

productivity signal would be the annual rainfall measure reported by the National Weather

Service for the farmer’s county.

We assume that there are at most three types of agents who may participate in the secu-

rities market: the decision maker, traders who have private information about her decision’s

6The farmer could use the price in the rainfall claims market as an input to her allocation decision rather
than the sole basis for her decision. In our simple model, it is always optimal for the farmer to rely exclusively
on the securities price because she has no private information.
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payoffs, and an uninformed competitive market maker. A decision maker will undertake a

certain level of effort (x) based on her best forecast of her effort’s productivity (y). In this

model, traders and the competitive market maker have no inherent interest in the effort level

selected (x).

Initially, all experts and the decision maker have a common prior belief that productivity

(y) is normally distributed according to y ∼ N(0, V0) with V0 > 0.7 Before the market opens,

each informed trader i can acquire a productivity signal si = y + εi, where εi ∼ N(0, Vi)

independent of y. By incurring a greater cost, the informed trader can improve his signal of

si in the sense of decreasing the variance of the distribution of si. In particular, we assume

there is an increasing, convex cost cv
2
v2i of acquiring a signal with relative precision vi, where

vi =
V0

V0+Vi
. This assumption is inspired by the classic Grossman and Stiglitz (1980) model

of information acquisition. Note that we can think of the informed trader as choosing vi

indirectly through his choice of Vi.

Both the decision maker and the informed traders are risk-neutral, so they will maximize

their expected total profits. The decision maker’s total profits depend on both her production

and trading activities. Her production profits come from two sources: she incurs a quadratic

effort cost (x2) and her production revenues are equal to twice the product of effort and

productivity (2xy). Thus, her total production profits (πP0) can be expressed as:

πP0 = 2xy − x2

These assumptions imply that the solution to the decision maker’s expected profit-maximization

problem is:

x = E[y|p] (1)

where p is the securities market price that she observes. Thus, we assume that the decision

maker cannot commit to a suboptimal effort decision after observing the market clearing

price. Letting the error in the decision maker’s productivity forecast be y − E[y|p] = δ,

where V ar(δ) = Vδ and E[yδ] = 0, we can express the maximized value of her expected

production profits (πP ) as:

πMax
P0 = E[2y(y − δ)− (y − δ)2] = V0 − Vδ (2)

7A downside of the normal distribution assumption is that negative productivity realizations are possible.
When the mean is sufficiently high relative to the standard deviation, such realizations become extremely
unlikely.
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Note that the decision maker’s maximized production profits are equal to the difference

between her expected forecast error before observing the price (V0) minus her expected

forecast error after observing the price (Vδ). We refer to this improvement in her forecast as

the informativeness of prices (I):

I = V0 − Vδ = πMax
P0 (3)

Equation (3) says that the decision maker increases her maximized expected production

profits by reducing the noise in her productivity information (Vδ). Our general results will

hold whenever maximized expected production profits increase with the quality of produc-

tivity information. In the example above, the farmer receives greater maximized expected

production profits when her forecast is closer to realized rainfall because she can then im-

plement a better production plan.

The decision maker also receives profits from trading in the securities market. We assume

that traders are anonymous in the sense that the market maker only sees the aggregate order

flow.8 Traders submit market orders to a market maker who sets a clearing price in a batch

auction. We will consider the equilibrium under both a competitive market maker (as in Kyle

(1985)) and the decision maker making the market.9 Both market makers set a securities

price p in response to aggregate order flow Q from traders. The decision maker can only

make the market if she offers traders a better price than a competitive market maker.

Each informed trader submits his market order qIi before he knows the equilibrium price,

but after viewing his private signal s. Total order flow Q comes from the anonymous traders,

which may include informed rational traders and uninformed decision stakeholders. Follow-

ing Kyle (1985), we only look for a Nash equilibrium in which agents adopt linear strategies.

Thus, the price set by the market maker (p) depends linearly on aggregate order flow (Q)

according to:10

p = λQ (4)

8Of course, when only two agents trade in equilibrium, each trader can infer the identity of the other.
When there are more than two traders, there is a non-degenerate inference problem.

9The decision maker could make the market herself, or outsource that responsibility to a firm that
specializes in market making.
10In all the linear equilibria in this paper, the constants in the pricing rule, effort decision rule, and trading

strategies must be zero as a result of our maintained assumption that the common prior estimate of y is
zero.
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The expected trading profits of the decision maker (πT0) and informed traders (πTi) have

a similar form:

πT0(q0) = Ey [q0(y − p(Q(q0))] (5)

πTi(qi) = Ey [qi(y − p(Q(qi))|si] (6)

The only difference lies in the quantity demanded by each trader and the information sets.

Thus, the decision maker’s total expected profit π0 is the sum of πMax
P0 and πT0 in equations

(2) and (5), respectively. The total profit for each informed trader is the difference between

his trading profits, πTi(qi), and his information acquisition cost, which is described below.

3.2 Formal Model with Only Informed Traders

In our first model, aggregate order flow consists of just the informed traders’ orders (qIi) so

that Q =
X
i

qIi. We allow the decision maker herself to make the market, but only if she can

attract order flow by offering better prices than the competitive market maker. Regardless

of the market maker’s identity, the pricing rule will be of the form given in equation (4).

This rule translates order flow into a publicly observable price, which the decision maker can

use. Our main departure from the standard Kyle model is to examine the decision maker’s

effort choice, which will be given by the linear rule:

x = kp (7)

where k is determined so that the decision maker’s optimal effort rule in equation (1) is

satisfied.

In addition, we look for a symmetric linear equilibrium in which all informed traders

submit strategies of the form:

qIi = bIsi (8)

where bI is the same for all informed traders i. To determine what quality of signal he

will acquire, each informed trader i must first solve his profit maximization problem for a

given signal quality (vi) and fixed trading strategies b−I of the other informed traders. After

already incurring the cost of acquiring information, the informed trader maximizes expected

trading profits ignoring the sunk acquisition cost. Anticipating these maximized expected

profits, the informed trader can now select his optimal degree of information acquisition (vi).
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The last step in identifying the equilibrium is to solve for the decision maker’s optimal

pricing rule. In a Nash equilibrium, her pricing rule and the trading strategies of all informed

traders are mutual best responses. Proposition 1 summarizes the equilibrium strategies

followed by the decision maker and informed traders:

Proposition 1 The decision maker sets a linear pricing rule p = λQ, which involves ex-

pected trading losses (πT0 < 0), whereas a competitive market maker would refuse to operate.

The decision maker selects an effort allocation (x) that is proportional to the equilibrium

price in the securities market–i.e., x = kp, where 1 < k < 2. Because informed traders

choose their demands (qIi) in the securities market to be proportional to their signal realiza-

tions (si), the equilibrium securities market price and the decision maker’s effort allocation

are proportional to the sum of informed traders’ signals.11

Proof : See Appendix.
The most important point in Proposition 1 is that the decision maker is willing to operate

at a loss, whereas the competitive market maker would not. Intuitively, with only rational

informed traders participating in the market, the competitive market maker’s zero profit

condition can only be satisfied when he does not trade. This confirms the Milgrom and

Stokey (1982) “no trade” result for the case in which the decision maker does not participate

in the market. In this equilibrium, anticipating that they cannot profit from their trades,

informed agents would acquire zero costly information (vi = 0).

By contrast, the decision maker’s liquidity provision leads to an equilibrium with some

trading, which allows informed traders to profit from their information acquisition. The

decision maker tolerates an expected trading loss in the securities market because she learns

valuable information from the equilibrium price. In particular, the decision maker links

her effort choice to the equilibrium price, which contains information about her effort’s

productivity. This decision linkage results in an expected increase in her production profits

that outweighs the expected decrease in her trading profits. Thus, there is nothing irrational

about the decision maker’s securities market trading.

One interpretation of the decision maker’s pricing rule is that the equilibrium securities

price underreacts to the information contained in insiders’ market orders. Consider the

following three period interpretation of our model. In period 0, before agents have observed

their signals, all agents have a common prior expectation of y equal to 0, implying that

11In a more general model where informed traders may acquire signals with different precisions, the
equilibrium securities price would be proportional to a precision-weighted sum of traders’ signals.
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p0 = 0 is the initial price that would prevail in period 0. In period 1, after informed agents

have observed their signals and submitted their market orders, the securities market clearing

price is given by p1 = λQ as noted in Proposition 1. In period 2, all agents owning the

security receive the liquidating dividend equal to y, implying that p2 = y. This means that

the covariance between the two changes in price is:

Cov(p2 − p1, p1 − p0) = −λπT0 > 0 (9)

where the equality uses equation (5) and the inequality uses Proposition 1.

In other words, price changes display positive serial correlation. If an outside observer

sees the first change in price is positive, he would expect to observe another positive change

in price. Prices do not fully adjust to insiders’ information as they would in a competitive

equilibrium because p1 = λQ is insufficiently sensitive to order flow relative to the hypothet-

ical price that a competitive market maker would set p1 = λcQ with λc > λ. This is just a

restatement of our main result that the decision maker subsidizes liquidity.

