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In recent years, there has been a surge of research into methods for estimating derivatives of performance measures from 
sample paths of stochastic systems. In the case of queueing systems, typical performance measures are mean queue 
lengths, throughputs, etc., and the derivatives estimated are with respect to system parameters, such as parameters of 
service and interarrival time distributions. Derivative estimates potentially offer a general means of optimizing perform- 
ance, and are useful in sensitivity analysis. This paper concerns one approach to derivative estimation, known as 
infinitesimal perturbation analysis. We first develop a general framework for these types of estimates, then give simple 
sufficient conditions for them to be unbiased. The key to our results is identifying conditions under which certain finite- 
horizon performance measures are almost surely continuous functions of the parameter of differentiation throughout an 
interval. The sufficient conditions we introduce are formulated in the setting of generalized semi-Markov processes, but 
translate into readily verifiable conditions for queueing systems. These results substantially extend the domain of 
problems in which infinitesimal perturbation analysis is provably applicable. 

M ost real-world queueing systems violate the 
rather restrictive conditions necessary to 

obtain exact analytic results, so networks of queues 
are often studied through discrete-event simulation. 
Simulation has the advantage of allowing complete 
model generality, but has the drawback of being com- 
putationally intensive. Hence, there is much to be 
gained from methods that make more efficient use of 
simulation by, for example, extracting more infor- 
mation from each run. Particularly valuable are 
methods that offer the possibility of optimization and 
sensitivity analysis, since these are the ultimate goals 
of most performance analysis. 

One way to use simulation for optimization is 
through a stochastic version of a gradient search 
method-stochastic approximation-driven by gra- 
dient estimates obtained through simulation; see, e.g., 
Kushner and Clark (1978) for background on sto- 
chastic approximation. The viability of such an 
approach depends heavily on the ease with which good 
gradient estimates can be obtained. The past few years 
have witnessed significant advances in the develop- 
ment of efficient techniques for Monte Carlo gradient 
estimation for discrete-event systems, such as 
queueing networks. In this paper, we give verifiable 

sufficient conditions for the use of one of the more 
efficient techniques, infinitesimal perturbation analy- 
sis (IPA). Another approach, not touched on here, is 
considered in Glynn (1986), Reiman and Weiss 
(1989), and Rubinstein (1989). 

Briefly, the idea of perturbation analysis is as fol- 
lows: Let {Z(t, 0), 0 < t < T, 0 E 01 be a paramet- 
ric family of stochastic processes, and let L(0) be a 
performance measure evaluated on each sample path 
{Z(t, 0), 0 < t < T1. Suppose that the processes 
JZ(t, 0), 0 < t < T, 0 EE) are defined on a com- 
mon probability space in such a way that L is, with 
probability one, differentiable in 0. Then the random 
variable dL/d6 is an IPA estimate of dE[L(6)]/d6. An 
IPA algorithm calculates the exact value of dL/d6 
evaluated at, say 60, from a sample path {Z(t, 00), 0 < 
t < Tf at 6o only, i.e., without ever actually perturbing 
0. The IPA estimate dL/d6 is unbiased if 

EFdL1 dE[L] 
Ld6J do 

The left side is what is obtained, in the limit, by 
averaging independent replications of dL/d6, but the 
right side is what is needed for optimization of E[L]. 
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It has been understood for some time that (1) holds 
in some contexts and not others-that perturbation 
analysis is not universally applicable. In this paper, we 
introduce very general and surprisingly simple condi- 
tions for the consistency of a class of finite-horizon 
perturbation analysis estimates. At the heart of our 
results are conditions on Z, L and 0 that ensure that 
L is, with probability one, a continuous function of 0. 
For the kinds of functions that commonly arise as 
performance measures in discrete-event simulations, 
ensuring continuity is the most important step in 
ensuring that (1) holds. 

Along the way, we address some foundational issues 
and unify, in a general framework, many of the special 
cases of perturbation analysis estimates previously 
considered in the literature. Our formulation of IPA 
is similar to that developed in Suri (1987) in a different 
setting. Although we are mainly interested in appli- 
cations to queueing systems, we find it convenient to 
work within the framework of generalized semi- 
Markov processes (especially, the formulation in 
Whitt 1980). This framework allows considerable gen- 
erality, and, more importantly, permits us to separate 
the structural aspects of a discrete-event system from 
the distributions that drive it. Our main condition is, 
in fact, purely structural. 

The essential feature of a generalized semi-Markov 
process is that it moves from state to state through the 
occurrence of "events." In a queueing context, a state 
might describe the arrangement of customers in 
queues; examples of events are service completions 
and arrivals of customers. With this rough description, 
our main condition can be paraphrased as requiring 
that the state reached from another state through the 
occurrence of two events be independent of their 
order. It has been observed widely that when IPA fails, 
it is typically because changes in a parameter change 
the order of events in such a way as to introduce 
discontinuities in the sample performance L. Our 
conditions guarantee the continuity of a class of per- 
formance measures even across event order changes. 

Few other general results on the unbiasedness and 
consistency of IPA estimates are available. Through- 
put in Jackson networks is considered in Cao (1988); 
waiting time in the M/G/1 queue is discussed in Suri 
and Zazanis (1988). Necessary conditions for a class 
of throughput derivatives, and necessary and sufficient 
conditions for derivatives based on regenerative cycles 
are given in Heidelberger et al. (1988). These papers 
propose nothing like our main condition, which grew 
out of an argument in Glasserman (1988), Section 4, 
for the special case of a birth-death process. A related 

generalization of this argument, arrived at indepen- 
dently, is reported in Li and Ho (1989), but the 
conditions there are not purely dependent on system 
structure. There is, moreover, no overlap between our 
results and those of Heidelberger et al. This is partly 
because we consider a different class of performance 
measures, but, more importantly, because their con- 
ditions are stated in terms of possible equalities 
between unknown quantities and can only be checked 
in special cases. Our conditions are easy to check. The 
conditions in Heidelberger et al. are probably best 
suited to identifying cases where IPA is unlikely to 
work, whereas our emphasis is on understanding those 
cases where it does. 

To prepare the way for considering sample path 
derivative estimates, in Section 1 we define and con- 
struct generalized semi-Markov processes. Working at 
this level of generality requires introducing a bit of 
notation, but this is necessary for a concise statement 
of our main condition. In Section 2, we derive IPA 
estimates for a broad class of finite-horizon perfor- 
mance measures. In Section 3, we introduce suffi- 
cient conditions for these estimates to be unbiased. 
Section 4 considers an example; Section 5 discusses 
an extension of the results of Section 3. Section 6 
contains some concluding remarks. 

1. THE GENERALIZED SEMI-MARKOV 
PROCESS FRAMEWORK 

1.1. Basic Description 

Generalized semi-Markov processes-GSMPs, for 
short-provide a broad framework ideally suited for 
the consideration of IPA estimates. Originally intro- 
duced to study the phenomenon of insensitivity (as in 
Schassberger 1978), GSMPs have turned out to be a 
powerful tool for analyzing discrete-event simulation 
because their dynamics mimic the evolution of such 
simulations. Even when the applications of interest 
are networks of queues, the generality of the GSMP 
model is useful; see Glynn and Iglehart (1988) for an 
overview of simulation methods for queues using the 
GSMP framework. In the case of perturbation analysis 
derivative estimates, it would be difficult to state 
general and succinct conditions for consistency with- 
out something like a GSMP. In particular, the notion 
of event seems essential to an understanding of when 
perturbation analysis works. 

