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Countable-state, continuous-time Markov chains are often analyzed through simulation when simple analytical expres- 
sions are unavailable. Simulation is typically used to estimate costs or performance measures associated with the chain 
and also characteristics like state probabilities and mean passage times. Here we consider the problem of estimating 
derivatives of these types of quantities with respect to a parameter of the process. In particular, we consider the case 
where some or all transition rates depend on a parameter. We derive derivative estimates of the infinitesimal perturbation 
analysis type for Markov chains satisfying a simple condition, and argue that the condition has significant scope. The 
unbiasedness of these estimates may be surprising-a "naive" estimator would fail in our setting. What makes our 
estimates work is a special construction of specially structured parameteric families of Markov chains. In addition to 
proving unbiasedness, we consider a variance reduction technique and make comparisions with derivative estimates 
based on likelihood ratios. 

M any types of systems studied through simula- 
tion can be modeled as continuous-time, 

countable-state Markov chains. Notable among these 
are examples arising in queueing and reliability. Fre- 
quently, such models become Markovian only when 
the natural state space is augmented to include (dis- 
crete) supplementary variables, as in the "method of 
stages." In such cases, the Markov property is pre- 
served at the cost of a significant increase in the size 
and complexity of the state space. The resulting pro- 
cess may be intractable through ordinary numerical 
methods and simulation may become a computation- 
ally competitive alternative. 

Typically, one is interested in the characteristics of 
not just one model but a class of models which may 
represent alternative designs under consideration or 
may reflect uncertainty about which model best fits 
an existing system. This paper considers a context in 
which a class of alternative Markov chains is described 
by a family {Q(O), 0 E 0) I of generator matrices that 
depend on a real or vector parameter 0. For example, 
0 could be a vector of service and arrival rates in a 
Markovian queueing network. The goal is to estimate 
derivatives with respect to 0 of output characteristics 
associated with each Q(8). Such derivatives can be 
used to drive stochastic approximation algorithms that 
optimize over 0. Another application is sensitivity 
analysis. 

The most obvious way to estimate derivatives is to 

simulate at 0 and 0 + zAO and compare the results 
when Ad is small; but such finite difference approxi- 
mations are often statistically and numerically poorly 
behaved. Here, we are primarily concerned with esti- 
mates of the infinitesimal perturbation analysis type. 
(See Ho 1987 and Suri 1989 for overviews and exten- 
sive references.) Briefly, this method considers the 
effect on each sample path of a small change AO 
in the parameter. Consideration of these effects as 
AO -*> 0 leads to the use of almost-sure derivatives to 
estimate derivatives of expectations. 

It is well known that perturbation analysis estimates 
work in some contexts and not others. It has been 
pointed out that there may be difficulties in applying 
perturbation analysis to "arbitrary" Markov chains if 
individual transition rates q(x, y) change with 0. (See 
the discussions in, for example, Glasserman 1988a, 
Section 4, Heidelberger et al. 1988, Section 1, and Ho 
and Li 1988, Section 1). In fact, some restriction on 
the class of chains considered appears to be necessary. 
In this paper, we identify a simple sufficient condition 
which, if satisfied by a Markov chain, permits the use 
of perturbation analysis. The condition is so simple 
we paraphrase it here: Any two states with a common 
immediate predecessor have a common immediate 
successor. 

At the heart of our analysis is a rather unusual 
construction of a parameteric family of Markov 
chains. Perturbing a transition rate q(x, y) can have 
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the effect of changing the state the process goes to 
upon leaving state x. Consequently, it would appear 
that even arbitrarily small changes in q(x, y) could 
have drastic effects on the sample paths of the process. 
But the effect of parameter changes on individual 
sample paths depends entirely on how one constructs 
a parametric family of processes. The main contribu- 
tion of this paper is to identify a construction (avail- 
able for chains satisfying the condition above) in 
which changes in state transitions due to parameter 
changes are quickly corrected. 

Using this construction, we obtain unbiased deriv- 
ative estimates for a class of continuously accumu- 
lated, finite-horizon performance measures. However, 
our method cannot handle arbitrary random horizons; 
in particular, we must exclude the passage times that 
typically define a regenerative cycle. Our results do 
not, therefore, extend immediately to steady-state 
derivative estimation. While here we only consider 
continuous-time chains, our results are applicable in 
discrete time as well, because discrete-time chains 
can be embedded in continuous-time processes. 
Glasserman (1990) works out the details. 