The decision maker sets prices to underreact to order flow so that informed traders have

incentives to acquire information. Securities must be undervalued when insiders have positive

signals; and they must be overvalued when insiders have negative signals. If securities

were not mispriced, then insiders would have no incentive to acquire information. This

argument is analogous to the Grossman and Stiglitz (1980) idea that informationally efficient

markets are an impossibility. In our model, the decision maker deliberately makes the market

informationally inefficient in order to motivate information acquisition.12

The underreaction of prices applies only to the period in which insiders act on their

information. After insiders complete their trades, the market clearing price fully reveals

their information because it is proportional to the sum of their signals. This implies that all

future prices will incorporate insiders’ information. For example, if we added another period

just after period 1 in the three-period model above, then the market clearing price in this

later period would fully respond to all the information revealed in period 1. The decision

maker would have no incentive to subsidize liquidity in this later period unless informed

traders had acquired new signals.

12This inefficiency persists in equilibrium even if we introduce uninformed traders in the model. The
nature of the batch auction mechanism in Kyle (1985) only allows simple market order submission strategies.
Uninformed traders would always choose to submit zero quantity orders in our model. If we had instead
allowed traders to submit price schedules, then this would change the equilibrium. We discuss limit orders
and one possible dynamic version of our model later in the paper.
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The idea of using a liquidity subsidy to obtain better information could also be extended

to a dynamic framework. For example, an decision maker could post a narrower bid-ask

spread than a competitive market maker to allow informed traders to obtain positive expected

profits, which would motivate them to acquire information. Only informed traders with

better information than the decision maker would benefit from the liquidity subsidy. No

uninformed trader could take advantage of the decision maker’s subsidy because she would

adjust her quotes immediately after each informed order. Thus, even in a dynamic model, a

liquidity subsidy is a viable means for providing incentives to acquire information. Moreover,

without a subsidy, it is unclear how any information would ever be revealed in prices (in a

model lacking traders with hedging or irrational motives).

The following proposition summarizes the comparative statics of equilibrium information

acquisition (v), liquidity (λ−1), and dollar amount of the liquidity subsidy.

Proposition 2 The size of the liquidity subsidy is larger, prices are more informative, each
informed trader acquires more information, and the market is (weakly) less liquid when there

is more uncertainty about productivity. Each informed trader acquires less information and

the market is (weakly) more liquid when there are more informed traders and when there

are higher costs of acquiring information. In general, the size of the liquidity subsidy may

increase or decrease when there are more informed traders and when there are higher infor-

mation acquisition costs. Price informativeness decreases when there are higher information

acquisition costs and may increase or decrease when there are more informed traders.

Proof : See Appendix.
Proposition 2 makes two main points. First, the decision maker subsidizes liquidity to

induce informed traders to acquire better signals, which will improve the decision maker’s

production profits. Consistent with this intuition, the liquidity subsidy is largest when there

is more uncertainty about her effort’s productivity. Second, equilibrium market liquidity is

lower when informed traders acquire better information, which happens when the expected

profits from acquiring information are high relative to the costs. In this regard, the decision

maker’s market making activity is similar to a competitive market maker’s activity. The

intuition comes from Kyle’s (1985) insight that a market maker decreases liquidity in markets

with informative order flow to limit her losses. Nevertheless, the decision maker is willing to

accept some losses in order to inform her effort choice.

The proposition also describes the properties of equilibrium price informativeness. Recall

that price informativeness measures expected production profits because the decision maker
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implements a production plan based on the equilibrium market clearing price. Thus, in the

situations in which information is most important for production (i.e., when uncertainty

in productivity is greatest), the decision maker attains greater expected production profits.

The intuition for this result comes from a well-known property of maximized expected profit

functions: they tend to increase with parameter uncertainty. Because the decision maker can

decrease her effort when expected effort productivity is low, she can diminish the impact

of negative shocks to expected effort productivity. Moreover, the decision maker can take

advantage of favorable expected productivity shocks by increasing her effort. Note that

this argument relies on the decision maker having some information about the expected

productivity shock. Thus, the decision maker’s willingness to subsidize liquidity in the

securities market, which informs her effort choice, increases when there is greater uncertainty

in effort productivity.

Proposition 2 shows that the decision maker provides more liquidity in the securities

market when there are more informed traders. This occurs because each trader acquires

less precise information, which mitigates the adverse selection problem faced by the decision

maker. However, it is unclear whether the total size of the liquidity subsidy increases or

decreases as N increases because the decision maker subsidizes more traders, but each trader

acquires less precise information.

We can now assess whether the no-trade equilibrium or the equilibrium with the decision

maker as the market maker is more desirable from a social standpoint. We define the social

welfare function as equal to the expected production revenues conditional on information

revealed by the equilibrium price minus informed traders’ costs of acquiring that level of

information. We disregard the total trading profits of informed traders and the decision

maker because they must sum to zero.

The social welfare maximization problem is almost identical to the maximization problem

solved by the decision maker. The only difference comes from the fact that informed traders

have some market power, earning abnormal profits above and beyond their information

acquisition costs. The decision maker must bear not only the direct acquisition costs, but

also the cost of paying the informed traders’ expected profits. Proposition 3 summarizes our

results on social welfare maximization. The proposition refers to three different equilibria:

1) the social equilibrium is the one selected by a social planner maximizing production

profits; 2) the private equilibrium is the equilibrium that prevails when the decision maker

maximizes her total production and trading profits; and 3) the competitive equilibrium is

the hypothetical situation in which the decision maker does not participate in the securities
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market.

Proposition 3 Expected welfare and liquidity are higher at the social optimum than when the
decision maker subsidizes liquidity in the securities market. Similarly, welfare and liquidity

are higher when the decision maker subsidizes liquidity than in the case of a competitive

market maker.

Proof : See Appendix.
The main point of Proposition 3 is that the decision maker’s liquidity subsidy improves

social welfare. In one sense, this may seem obvious because the competitive equilibrium

without a liquidity subsidy would entail no trade and no acquisition of productivity informa-

tion, which is clearly undesirable for the economy. This reasoning overlooks the possibility

that the decision maker will excessively subsidize information acquisition relative to the so-

cial optimum. However, in the simple model here, the decision maker’s incentive to increase

information acquisition is well-aligned with society’s goals because the decision maker is the

sole residual claimant of production surplus and there is no consumer surplus.13

In fact, the decision maker’s subsidy is insufficient to lead to optimal information acqui-

sition. The equilibrium does not attain the social optimum because informed traders have

market power in finitely liquid markets. Because each trader with private information faces

an inelastic residual supply curve for securities, he restricts the quantity of information below

the social optimum to maximize his private profits. Although this effect diminishes as the

number of informed traders increases, it does not completely go away because each trader

has independent private information that is not perfectly substitutable. More formally, as

the number of informed traders approaches infinity, one can use equations (30) and (34) to

show that the limit of information acquisition under the decision maker’s subsidy is equal to

2−1/3 = 79.4% of the limit of the socially optimal information acquisition.

We conclude that the decision maker improves social welfare by subsidizing liquidity

and motivating information acquisition when the competitive equilibrium falls short. The

decision maker always subsidizes liquidity in this model to improve the informativeness of

prices, especially when information is particularly important for her production planning.14

13This result on the underprovision of liquidity and information may be more general than our simple
model suggests. Improved production information tends to increase the size of producer and consumer
surplus. If the farmer neglects the potential increase in consumer surplus or does not receive the entire
increase in producer surplus, she may have even less of an incentive to acquire production information.
14In related work, we have also shown that adding noise traders to this model does not change the main

comparative statics. The decision maker subsidizes liquidity when there are sufficiently few noise traders.
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4 Markets with Decision Stakeholders

In this section, we investigate the equilibrium in a decision market when there is a stake-

holder and an informed trader. To focus our attention on the stakeholder’s impact on the

equilibrium, we streamline the rest of the model. Specifically, we assume that there is only

one informed trader (N = 1) who can acquire information at no cost (cv = 0), implying that

he will acquire perfect information in equilibrium (i.e., v = 1).

We introduce a new trader in the model who has a direct stake in the decision maker’s

effort choice. In general, one can think of the stakeholder as a consumer, competing producer,

or even an employee. As we will see, including such a stakeholder in this market can increase

the informativeness of prices, and reduce the farmer’s trading losses.

Suppose that the stakeholder receives production profits equal to πPM(x) = θx, where θ

describes the marginal benefit or cost of a change in the decision maker’s effort choice. We

assume the marginal benefit parameter (θ) is private information for the stakeholder. We

also assume for tractability that all other agents have prior beliefs that the stakeholder’s

decision objective θ is normally distributed as N(0, Vθ).

We begin by comparing the equilibrium in the model when the decision maker does not

intervene in the market to the equilibrium in which the decision maker subsidizes liquidity

in the market. In both cases, we look for an equilibrium in which the market maker’s price

depends linearly on order flow as in equation (4), the decision maker’s effort rule depends

linearly on the securities market price as in equation (7), and the informed trader’s order

depends linearly on his private signal as in equation (8). In addition, we conjecture that the

stakeholder will submit an order (qM) that depends linearly on his decision objective (θ):15

qM = bMθ (10)

Before analyzing the equilibria of this model, we offer an intuitive explanation of the two

key exogenous parameters in the model: Vθ and V0. We interpret Vθ as the stakeholder’s

expected “willingness to trade.” When Vθ is larger, other agents believe that the stakeholder

is more likely to have a high or a low value of θ. A high or low value of θ means that

the stakeholder will receive a larger payoff from moving the price either above or below

Again, the liquidity subsidy improves social welfare, but does not supply enough liquidity to motivate the
socially optimal level of information acquisition.
15There is also a symmetric linear equilibrium in which there are many identical informed traders and

stakeholders. Symmetric refers to the fact that all traders of the same type use the same quantity strategy,
but do not necessarily submit the same actual quantities.
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the security’s expected payoff. From the informed trader’s perspective, an increase in the

stakeholder’s (expected) willingness to buy or sell the security at prices that deviate from the

security’s expected payoff represents a larger profit opportunity. Specifically, the informed

trader’s expected payoff depends on the value of Vθ.