A brief description of a GSMP goes as follows: The 
states of a GSMP represent possible "physical" config- 
urations of a system, which need not be states in the 
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Markovian sense. In a queueing context, the state may 
be simply a vector of queue lengths, perhaps supple- 
mented by information about the classes of customers 
in queue, which servers are blocked, etc. The process 
jumps from state to state upon the occurrence of 
"events;" for us, the most important events will be 
departures from and external arrivals to queues. The 
state to which the process moves when an event occurs 
is governed by a set of transition probabilities. In a 
queueing network, these determine the routing of 
customers. Just when events occur is determined by 
random clocks associated with the possible events in 
a state. Each clock represents the time remaining until 
the associated event occurs, so the event with the 
shortest remaining clock time is the next to occur. 
When, for example, the events are arrivals to and 
departures from a queue, the initial settings of the 
respective clocks are simply interarrival and service 
times. After being set, all clocks are run down at unit 
rate. When a clock runs out, the corresponding event 
occurs, the process changes state, and new clocks may 
be set for new events possible in the new state. (Below 
we will require that all clocks from the previous state 
continue to run down; in the more general settings of, 
e.g., Whitt 1980 and Glynn and Iglehart 1988, the 
occurrence of one event may interrupt clocks for other 
events.) 

To characterize a GSMP we need the following 
elements: 

S = a state space (finite or countably 
infinite) representing the set of physical 
states of a system; 

A = a finite subset of the integers 
enumerating the events; typical events 
will be denoted by a and f; 

9(s) = the set of possible events (the event list) 
is state s; for example, departure from a 
queue is only a possible event in those 
states in which the queue is busy; we do 
not allow X(s) to be empty; 

p(s'; s, a) = the probability of jumping to s' from s 
when event a occurs; 

Fa () = the distribution of new clock samples 
for events of type a; if a is an external 
arrival to a queue, then Foa is the 
interarrival time distribution; if a is the 
departure from a server, then F, is the 
service time distribution. 

We now show how to use the GSMP framework to 
model some simple systems; these examples will be 
useful later. 

Example 1. GI/G/1 Queue. Take S to be the 
nonnegative integers (the set of possible queue 
lengths); let a denote arrival and d denote departure. 
Then Fa, and F# are the interarrival and service time 
distributions; X(s) = la, A1 if s > 0, and X(0) = {al. 
Also, p(s + 1; s, a) = 1 and p(s - 1; s, 03) = 1 (for s > 
0) while all other transition probabilities are zero. 

Example 2. Closed Jackson-Like Networks. Let S 
be the set of possible queue-length vectors s = 
(n1, . . ., nM), where ni is the number at queue i and 
M is the number of servers. Let fi denote departure 
from server i. Then Fit is the service time distribution 
at server i, and fi E X(s) if and only if ni > 0 in s. 
Suppose that the routing in the network is Markovian 
in the sense that with probability Pij customers leaving 
server i join queue j (independent of everything else). 
Then p is given by p(s - ei + ej; s, fi) = Pij, where ei 
is the ith unit vector. 

1.2. Construction of a GSMP 

In order to consider sample path derivatives associated 
with a GSMP we need an explicit construction of the 
sequences of states, events and jump epochs that 
characterize a sample path. The construction, though 
seemingly intricate, amounts to little more than a 
generic algorithm for a discrete-event simulation. Pre- 
senting the construction explicitly will allow us to 
investigate the effect of small changes in the clock 
samples on the timing of events. The construction is 
greatly simplified if we impose the following from the 
outset (it would, in any case, be needed for our main 
results): 

C1. (Noninterruptive Condition) For every s, s' E S 
and a 8 A, if a 8 X(s) and p(s'; s, a) > 0, then 

-(s) -{ a} (s). 

This condition requires that the occurrence of one 
event not interrupt clocks for other events. (It is also 
used, for entirely unrelated reasons, in Schassberger 
1976.) This condition excludes preemptive mecha- 
nisms in which the occurrence of one event deactivates 
another pending event. 

We denote the GSMP itself by Z(t). We need addi- 
tional notation for various sample path characteristics. 
For easy reference, we provide the following informal 
descriptions; precise definitions are given via the 
recursions below. 

'rn= the epoch of the nth state transition; 
an= the nth event; 
Yn= the nth state visited by the process: Yn = 
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c, = the vector of clock readings at r +; 

cn(a) = at rn, the time remaining until a occurs, 
provided a E 92(Yn); 

N(a, n) = the number of instances of a among 
a,, ... ., an.- 

We now construct Z. Our basic inputs are two 
doubly-indexed sequences of independent random 
variables JX(a, k), a E A, k = 1, 2, ... . and IU(a, k), 
a E A, k = 1, 2, ... .1. For each k, X(a, k) is distributed 
according to Fa and represents the kth clock sample 
for a (e.g., the kth service or interarrival time). Every 
routing indicator U(a, k) is uniformly distributed on 
[0, 1 ] and will be used to determine the state transition 
at the kth occurrence of a. Think of each U(a, k) as 
a random number used to sample from a set of 
transition probabilities. Transitions are then deter- 
mined by a mapping 5: S x A x [0, 1] -* S: If a 
occurs in state s with routing indicator u, the process 
jumps to s' = 0(s, a, u). The only condition we 
require of / is that for all s, a, s': 

P(O(s, a, U) s') = p(s'; s, a) 

whenever U is uniformly distributed on [0, 11. For 
now, we assume that 0 is given. Later, when we need 
it (in Sections 3 and 4) we will define a particular 0. 

Choose an initial state Yo and initialize by setting 
TO = 0 and every N(a, 0) = 0. Set clocks for the pos- 
sible events: If a E 92(YO), then set co(a) = X(a, 1). 
Now repeat the following recursions: 

Tn+l = Tn + minlcn(a):a 8E 9(Yn)} (2) 

an+ = minla E '(Yyn):cn(a) (3) 
= min1cn(a'):a' E8 (Yn)}} 

(this definition picks out a unique n + 1st event an+1 
even when multiple events occur simultaneously); 

N(a, n + 1) =N(a, n) +l5a anl+ 1 (4) NN(a, n), otherwise 

Yn+1 = /4(Y, an+1, U(an+1, N(a,+1, n + 1))). (5) 

At each state transition, the clock readings are adjusted 
by setting clocks for any "new" events and reducing 
the time left on any "old" clocks by the time since the 
last transition. Thus, if a E 92(Yn) and a $ an+1, then 
under (Cl), a E 92(Yn+1) and 

cn+1(a) = cn(a) - 
(Tn+1 

- Tn). (6) 

If a E 92(Yn+ ) and either a $ X t(Yn) or a =an+1, then 

cn+i (a) = X(a, N(a, n + 1) + 1). (7) 

From these recursions we define Z by setting 
Z(t) = Yn on [Tn, Tn+I). 

Figure 1 illustrates how clocks for arrivals and 
departures drive the state of a single server queue. The 
vertical jumps of the clock processes correspond to 
the setting of new clocks; thus, the kth jump of c,(a) 
would have height X(ax, k). When a departure clock 
runs out, the queue length, Z, jumps down one unit 
(corresponding to a departure); and when an arrival 
clock runs out, it jumps up one unit. A new clock is 
set only when another runs out. In particular, the 
occurrence of an arrival always causes a new arrival 
clock to be set; but a departure starts a new departure 
clock only if it leaves behind a nonempty queue. Thus, 
at ir5, no new departure clock is set; it must wait until 
the next arrival, which occurs at T6. 

To further specify characteristics of the sample paths 
of Z, we define T(x,- k) to be the epoch of the kth 
occurrence of event a. That is, T(a, k) is equal to T,* 

where 

n* = minfn > O:N(a, n) = k}. 