In Section 1, we describe our problem more pre- 
cisely. Our special construction is outlined in 
Section 2, but the intricate details are left to Section 
8. Based on this construction, we derive the algorithm 
presented in Section 3. Implementation of the algo- 
rithm does not require the special construction, so a 
reader uninterested in the detailed derivation may 
read Section 3 without reading Section 8. Section 4 
considers the scope of our main condition and 
includes examples. Section 5 applies a variance reduc- 
tion technique and shows how to modify the algorithm 
of Section 3 accordingly. In Section 6 we consider a 
different class of derivative estimates based on the 
likelihood ratio method. This method appears to be 
applicable with few restrictions. But our experience- 
consistent with that of others-is that when both 
methods are available, perturbation analysis yields 
better estimates. Some comparisons are made in Sec- 
tion 7. Longer proofs are collected at the end. 

1. PRELIMINARIES 

Following standard notation, we use Q to denote the 
generator matrix of a continuous-time, countable- 
state Markov chain {Xt, t > O}. As usual, q(x, y) is 
the instantaneous rate of transition of X from x to y. 
Our presentation is simplified if we assume from the 
outset that Q is conservative and has no absorbing or 

instantaneous states-i.e., for every state x: 

o < q(x) -q(x, x) = X q(x, y) < oo. 
yOx 

We also assume that every row of Q has finitely many 
nonzero entries. 

We consider a parametric family {Q(O), 0 E 01 of 
Markov chains in which the elements of Q depend 
continuously and, in fact, differentiably on 0. The 
argument 0 will usually be suppressed. Henceforth, we 
take 0 to be scalar. For vector parameters, gradients 
can be obtained by considering separately derivatives 
with respect to individual components. We fix 
the initial state, X0, but any initial distribution 
independent of 0 would do. 

When we consider changes in 0, we understand that 
Q preserves its character as a conservative generator. 
Thus, when we increase q(x, y) by 6, we get a corre- 
sponding decrease 6 in q(x, x). We also require that 
the (open) interval e be constrained so that, for all x, 
y, if q(x, y) is positive at some 0 E A) it is positive 
throughout e. In other words, transition "arcs" can be 
neither created nor eliminated through changes in the 
parameter. This makes the family of measures on 
the path space induced by {Q(0), 0 E 0 1 mutually 
absolutely continuous. 

The quantities whose derivatives we consider are 
variants of J(0) = E [L ] where 

rT 

L = f(Xt) dt, 

fis a bounded, real-valued function on the state space 
of X, and T is a stopping time. For most of the paper 
we restrict T to be either a fixed time or the epoch of 
the nth transition of X for some fixed n; in Section 4 
we point out problems associated with the passage 
time to a state. Through choice of f and T, many 
quantities of interest can be obtained in this way. Of 
particular interest are the cases wherefis the indicator 
of some set of states; where f is identically one (and T 
is stochastic); and where (x) represents some cost or 
reward associated with operating in state x. If YO, 
Y, . ... is the sequence of states visited by the process, 
we can also handle functions of the form X0o f(Yi), 
as explained in Glasserman (1990). 

To estimate dJ/dO = dE[L]/dO using the method of 
infinitesimal perturbation analysis, one must find a 
construction of processes {Xt(0), 0 E e } (each Xt(O) 
a Markov process with generator Q(O)) on a common 
probability space under which L is differentiable in 0 
with probability one. The resulting almost-sure deriv- 
ative dL/dO estimates the derivative of the expected 
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value of L. This estimate is unbiased in case 
E[dL/dO] = dE[L]/dO. Different constructions lead 
to different almost-sure derivatives. It is possible for 
some to be biased and others not. Theorem 1 of 
Section 8.2 shows that the almost-sure derivative 
resulting from our construction is unbiased. 

2. OUTLINE OF THE CONSTRUCTION 

We construct a continuous-time Markov chain from 
a sequence of independent, unit mean exponential 
random variables { Zi, i = 1, 2, . .. 1. There are many 
ways such a construction can be effected; before pre- 
senting a new way, we briefly describe a more obvious 
approach and why it fails. 

Suppose that the process starts in state xo. A 
standard construction assigns one Zi to each pair of 
states (xo, yi) for which q(xo, yi) > 0 and simultane- 
ously determines the first holding time and transition 
as follows. Think of assigning a "clock" to each pos- 
sible transition (xo, yi); the clock runs at rate q(xo, yi) 
and is initialized to Zi. The ith clock is scheduled to 
run out at Zi/q(xo, yi). If it is the first to run out, then 
Zi/q(xo, yi) becomes the holding time in x0, and the 
next state is yi. After the transition, previously sched- 
uled clocks are simply discarded, and new random 
variables from the sequence {ZJ} are assigned to the 
possible transitions out of the new state. Clearly, under 
this construction, even a very small change in some 
q(xo, y) can completely change the sequence of states, 
making L discontinuous. Indeed, Heidelberger et al. 
show through explicit calculation that a derivative 
estimator based on this type of construction for a 
birth-death process converges to the wrong value. 