Just as Vθ determines how much other agents expect to profit from trading with the

stakeholder, V0 determines how much money other agents expect to lose from trading with

the informed trader. The parameter V0 measures the “informational advantage” of the

informed trader, who has perfect information in this model–i.e., it captures the difference

between the informed trader’s expected forecast error (0) and other agents’ expected forecast

error (V0). We can think of the ratio of the stakeholder’s expected willingness to trade to the

informed trader’s informational advantage (V0/Vθ) as a measure of the severity of adverse

selection in the securities market. When the informed trader’s informational advantage is

greater and when the stakeholder is less willing to trade, the adverse selection problem in

the market is more severe.

First, we analyze the equilibrium for the hypothetical case in which the market maker

is competitive and the decision maker does not participate in the securities market (by

assumption). However, the decision maker can still use the equilibrium price as an input

for her effort rule. Proposition 4 characterizes the competitive market maker’s equilibrium

pricing rule, the decision maker’s effort rule, along with traders’ equilibrium strategies:

Proposition 4 If the decision maker did not participate in the securities market, a com-
petitive securities market maker would set λc =

p
V0/Vθ when Vθ > 0 and refuse to operate

otherwise. The decision maker’s equilibrium effort rule would be x = p and the competitive

market maker would use a pricing rule of p = 1
2
(s+

p
V0/Vθθ). A competitive market maker

would supply more liquidity (λ−1c is higher) when the stakeholder is more willing to trade (Vθ
increases) and when the informed trader has a lower informational advantage (V0 decreases).

The informativeness of the securities price would be V0/2. The informed trader would follow

the strategy qI =

√
Vθ/V0

2
s and the stakeholder would follow the trading strategy qM = 1

2
θ

when Vθ/V0 > 0. Otherwise, both traders would not trade.

Proof : See Appendix.
Unlike the model in section 3, there would always be some trade in the competitive

equilibrium unless Vθ = 0. The reason is that the decision stakeholder would trade because

he receives a private marginal benefit (θ) from influencing the decision. In equilibrium, the

decision maker links her effort to the market price because the price is informative about

18



effort productivity (y). In this sense, the stakeholder in our model can be viewed as an

endogenous noise trader as in Kumar and Seppi (1992). Without a trader who benefits from

influencing the decision maker’s effort choice, there would be no trade in the competitive

equilibrium.

Because the competitive market maker would set equilibrium liquidity to increase monoton-

ically with the ratio Vθ/V0, we interpret this ratio as the “natural liquidity” of the market.16

This is the level of liquidity that would prevail in the hypothetical benchmark situation

where the decision maker did not participate in a securities market with a competitive mar-

ket maker–e.g., the traditional Kyle (1985) model. The ratio Vθ/V0 increases as the adverse

selection problem becomes less severe, which occurs when either the stakeholder becomes

more willing to trade or the informational advantage of the informed trader decreases.

In the competitive equilibrium, the decision maker would implement an effort allocation

that is solely based on the equilibrium securities price (x = p) because this price includes all

relevant information about her effort’s productivity. By linking her effort to the equilibrium

price, the decision maker could incur a loss in production profits from the fact that the

stakeholder’s trading activity affects her decision. Interestingly, this does not happen because

the informed trader trades more aggressively when he expects that the stakeholder is more

willing to trade. So the stakeholder’s expected willingness to trade would have no impact

on price informativeness in the competitive equilibrium. This result will not hold in a more

general model in which we allow the decision maker to intervene in the market.

We can compare the hypothetical competitive equilibrium to the equilibrium in the se-

curities market when the decision maker is the market maker. Once again, we allow the

decision maker to link her effort allocation to the equilibrium market price. The following

proposition summarizes the properties of this equilibrium:

Proposition 5 The decision maker is willing to subsidize liquidity (i.e., set λ < λc) in the

securities market in situations where natural liquidity is low (Vθ/V0 < 1). In these situations,

the decision maker incurs expected trading losses and sets her effort rule such that x = kp

where 1 < k < 2. However, the decision maker will not trade in the securities market when

natural liquidity is sufficiently large (i.e., Vθ/V0 ≥ 1). In these situations, she incurs no

trading losses and sets her effort rule such that k = 1. The decision maker’s liquidity subsidy

induces the informed agent and the stakeholder to trade more aggressively. The informed

16Note that natural liquidity in the securities market is the inverse of the adverse selection measure
described above.
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trader’s increased aggressiveness dominates in the sense that price informativeness is greater

when the decision maker subsidizes liquidity.

Proof : See Appendix.
We explain the intuition for the increase in liquidity in the securities market by tracing the

impact on the decision maker’s production profits. In a more liquid market, the informed

trader trades more aggressively on his information because his trades do not move prices

(against himself) as much. In contrast, the stakeholder does not trade as aggressively,

recognizing that moving the price in a more liquid market would require a larger trade with

the informed agent and entail a greater expected loss. As a result, in a liquid market, a

greater proportion of aggregate order flow comes from the informed agent, which increases

the informativeness of prices. Because the decision maker can use this more informative price

to form a better effort rule, her expected production profits are higher when the securities

market is more liquid. She is willing to incur some expected trading losses in the securities

market to increase her expected production profits.

However, the cost of subsidizing liquidity increases as liquidity and trading volume in

the market increase. For a given departure from the equilibrium price, the expected trading

loss for the decision maker increases in proportion to the amount of securities traded. This

is why the decision maker is only willing to subsidize liquidity when there is less trading

volume in the market–i.e., when there is little natural liquidity (Vθ < V0).

In this case, the decision maker sets prices to underreact to information in order for

informed traders to reap extra profits from their trades. However, the decision maker’s

effort rule (x = kp) is not biased. She appropriately adjusts for the underreaction in prices

by changing her effort choice more than one-for-one (k > 1) in response to changes in prices.

The next proposition summarizes how the decision maker would respond to changes in

natural liquidity.17

Proposition 6 The decision maker’s liquidity provision in the securities market is greater
when natural liquidity is higher–i.e., dλ/d(Vθ/V0) < 0. The decision maker’s effort choice

becomes less dependent on the securities price when natural liquidity is higher–i.e., dk/d(Vθ/V0) <

17Although we could analyze how liquidity provision changes when both Vθ and V0 change, this would be
somewhat redundant. Because the asset owner’s total profits depend only on the ratio of Vθ/V0, Proposition
6 describes how liquidity and the decision rule vary with this ratio. The dependence of the decision maker’s
strategy on the ratio Vθ/V0 completely summarizes the dependence on both of the individual parameters (Vθ
and V0) because both parameters are exogenous–i.e., one is always held fixed when the other one changes.
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0. When Vθ/V0 < V < 1, the size of the decision maker’s liquidity subsidy (|λV − C|) in-
creases when natural liquidity is higher. When V < Vθ/V0 < 1, the size of the decision

maker’s liquidity subsidy (|λV − C|) decreases when natural liquidity is lower. The liquidity
subsidy increases the decision maker’s total profits more when natural liquidity is lower.

Proof : See Appendix.
The first result in Proposition 6 is identical to the competitive market maker case. Anal-

ogous to Kyle (1985), when the stakeholder is expected to trade more, adverse selection is

less of a problem, which increases securities market liquidity. Similarly, an increase in the

informed trader’s informational advantage increases the adverse selection problem, which

decreases market liquidity. However, there is a cost associated with more stakeholder trade

and less informed trade: the price becomes a noisier signal of productivity, so the decision

maker relies less on the price when she chooses her effort.

Proposition 6 also describes a non-monotonic relationship between the size of the liquidity

subsidy and natural liquidity in the market. One interpretation is that the decision maker’s

liquidity subsidy and the stakeholder’s willingness to trade are two ways of making the

securities market more liquid. The decision maker would like to make the market more

liquid when it will not cost her much and it will improve the informativeness of prices.

When the stakeholder is quite reluctant to trade (Vθ is low), trading volume in the market is

quite low, which means it is not very costly for the decision maker to subsidize liquidity. An

increase in the stakeholder’s expected willingness to trade leads to a larger liquidity subsidy

because this reduces the stakeholder’s influence on the price at a reasonable cost (because

volume is low). When the stakeholder’s expected eagerness to influence the decision becomes

strong enough (Vθ is high), trading volume in the market is relatively high, which means that

subsidizing liquidity is quite expensive. In this case, the decision maker responds to increases

in expected stakeholder trade by allowing the stakeholder to absorb some of the costs of

supplying liquidity. In other words, when the decision maker expects more stakeholder

trade, the liquidity provided by the stakeholder and the decision maker are substitutes.

