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Convergence of Min-Sum Message-Passing for
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Abstract—We establish that the min-sum message-passing algo-
rithm and its asynchronous variants converge for a large class of
unconstrained convex optimization problems, generalizing existing
results for pairwise quadratic optimization problems. The main
sufficient condition is that of scaled diagonal dominance. This con-
dition is similar to known sufficient conditions for asynchronous
convergence of other decentralized optimization algorithms, such
as coordinate descent and gradient descent.

Index Terms—Message-passing algorithms, decentralized opti-
mization, convex optimization.

I. INTRODUCTION

C ONSIDER an optimization problem of the form

minimize

subject to
(1)

Here, the vector of decision variables is indexed by a finite set
. Each decision variable takes values in the set

. The set is a collection of subsets of the index set . This
collection describes an additive decomposition of the objective
function. We associate with each set a component func-
tion (or factor) , which takes values as a function
of those components1 of the vector identified by the ele-
ments of .

The min-sum algorithm is a method for optimization prob-
lems of the form (1). It is one of a class of methods known as
message-passing algorithms. These algorithms have been the
subject of considerable research recently across a number of
fields, including communications, artificial intelligence, statis-
tical physics, and signal processing. Interest in message-passing
algorithms has been sparked by their success in solving certain
classes of NP-hard combinatorial optimization problems, such
as the decoding of low-density parity-check codes and turbo
codes (e.g., [1]–[3]), or the solution of certain classes of sat-
isfiability problems (e.g., [4] and [5]). Despite their successes,
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1Given a vector � � � and a subset � � � , we use the notation � �
�� � � � �� � � for the vector of components of � specified by the set �.

message-passing algorithms remain poorly understood. For ex-
ample, conditions for convergence and accurate resulting solu-
tions are not well characterized.

In this paper, we consider cases where , and the opti-
mization problem is continuous. A closely related case that has
been examined previously in the literature is where the objective
is pairwise separable (i.e., , for all ) and the com-
ponent functions are quadratic and convex. Here, the
min-sum algorithm is known to compute the optimal solution
when it converges [6]–[8], and sufficient conditions for conver-
gence identify a broad class of problems [9], [10]. Also related
is a recent line of work examining the min-sum algorithm in
the context of matching, b-matching, maximum weight inde-
pendent set, etc. (e.g., [11]–[15]). This work has considered the
min-sum algorithm for specific classes of convex programs that
arise from the linear programming relaxations of certain dis-
crete optimization problems. These problems are constrained,
however, thus they do not fall into the formulation at hand.

Our main contribution is the analysis of unconstrained convex
optimization in the case where the functions are convex but not
necessarily quadratic. We establish that the min-sum algorithm
and its asynchronous variants converge for a large class of such
problems. Our work are generalizes existing results for pairwise
quadratic optimization problems. The main sufficient condition
is that of scaled diagonal dominance. This condition is similar
to known sufficient conditions for asynchronous convergence of
other decentralized optimization algorithms, such as coordinate
descent and gradient descent.

Analysis of the convex case has been an open challenge and
its resolution advances the state of understanding in the growing
literature on message-passing algorithms. Further, it builds a
bridge between this emerging research area and the better es-
tablished fields of convex analysis and optimization.

This paper is organized as follows. The next section studies
the min-sum algorithm in the context of pairwise separable
convex programs, establishing convergence for a broad class of
such problems. Section III extends this result to more general
separable convex programs, where each factor can be a function
of more than two variables. In Section IV, we discuss how
our convergence results hold even with a totally asynchronous
model of computation. When applied to a continuous optimiza-
tion problem, messages computed and stored by the min-sum
algorithm are functions over continuous domains. Except in
very special cases, this is not feasible for digital computers,
and in Section V, we discuss implementable approaches to
approximating the behavior of the min-sum algorithm. We
close by discussing possible extensions and open issues in
Section VI.

0018-9448/$26.00 © 2010 IEEE
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II. PAIRWISE SEPARABLE CONVEX PROGRAMS

Consider first the case of pairwise separable programs. These
are programs of the form (1), where , for all . In
this case, we can define an undirected graph based on the
objective function. This graph has a vertex set corresponding
to the decision variables, and an edge set defined by the pair-
wise factors, i.e.