If the event ax does not occur k times, then 

T(a, k) = oo. 

In comparing different sample paths, it is useful to 
be able to identify corresponding events on the two 
paths. We do this by identifying the kth occurrence of 
ca on one path with the kth occurrence on the other, 
and so on. Call such an (ax, k) an event-order pair, and 
if r = (ca, k) write T(r) for T(ax, k). Now consider the 
nth event on some path. By definition, this event is an 

and this is its kth occurrence with k = N(an, n). 
Hence, if we define rn = (an, N(an, n)), then the first 
component of rn is the type of the nth event and the 

Figure 1. GSMP view of the GI/G/ 1 queue. 
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second component is the number of times this event 
has occurred. Call r, the nth event-order pair. Since 
T(rn) is just the epoch of the nth event, we always 
have T(rn)= Tn- 

We will find it convenient to work with a more 
explicit representation of the jump epochs Tn and 
T(a, k). To obtain such a representation, the key ob- 
servation is that every Tn and T(a, k) is the sum of a 
subset of the JX(f, j), d E A, j = 1, 2, ... .. In (2), the 
clock that runs out and determines the jump at Tn+l 

was set at some earlier transition Tm, m S n to some 
clock sample X(f, j) (in particular, with d = anI and 
j = N(an+i, n + 1)) so that Tn+l = Tm + X(1, j). In 
general, working backward in this way from any Tn we 
can find a sequence of events and indices (O,3 j, ), ..., 

(Inm, jan) such that 

Tn = X(31,5 Ii) + . . + X(OmO, Jmn) 

and such that the jith occurrence of event fi triggers 
the setting of the ji+ I th clock of event fi+ 1. If Tn is the 
epoch of the transition caused by the kth occurrence 
of a (i.e., an = k and N(a, n) = k), call this (1i, jl), 
* , (Imn, Imn) the triggering sequence for (ax, k), To 
pick out which event-order pairs are in the triggering 
sequence for (a, k) we use indicators that take only 
the values zero and one. 

Definition 1. Suppose that C1 holds. The triggering 
indicators q( , . , ) are equal to zero except as 
follows: 

1. for every a and k, i(a, k; a, k) = 1; 
2. if the kth clock for a is set at the jth occurrence of 

A, then t7(a, k; f3,j) = 1; 
3. if n(a, k; A, j) = 1 and q(f, j; d', j') = 1, then 

n(a, k; ',j')=1. 

Intuitively, i7(a, k; f, j) = 1 indicates that a small 
delay in the jth occurrence of f delays the kth occur- 
rence of ca by the same amount. The following is an 
immediate consequence of the definition of 7. 

Lemma 1. Suppose that C1 holds. With T(a, k) the 
epoch of the kth occurrence of a and Tn the epoch of 
the nth state transition, we have the following. For 
every a E A and every k > 0, if T(a, k) < oo, then 

T(a, k) = i X(j3, j)?1(a, k; A j). (8) 
[3,] 

For every n > 0, if Tn < so, then 

n 
Tn= X(ri)n(rn; ri). (9) 

In Figure 1 we see that every arrival (a) triggers the 
setting of the next arrival clock; hence, the only n(a, 
k; - , ) equal to one are of the form ii(a, k; a, j) with 
j < k. But departures (d) may have both arrivals and 
departures in their triggering sequences. For example, 
the last event is the departure at r9. The service time 
that ends at r9 was initiated at T8 when the previous 
customer departed. Hence, the departure at T8 is in 
the triggering sequence for the departure at 1r9. Con- 
tinuing backward, the service time that ends at -r8 is 
initiated by the arrival at T6; hence, that arrival is also 
in the triggering sequence. Since each interarrival 
clock is set by the previous arrival, all arrivals prior to 
T6 are in the triggering sequence. In this way we get 

T9 = X(ax, 1) + X(ax, 2) + X(ax, 3) 

+ X(f, 4) + X(f, 5). 

This is checked in the figure by adding the correspond- 
ing interarrival and service times along the time axis. 

An important observation is that the triggering 
sequences and indicators are determined by the order 
in which events occur, but do not depend on the 
particular epochs of their occurrence. 

Triggering here corresponds to scheduling in Suri. 

2. DERIVATIVE ESTIMATES FOR PARAMETRIC 
GSMPs 

With the construction of the previous section, we can 
calculate derivatives of sample performance measures 
for GSMPs that depend on a parameter. The deriva- 
tive expressions we derive generalize and unify those 
in, for example, Ho and Cao (1983) and Cao (1988). 
They are similar to those formulated in a different 
framework in Suri. We consider the case where some 
or all of the clock setting distributions depend on a 
scalar parameter 0 in a finite interval 0 = (Qa, Ob). 

Vector parameters are handled by considering each 
component separately. We do not allow the transition 
probabilities p(. ; , *) to depend on 0. For emphasis, 
we sometimes write Fa,(x, 0) for the a clock-setting 
distribution; we also write Xo(a, k) as a reminder that 
the clock samples themselves depend on 0. For each 
a and k, we view Xo(a, k) as a random function of 0 
satisfying 

P(Xo(a, k) < x) = F.(x, 0) for all 0 E 0. 

In practice-especially in simulation-this is often 
achieved by setting 

Xo(a, k) = F- I (U; 0) (10) 

where U is uniformly distributed on the unit interval. 
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To consider derivatives, we need some conditions 
on the clock samples and their distributions: 

Al. For each 0 EE 0 and a E8 A, F (x, 0) is continuous 
in x and zero at x = 0. 

A2. For every a and k, Xo(a, k) is, with probability 
one, a continuously differentiable function of 0 on 0. 

A3. There exists a constant B > 0 such that for all 0 
E8- 0, ca and k 

dXo(a, k)| B(Xo (a, k) + 1). 

Condition Al guarantees that, for each 0, two or 
more events never occur at the same time. (We still 
need the generality of (3) because as 0 varies the 
possibility of multiple events must be considered.) It 
also allows us to work only with strictly positive 
Xo(a, k). Condition A2 requires that the construction 
of the parametric family {Xo(a, k), 0 E 0} be differen- 
tiable. If F` is differentiable, then (10) satisfies A2. 
For example, if X0 is exponential with mean 0, then 
F(x, 0) = 1 - exp(-x/0) and this method yields 

X = -0 ln(1 - U) 

and 

d= -ln(1 - U) =0 

Other examples are considered in Suri ( 1987) and Suri 
and Zazanis (1988). See also Glynn (1987) for related 
results. 

Finally, A3 regulates the dependence of the clock 
samples on the parameter, and is broadly applicable. 
In particular, it permits location parameters and scale 
parameters that are bounded away from zero. Condi- 
tion A3 will not be needed until Theorem 2. 

Notational Convention. Whenever a sample path 
characteristic appears without a parameter argument, 
it is understood to be evaluated at a fixed, nominal 
value of 0; thus, ai = aj(0) and Y1 = Yj(0). When we 
need to emphasize a small change in 0 we write, for 
example, r,(O + h) and To+h(a, k). 

2.1. Event Time Derivatives 

We can now turn to expressions for derivatives of 
performance measures with respect to 0. The first step 
is to calculate dnrl/d for each n > 0, and dT(a, k)/d0 
for each a E A and k > 0. Once the clock samples 
depend on 0, so do all the sample path characteristics 
in (2)-(7). Under Al, for each 0 we may assume events 

occur singly so that the (finitely many) inequalities 
that determine Ti, . . ., Tn and a,, . .. , an (via 2-3) are 
strict. This implies that throughout a sufficiently small 
neighborhood of 0, these inequalities retain their sense 
and remain strict. Throughout such a neighborhood, 
the Ti change continuously-and, under A2, differen- 
tiably-in 0; the aj, and hence the Y1, remain constant. 
A potential discontinuity in some Ti, ai or Y, can only 
occur where the change in 0 is large enough to change 
the argument of minimization in (2) or (3). 