Another important point in Proposition 6 is that the decision maker’s intervention in-

creases her total profits more when natural liquidity is lower. In other words, the change

in her total profits is greatest when the competitive market maker would provide the least

liquidity. The intuition is that only a small liquidity subsidy is necessary to enhance price

informativeness, which increases the decision maker’s production profits. When natural liq-

uidity is low, this means there is very little stakeholder trade. A small liquidity subsidy will

increase informed trade by a small amount, which will still have a big effect on the relative
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amount of informed trade. This is the key variable for price informativeness and the deci-

sion maker’s total profits. When her expected liquidity subsidy is small, the decision maker

receives a very large expected return on her subsidy.

Although it is clear that the decision maker is better off when she is allowed to intervene

in the securities market, it is not clear whether her intervention benefits society. We can

evaluate social welfare as the sum of the expected production profits of the decision maker

and the expected non-trading profits of the stakeholder. In this model, social welfare does

not include information acquisition costs because these are assumed to be zero.

We can compare social welfare at the hypothetical competitive equilibrium in which

the decision maker does not intervene, at the equilibrium in which the decision maker sets

liquidity in the securities market, and at the social optimum when a social planner sets

liquidity in the securities market. The next proposition summarizes these social welfare

comparisons, focusing on the most interesting cases in which the decision maker would

intervene in the market (Vθ/V0 < 1).

Proposition 7 Whenever there is little natural liquidity (Vθ/V0 < 1), expected welfare and
liquidity are higher at the social optimum than when the decision maker intervenes in the

securities market. Similarly, welfare and liquidity are higher with the decision maker’s inter-

vention than in the case of a competitive market maker. In addition, the increase in social

welfare from the decision maker’s intervention is greater when natural liquidity is lower.

Proof : See Appendix.
The competitive equilibrium entails the least liquidity because the competitive market

maker does not care about price informativeness, which is linked to the decision maker’s

production profits. The decision maker’s liquidity subsidy improves upon social welfare in

the competitive outcome because the decision maker is trying to maximize her production

profits, which are an important component of social welfare. However, the decision maker is

unwilling to subsidize liquidity enough to reach the socially optimal level because she must

bear some of the cost of giving the informed trader an incentive to reveal his information.

The informed trader restricts his trading because he recognizes his impact on the securities

price.

Proposition 7 also shows that the decision maker’s intervention improves social welfare

more when natural liquidity is lower. The intuition is similar to Proposition 6, which proves

the analogous result for the decision maker’s total profits. Once again, when natural liquidity
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is low, only a small liquidity subsidy is necessary to enhance price informativeness, which

improves social welfare.

4.1 Equilibrium When the Decision Maker Is a Trader

This section investigates possible strategies for the decision maker as a trader when there is

a competitive market maker. This situation could arise, say, if the decision maker were not

allowed to be a market maker. In this case, the decision maker may want to submit buy

and sell orders in order to make the market more liquid, and thus get better information. In

a dynamic setting, this could be accomplished by posting simultaneous bid and ask orders

at a narrower spread than the market maker. In a static setting where traders only submit

market orders in a batch auction, it is less clear how the decision maker can achieve her

liquidity objectives.

We consider the possibility that the decision maker submits a random order to make

the market more liquid. Indeed, this is precisely the way that liquidity traders are modeled

in the standard Kyle (1985) model. In this “random trading model,” we will prove that

the amount of liquidity (λ−1) and the informed trading strategies are the same whether a

rational decision maker optimally trades in the market or optimally makes the market. The

proof of this result is quite general and applies to both the model with a stakeholder and

the model with no stakeholder.

Formally, consider a model in which the decision maker submits a random order ρ, where

ρ ∼ N(0, Vρ), to a competitive market maker. The decision maker selects the distribution

of the order, but cannot control the specific realization of her order. Because the single

parameter Vρ is a sufficient statistic for the distribution of ρ, we can think of the decision

maker as choosing Vρ. For simplicity, we suppose that only the decision maker can observe

the realization of ρ, which occurs after the order is submitted but before the market clears.

This will allow the decision maker to “debias” the market price by accounting for the effect

of the realization of ρ. The competitive market maker only observes aggregate order flow,

but is aware that the decision maker’s random order flow is included in aggregate order

flow.18 Order flow may include orders from an arbitrary number of informed traders and a

18In practice, writing a contract to enforce this random order would not be difficult. For example, suppose
a decision maker submits an order to buy ρ contracts, where ρ is the realization from a third-party random-
number generator. The distribution of ρ would need to be public, but the realization could be public (e.g.,
the point difference in the SuperBowl) or private (e.g., the spin on a roulette wheel with normally distributed
values). The decision maker’s random order would need to be a binding contract with the market maker
that would be verified ex ante and enforced ex post by a neutral third party. Anticipating that this random
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stakeholder.

Proposition 8 The amount of liquidity (λ−1), the stakeholder trading strategy, and the
informed trading strategy are the same whether a rational decision maker optimally trades

in the market or optimally makes the market.

Proof : See Appendix.
The main point of Proposition 8 is that both models’ predictions of how the decision

maker will participate in the market do not depend on the assumption that the decision

maker can act as a market maker. The proof shows that the decision maker can achieve the

same expected utility and equilibrium outcome by randomly trading in the market with a

competitive market maker.19

An interesting implication of Proposition 8 is that the decision maker can choose whether

she would like others to benefit from the information provided by her liquidity subsidy. In

particular, if the decision maker reveals the realization of her random order flow to other

agents, then these other agents can make more accurate inferences about the security’s

fundamental value (y). On the other hand, if the decision maker would rather keep her

information private, then she can do this, too. In our highly stylized model, the decision

maker is indifferent to releasing the information to the public. In general, the choice of

whether to reveal her information will depend on the decision maker’s objectives.

5 Conclusion

Our model allows new insights into how securities markets are linked to resource allocation

decisions. We derive three key results. First, we show that a decision maker will subsidize

liquidity in illiquid decision markets to gather valuable decision-relevant information. In

our Kyle-type model, the decision maker always provides at least as much liquidity as a

competitive market maker and often provides more. There are even some situations in

which a competitive market maker would refuse to operate, but a decision maker would be

willing to supply some liquidity and incur expected trading losses. From the decision maker’s

perspective, some trade in a market for decision-relevant information is better than none. We

order would be a part of total order flow, a competitive market maker would lower the sensitivity of price
to order flow.
19Proposition 8 raises the question of whether agents who behave as noise traders are doing so to learn

more from the market price. Before dismissing such agents as irrational, future theoretical and empirical
work may consider this possibility.
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also show that the decision maker can implement her desired liquidity policy either directly

as the market maker or indirectly as a noise trader participating in a competitive market.

Second, we show that the decision maker’s intervention in the securities market enhances

social welfare. In general, without decision stakeholders, noise traders, or hedging demands,

there will be little trade in a securities market. In this case, informed traders will have no

incentive to acquire costly information or reveal it in prices. Allocative efficiency suffers from

this lack of information. Fortunately, the decision maker is willing to subsidize liquidity in

the securities market to partially address this problem. Unfortunately, her subsidy is typi-

cally not large enough to motivate the socially optimal level of information acquisition and

revelation in prices. The reason is that informed traders recognize the impact of their trades

in imperfectly liquid markets. They restrict the quantity of their trades, which increases

their private profits but harms social welfare.

Third, our model demonstrates that the mere act of linking the decision to the market

price will typically enhance liquidity in the market. Thus, liquidity may be less of a problem

in decision markets than in traditional prediction or securities markets. In decision markets,

agents may choose to trade because they have strong decision objectives. Moreover, this

stakeholder trading is a substitute for the liquidity subsidy provided by a decision maker.

This can be compared with the more conventional prediction market case in which even

experts with decision objectives will not trade. In both cases, however, liquidity subsidies

may be useful for obtaining information. Although we derive special cases of optimal liquidity

subsidies in this paper, the form of the optimal subsidies in more general settings requires

further investigation.

We believe that prediction and decision markets are likely to become more prevalent in

the future. While we have developed a theory of how such markets could be designed effi-

ciently, it remains to be seen whether such mechanisms will actually work well in practice.

More research is needed to understand the properties of different kinds of decision markets.

For example, little is known about the theoretical properties of decision markets in which

the decision itself has an impact on the realization of decision-relevant information. Ap-

plied research, including both laboratory and real-world experiments, can assess how robust

different decision markets are in practice. Whereas researchers consistently find that pre-

diction markets forecast extremely well, they are only beginning to study decision markets

empirically. There are compelling theoretical reasons to expect different behavior in decision

markets, but theory alone cannot address this issue.
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Appendix

In the appendix, we prove Propositions 1 through 8. We include all detailed proofs for

the purposes of article review, but note that we intend to shorten these proofs in the final

version of the paper.

Proof of Proposition 1: After already incurring the cost of acquiring information, the
informed trader maximizes expected trading profits ignoring the sunk acquisition cost.

qIi ∈ argmax
qIi

E(bqIi(y − p)|si) (11)

where p = λQ = λQI = λ
X
i

qIi, which has the solution:

qIi =
vi(1− λb−I(N − 1))

2λ
si (12)

These are the informed trader’s expected trading profits before si has been realized, but

after the distribution of si has been chosen. This expression for qi can be combined with our

symmetry assumption (bI = b−I) to solve for bI :

bI =
vi(1− λbI(N − 1))

2λ
(13)

where each trader’s strategy depends on the degree of information precision vi acquired by

that trader.