Definition 1 (Pairwise Separable Convex Program): A pair-
wise separable convex program is an optimization problem of
the form

minimize

subject to
(2)

where the factors are strictly convex, coercive,2 and
twice continuously differentiable, the factors are
convex and twice continuously differentiable, and

Under this definition, the objective function is strictly
convex and coercive. Hence, we can define to be the
unique optimal solution. We will see shortly that this definition
also guarantees that the update equations of the min-sum algo-
rithm correspond to convex optimization problems.

A. The Min-Sum Algorithm

The min-sum algorithm attempts to minimize the objective
function by an iterative, message-passing procedure. For
each vertex , denote the set of neighbors of in the graph
by

Denote the set of edges with direction distinguished by

At time , each vertex keeps track of a “message” from each
neighbor . This message takes the form of a function

. These incoming messages are combined to com-
pute new outgoing messages for each neighbor. The message

from vertex to vertex evolves according
to

(3)

2A function �� � is coercive if, for every sequence �� � � with
�� � � �� ��� � � �. Note that if �� � � is a coercive and continuous
function, then a global minimum of �� � � must exist [16].

Here, represents an arbitrary offset term that varies from
message to message. Only the relative values of the function

matter, so the choice of does not influence
relevant information.

At each time , a local objective function is de-
fined for each variable by

(4)

An estimate can be obtained for the optimal value of the
variable by minimizing the local objective function:

(5)

The min-sum algorithm requires an initial set of messages
at time . We make the following assumption

regarding these messages.

Assumption 1 (Min-Sum Initialization): Assume that the ini-
tial messages are chosen to be twice continuously

differentiable and so that, for each message , there ex-
ists some with

(6)

Assumption 1 guarantees that the messages at time are
convex functions. Examining the update (3), it is clear that, by
induction, this implies that all future messages are also convex
functions. This is because of the fact that, if is a convex
function (in both arguments), then is also
a convex function [17]. Similarly, since the functions
are strictly convex and coercive, and the functions
are convex, it follows that the optimization problem in the up-
date (3) has a strictly convex and coercive objective, so that a
global minimum exists and is unique. Finally, each local ob-
jective function must strictly convex and coercive, and
hence each estimate is uniquely defined by (5).

Assumption 1 also requires that the initial messages be suf-
ficiently convex, in the sense of (6). As we will shortly demon-
strate, this will be an important condition for our convergence
results. For the moment, however, note that it is easy to select
a set of initial messages satisfying Assumption 1. For example,
one might choose

B. Convergence

Our goal is to understand conditions under which the
min-sum algorithm converges to the optimal solution , i.e.

Consider the following diagonal dominance condition:

Definition 2 (Scaled Diagonal Dominance): An objective
function is -scaled diagonally dominant if
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is a scalar with and is a vector with ,
so that for each and all

Our main convergence result, whose proof is provided in
Section II-D, is as follows.

Theorem 1: Consider a pairwise separable convex program
with an objective function that is -scaled diagonally dom-
inant. Assume that the min-sum algorithm is initialized in accor-
dance with Assumption 1. Define the constant

Then, the iterates of the min-sum algorithm satisfy

Hence

We can compare Theorem 1 to existing results on min-sum
convergence in the case of where the objective function
is quadratic. Rusmevichientong and Van Roy [7] developed ab-
stract conditions for convergence, but these conditions are diffi-
cult to verify in practical instances. Convergence has also been
established in special cases arising in certain applications [18],
[19].

More closely related to our current work is that of Weiss
and Freeman [6]. They established convergence when the fac-
tors are quadratic, the single-variable factors

are strictly convex, and the pairwise factors
are convex and diagonally dominated, i.e.

for all and . It is not difficult to see that
this is a special case of -scaled diagonal dominance, with

.
The work of Malioutov et al. [10] relaxes the assumption

of diagonal dominance, replacing it with the more general as-
sumption of “walk-summability.” Here, given a positive definite
quadratic objective function with Hessian , define the
matrix by

(7)

where is a matrix with diagonal entries from
the Hessian. Denote by the matrix of component-wise abso-
lute values of . The function is said to be walk-summable

if , i.e., the matrix has spectral radius less than
1. The following theorem shows that this is, in fact, equivalent
to scaled diagonal dominance.