Observe, next, that so long as the ai and Y1, i < n, 
remain unchanged, so will the triggering sequence for 
each Ti, i < n. Writing q,(ri; rj) to emphasize the 
dependence of the triggering indicators on 0, we con- 
clude that, for all sufficiently small h, N+h(ri; rj) = 

m(ri; rj) for all i, j < n. Using (9), we find that for all 
sufficiently small h: 

n 

Tn(6 + h) - Tn(O) = (Xo+h(ri) - X0(ri))rq0(rn; ri). 

Furthermore, if TO(c, k) < oc, then so is To+h(a, k) for 
all sufficiently small h, and 

TO+h(a, k) - To(a, k) 

= E (X0+h(f, j) - X0(:, j))no(a, k; A, j). 
3Ji 

Combining these observations, we have the following 
lemma. 

Lemma 2. Suppose that C1 holds. For each 0 and n, 
with probability one, the following hold: an and Yn are 
constant in a neighborhood of 0; Tn is differentiable at 
0 with 

dimn 
n 

dXo (r.) 
do i d N r(rn; ri) (11) 

and if TOc(a, k) < oo, then Toc(a, k) is differentiable with 

dTo(a, k) dX0(f3, j) 
dO = i dO 

In the example of Figure 1, we see that small 
increases in departure clocks introduce delays in the 
occurrence of subsequent departures within the same 
busy period. Small increases in arrival clocks delay all 
future arrivals, and all departures during the next busy 
period. In other words, the "perturbations" dX(rj)/dO 
propagate to the event epochs along the triggering 
sequences, which is what (1 1) says. 

2.2. Derivatives of Performance Measures 

From the derivatives of the state transition epochs we 
can build up expressions for derivatives of a general 
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class of finite-horizon performance measures. Let f 
be a bounded, real-valued function on the state-space 
S of the GSMP Z(t, 0). For any (deterministic) real 
T > 0 and any integer n > 0 define 

rT 

LT(6) = ff(Z(t, 0) dt (13) 

and 

'rn 

Ln(0) = f f(Z(t, 0)) dt. (14) 

If To(ae, k) < oo, also define 

C TO(a,k) 

La,k(0) = J f(Z(t, 0)) dt. (15) 

These are the types of performance measures we 
consider. Through choice of f many quantities of 
interest can be obtained. For example, f could count 
the number of customers at a queue in a closed 
network, in which case LT/T is the average queue 
length on the interval [0, T]. By taking f to be the 
indicator function of the set of busy states for a queue 
or the state-dependent departure rate, we obtain uti- 
lization and throughput measures. More generally, 
f(s) could represent the rate at which a cost is incurred 
in state s, in which case the L's are total costs incurred 
over periods of operation. From the perspective of 
simulation, LT, Ln and Lak differ in how they termi- 
nate a run. With LT, the number of events is random 
and the time is fixed; with Ln the number of events 
is fixed but the time is random; and with Lak, both 
the number of events and the time are random. Hence- 
forth, whenever we refer to La,k we assume that 
TO(ca, k) < o0, with probability one, for all 0 E 0. 

For the following, let N(t) count the number of 
events in [0, t]; that is: 

N(t) = sup{k > O:Trk t1. 

Since A is finite, and the clock samples X(. ) are 
greater than zero and independent, N(t) is, with prob- 
ability one, finite for finite t (use p. 155 of Prabhu 
1965, for example). 

Lemma 3. Under Cl, Al and A2, for each 0 E(E 0, LT, 

Ln and Lak are, with probability one, differentiable at 
0, with 

T = d[f(Yi-1) -f(Ym)] (16) dA jE d 

d~n f(Y) d__ i 
dA i=O [ dO dA 

and 

dak N(T(a, k)) - I d~1 dn dalk = )dr i+ i dTi]( 8 
dO - ~ f(Y) -.(8 dO i=0 Ad dOJ 

Proof. Note, first, that because Z is constant (and 
equal to Yj) on [ri, ri +1), we may write 

N(T) 

LT = f(Yi-1)[ri- i-1] 

+ (T- TN(T))f(YN(T)) (19) 
n-1 

Ln= E f(Yi)[ri+i - Ti] (20) 
i=O 

and, since T(ca, k) = TN(T(ak)) 

N(T(a, k))- 1 

Lak = E f(Yi)[ri+1 - Ti]. (21) 
i=O 

Starting with Ln, recall from Lemma 2 that for each 
0, with probability one, there exists a neighborhood of 
0 throughout which YO, ..., Yn are constant (and 
.I, ..., Tn are differentiable). Thus, with probability 

one, for sufficiently small h: 

Ln(O + h) - Ln(O) 

n- 1 

= A f(Yi(O)){[ri+I(O + h) - r#(6 + h)] 
i=O 

-[ri+I(0) -i(O)]} 

n- 1 

= A f(Yi()){[Mri+I( + h) - ri+1(O)] 
i=O 

-[ri(O + h) -ri(O)]} 

Dividing by h and letting h -- 0 we obtain (17). The 
same argument yields (18) because N(T(ca, k)) is, with 
probability one, constant throughout a neighborhood 
of 0. 

Differentiating (19), we get 

dLT N(T) [i drj1 1I drN(TI\ 

dO= E f(Y-i1) di + d - dO ,,f(YN(T)) 

because T is constant, and N(T) (hence, YN(T)) is, with 
probability one, constant throughout a neighborhood 
of 0. Rearranging the terms in the sum yields (16). 

Remark. The derivatives (16), (17) and (18) admit a 
simple interpretation: Sufficiently small perturbations 
in the clock samples that drive Z introduce small 
changes in the state transition epochs without chang- 
ing the sequence of states visited (at least over a finite 
horizon). As 0 varies, the sample paths of Z deform 
by stretching or contracting the state holding times 
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Ti+ - ri without changing the basic shape, as given 
by the Yi. 

2.3. Implementation 

The expression (11) for rIr/dO, while convenient for 
analysis, is cumbersome to implement because the 
triggering indicators, a, are defined by working back- 
ward from rt. But it is not necessary to evaluate all 
it's to calculate dIrt/dO or to calculate the performance 
derivatives (16), (17) and (18). We now describe a 
simpler scheme, which is the way IPA is usually 
implemented (see, in particular, the algorithm in Suri). 
We assume that a simulation of Z is available; the 
recursions (2)-(7) effectively prescribe a simulation 
algorithm. 

With each event ae E A associate an accumulator 
Aa. Initialize every Aa to zero. Add to (2)-(7) the 
following steps: 

At r,+1 set 
kn+1 =N(an+1, n + 1); 
Aan+ =an+1 + dX(an+1, kn+ 1 VA 
for every d E n(Yn+1)\(Yn ) 

(i.e., a new clock is set for d at rn+ ) 
AO:= Aan+1. 

With this scheme, rir/dO is just the contents of Aai 
at ri (after updating). The derivatives of the L's are 
calculated exactly from a sample path of Z by substi- 
tuting Aai for Jrir/dO in (16), (17) and (18). 

This scheme also shows that it is possible to compute 
IPA estimates from observation (as opposed to simu- 
lation) of Z under one additional condition: namely, 
that for each ae E A there exists a function {<a such 
that, for all k 

dXo(ct, k) = Pa(Xo(a, k), 0). 