Next we assess whether this choice of information precision is consistent with each in-

dividual informed trader’s profit maximization condition. Substituting the solution to the

profit-maximization problem in equation (13) into the original maximand in equation (11),

we can compute the maximized expected profits of each informed trader with a signal quality

of vi as:
V0vi
4λ
(1− λb−I(N − 1))2 (14)

Anticipating these expected profits, the informed trader can now select his optimal degree

of information acquisition:

vi ∈ argmax
vi

V0bvi
4λ
(1− λb−I(N − 1))2 −

cv
2
bv2i (15)
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which has the solution:

vi =
V0(1− λb−I(N − 1))2

4cvλ
(16)

when V0(1− λb−I(N − 1))2 < 4λcv and vi = 1 otherwise because vi ∈ [0, 1]. From equation

(16), because traders use symmetric trading strategies (bI = b−I), they all optimally choose

the same information acquisition parameters (vi = v).

To ensure that each informed trader is choosing a trading strategy that is a best response

to the actual trading strategies played by other informed traders, we solve for the value of

bI that satisfies equation (13) and our symmetry result that vi = v:

bI =
v

λ[(N − 1)v + 2] (17)

Using this equation along with equation (16), we can solve for the degree of information

precision that each informed trader will choose as a best response to all other informed

traders’ strategies:

v[(N − 1)v + 2]2 = V0
cvλ

(18)

Equation (18) establishes a one-to-one mapping between liquidity and the equilibrium

level of information precision acquired by informed traders, which we can confirm by showing

the derivative of v(λ) is always negative:

dv

dλ
= − V0/cvλ

2

[3(N − 1)v + 2][(N − 1)v + 2] < 0 (19)

Now we can determine the trading profits (πMM) of a market maker who sets λ. First,

we can calculate the variance of order flow (Q) and its covariance with productivity (y):

V ar(Q) = (N2V0 +NVε)b
2
I (20)

Cov(y,Q) = NV0bI (21)

where we have introduced a new parameter Vε which corresponds to the common choice

of Vi that satisfies v = V0
V0+Vi

= vi for all i. For convenience, we define V = V ar(Q) and

C = Cov(y,Q). From these equations and the equation for bI above, we can calculate the
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trading profits (πMM) of a market maker who sets a liquidity parameter λ:

πMM(λ) = E[−Q(y − p)] = λV − C = − NvV0
λ[(N − 1)v + 2]2 < 0 (22)

assuming V0 > 0, 0 < v ≤ 1 and λ > 0. Thus, a competitive market maker will not be

willing to supply any liquidity in this securities market because he would never break even

on his trades.

To solve for equilibrium in which the decision maker makes the market, we must express

the decision maker’s objective function in terms of the model parameters. As shown above,

the decision maker’s trading profit from choosing the degree of liquidity in the market (λ) is

given by λV −C, where λ is the price sensitivity parameter she sets. We refer to the trading

profits as a liquidity subsidy and focus on this measure throughout the paper.

We can simplify the above expression for trading profits by substituting equation (18) to

obtain:

πT0 = πMM(λ) = −Ncvv
2 (23)

This expression shows that the trading losses incurred by the decision maker are exactly

double the total acquisition costs for informed traders. The reason is that each informed

trader has private information and recognizes the impact his trades have on the equilibrium

securities price. To maximize his profits, he trades less aggressively based on his signal,

which increases his profits at the expense of the decision maker.

We can combine these trading losses with the decision maker’s maximized production

profits (πMax
P0 ) when productivity (y) deviates from her forecast (x). Recall that the ex-

pression for production profits in (2) relies on the assumption that the decision maker will

implement her best estimate of y after observing aggregate order flow. In particular, the

decision maker’s equilibrium effort rule is given by:

x = E(y|p) = E(y|Q) = E(y) +
C

V
(Q−E(Q)) =

C

V
Q =

C

λV
p (24)

which implies the following value for k:

x = kp⇒ k =
C

λV
(25)

Note that equation (24) computes the decision maker’s conditional expectation of produc-

tivity (E(y|Q)) by applying the conditional expectation formula for the jointly normally
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distributed random variables productivity (y) and aggregate order flow (Q).

We can simplify expression (2) for the decision maker’s maximized production profits

using equation (24) for the effort rule along with equations (20) and (21) for V and C:

πMax
P0 = V0 − Vδ = V0 −E(y − C

V
Q)2

= V0 −E(y2) + 2
C

V
E(yQ)− C2

V 2
E(Q2) =

C2

V
(26)

=
NvV0

(N − 1)v + 1 (27)

Using equation (27), we can express the decision maker’s total profit maximization prob-

lem as:

max
λ

π0 = λV − C + V0 − V ar(y|Q) = −Ncvv(λ)
2 +

Nv(λ)V0
(N − 1)v(λ) + 1 (28)

Because equation (18) establishes a one-to-one mapping between λ and v, we can rewrite

this maximization in terms of v:

max
v
−Ncvv

2 +
NvV0

(N − 1)v + 1 (29)

The first-order condition for the maximization is:

dπ0
dv

= −2Ncvv +
NV0

[(N − 1)v + 1]2 = 0

The second-order condition for maximization is clearly satisfied because:

d2π0
dv2

= −2Ncv −
2N(N − 1)V0[(N − 1)v + 1]

[(N − 1)v + 1]3 < 0

This implies that the first-order condition characterizes a maximum. Rearranging the first-

order condition slightly, we obtain a cubic equation in v that can be solved in closed form

using standard methods:

v[(N − 1)v + 1]2 = V0
2cv
⇒ v = v(N,V0/cv) (30)

Equation (30) can be solved in closed form using the cubic equation to obtain at least one
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positive real root for v. Because the analytical expression for v is quite cumbersome, in the

interest of brevity and clarity, we denote the unique positive real root in equation (30) as

v(N,V0/cv).20

Now we can combine equation (30) and equation (18) to find a solution for λ in terms

of v. We can then substitute v(N, V0/cv) in the resulting expression to obtain a closed form

solution for λ:

λ = 2

µ
(N − 1)v + 1
(N − 1)v + 2

¶2
⇒ λ = λ(N,V0/cv) (31)

Using equations (30) and (31), we can also compute the equilibrium trading strategies of

informed traders:

bI(N,V0/cv) =
v(N, V0/cv)

λ(N, V0/cv)[(N − 1)v(N,V0/cv) + 2]
(32)

From equation (25), the definitions of V and C in (20) and (21), and equation (32) for bI ,

we find that the decision maker’s equilibrium effort rule is:

k =
V0

(NV0 + Vε)λbI
=
(N − 1)v(N, V0/cv) + 2

(N − 1)v(N, V0/cv) + 1
= k(N, V0/cv)

Note that 1 ≤ k ≤ 2 because v ∈ [0, 1]. QED.
Proof of Proposition 2: We can rewrite equation (30) as F (v,N) − G(V0, cv) = 0.

Applying the implicit function theorem to this equation, we find that:

dv

dN
= −∂F/∂N

∂F/∂v
= − 2v2

3(N − 1)v + 1 < 0

dv

dV0
=

∂G/∂V0
∂F/∂v

=
1/2cv

[3(N − 1)v + 1][(N − 1)v + 1] > 0

dv

dcv
=

∂G/∂cv
∂F/∂v

= − V0/2c
2
v

[3(N − 1)v + 1][(N − 1)v + 1] < 0

Moreover, for N > 1, equation (31) establishes a monotonically increasing relationship be-

tween v and λ. This means that the derivatives of λ with respect to the model parameters

must the same signs to the derivatives of v, which means that λ−1 has the opposite signs.

For N = 1, λ is equal to a constant, implying that all the derivatives of λ are zero.

20An explicit closed form solution is available from the authors upon request.
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Now we can differentiate equation (23) for trading profits with respect to N to obtain:

∂(λV − C)

∂v

dv

dN
+

∂(λV − C)

∂N
= cvv

2

µ
4Nv

3(N − 1)v + 1

¶
− cvv

2

Thus, trading profits increase with N if and only if:

v > 1/(N + 3)

This condition may or may not be met depending on the values of V0 and cv.

Next, we differentiate equation (23) for trading profits with respect to cv to obtain:

∂(λV − C)

∂v

dv

dcv
+

∂(λV − C)

∂cv
= Nv2

µ
V0/vcv

[3(N − 1)v + 1][(N − 1)v + 1]

¶
−Nv2

This implies that trading profits increase with cv if and only if:

V0/cv > v[(N − 1)v + 1]2 + 2(N − 1)v2[(N − 1)v + 1]

v < 1/(N − 1)

When N = 1, this clearly holds, but the condition will sometimes fail depending on the

values of cv and V0. For example, when N = 2 and V0/cv > 9/4, the reader can verify that

v > 1/2, which violates the condition above.

Next, we evaluate how trading profits depend on V0. This is easier because V0 only

indirectly enters the formula for trading profits through v:

∂(λV − C)

∂v

dv

dV0
= − Nv

[(N − 1)v + 1][3(N − 1)v + 1] < 0

This implies that the decision maker subsidizes trading more when information is more

valuable for production.

To assess how price informativeness varies with information acquisition cost, we differen-

tiate equation (27) with respect to cv:

d(V0 − Vδ)/dcv =
−NV 2

0 /2c
2
v

((N − 1)v + 1)2(3(N − 1)v + 1) < 0

This means that prices are less informative when information acquisition costs are higher.
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Furthermore, by inspecting equation (27), we see that d(V0 − Vδ)/dV0 must be positive

because price informativeness increases with V0 directly and indirectly through v.