Theorem 2: A positive definite quadratic objective function
is walk-summable if and only if it is -scaled diago-

nally dominant.
Proof: We assume, without loss of generality, assume that

the graph is connected (otherwise, each connected com-
ponent can be considered separately). In this case, the matrix

is irreducible and nonnegative.
Suppose that is walk-summable. By the Perron-Frobe-

nius theorem [20, Theorem 8.4.4], there exists a vector
with , and a scalar , so that

Define , and note that . Exam-
ining (7), we have precisely that is -scaled diago-
nally dominant.

Conversely, assume that is -scaled diagonally
dominant. Define . Then, we have that ,
with . It follows that [10, Corollary 8.1.29].
Since is walk-summable.

Similarly, in our prior work [9], we establish convergence for
quadratic objective functions that decompose into factors so that
the single-variable factors are quadratic and strictly convex, and
the pairwise factors are quadratic convex. This is equivalent to
walk-summability [10, Proposition 13], and, hence, by Theorem
2, also to scaled diagonal dominance. It is worth pointing out,
however, that our convergence result in [9] allows for more gen-
eral initial conditions than Assumption 1.

Finally, as we will see in Section III, Theorem 1 also gener-
alizes beyond pairwise decompositions.

C. The Computation Tree

In order to prove Theorem 1, we first introduce the notion
of the computation tree. This is a useful device in the analysis
of message-passing algorithms, an early instance of which is
the work of Wiberg [21]. Given a vertex and a time
, the computation tree defines an optimization problem that is

constructed by “unrolling” all the optimizations involved in the
computation of the min-sum estimate .

Formally, the computation tree is a graph where
each vertex is labeled by a corresponding vertex in
the original graph, through a mapping . This mapping
is required to preserve the edge structure of the graph, so that if

, then . Given a vertex , we will
abuse notation and refer to the corresponding vertex in
the original graph simply by .

Fixing a vertex and a time , the computation tree
rooted at and of depth is defined in an iterative fashion. Ini-
tially, the tree consists of a root single vertex corresponding to .
At each subsequent step, the leaves in the computation tree are
examined. Given a leaf with a parent , a vertex and an edge

are added to the computation tree corresponding to each
neighbor of excluding in the original graph. This process is
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Fig. 1. A graph, on the left, and the corresponding computation tree, on the
right, rooted at vertex 1 and of depth � � �. The vertices in the computation
tree are labeled according to the corresponding vertices in the original graph.

repeated for steps. An example of the resulting graph is illus-
trated in Fig. 1.

Given the graph , and the correspondence map-
ping , define a decision variable for each vertex . De-
fine a pairwise separable objective function , by
considering factors of the form:

1) For each , add a single-variable factor by
setting ;

2) For each , add a pairwise factor by
setting ;

3) For each that is a leaf vertex with parent , add a
single-variable factor , for each neighbor

of in the original graph, excluding .
Now, let be the optimal solution to the minimization of the

computation tree objective . By inductively examining
the operation of the min-sum algorithm, it is easy to establish
that the component of this solution at the root of the tree is
precisely the min-sum estimate .

The following lemma establishes that the computation tree
inherits the scaled diagonal dominance property from the orig-
inal objective function.

Lemma 1: Consider a pairwise separable convex program
with an objective function that is -scaled diagonally dom-
inant. Assume that the min-sum algorithm is initialized in accor-
dance with Assumption 1, and let be a computation
tree associated with this program. Then, the computation tree
objective function is also ( -scaled diagonally dom-
inant.

Proof: Given a vertex , let be the neighbor-
hood in the computation tree, and let be the neighborhood
of the corresponding vertex in the original graph. If is an
interior vertex of the computation tree, then

where the inequality follows from the scaled diagonal domi-
nance of the original objective function .

Similarly, if is a leaf vertex with parent

Here, the second inequality follows from the scaled diagonal
dominance of the original objective function , and the third
inequality follows from Assumption 1.