Since every X0(an, kn) can be "observed" from 
{Z(t, 0), 0 < t < rn)5 the existence of {<a makes it pos- 
sible to "observe" dX0(an, kn)/dO as well. 

Suri and Zazanis (1988) and Suri (1987) give 
examples where such a V, can be found. Glynn (1987) 
contains closely related results. These papers show 
that, often, the inversion representation (10) leads to 
{<a given by 

Va(X 0) aFa(x, 00)/a 
aFa(X, W)ax 

3. CONTINUITY AND CONSISTENCY 

Having shown the existence of, and derived expres- 
sions for, the derivatives of a class of performance 

measures, we can now turn to the key question of 
whether or not 

E dL dE[L] (22) 

for any of the L's. This fundamental issue is at the 
heart of understanding the domain of applicability of 
infinitesimal perturbation analysis. 

It is worth describing why, in practice, (22) may 
sometimes fail to hold. In Lemmas 2 and 3, the size 
of the neighborhod throughout which the rj's and L's 
are continuous (and differentiable) depends on the 
particular realization of the process, i.e., depends on 
the outcome of the clock samples Xo(ae, k) and routing 
indicators U(ca, k). But at any 0, for any fixed h > 0, 
there may, in general, be a positive probability that 
some L (and any r,) has a discontinuity somewhere 
in (0, 0 + h). Such a discontinuity will typically 
preclude (22). These potential discontinuities arise 
when changes in 0 introduce changes in the clock 
samples large enough to change the event that triggers 
the transition out of a state (in 3). 

3.1. Conditions on the Structure of a GSMP 

With the above points in mind, we introduce condi- 
tions on a GSMP that will guarantee the continuity 
of the L's even at points where triggering events 
change. Our conditions ensure this by restricting the 
possible effect of order changes among events. As 
functions of 0, the L's may have "kinks" where a 
change in the parameter changes the order of events, 
but they will still be continuous-and this is most of 
what we need for (22). We first state the main condi- 
tion in provisional form, then give a more general, 
if less intuitively clear, statement. Recall from 
Section 1.2 that 0(s, ar, u) is the state reached from s 
under routing indicator u when event ae occurs. 

C2'. (Provisional Commuting Condition) The map- 
ping 0 can be chosen so that for every s E S, every ca, 
13E A and every U1, U2 E [0, 1], if {la, 13 C X(s), then 

0(0(s, a ), Uf3, , 2) = O(/4S, f, 142), ae, it1). 

This condition says that when two events are pos- 
sible, the state reached through the occurrence of both 
is independent of their order-provided the same 
routing indicators are used. (Under our construction 
of a GSMP, routing indicators are assigned to event 
types, so that if events of different types change order 
they keep their routing indicators; cf. 5.) Under this 
condition, if a parameter perturbation causes a change 
in the order of two events, the perturbed sample path 
and the original one will return to the same state after 
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both events have occurred. This limits the possible 
difference in performance due to parameter changes. 
Precise arguments are given in Section 3.2. As a simple 
illustration of C2', we mention an example. 

Example 1. (Continued, GI/G/1 Queue) Recall that 
s records the number in the system, a denotes arrival 
and d denotes departure. Since the state changes deter- 
ministically, the routing indicators actually play no 
role: an arrival changes s to s + 1, a departure to 
s - 1. Thus, for any s>O, and any ul, U2: 

0(0(s, a, u1), 3, U2) = O(S + 1, 3, U2) 

=5s 

= (s -1, a, ui) 

= k(WS4, 3, U2), a, ul). 

Condition C2' makes no requirement of s = 0 because 
X(O) contains only one event (a), whereas C2' is a 
condition on states with at least two possible events. 

C2' has the shortcoming that it is stated in terms of 
X, an object we introduce for our construction, and 
not solely in terms of the basic GSMP data S, A, X, p 
and {Fa, a E Al. Another point is that there may be 
several equally valid choices of X for the same GSMP, 
and some may satisfy C2' while others do not. (It 
would be enough to find one X that works.) We take 
account of these considerations by giving a condition 
in terms of the transition probabilities p. The proof of 
the proposition that follows shows how to define X to 
satisfy C2' when the condition on p (plus another 
minor condition) is satisfied. 

C2. (Commuting Condition) For any s1, if {a, f3} C 
e(s ), and s2 and S3 satisfy p(s2; s1, a) p(S3; s2, 13) > 0, 
then there is an S4 such that 

p(S4; SI, f) = p(S3; S2, 0 

and 

p(S3; S4, a) = p(S2; S , a). 

This condition says that if it is possible to go from 
SI to S3 through the occurrence of a then A, it must 
also be possible through the occurrence of d then a, 
in such a way that each transition triggered by the 
same event has the same probability. This situation is 
depicted in Figure 2, where the transitions represented 
by opposite sides of the square must have the same 
probability. 

To get 0 from C2 for arbitrary GSMPs, we will 
impose one additional condition on p, namely, that 

for any s, s', s" and ae if p(s'; s, a) > 0, then 

p(s'; s, af) = p(s"; s, af) = s" = s'. (23) 

In words, no two possible transitions from the same 
state due to the occurrence of the same event can have 
exactly the same probability. In practice, this is not 
much of a restriction since the difference could 
be arbitrarily small. In the queueing example of 
Section 4.1, we will be able to define X to satisfy C2' 
without recourse to (23). 

Proposition 1. If p satisfies C2 and (23), X can be 
chosen to satisfy C2'. 

Proof. The X we choose samples from the mass func- 
tion p(. ; s, ae) by inverting the corresponding cumu- 
lative distribution. After defining this 0 precisely, we 
verify the (intuitively clear) fact that it satisfies C2'. 

Thus, fix a state s and an event ar, and let si, S2, . . . 

be the states for which p(si; s, ae) > 0, ordered so that 
for all i, p(si+1; s, a) < p(si; s, a). For u E [0, 1] let 

m* -m*(u; s,ca) (24) 

= min m> O:u kE1 p(Sk; s, at)} 
k= 1 

and define 4(s, ar, u) = sm*. Clearly, the set of u E 
[0, 1] for which 4(s, ar, u) = Sk is an interval of length 
p(Sk; s, a), so if U is uniformly distributed on the unit 
interval: 

P(O (s, a, U) = s') = p(s'; s, a). 

Therefore, (24) defines a legitimate choice for 0. We 
now show that it satisfies C2'. 

Suppose that la, f} C f(s) and p(s'; s, ak) > 0, then 
C2 implies that for every s' with p(s'; s', ) > 0 there 
is some si with p(si; s, ) = p(s'; s', O). Condition (23) 
implies that si is unique; si is completely determined 
by the value of p(s'; s', O). Thus, the states reachable 
from s and s' via d are in one-to-one correspondence, 
with corresponding states determined by having the 
same transition probabilities under A. It follows, then, 

Figure 2. Under the commuting condition C2, chang- 
ing the order of af and d does not change 
the state reached. 
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from (24) that 

/(s', A, u2) = Si' if and only if O(s, A, u2) = si. 

Reversing the roles of ar and A, we get the analogous 
condition for states reachable via ar from s and s" 
whenever p(s"; s, 3) > 0. 

Suppose that s2 = 4(s, ar, ul) and S3 = 4(S2, f, U2). 

Then S4 = 0(S, f, U2) and S5 = (54, a, u1) satisfy p(s4; 
S, ) = p(S3; S2, 0) and p(S5; S4, a) = p(S2; s, a). 