The less obvious construction we propose modifies 
this approach, taking advantage of special structure. 
The condition we require is as follows: 

Condition CM. For any pair of states yi, Y2, if there 
is a state x for which q(x, yj) > 0 and q(x, Y2) > 

0, then there must also be a state x' for which 
q(y1, x') >0 and q(y2, x')>0. 

If we think of the state space of a Markov chain as 
a directed graph with an arc from x to y whenever 
q(x, y) > 0, then the condition is that every pair of 
states with a common immediate predecessor must 
have a common immediate successor. In the case of 
a birth-death process, for example, the pairs of 
states with a common predecessor are all of the form 
(x - 1, x + 1) and have a common successor x (which 
is also the common predecessor). 

For a chain satisfying CM, if y' and Y2 have a 
common predecessor, let K(y1, Y2) = K(y2, yj) be a 
common successor. Generate the first holding time 
and state transition as described above; suppose these 
are determined by Zj/q(xo, yj). Following the transi- 
tion to yj, we re-use the residual time on the other 
clocks. The memoryless property applied to the 
other assigned Z1's implies that, conditional on 
Zi/q(xo, vi) > Zj/q(xo, yj), the quantity Zi/q(xo, y) - 
Zj/q(xo, yj) is exponentially distributed with its origi- 
nal mean, q-'(xo, yi). Thus, under the same condition, 
the residual time 

q(xo, yi) 
q(x0, yj) 

has a unit-mean exponential distribution. Assign 
this residual time on clock i to (y,, x'), where x' = 
K(yi, yj) (yi and yj have xO as a common predecessor). 
If it is the only clock assigned to this transition, 
run it at rate q(yj, x'). If m (residual) clocks are 
assigned to the same transition (yi, x') run each at 
rate q(yj, x')/m. (Recall that the minimum of m 
independent exponential random variables with 
rate X/m is exponential with rate X.) If, following this 
reassignment, there is a state z with q(yj, z) > 0 to 
which no clock has been assigned, then to each such 
z assign a new clock running at rate q(yj, z) and 
initialized to a freshly drawn, unit-mean exponential 
random variable. Repeat the whole procedure at each 
transition. 

For example, consider the fragment of a state space 
depicted in Figure 1. If the process is started in state 
xO, clocks 1 and 2 may be assigned to transitions 
(xo, Yi) and (xo, Y2), respectively. If clock 1 runs out 
first, then the process moves to state y' and clock 2 is 
reassigned to (Yl, x'). A new clock (clock 3) is assigned 
to (yv, z). If the first transition is, instead, to state Y2, 
then clock 1 is reassigned to (y2, x'). 

To see what makes this construction interesting, 
consider the effect of small changes in Q. Sup- 
pose initially the first transition is determined by 

xo 

Y1/ 2Y2 

z 

Figure 1. Fragment of a Markov chain. 
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Zj/q(xo, y,), and the next by 

(z _ q- ' yi) Z) q(yj, x') 

where, as before, x' = K(yi, yj). As q(xO, yi) is 
increased, say by an amount 6 > 0, it may happen that 
Zj/q(xo, yj) > Zi/(q(xo, yi) + 5), in which case, the 
transition out of xo is to yi rather than yj. But, under 
our construction, after the transition to yi 

(Z - q(x 0, + y 
ZiJ q(yi, x') (1) 

is assigned to x' = K(yj, yi); and since initially 
Zj/q(xo, yj) < Zi/q(xo, yi), (1) is close to zero whenever 
6 is small. For sufficiently small 6, the transition out 
of yi is necessarily to x'. Thus, if initially the first 
three states were x0, yj, x', then for 6 just large enough 
to introduce an order change, the new sequence will 
be x0, yi, x'; and, at that value of 6 at which the 
sequence changes, the holding time in the second state 
is zero. (The reader can verify that neither of these 
conclusions holds under the first construction 
described above.) If, under the perturbation 6, the 
process reaches x' through yi rather than yj, we may 
still assign clocks to transitions out of x' in the same 
way we would have if the second state had been yp. 
This ensures that (with high probability) the future 
evolution of the process is unaffected by the change 
in the second state. These arguments are made precise 
in Lemma 1. 