Finally, the change in price informativeness with respect to the number of informed

traders is less clear.

d(V0 − Vδ)/dN =
−NV0

((N − 1)v + 1)2
2v2

3(N − 1)v + 1 +
v(1− v)V0

((N − 1)v + 1)2
< 0 if and only if

3(N − 1)v2 − (N − 4)v − 1 < 0

which will sometimes fail depending on the values of N , cv and V0. For example, when N = 2

and V0/cv > 32/27, the reader can verify that v > 1/3, which violates the condition above.

QED.

Proof of Proposition 3: Recall that we have already computed the production profits
conditional on acquiring the level of information in equation (27) and total information

acquisition costs are given by Ncvv
2/2. Thus, social welfare maximization can be written:

max
v

W = −Ncvv
2/2 +

NvV0
(N − 1)v + 1 (33)

First, we look for the socially optimal information acquisition level, which we refer to as vsoc.

The first-order condition for the social maximization problem is:

dW

dv
= −Ncvvsoc +

NV0
[(N − 1)vsoc + 1]2

= 0

The second-order condition for maximization is clearly satisfied because:

d2W

dv2
= −Ncv −

N(N − 1)V0
[(N − 1)v + 1]3 < 0

This implies that the first-order condition characterizes a social welfare maximum. Rear-

ranging the first-order condition slightly, we obtain a cubic equation in vsoc that can be

solved in closed form using standard methods:

vsoc[(N − 1)vsoc + 1]2 =
V0
cv

(34)

Because V0 > 0 and cv is finite, we can infer that vsoc > 0. Clearly, this is greater than

the level of information acquisition (v = 0) when the decision maker does not participate in
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the securities market and there is no trade.

Now we establish that the decision maker’s subsidy is insufficient to motivate the socially

optimal level of information acquisition. We know that dW/dv = 0 when evaluated at vsoc.

If we can show that dW/dv − dπ/dv > 0 when both derivatives are evaluated at the social

optimum (v = vsoc), then we can infer that the decision maker’s choice is less than the social

optimum. The difference between the social and private incentive to increase information

acquisition is:
dW

dv
(v = vsoc)−

dπ

dv
(v = vsoc) = Ncvvsoc > 0

This means that the socially optimal level of information acquisition will always exceed the

decision maker’s private optimum.

Finally, recall that equation (18) establishes a one-to-one mapping between liquidity and

the equilibrium level of information precision acquired by informed traders. This means that

all of the information acquisition comparisons above also apply to securities market liquidity.

QED.

Proof of Proposition 4: The first step is to determine the trading strategies of the
informed trader and the stakeholder. The informed trader solves the same profit maximiza-

tion problems as before in equations (11) and (15). The general solution to his problem is

given in equation (13). For the model in this section, we have cv = 0, v = 1 and N = 1.

With these values, equation (13) becomes:

bI = (1/2λ)⇒ qI = (1/2λ)s (35)

The stakeholder’s profit maximization problem can be written:

qM ∈ argmax
qM

E(bqM(y − p) + θx)

where Q = qI + qM . Substituting the equilibrium pricing and decision rules, we obtain:

qM ∈ argmax
qM

E(bqM(y − λ(qI + bqM)) + θkλ(qI + bqM))
which has the solution:

qM = (k/2)θ (36)
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Nowwe can examine howmuch aggregate order flow varies and covaries with productivity.

Using standard definitions, we find:

V =
1

4λ2
V0 +

k2

4
Vθ (37)

C = V0/2λ (38)

Furthermore, we note that a competitive market maker must set market liquidity (λc) to

satisfy a zero trading profit constraint, which can be found by setting her profits in equation

(22) equal to zero:

λc = C/V (39)

Because we maintain the assumption that the decision maker will choose the optimal

rule after observing the securities market price, we can use the same expression for k from

equation (25) in the earlier model. Combining equations (25) and (39), we find that the

decision maker sets k = 1, implying that x = p.

Next, we can determine an explicit solution for the price sensitivity set by a competitive

market maker (λc) described in equation (39). Substituting the expressions for V and C in

equations (37) and (38) into equation (39), we obtain:

λc

µ
1

4λ2c
V0 +

k2

4
Vθ

¶
− V0/2λc = 0

which has the solution:

λc =
p
V0/Vθ (40)

which is identical to the expression in Kyle (1985).

Now we can use the equilibrium values for liquidity (λc) and the decision rule (k) to

compute traders’ equilibrium strategies in equations (35) and (36). The informed trader will

follow the strategy:

qI =

√
Vθ

2
√
V0
s

and the stakeholder will follow the trading strategy:

qM =
1

2
θ
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Substituting these values in the equilibrium pricing function, we obtain:

p =
1

2
(s+

p
V0/Vθθ)

In the competitive market making equilibrium, we are examining the hypothetical situa-

tion in which the decision maker does not trade. This means that her total profits are equal

to her production profits. Using the pricing rule along with the equation for λc, we find that

the decision maker’s expected total profits are given by:

π0 = πMax
P0 = V0 − E(y − p)2 = V0/2 (41)

In addition, this equation reveals that the mean squared prediction error for prices is given

by E(y − p)2 = V0/2, which is the same value as in Kyle (1985). In equation (3), we

also defined this value as the price informativeness. In a competitive equilibrium without

decision maker intervention in the securities market, price informativeness is unaffected by

the amount of stakeholder trading.

Finally, we note that there is no trade when Vθ → 0 because this implies that qM → 0

and λc →∞, which implies that qI → 0. QED.

Proof of Proposition 5: First, we focus on both the decision maker’s and the stake-
holder’s production profits. To determine the decision maker’s production profits, we follow

the exact same logic that led to equation (26). Then we can substitute equations (37) and

(38) for V and C to obtain:

πMax
P0 (λ) = C2/V =

V 2
0

V0 + λ2k2Vθ

Using the assumed pricing and decision rules along with equation (36), we find that the

stakeholder’s payoff from the production effort chosen by the decision maker (x) is given by:

πPM = E(θx) = E(θkλQ) = λk2Vθ/2

Because the decision maker will choose optimally given the market price she observes, this

implies that the constraint on k in equation (25) must hold. Combining this constraint with

the expressions for V and C in (37) and (38), we infer that:

(λ2k(λ)2Vθ + V0)k(λ)− 2V0 = 0 (42)
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We can also combine equation (25) with the non-positive trading profits restriction to show

that k > 1:

πT0 = λV − C ≤ 0⇒ k(λ) = C/λV ≥ 1

We also note that strictly negative trading profits implies that λ < C/V = λc, which

means that k > 1. The decision maker sets prices to underreact to information in order

for informed traders to reap extra profits from their trades. However, the decision maker’s

effort rule (x = kp) is not biased. She appropriately adjusts for the underreaction in prices

by changing her effort level more than one-for-one in response to changes in prices.

To show that k < 2, we rewrite equation (42) as:

λ2k3Vθ/V0 = 2− k

Because the left-hand side is always positive (assuming Vθ > 0), the right-hand side must

always be positive, implying that k < 2. Thus, 1 < k < 2.

Differentiating the constraint on k with respect to λ, we see that:

dk

dλ
= − 2λk3Vθ/V0

3λ2k2Vθ/V0 + 1
< 0 (43)

Now we can write the maximization problem for the decision maker as:

max
λ

λV − C + C2/V

subject to k = k(λ) and λV − C ≤ 0. The second constraint ensures that the uninformed
decision maker will not make positive trading profits as a market maker. We will solve the

maximization problem by first ignoring this second constraint, but verifying later that it is

satisfied in our proposed solution. Applying the equations for C and V , we can rewrite the

maximization as:

max
λ
− 1
4λ

V0 +
k2λ

4
Vθ +

V 2
0

V0 + λ2k2Vθ
(44)

The derivative of the decision maker’s expected profits with respect to λ is:

dπ

dλ
=

µ
∂π

∂λ

¶
+

µ
∂π

∂k

∂k

∂λ

¶
=

∙
V0

4λ2
+

k2

4
Vθ −

2λk2Vθ

(1 + λ2k2Vθ/V0)2

¸
−
µ
kλ

2
Vθ −

2λ2kVθ

(1 + λ2k2Vθ/V0)2

¶
2λk3Vθ/V0

3λ2k2Vθ/V0 + 1
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which can be rewritten by repeatedly substituting the k(λ) constraint in equation (42):

dπ

dλ
=

V0

4λ2
+

k2

4
Vθ −

λk3Vθ(1 + λkVθ/V0)

3λ2k2Vθ/V0 + 1
(45)

Further substitution of the k(λ) constraint in equation (42) and simplification gives:

dπ

dλ
=

V0

2λ2k(3− k)

£
3− k − (2− k)2 − λk2(2− k)

¤
The first-order condition for the decision maker’s optimal liquidity provision is equivalent

to:
dπ

dλ
∝ −λk2(2− k)− k2 + 3k − 1 = 0 (46)

which can be solved for λ in terms of k:

λ =
3k − (1 + k2)

k2(2− k)
(47)

Using this solution for λ(k) in the k(λ) in equation (42), we obtain a solution for k:

[3k − (1 + k2)]2Vθ/V0 − (2− k)3k = 0 (48)

Equation (48) provides an explicit decision rule k as a function of natural liquidity (Vθ/V0),

which can be solved in closed form using the quartic formula identified by Ferrari and Car-

dano (1545). Because the analytical expression for k is quite cumbersome, in the interest of

brevity and clarity, we denote the unique positive real root for k in equation (48) as k(Vθ/V0)

to emphasize its dependence on natural liquidity (Vθ/V0).21

This closed form solution can be combined with equation (47) to find a closed form

liquidity rule:

λ(Vθ/V0) =

s
2− k(Vθ/V0)

k(Vθ/V0)3

p
V0/Vθ

We can evaluate the first-order condition in equation (46) at k = 1 and λ =
p
V0/Vθ,

which is the competitive equilibrium.

dπ

dλ
(λc =

p
V0/Vθ) ∝ 1−

p
V0/Vθ

21An explicit closed form solution is available from the authors upon request.
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This equation shows that dπ/dλ < 0 if and only if Vθ < V0. In other words, the competitive

level of price sensitivity is too high when there is little manipulative (endogenous noise)

trading activity. Thus, we conclude that the decision maker is willing to subsidize liquidity

provision (i.e., set λ < λc) in the securities market in situations where the stakeholder

(endogenous noise trader) provides the least liquidity. However, the decision maker will not

intervene in the securities market when the amount of stakeholder trade is sufficiently large

(i.e., Vθ ≥ V0).