Comparing with C2 and invoking the uniqueness in 
(23), we find that s5 must, in fact, be S3; that is: 

0(0(s, a, u1), A, U2) = OW(S, f, U2) , U1) 

which is C2'. 

3.2. Continuity of the Performance Measures 

The most important consequence of these conditions 
is as follows: 

Lemma 4. Suppose that Cl and C2' hold (e.g., C2 
and (23) hold) and Al and A2 hold throughout 0). 
Then: i), with probability one, every ri and finite 
T(ca, k) is continuous in 0 throughout 0); ii) if Yi is dis- 
continuous at some 0 E 0, then ri+ (0o) = r(60o); 
iii) at a discontinuity of N(T), TN(T) = T; iv) at a 
discontinuity of N(T(a, k)), T(a, k) = TN(T(a,k))-I . 

Proof. See the Appendix. 

Theorem 1. Under the conditions of Lemma 4, LT 

and Ln are, w.p. 1, continuous functions of 0 on e. The 
same is true of Lak if T(ca, k) < oc w.p.1 for all 0 E E0. 

Proof. Consider first Ln. Let 0, be any sequence in E) 
converging to 0 and consider L,,(0,) - Ln(O) as v -* oo. 
Invoking (20), we may treat separately each term 

f(Yi(O,))[ri+ 1 (0) - ri(()] -f (PYi())[ri+ 1 (0) -ri(0), 

i<n. (25) 

If Yi is continuous at 0, then for all sufficiently large 
v, Yi(O,) = Yi(O) since Yi takes on only discrete values. 
In this case, continuity of the Ti implies that (25) goes 
to zero. Suppose, on the other hand, that Yi has a 
discontinuity at 0. From ii of Lemma 4, this implies 
that [ri+1(6) - ri(6)] = 0; hence, part i implies that 
[ri+I(0,) - ri(O,)] -* 0 as v -- oo. Boundedness of f 
now implies that (25) converges to zero as v -- oo. 

For LT, start with (19). If N(T) is continuous at 0, 
then the continuity of LT at 0 works the same way as 
that of Ln. Suppose, therefore, that N(T) jumps at 0, 
say from m to m - 1. Suppose that for all sufficiently 
small h > 0, one less event occurs in [0, T] at 0 + h 

than at 0. Then, writing m for N(T) evaluated at 0: 

LT(0 + h) - LT(0) 

m-2 

= I {f(Yi(0 + h)[ri+1(0 + h) - ri(0 + h)] 
i=O 

-f(Yi(0))[ri+I(0) -'i(O)]} 

+ [T- Tm-i( + h)]f(Yml(O + h)) 

-[m(O) - Tm-I(6)]f(Ym-1(0)) 

-[T- Tm()] f(Ym(O)). 

Each of the first m - 1 terms (the terms inside the 
summation) goes to zero by the argument used for 
L4. For the remaining three terms, part iii of 
Lemma 4 implies that since N(T) is discontinuous at 
0, tm(O) = T. Substituting rm(O) for T, the last three 
terms simplify to 

[Im(6) - rm-i(O + h)]f(Ym- i (O + h)) 

- [Tm(O) -m-1i(O)] f(Ym-i(O)). 

The argument used for Ln shows that this, too, goes 
to zero. The case where N( T) jumps up at 0 works the 
same way. Finally, for LaX k the argument is essentially 
the same, except that we must consider a possible 
jump in N(T(a, k)) rather than N(T) and use part iv 
of Lemma 4. 

We can now prove our main result. 

Theorem 2. Consider a GSMP satisfying C1. Suppose 
that C2' holds (e.g., C2 and (23) hold), and Al-A3 
are satisfied throughout e. 

i. If E[sup08EN(T)2] < oo, then dE[LT]/dO = 

E[dLT/dO] on e. 
ii. If E[supoeern] < oo, then dE[Ln]/d= 

E[dLn/dO] on e. 
iii. If E[supo0-,T(a, k)2] < oo and 

E[sup0eN(T(a, k))2] < 00, 

then dE[Lak]/dO = E[dL/a k/dO] on e. 

Proof. Part of the content of the theorem is that the 
derivatives of the expectations actually exist. We jus- 
tify the interchanges by bounding the dL/dO's, and 
then use the dominated convergence theorem with a 
mean value theorem. To use the mean value theorem, 
we need to check that the L's are piecewise differen- 
tiable functions of 0. Pick any 6o E (Oa Ob) and consider 
the case of Ln. Since the event epochs are continuous, 
with probability one there is an E > 0 such that 
throughout each of the intervals (6o - E, Oo) and 
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(00, 00 + e) the first n events a,, ..., an are un- 
changed; i.e., no events change order. Throughout 
each of these intervals, Y1, . .., Yn are unchanged, 
and Tl, ..., n are differentiable in 0. Hence, from 
(17) we see that Ln is differentiable throughout these 
intervals. Even if Ln fails to be differentiable right at 
00, there are, therefore, intervals immediately to the 
left and right of 6o throughout which Ln is differenti- 
able. Thus, the possible points of nondifferentiability 
are separated by open intervals, which is another way 
of saying that Ln is piecewise differentiable. The cases 
of LT and La,,, work similarly upon noting that N(T) 
and N(T(a, k)) are unchanged under sufficiently small 
parameter changes. 

We now proceed to bound the dL/d6's, beginning 
with bounds on the dTi/d6's. From (11) we find that 

| 
' Z ~ | |d 

qj)|(ri; Oi. 

Applying A3, this is 

E B(X(rj) + 1)n(ri; rj) 
j= l (26) 

sB(ri+ i). 

Next, letting* = sup If I < co, from (16) we get 

dLT N(T) dTj 
| do | = | (Yi-l) -f(Yi)]d 

N(T) dT, 
< 2f* > 

N(T) 

1<2f *B, [ri + i] 
1= 1 

And since I < N(T) implies Tr < T, this is 

< 2f*B * N(T)[T+ N(T)]. (27) 

For Ln we find, similarly, that 

dLn |2f*Bn[fn+ n] (28) do 

and for La,k we get 

dLcak | 2f*B * N(T(a, k))[T(a, k) 
do 

+ N(T(a, k))]. (29) 

Next, for LT, L, and Lak, let DT, D, and Da,,k be the 
(random) set of 0 E (= at which each L is differentiable. 
Since each L is, w.p. 1, continuous and piecewise 
differentiable, we may apply a generalization of the 
mean value theorem (Dieudonn6 1960, p. 160) to 

conclude that whenever 0 and 0 + h are in 0 

L(6 + h)-L(6) sup dL (30) 

Using (27), (28) and (29), it is immediate that under 
the hypothesis in i: 

E[ | dLT < ] 

under the hypothesis in ii: 

E su dLn ] <c; 

and under the hypothesis in iii: 

E sup dLak 1 
] < 

ODk dO J 
Applying the dominated convergence theorem to (30), 
we find that for all 0 E 0 

lim E L(+h) - L(O)] E [dL (0) 

That is, the limit on the left exists and is equal to the 
quantity on the right, which is what we needed to 
show. 

It is useful to have conditions for Theorem 2 stated 
directly in terms of the clock samples. These are 
provided by the following result, which is proved 
in Glasserman (1990) using simple renewal theory 
arguments. 

Corollary 1. In Theorem 2, sufficient conditions for i 
and ii are, respectively, 

i. for every a, P(infOeeXo(a, k) = 0) < 1; 
ii. for every a, E[supoeX,(a, k)] < oo. 