3. THE ALGORITHM 

By formalizing the scheme outlined above, we obtain 
a construction of Markov chains with generator mat- 
rices Q(O), for a neighborhood of 0 values, all from 
the same sequence $ZJ of exponential random vari- 
ables. From that construction, we obtain expressions 
for derivatives (with respect to 0) of quantities associ- 
ated with the chains. The construction, and the asso- 
ciated derivatives, are rather complicated and involve 
some detailed bookkeeping for the assignment and 
reassignment of clocks. The resulting derivative esti- 
mation algorithm is, in contrast, relatively simple; 
therefore, in this section we present only the algo- 
rithm. The construction and derivation are postponed 
to Section 8. 

We need some notation. For each value of 0, asso- 
ciated with Q(O) we have: 

X#(6) = the state of the chain at time t; 
T (J) = the epoch of nth transition, TO(O) 0; 

Y,(6) = the nth state = X,(,)(0); 
N,(0) = supIn > 0: TM(6) < t}; 

= the number of transitions in (0, t]. 

Our construction makes each $Xt(6), t > O} right- 
continuous, so Yn(O) is the state just after the nth 
transition. When the parameter value is fixed or irrel- 
evant, we often omit the argument 0. 

Let f be a- bounded, real-valued function defined 
on the state space of X. For real T > 0 and integer 
n > 0 define 

rT 

L =L1 (T) = f(Xt) dt 

NT- 1 

= E -(Yi)[Til Ti] +f(YNT)[T- TNTI (2) 
i=O 

rTn 

L2= L2(n)= ff(Xt) dt 
o ~~~~~~~~~(3) 

n-I 

- f( Yi)[-i+ 1 Ti]. 
i=O 

If X depends on 0, then so do L1 and L2 . Suppose that 
L1 and L2 are differentiable at some 0. The Yi's take 
values in a discrete set, so df(Yi(6))/dO can only be 
zero, wherever it exists. The same is true of NT. Thus, 
by differentiating the right-most expressions in (2) and 
(3) and rearranging terms, we obtain 

dL = [f(Yi-1) -f(Yi)] (4) dO 11dO 

and 

dL2 = f(yi)[ 
+1 dTi] (5) 

From these expressions it is clear that the key to 
evaluating the derivatives of L1 and L2 is evaluating 
the derivatives $dT1/d6, i = 1, 2, . . . of the transition 
epochs. 

Our algorithm computes, for each state x, a 
sequence $bi(x), i = 1, 2, ... I with the following 
interpretation: If q( Yi- 1, x) > 0, then at Ti- 1 there is a 
clock associated with a transition from Yi- I to x. This 
clock determines the time remaining until the next 
scheduled transition to x. (A scheduled transition may 
be cancelled by the occurrence of another transition.) 
Think of bi(x) as representing the derivative, at Ti 1, 

of the scheduled transition to x. In particular, bi(Yi) 
represents the derivative of the time of the next actual 
transition. By substituting bi(Yi) for dTi/dO in (4) and 
(5), the algorithm below computes estimates Li 
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and L2. (See Sections 8.2 and 8.3 for a more precise 
discussion.) 

Given Yo, Y1, . . ., Yi, define 

Si(x) = $y: K(Yi, y) = x, q(Yi-1, y) > 01; 

then Si(x) is the set of states y such that a clock 
assigned to (Yi-1, y) at Tri- would be reassigned to 
(Yi, x) at Ti, under our construction. The set Si(x) 
could be empty and could consist of just one element. 

Algorithm 1 

Step 1. Initialize by setting every bo(x) = 0, LI = 

O, and L2 = 0. 
Step 2. At the ith transition, update by setting 

bitYi) = i-1(Y1) - Ti- Ti-I q(Yi-1, Yi) (6) 
q(Y1-1, Y1)q(Y ,Y) (6 

for every x with q(Yi, x) > 0 and I S1(x) I > 0 

bi(x) = bi(Yi) + ES q(Y1 , X) 

*(bi- I(Y) c(Y ) q'(Yi-1, y) - bi(Y1)); (7) 

while if q(Yi, x) > 0 and I Si(x) I = 0, then 

bi(x) = 6i(YA). (8) 

Set L = + &i(Yi)[f(YiI) - f(Yi)] and L2 = 

L2 +f(Yi-1)[&i(Yi) -bi-I(yi-01 
Step 3. After NT transitions, stop incrementing L V . 

After n transitions, stop incrementing LI. 

The three cases (6)-(8) implicitly reflect how small 
"perturbations" propagate from one clock to another. 
Some intuition for the form of these rules is given in 
Section 8.2, following a more detailed description of 
how clocks are assigned and reassigned. 