D. Proof of Theorem 1

In order to prove Theorem 1, we will study the evolution of
the min-sum algorithm under a set of linear perturbations. Con-
sider an arbitrary vector with one component for
each and . Given an arbitrary vector , define

to be the set of messages that evolve according to

(8)

Similarly, define and to be the resulting
local objective functions and optimal value estimates under this
perturbation

The following simple lemma gives a particular choice of
for which the min-sun algorithm yields the optimal solution at
every time.
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Lemma 2: Define the vector by setting, for each
and

Then, at every time

(9)

and .
Proof: Note that the first-order optimality conditions for

at imply that, for each

If (9) holds at time , this is exactly the first-order optimality
condition for the minimization of , thus

.
Clearly (9) holds at time . Assume it holds at time .

Then, when , the minimizing value of in (8) is .
Hence, (9) holds at time .

Next, we will bound the sensitivity of the estimate to
the choice of . The main technique employed here is analysis
of the computation tree described in Section II-C. In particular,
the perturbation impacts the computation tree only through the
leaf vertices at depth . The scaled diagonal dominance property
of the computation tree, provided by Lemma 1, can then be used
to guarantee correlation decay—we guarantee that the impact of
the leaves to the root is diminishing in .

Lemma 3: We have, for all , and

Proof: Fix , and let be the computation
tree rooted at after time steps. Let be the objective
value of this computation tree, and let

so that

By the first-order optimality conditions, for any

If is an interior vertex of , this becomes

(10)

If is a leaf with parent , we have

(11)

Now, fix some directed edge , and differentiate (10)–(11)
with respect to . We have, for an interior vertex

and for a leaf vertex with parent

We can write this system of equations in matrix form, as

(12)

Here, is a vector with components

The vector has components

The symmetric matrix has components as follows:
1) If is an interior vertex

2) If is an interior vertex and
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3) If is a leaf vertex with parent

4) All other entries of are zero.
Note that . Then, Lemma 1 implies that

(13)

Define, for vectors , the weighted sup-norm

For a linear operator , the corresponding induced
operator norm is given by

Define the matrices

Then, (13) implies that

Hence, the matrix is invertible, and

Examining the linear equation (12), we have

We are interested in bounding the value of the component
(recall that ). Hence, we have

Since is zero on interior vertices, and any leaf vertex is
distance from the root , we have

Thus,

Then,

The following lemma combines the results from Lemmas 2
and 3. Theorem 1 follows by taking .

Lemma 4: Given an arbitrary vector

Proof: For any , define

We have, from Lemma 2

By the mean value theorem and Lemma 3

III. GENERAL SEPARABLE CONVEX PROGRAMS

In this section we will consider convergence of the min-sum
algorithm for more general separable convex programs. In par-
ticular, consider a vector of real-valued decision variables
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, indexed by a finite set , and a hypergraph , where
the set is a collection of subsets (or, “hyperedges”) of the
vertex set .

Definition 3 (General Separable Convex Program): A gen-
eral separable convex program is an optimization problem of
the form

(14)

where the factors are strictly convex, coercive, and
twice continuously differentiable, the factors are
convex and twice continuously differentiable, and

As in the pairwise case, under this definition, the objective
function is strictly convex and coercive. Hence, we can
define to be the unique optimal solution.

In this setting, the min-sum algorithm operates by passing
messages between vertices and hyperedges. In particular, denote
the set of neighbor hyperedges to a vertex by

The min-sum update equations take the form

(15)

Local objective functions and estimates of the optimal solution
are defined by

We will make the following assumption on the initial mes-
sages.

Assumption 2 (Min-Sum Initialization): Assume that the ini-
tial messages are chosen to be twice continuously

differentiable and so that, for each message , there ex-
ists some with

As in the pairwise case, this assumption guarantees that the
messages are strictly convex and coercive for .
Furthermore, it follows that the optimization problem in the up-
date (15) has a strictly convex and coercive objective, so that

a global minimum exists and is unique. Finally, each local ob-
jective function must strictly convex and coercive, and
hence each estimate is uniquely defined.

Then, we have the following analog of Theorem 1.