Furthermore, we can easily show that the decision maker’s liquidity subsidy induces the

informed agent to trade more aggressively (i.e., set bI higher) based on his information. By

definition, the decision maker’s liquidity subsidy decreases λ relative to λc. Using equation

(35) for the informed trader’s aggressiveness (bI), we see that the informed trader uses his

signal more when liquidity is greater.

In addition, we note that the stakeholder trades more aggressively (i.e., sets bM higher)

based on his decision objective (θ) when the decision maker subsidizes liquidity. The stake-

holder’s trading aggressiveness (bM) is given by k/2 according to equation (36), which clearly

increases in k. We have already shown above that the decision maker selects a greater k value

when she sets prices than she would when the competitive market maker sets prices–i.e.,

k > 1. As a result, the stakeholder trades more aggressively based on his decision objective

(θ) when the decision maker sets prices.

Lastly, we note that total price informativeness is equal to the decision maker’s maximized

production profits, which we showed explicitly in equation (3). When the decision maker

chooses to subsidize liquidity, she does so only because it increases her total profits. Because

her trading profits decrease when she subsidizes liquidity, we can infer that her production

profits must increase. This implies that price informativeness is greater when the decision

maker subsidizes liquidity. QED.

Proof of Proposition 6: First, we examine how natural liquidity (Vθ/V0) affects the
decision maker’s effort rule k by differentiating equation (48) with respect to Vθ/V0 and

solving for dk
d(Vθ/V0)

:

dk

d(Vθ/V0)
= − [3k − (1 + k2)]2/2

[3k − (1 + k2)](3− 2k)Vθ/V0 + (2k − 1)(2− k)2
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which can be simplified using the solution for k(Vθ/V0) implicitly defined by equation (48):

dk

d(Vθ/V0)
=

−(2− k)−2[3k − (1 + k2)]3/2

(3− 2k)(2− k)k + [3k − (1 + k2)](2k − 1) (49)

Because the numerator above is always negative, we infer that dk
d(Vθ/V0)

is negative if and only

if the denominator is positive. After some simplification, this condition is equivalent to:

dk/d(Vθ/V0) < 0 if and only if k + 1 > 0

which is always true because 1 < k < 2. We conclude that dk/d(Vθ/V0) < 0.

By differentiating the λ(k) solution in equation (47) with respect to k, we can show that

price is more responsive to order flow when the effort decision is more responsive to the price:

dλ/dk =
4− 9k + 6k2 − k3

k3(2− k)2
=
(k − 1)2(4− k)

k3(2− k)3
> 0

where the last inequality holds because we have already shown that 1 < k < 2. This means

that the comparative statics results for k also hold for λ, implying that dλ/d(Vθ/V0) < 0.

Now we can address what happens to the size of the liquidity subsidy as natural market

liquidity (Vθ/V0) increases. Using equations (22) and (25), the size of the subsidy is given

by:

πT0 = λV − C = λV (1− k) ≤ 0

where the inequality relies on the fact that k ≥ 1. This equation can be simplified by

substituting using equations (37) and (47):

πT0 = (V0/4)

∙
k2(2− k)2 + (3k − (1 + k2))2Vθ/V0

(3k − (1 + k2))(2− k)

¸
(1− k)

Using the solution for k(Vθ/V0) implicitly defined by equation (48), we can simplify the

liquidity subsidy further:

πT0 = (V0/2)[3k − (1 + k2)]−1k(2− k)(1− k) ≤ 0

By inspection, it is clear that πT0 = 0 either when Vθ/V0 = 1 and k = 1 or when Vθ/V0 =

0 and k = 2. In addition, we see that πT0 < 0 for 0 < Vθ/V0 < 1 and 1 < k < 2.

This immediately implies that there is a non-monotonic relationship between the size of the
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subsidy and the market’s natural liquidity. In particular, as natural liquidity increases from

Vθ = 0 to Vθ > 0, the size of the liquidity subsidy increases. However, beyond some cut-off

point V between 0 and V0, the size of the liquidity subsidy diminishes when natural liquidity

increases.

Now we examine how the decision maker’s expected total profits depend on natural

liquidity (Vθ/V0). In particular, we will evaluate how the difference between her profits when

she subsidizes liquidity and her profits when she does not subsidize liquidity depends on

natural liquidity. This measures reveals how the impact of the liquidity subsidy depends on

natural liquidity. The difference between her profits when she subsidizes liquidity and her

profits when she does not subsidize liquidity is given by equation (44) minus equation (41):

∆π = − 1
4λ

V0 +
k2λ

4
Vθ +

V 2
0

V0 + λ2k2Vθ
− V0
2

Holding V0 fixed and differentiating this change in profits with respect to natural liquidity

(Vθ/V0), we obtain:
d∆π

d(Vθ/V0)
= V0

∙
λk2

4
− λ2k2

(1 + λ2k2Vθ/V0)2

¸
where we have ignored the indirect effect of natural liquidity through λ and k(λ) by the

envelope theorem. We can simplify this expression somewhat by substituting equations (42)

and (46):

d∆π

d(Vθ/V0)
=

V0λk
2

4
(1− λk2)

= −V0λk
2

4

∙
(3− k)(k − 1)

2− k

¸
< 0

where the final inequality holds because 1 < k < 2. QED.

Proof of Proposition 7: We can evaluate social welfare (W soc) as the sum of the

expected production profits of the decision maker in equation (26) and the expected non-

trading profits of the stakeholder:

W soc(x) = πMax
P0 (x) + πPM(x) = C2/V + E(θx) (50)

In the hypothetical competitive equilibrium, the decision maker’s expected production profits

are given by V0/2 and the stakeholder’s non-trading profits are given by
√
V0Vθ/2. This
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implies that total social welfare in the competitive equilibrium is equal to:

(
p
V0/2)(

p
V0 +

p
Vθ) (51)

We can compare the social welfare at the competitive equilibrium, when the decision

maker sets liquidity in the securities market, and when a social planner sets liquidity in the

securities market. First, we rewrite total social welfare in equation (50) as a function of λ

and k:

W (λ) =
V 2
0

V0 + λ2k2Vθ
+ λk2Vθ/2

where we have used our assumption that the decision maker implements her optimal effort

rule after observing the equilibrium price. This expression for social welfare with decision

maker intervention can be simplified somewhat using the constraint on k in equation (42):

W (λ) = (k/2)V0[(1 + λkVθ/V0)] (52)

To find the social optimum, we must differentiate the social welfare function identified above

with respect to λ subject to the constraint on k(λ) in equation (42), which gives:

dW/dλ = −λk
3Vθ(1 + 2λkVθ/V0)

3λ2k2Vθ/V0 + 1
+

k2

2
Vθ (53)

where we have used the differentiated constraint on k in equation (43). By evaluating the

derivative at the competitive optimum of k = 1 and λ =
p
V0/Vθ, we can compare the social

optimum level of liquidity to liquidity in the competitive equilibrium:

dW

dλ
(λ = λc) = −

√
V0Vθ(1 + 2

p
Vθ/V0)

4
+

Vθ
2
= −

p
V0Vθ/4 < 0

This means that λc is too high from a social standpoint, implying that the competitive

level of liquidity (λ−1c ) is lower than the social optimum. To compare the social and private

optima, we can evaluate the difference between the first-derivative equations (45) and (53):

dπ

dλ
− dW

dλ
=

V0(1 + λ2k2Vθ/V0)
2

4λ2(3λ2k2Vθ/V0 + 1)
> 0

Whenever λ = λsoc and dW/dλ = 0, we must have dπ/dλ > 0, which implies that

the private optimum always entails a greater level of price sensitivity (λ) than the social
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optimum. In other words, the private optimum always involves less liquidity (λ−1) than the

socially optimal level of liquidity (λ−1soc). Combining this result with the earlier result that

the private optimum always entails at least as much liquidity provision as the competitive

optimum, we infer that the decision maker’s liquidity subsidy in the private optimum always

improves upon the competitive optimum.