Remark. In subsequent work, Glasserman, Hu and 
Strickland (1990) show how to extend results on 
unbiasedness of derivative estimates over finite hori- 
zons to strong consistency over an infinite horizon. 
The conditions given here, combined with results in 
Glasserman et al. validate the use of perturbation 
analysis in estimating derivatives of steady-steady per- 
formance measures for certain classes of regenerative 
systems. 

In other work, Glasserman and Yao (1990) show 
that under conditions C1 and C2 it is possible to 
derive recursive expressions for the event epochs 
T(a, k) in terms of other event epochs and X(a, k), 
using only the operations +, min, and max. Using this 
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representation, one could give a different proof of the 
continuity in Lemma 4i. From this representation it 
also follows that, under C1 and C2, the event epochs 
IT(a, k), a E A, k ? 1 are monotone increasing 
functions of the clock samples {X(a, k), a E A, 
k 1}. 

4. AN EXAMPLE AND AN EXTENSION 

The GSMP setting is useful for proving results that 
apply to many different kinds of systems, but it is not 
the most familiar or intuitive context in which to 
interpret results. In particular, it is not always imme- 
diately obvious what GSMP properties mean for 
queueing systems. Conversely, such distinctly 
queueing-related concepts as waiting times are hard 
to formulate in GSMP notation. To make the results 
here more vivid, in Glasserman (1990) we give 
detailed characterizations of queueing systems which 
do and do not satisfy conditions C1 and C2. In each 
case-multiclass networks, networks with blocking, 
etc.-these conditions take on fairly simple interpre- 
tations for queues. To give an indication of how C1 
and C2 are applied, we consider here only the simplest 
case of a Jackson-like network. In Section 4.2, we 
comment on extending our results to waiting times. 

4.1. Jackson-Like Networks 

By a Jackson-like network we mean one consisting 
entirely of first come, first served, infinite buffer, 
single-server nodes and a single class of customers 
whose transitions are governed by a Markovian rout- 
ing matrix P. A Jackson-like network may be open or 
closed. For simplicity, we suppose that there is a single 
external arrival stream. Let Poi be the probability 
that an external arrival joins queue i, and Pio be the 
probability that a departure from i leaves the net- 
work. When Poo = 1 and every other Pio is zero, the 
network is closed. 

We take the GSMP state of such a network to be its 
population vector s = (n1, . . ., nm), where M is the 
number of nodes and ni is the number of customers 
at node i. With node i associate the event fi = depar- 
ture from node i. Denote external arrivals by d0. For 
every state s, t0 is in the event list %(s), and Oi E f(s), 
i= 1, .. ., Mifand only if ni > O in s. 

We have seen that the GI/G/1 queue satisfies C2' 
(and C2 as well). Jackson-like networks generalize this 
example. Intuitively, the order in which customers 
move between queues should not change the resulting 
queue lengths. We now verify this. Let ei denote the 

ith standard M-dimensional unit vector. For any s 

p(s + e1; s, Oo) = Poi. 

For those s in which ni > 0: 

p(s - ej + ej; s, 0j) = Pj 

and 

p(s - ej; s, 0j) = Pio 

and these are the only nonzero transition probabilities. 
To check C2 for pairs of events, start with a state sI 
in which there is at least one busy server, say, ni > 0. 
There are at least two events 0i, fj in the event list; f3 
may be d0. Consider any k and r for which Pik > 0 
and Pjr> 0. LetS2 = SI-eI + ekand s3 = s2-ej+ er, 
taking eo to be the vector of all zeros. Observe that 
p(S2; SI, fi) p(S3; S2, fj) = PikPir > O. If we take S4 = 

s, - ej + er, then C2 is satisfied because 

p(S4; SI, fj) = Pjr = p(S3; S2, fj) 

and 

p(S3; S4, Oi) = Pik = p(S2; SI, d1). 

Equation 23 would require that no two nonzero 
entries of P in the same row have exactly the same 
value. To avoid this minor restriction, we define X 

directly to satisfy C2'. For each node i = 0, . . ., M, 
partition the unit interval into M + 1 intervals, the 
kth having length Pik. Take 0(s, 0i, u) = s - ej + ek 
whenever u falls in the kth interval for i (and, of 
course, fi E ((s)). In the situation considered before, 
suppose that ul falls in the kth interval for i and u2 in 
the rth interval for]. Then 

(4(SI, fh, U1), Oj, U2)= S3 = 44(OS1, 0j, U2), u1). 

Thus, Jackson-like networks satisfy C2 and C2'. The 
implications of C2 for many other kinds of queueing 
systems-including networks with blocking, with 
multiple customer classes, and with state-dependent 
routing-are considered in Glasserman (1990). 

4.2. Waiting Times 
We now use the example of Jackson-like networks to 
describe an extension of Theorem 2. This extension 
has no obvious counterpart for abstract GSMPs, but 
is important in queueing. 

The waiting time (including time in service) of a 
customer in a queue is the difference between its 
departure and arrival times. In a GI/G/1 queue that 
is idle at time zero, the waiting time of the kth 
customer is T(3, k) - T(a, k), if : denotes departure 
and a denotes arrival. This is the difference between 
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two performance measures Lp,k and La,.k (withf- 1). 
But in a network, the epoch of the kth arrival to a 
queue will not, in general, correspond to T(a, k) for 
any a (though the kth departure will). Consequently, 
waiting times cannot be expressed in terms of the 
performance measures we have considered, even by 
taking differences. We will outline an extension that 
corrects this shortcoming in the case of Jackson-like 
networks. 

Let Sik be the epoch of the kth transition that 
sends a customer to node i; then T(o3, k) - Sik is the 
waiting time of the kth customer at node i. We could 
therefore obtain unbiased estimates of derivatives of 
expected waiting times if, more generally, derivative 
estimates for 

CSik 

Lsk =J f(Z(t)) dt 

are unbiased. 
By construction, the routing of the kth departure 

from, say, node j is completely determined by the 
routing indicator U(,3j, k) via 0. In particular, 
the routing decision does not depend on 0 (because 
U(f3j, k) does not), and furthermore, it is independent 
of the order of events. Consequently, similar proofs 
to those of Lemma 4 and Theorem 1 show that Sik 
and Lsk are almost surely continuous in 0, whenever 
they are finite. Exactly the same proof used for 
Theorem 2 proves that if, in part iii, T(a, k) and 
N(T(a, k)) are replaced with Sik and N(Si,.), then 
dE[Ls]/dO = E[dLs/d6]. 

5. RELAXING CONDITION C2: "RELEVANCE" 

Our results thus far have not placed any restrictions 
on which event clock distributions Fae(x, 0) may 
depend on 0. Our main condition can be relaxed if we 
know in advance that only some of the clock distri- 
butions depend on 0. 

To motivate this idea, consider a single-server queue 
fed by two classes of arrivals, a1 and a2. The GSMP 
state of the queue must reflect the order of waiting 
customers of different classes. Consequently, a change 
in the order of occurrence of a1e and a2 changes the 
resulting state, violating C2. Let /1 and 02 denote 
departure of class 1 and class 2 customers. Changes in 
service times may cause some ai and Oj to change 
order, but cannot change the order of a1 and a?2. 

Departure events are not relevant to the timing of 
arrivals. Furthermore, a change in the order of an 
arrival and a departure would not violate C2. Thus, if 
the service time distributions F#, and F,2 depend on 
0, but the interarrival time distributions Fa, and Fae2 

do not, our previous continuity results should still 
hold, and it should be possible to use IPA. We now 
formalize this idea. 

Definition 2. For any fixed ao E A, define the set of 
ao-relevant events recursively as follows: 

a. ao is a0-relevant; 
b. if a1 is a0-relevant and there are states s and s' 

with p(s'; s, a,) > 0 and a2 E X(s')\X(s), then a2 

is a0-relevant. 