Theorem 3: Consider a general separable convex program.
Assume that either:

a) The objective function is -scaled diagonally
dominant, and each pair of vertices participate in
at most one common factor. That is

b) The factors are individually -scaled diag-
onally dominant, in the sense that exists a scalar
and a vector , with , so that for all

, and

Assume that the min-sum algorithm is initialized in accordance
with Assumption 2. Define the constant

Then, the iterates of the min-sum algorithm satisfy

Hence

Proof: This result can be proved using the same method as
Theorem 1. The main modification required is the development
of a suitable analog of Lemma 1. In the general case, scaled
diagonal dominance of the computation tree does not follow
from scaled diagonal dominance of the objective function .
This is because a pair of variables can participate in multiple
common factors in the objective function, while, in the unrolled
computation tree, any pair of variables participates in at most a
single common factor.

The hypotheses (a) and (b) are sufficient conditions to guar-
antee scaled diagonal dominance of the computation tree—in
the pairwise case of Lemma 1, (a) implicitly holds. To see this, in
what follows, consider a computation tree . If
is a vertex in the computation tree with a neighboring vertex

, define to be the unique common factor.
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Suppose that (a) holds. Then, if is an interior vertex of
the computation tree

where the inequality follows from (a). By similarly considering
the case of a leaf vertex, it is clear that is -scaled
diagonally dominant.

Alternatively, suppose that (b) holds. Then, if is an
interior vertex of the computation tree

where the first inequality follows from (b), and the second in-
equality follows since is strictly convex. By analogous
consideration of the case of a leaf vertex, it is clear that
is -scaled diagonally dominant in this case also.

Thus, either of the hypotheses (a) or (b) imply scaled diagonal
dominance of the computation tree. The balance of the proof
proceeds as in Section II-D.

IV. ASYNCHRONOUS CONVERGENCE

The convergence results of Theorems 1 and 3 assumed a syn-
chronous model of computation. That is, each message is up-
dated at every time step in parallel. The min-sum update (3)
and (15) are naturally decentralized, however. If we consider
the application of the min-sum algorithm in distributed contexts,
it is necessary to consider convergence under an asynchronous
model of computation. In this section, we will establish that
Theorems 1 and 3 extend to an asynchronous setting.

Without loss of generality, consider the pairwise case. As-
sume that there is a processor associated with each vertex in
the graph, and that this processor is responsible for computing
the message , for each neighbor of vertex . Each pro-
cessor occasionally communicates its messages to neighboring
processors, and occasionally computes new messages based on
the most recent messages it has received. Define the to be
the set of times at which new messages are computed. Define

to be the last time the processor at vertex
communicated to the processor at vertex . Then, the messages
evolve according to

if , and

otherwise.
We will make the following assumption [22].

Assumption 3 (Total Asynchronism): Suppose that each set
is infinite, and that if is a sequence in tending to

infinity, then

for each neighbor .

Total asynchronism is a very mild assumption. It guarantees
that each component is updated infinitely often, and that pro-
cessors eventually communicate with neighboring processors.
It allows for arbitrary delays in communication, and even the
out-of-order arrival of messages between processors.

Theorem 1 can be extended to the totally asynchronous set-
ting. To see this, note that we can repeat the construction of the
computation tree in Section II-C. As in the synchronous case,
the initial messages only impact the leaves of computation tree.
The total asynchronism assumption guarantees that these leaves
are, eventually, arbitrarily far away from the root of the com-
putation tree. The arguments in Lemma 3 then imply that the
optimal value at the root of the computation tree is insensitive
to the choice of initial messages. Convergence follows, as in
Section II-D.

The scaled diagonal dominance requirement of our conver-
gence result is similar to conditions required for the totally
asynchronous convergence of other optimization algorithms.
Consider, for example, a decentralized coordinate descent al-
gorithm. Here, the processor associated with vertex maintains
an estimate of the th component of the optimal solution at
time . These estimates are updated according to



MOALLEMI AND VAN ROY: CONVERGENCE OF MIN-SUM MESSAGE-PASSING 2049

if , and , otherwise. Similarly, consider a
decentralized gradient method, where

if , and , otherwise, for some small positive
step size . These methods are not guaranteed to converge for
arbitrary pairwise separable convex optimization problems. One
sufficient condition is that the updates of each algorithm are con-
traction mappings under a weighted maximum norm, and this is
can be established by assuming some sort of scaled diagonal
dominance [22]. This is similar in spirit to the correlation decay
argument provided in Lemma 3.