Next, we can evaluate the change in social welfare resulting from the decision maker’s

intervention. Social welfare under the decision maker’s intervention is given by equation

(52). Social welfare under the competitive market maker is given by equation (51). Thus,

the change in social welfare resulting from decision maker intervention is the difference

between these two expressions:

∆W = (k/2)V0[(1 + λkVθ/V0)]− (V0/2 +
p
V0Vθ/2) = (k − 1)V0/2 + (λk2 −

p
V0/Vθ)Vθ/2

using the constraint on k in equation (42). We can simplify this equation using the decision

maker’s simplified first-order condition in equation (46):

∆W = (k − 1)V0/2 + λk2 −
p
V0/Vθ)Vθ/2

= (V0/2)[(k − 1)(1 + Vθ/V0) +
Vθ/V0
2− k

−
p
Vθ/V0]

Differentiating this expression with respect to Vθ/V0, we obtain:

d∆W

d(Vθ/V0)
∝ k − 1 + (2− k)−1 − 1

2
(Vθ/V0)

−1/2 +
dk

d(Vθ/V0)
(1 + (Vθ/V0) + (Vθ/V0)(2− k)−2)

where dk/d(Vθ/V0) is given by equation (49), which can be simplified using the solution for

k in equation (48):
dk

d(Vθ/V0)
= − [3k − (1 + k2)](2− k)k

2(Vθ/V0)(1 + k)
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Substituting this expression for dk/d(Vθ/V0), we obtain:

d∆W

d(Vθ/V0)
∝ −1

2
(Vθ/V0)

−1/2 + k − 1 + (2− k)−1

− [3k − (1 + k2)]3

2(2− k)2(1 + k)
− [3k − (1 + k2)](2− k)k

2(1 + k)
(1 + (2− k)−2)

∝ −1
2

[3k − (1 + k2)]p
(2− k)3k

+
[3k − (1 + k2)]

(2− k)

− [3k − (1 + k2)]3

2(2− k)2(1 + k)
− [3k − (1 + k2)]k

2(1 + k)(2− k)
((2− k)2 + 1)

where we have used the solution for k in equation (48) in the simplifying step above. After

some additional algebra that relies on the fact that 1 < k < 2, one can show that d∆W
d(Vθ/V0)

< 0

if and only if:

−(1 + k)
p
(2− k)k + k(3− 2k) < 0

By inspection, we see that d∆W
d(Vθ/V0)

< 0 when 3
2
≤ k < 2 because both of the terms above

are negative. When k < 3
2
, the above expression is negative if and only if:

k(3− 2k) < (1 + k)
p
(2− k)k

which is equivalent to the condition:

5k2(k − 3
2
)− (3

2
k − 1)(3k − 2) < 0

where both terms must be negative because 1 < k < 3
2
. Regardless of whether k ≥ 3

2
or

k < 3
2
, we see that d∆W

d(Vθ/V0)
< 0. We conclude that the decision maker’s intervention enhances

social welfare more when natural liquidity (Vθ/V0) is low. QED.

Proof of Proposition 8: To prove this, we must verify that the decision maker and all
traders are willing to play the same equilibrium strategies (λ, k, bI , etc.) in both situations–

i.e., when the decision maker is trading in the market and when the decision maker makes

the market. Because we have already identified all agents’ equilibrium strategies when the

decision maker makes the market, we only need to verify that these strategies are also optimal

for all agents when the decision maker trades in the market.

We can think of the decision maker as indirectly selecting liquidity in the random trading

model, subject to the constraint that her selection must satisfy the competitive market

maker’s zero profit constraint. To show there is an equilibrium in which the decision maker
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selects the same degree of liquidity as in the market making model, we can assume for now

that all other agents behave as they do in the market making equilibrium. If the decision

maker’s liquidity choice is the same given all other traders’ strategies and all other traders’

strategies are the same given the decision maker’s strategy, then the equilibria in the two

models must be the same. The general approach for showing that agents select the same

choices in both models is to show that they solve the same maximization problems subject

to the same constraints. Throughout the proof, we will denote the variables and parameters

in the random trading model by the same notation as in the market making model except

for the subscript R–e.g., the equilibrium price is given by pR rather than p.

To determine the decision maker’s optimization problem in the random trading model,

we must first examine the liquidity set by the competitive market maker, which places a

constraint on the decision maker’s liquidity choice. Because he treats the decision maker as

a noise trader, the competitive market maker maintains a simple linear pricing rule given

by:

pR = λR(QR + ρ) (54)

where QR is the aggregate order flow of all other traders, which could include informed

traders and a decision stakeholder. After she observes the realization of ρ, the decision

maker can infer the aggregate order flow of all other traders by inverting the equilibrium

price:

pR/λR − ρ = QR (55)

The decision maker’s inference about the conditional expectation of y is based on the

aggregate order flow of all other traders. This order flow is distributed normally because

we are examining an equilibrium where strategies are linear and based on normally distrib-

uted random variables. Applying the conditional expectation formula for jointly normally

distributed variables to the decision maker’s inference problem, we obtain:

E(y|QR) =
CR

VR
QR (56)

where we have defined CR = Cov(y,QR) and VR = V ar(QR). Because we are assuming

for now that all other traders follow the same strategies as in the market making model

(QR = Q), the definitions of CR and VR imply that CR = C and VR = V as long as λR = λ,

which will be useful later. We suppress the dependence of the covariances and variances

of order flow on the market maker’s pricing rule because these functional dependences are
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identical in the random trading and market making models.

As before, we assume the decision maker cannot commit to any decision other than her

ex post optimal choice, which is xR = E(y|QR). Using equations (56) and (55), this choice

can be expressed as:

xR =
CR

VR
(pR/λR − ρ) = kRQR + kρρ (57)

where we have defined two decision rule parameters, kR = CR
λRVR

and kρ = −CR
VR
, to facilitate

our analogy with the market making model. Moreover, we note that kR = CR
λRVR

is identical

to the expression (25) for k in the market making model (after substituting the random

trading model parameters). Because CR = C and VR = V whenever λR = λ, our expression

for kR = k as long as λR = λ. However, we still need to show that λR = λ.

Recall that the decision maker’s total profits come from both her production and her

trading activities. We can simplify her production profits using the fact that kR = k,

CR = C, and VR = V whenever λR = λ. Following similar reasoning used in the market

making model in (27), we find that the production profits expression for the random trading

model is:

πMax
P0R =

C2
R

VR
(58)

The decision maker also realizes profits or losses from her random trading activity. Using

the definition of trading profits and the pricing rule equation (54), her random trading profits

are given by:

πT0R = E(ρ(y − pR)) = −λRVρ (59)

Furthermore, the competitive market maker will set λR so that he will attain zero profits

conditional on aggregate order flow (QR+ρ). This means that λRV ar(QR+ρ)−Cov(y,QR+

ρ) = 0, so we can solve for the liquidity parameter λR:

λR =
Cov(y,QR + ρ)

V ar(QR + ρ)
=

CR

VR + Vρ
(60)

Note that equation (60) implies there is a mapping between Vρ and λR, implying that we

can treat the decision maker’s random trading problem as one where she chooses λR. We

rearrange equation (60) slightly, solving for the expected trading profits of the decision maker:

−λRVρ = λRVR − CR (61)
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Using (58), (59) and (61), we can write the decision maker’s total expected profit maxi-

mization with random trading as:

max
λR

λRVR − CR +
C2
R

VR
(62)

which depends only on λR. Because CR = C and VR = V whenever λR = λ, the random

trading objective function (62) above is isomorphic to the objective function for the decision

maker when she makes the market. In fact, in both the random trading model with informed

traders and the model with a decision stakeholder, the decision maker’s objective function

is given by the sum of equations (22) and (26), which has the same form of equation (62).

Thus, regardless of which traders are included in the random trading model, we infer that

λR = λ when all other traders are choosing their equilibrium trading strategies in the market

making model. In addition, as noted above, λR = λ implies that kR = k.

Now we must still show that all other traders are willing to choose the same equilibrium

strategies given the liquidity and effort decision rule choices, λR = λ and kR = k. That

is, we must show that the decision maker’s random trading order (ρ) does not alter any

trader’s trading strategy, holding the liquidity and effort rules constant. Consider a general

trader who may or may not have information about the security’s payoff (y) and who may or

may not care about the decision (θ = 0 or θ 6= 0). We can write the trader’s maximization
problem as:

max
qiR

E[bqiR(y − p) + θx]

subject to pR = λR(QR + ρ) and xR = kRpR = kRλR(QR + ρ).

To determine whether there is an equilibrium in which all traders adopt the same strate-

gies as in the market making model, we can assume that all traders but one adopt their

same strategies (Q−iR = Q−i) and ask whether the single trader would have an incentive to

deviate from the equilibrium. As mentioned above, we can also assume that the decision

maker adopts the same equilibrium strategies for λ and k, such that λR = λ and kR = k.

Under these assumptions we can rewrite the trader’s maximization problem as:

max
qiR

E[bqiR(y − kλ(Q−i + bqiR + ρ)) + θkλ(Q−i + bqiR + ρ)]

Now we note that, by construction, the decision maker’s random order has a zero mean

and is uncorrelated with any other trader’s order or payoffs. This implies that the trader’s

46



maximization problem is:

max
qiR

E[bqiR(y − kλ(Q−i + bqiR)) + θkλ(Q−i + bqiR)]
which is identical to the problem a trader solves in the market making model. We con-

clude that all traders would have no incentive to deviate from the identical random trading

equilibrium. QED.
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