Part a states that if a clock for a2 is potentially set 
by the occurrence of an a0-relevant event, then a2 is 

a0-relevant. In fact, we have the next lemma. 

Lemma 5. Unless a1 is ao-relevant, q(ai, ki; ao, ko) 
must always be zero for all ki and ko. 

Proof. From Definition 1, if -q(al, k1; ao, ko) = 1, 
then there is a sequence (3o, Jo), . . ., (/m, jm) such 
that (do, jo) = (ao, ko), (Om,J m) = (a,, ki ), and the jith 
clock for Oi is set at the ji- th occurrence of Oj- , i = 
1, . . ., m. Part b on Definition 2 applied repeatedly 
implies that every Oi (in particular, a1) is ao-relevant. 

We now state, for fixed a0 E A, the next condition. 

R. (Relevance Condition) Condition C2' holds when- 
ever either a or d is ao-relevant. 

The multiclass queue with which we began this 
section satisfies R if a0 is taken to be either d3 or 02. 

The next theorem verifies the applicability of IPA 
in this case. Other applications of relevance are 
considered in Glasserman (1990). 

Theorem 3. If only Fa0 depends on 0, then the condi- 
tion of Theorem 2 holds with condition C2' replaced 
by R. 

Proof. Theorem 2 relies on C2' only via the conti- 
nuity results of Theorem 1, which, in turn, rely on 
C2' only via Lemma 4; thus, we only need to verify 
that Lemma 4 still holds. The proof of Lemma 4 
checks that no discontinuities are introduced when 
changes in 0 cause two events a and d to occur at the 
same time. If either a or : is a0-relevant then, by 
hypothesis, C2' still holds for la, d} so the original 
argument remains valid. We now argue that if neither 
a nor d is a0-relevant, changes in 0 will not cause them 
to change order. For any k, we have from (12) that 

dTo(a, k) dXo(a 'IJ')( 
d~~a k) do- n(a, k; aj'). 
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Since only ao-clocks depend on 0, this is 

dTo(a, k) dXo(ao, j) k; a 
dO dO 

But Lemma 5 implies that every q(a, k; ao, j) = 0 
because a is not ao-relevant. Thus, for every k, 
dT(a, k)/dO = 0, and similarly for every j, dT(3, j)! 
dA = 0. Therefore, in the proof of Lemma 4, pertur- 
bations in 0 cannot cause order changes among pairs 
of irrelevant events; at order changes involving a 
relevant event, the original argument of Lemma 4 
applies. 

6. CONCLUDING REMARKS 

We have given a general formulation of infinitesimal 
perturbation analysis derivative estimates for a broad 
class of discrete-event systems, and verifiable sufficient 
conditions for these estimates to be unbiased. These 
conditions should facilitate the application of IPA, 
especially when translated to queueing systems as in 
Glasserman (1990). 

There is a fundamental flexibility in the derivation 
of IPA estimators which has not been considered here, 
and for this reason our conditions cannot be taken to 
define the "limits" of IPA. There are generally many 
ways of constructing a parametric family of stochastic 
processes, and different constructions lead to different 
IPA algorithms. For instance, the empirical example 
in Glasserman (1988) shows that changing the way a 
family of processes is represented, and correspond- 
ingly changing the IPA algorithm used, can indeed 
make IPA work where it initially appears to fail. The 
construction used here for GSMPs is the most obvious 
one, and the resulting derivative estimator might well 
be called "standard" IPA. But other constructions 
potentially lead to IPA estimators that are unbiased, 
even when our conditions do not hold. The investi- 
gation of alternative constructions and their attendant 
sample path derivatives is an area of current research. 

APPENDIX 

Proof of Lemma 4 

Part i. From (2)-(5) it is clear that for each i, 
l, ., ri are continuous wherever a,, ..., a, are. 

Suppose, then, that at some 0 some aj is discontinuous, 
and let j be, in fact, the smallest index of a discontin- 
uous event. For aj to be discontinuous, we see from 
(3) that clocks for two or more events in ( Yj_ >1) must 
run out simultaneously; and any of these clocks poten- 
tially determines aj. But if, say, clocks for a and : run 

out simultaneously, then ci- (a) = cj-I (). That is, 
cj I(aj) is continuous at 0 even if a1 is not. Thus, we 
see that Tj Tj-I + cj-I(aj) is also continuous at 0. 

Now suppose, for simplicity, that there are exactly 
two events a and 3 in X(Yj-1) whose clocks run out 
at the same time. (The case where many clocks run 
out together works the same way; considering only 
two makes the argument clearer.) If a occurs first then 
(from (6)) cj(/) = Cj-, (d) - cjy,(a) = 0 and, similarly, 
if 3 occurs first, then cj(a) = 0. In the first case, the 
next event must therefore be /, while in the second 
case the next must be a. (Recall that under Al, no 
new clock is ever set to zero.) In either case, Tj+I = Tj. 
Observe, next, that regardless of the order in which a 
and d occur, under C2': 

Yi+l = (Yj- i, a, U(a, N(a, -1 + 1)), 

3, U(O, N(, j- 1) + 1))) 

=0 0(Yj- 1, 0, U(0, N(0, j -1) + 1)), 

a, U(a,N(a,j- 1)+ 1))). 

Furthermore, for any a' E X(Yj+1), either a' was in 
X(Yi- 1) or a' was activated by the occurrence of a or 
d. Either way, cj+ ,(a') is independent of the order of 
a and d: in the first case because (7) applies (which 
depends only on the number of occurrences of a'); in 
the second case because (6) applies and Tj+l - Tj = 0. 
For every a" E A, N(a", j + 1) is also independent of 
the order of a and /. But if Yj+1, cj+1 and N( , j + 1) 
are all independent of the order of a and / (at 0), then 
so is the rest of the sample path, since it is determined 
by recursion from these quantities. In particular, every 
ri(6) with i > j is independent of the order of a and d 

(at 0). Thus, if j' is the least index greater than j + 1 
for which aj is discontinuous at 0, then every ri, 
I <j' is continuous at 0. At j', we may repeat the 
whole argument and proceed to the next discontin- 
uous event (if any). Thus, we conclude that every ri is 
continuous. 

The same argument shows that if T(a, k) is finite, 
it is continuous. Suppose that (a, k) = rj so 
T(a, k) = r, and a, = a. As argued, in order that a, 
jump to, say, /, it is necessary that cj- (/3) = cj_1(a), 
in which case, just after aj becomes /, cj(a) = 0. This 
implies that a is the next event, aj+ I, to occur, and it 
occurs just after aj. This makes (a, k) = rj+ and 
T(a, k) = rj+ = rj. In short, changing the order 
of a and / does not change T(a, k). 

Part ii. For Yi to be discontinuous there must be (at 
least) two events a and / in X(Yi_1) with ci1(a) = 

ci-1(/). As noted, this implies that Ti+I = Ti. 
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Part iii. Recall that N(T) is defined by 

N(T) = supIn:rn < T}. 

Since the In are continuous in 0, N(T) jumps only 
when a transition occurs right at time T; i.e., when 
there is an n such that Irn = T. By definition, then, 
TN(T) =T. 

Part iv. Since T(a, k) is continuous and every Irn is 
continuous, a discontinuity of N(T(a, k)) occurs only 
when two events occur at T(a, k). One of these is the 
N(T(a, k))th event, the other is the N(T(a, k)) - 1st. 
Since both occur at T(a, k), T(a, k) = TN(T(a, k))-. 
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