V. IMPLEMENTATION

The convergence theory we have presented elucidates prop-
erties of the min-sum algorithm and builds a bridge to the more
established areas of convex analysis and optimization. How-
ever, except in very special cases, the algorithm as we have for-
mulated it can not be implemented on a digital computer be-
cause the messages that are computed and stored are functions
over continuous domains. In this section, we present two vari-
ations that can be implemented to approximate behavior of the
min-sum algorithm. Note that our convergence results do not
apply to the approximate algorithms described here. The study
of the convergence of such approximate variations is an inter-
esting open question. For simplicity, in what follows, we restrict
attention to the case of the synchronous min-sum algorithm for
pairwise separable convex programs.

First, consider an approach which approximates messages
using quadratic functions. This can be viewed as a hybrid be-
tween the min-sum algorithm and Newton’s method. It is easy to
show that, if the single-variable factors are positive def-
inite quadratics and the pairwise factors are positive
semidefinite quadratics, then min-sum updates map quadratic
messages to quadratic messages. The algorithm we propose here
maintains a running estimate of the optimal solution, and at
each time approximates each factor by a second-order Taylor
expansion. In particular, let be the second-order Taylor
expansion of around and let be the second-

order Taylor expansion of around . Quadratic
messages are updated according to

(16)

where running estimates of the optimal solution are generated
according to

(17)

Note that the message update (16) takes the form of a Ricatti
equation for a scalar system, which can be carried out effi-
ciently. Further, each optimization problem (17) is a scalar
unconstrained convex quadratic program.

A second approach makes use of a piecewise-linear approxi-
mation to each message. Let us assume knowledge that the op-
timal solution is in a closed bounded set . Let

, with ,
be a set of points where the linear pieces begin and end. Our ap-
proach applies the min-sum update equation to compute values
at these points. Then, an approximation to the min-sum mes-
sage is constructed via linear interpolation between consecutive
points or extrapolation beyond the end points. In particular, the
algorithm takes the form

for , where

for all . As opposed to the case of quadratic approxima-
tions, where each message is parameterized by two numerical
values, the number of parameters for each piecewise linear
message grows with . Hence, we anticipate that for fine-grain
approximations, our second approach is likely to require greater
computational resources. On the other hand, piecewise linear
approximations may extend more effectively to non-convex
problems, since non-convex messages are unlikely to be
well-approximated by convex quadratic functions.

VI. OPEN ISSUES

There are many open questions in the theory of message
passing algorithms. They fuel a growing research community
that cuts across communications, artificial intelligence, sta-
tistical physics, signal processing, and operations research.
This paper has focused on application of the min-sum message
passing algorithm to convex programs, and even in this context
a number of interesting issues remain unresolved.

Our proof technique establishes convergence under total
asynchronism assuming a scaled diagonal dominance condi-
tion. With such a flexible model of asynchronous computation,
convergence results for gradient descent and coordinate descent
also require similar diagonal dominance assumptions. On the
other hand, for the partially asynchronous setting, where com-
munication delays and times between successive updates are
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bounded, such assumptions are no longer required to guarantee
convergence of these two algorithms. It would be interesting
to see whether convergence of the min-sum algorithm under
partial asynchronism can be established in the absence of scaled
diagonal dominance.

Another direction will be to assess practical value of the
min-sum algorithm for convex optimization problems. This
calls for theoretical or empirical analysis of convergence and
convergence times for implementable variants as those pro-
posed in the previous section. Some convergence time results
for a special case reported in [18] may provide a starting point.
Our expectation is that for most relevant centralized optimiza-
tion problems, the min-sum algorithm will be more efficient
than gradient descent or coordinate descent but fall short of
Newton’s method. On the other hand, Newton’s method does
not decentralize gracefully, so in applications that call for
decentralized solution, the min-sum algorithm may prove to be
useful.

Finally, it would be interesting to explore whether ideas
from this paper can be helpful in analyzing behavior of the
min-sum algorithm for non-convex programs. It is encouraging
that convex optimization theory has more broadly proved to be
useful in designing and analyzing approximation methods for
non-convex programs.
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