In Section 8.3 we show that under mild additional 
conditions on $Q(O), 0 E (I, Algorithm 1 produces 
unbiased estimators; i.e., E[Li'] = dE[L]/dO, i = 1, 
2. See Corollary 1. It should be stressed that while the 
derivation and justification of this algorithm use our 
special construction, the implementation does not. 
The algorithm itself makes no reference to clocks and 
could be used with any simulation of $Xt, t - 01. 

The notation of the algorithm assumes a separate 
sequence {bi(x)l for each state x. But because the 
algorithm has only a one-step memory, it is never 
necessary to store more &i values than the number of 
possible next transitions, which is generally small. 
Even so, associating accumulators with states presup- 
poses some enumeration of the state space, which can 

be burdensome. For physically meaningful systems- 
the kind usually simulated-simpler implementations 
may be possible. We return to this point in the next 
section when we consider Jackson networks. 

Section 5 shows that the algorithm lends itself well 
to discrete-time conversion, yielding lower-variance 
estimators with only minor modification. 

4. SCOPE OF CONDITION CM 

Our algorithm only yields correct results-indeed, can 
only be implemented-on Markov chains satisfying 
condition CM; hence, we should investigate the scope 
of this condition. In this section, we discuss some 
examples that satisfy CM and make some general 
remarks on this condition. 

Example 1. (Reversible Markov Chains). These 
chains are characterized by the existence of strictly 
positive numbers v(x) satisfying q(x, y)v(x) = 
q(y, x)v(y) whenever q(x, y) > 0. For such 
chains, any two immediate successors of x have x 
itself as a common immediate successor. Clearly, 
the condition of reversibility could be relaxed to 
q(x, y) > 0O= q(y, x) > . 

Example 2. (Jackson Networks). Consider an open 
or closed Jackson network with a single class of cus- 
tomers. Let P be the routing matrix; Pij is the proba- 
bility that a customer leaving server i joins queue j. In 
the open case, add a fictitious node 0: Poi is the 
probability that an arriving customer joins queue i, 
and Pio is the probability that upon leaving server i, a 
customer leaves the network. Suppose that all Pii = 0 
(this represents no loss of generality when service is 
exponential). Taking the state, as usual, to be the 
vector of queue lengths, CM is satisfied if P satisfies 
an analog of CM: For any i, if there are j and k 
for which PijPik > 0, then there is an i' such that 
Pji'Pki' > 0. (Note that i, j, k or i' may be 0.) Letting 
ei be the ith unit vector and eo the vector of all zeros, 
this condition on P guarantees that if ni > 0 in state 
n = (nl,.. ., nm), then n - ei + ej and n - e1 + ekhave 
n - e, + e1 as a common successor. The same condi- 
tion on P applies when arrivals, service and routing 
are state-dependent, so long as the dependence on the 
state does not include shutting off an arrival stream 
or a busy server, or zeroing a formerly positive routing 
probability. However, CM is typically violated by 
networks with multiple customer classes. See, e.g., the 
example in Heidelberger et al. 

The special structure of Jackson networks makes 
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implementation of Algorithm 1 especially easy. The 
bi(x)'s can be replaced with accumulators bi(j, k) for 
all pairs of nodesj, k with Pjk > 0. Every state transition 
involves exactly two nodes. (Arrivals and departures 
involve node 0.) If x = Yi - ej + ek, then at the ith 
transition update bi(j, k) using the rule for bi(x) in 
Algorithm 1. A similar simplification is possible in 
certain reliability models and, more generally, any- 
time the state space is (roughly) a Cartesian product. 
Fox (1990) exploits the same structure in a different 
way. 

Example 3. (Perturbing Routing Probabilities). 
Perhaps the most striking difference between the esti- 
mators derived here and earlier infinitesimal pertur- 
bation analysis algorithms is that our estimators can 
be used when 0 parameterizes the routing matrix, 
and not just the service times. If n = (n1, . . ., nm) 
with ni > 0, and if 4i is the service rate at i, then 
q(n, n - ei + ej) = giPij; every nonzero, off-diagonal 
element of the generator matrix is a product of a 
service rate and a routing probability. In parameter- 
izing Q by 0, it makes no difference which factor 
(wi or Pij) depends on 0. Of course, for the network to 
satisfy CM, P must satisfy an analogous common 
successor condition, as explained in Example 2; hence, 
this method is only applicable with specially struc- 
tured networks. 

Example 4. (Phase-Type Distributions). The utility 
of our algorithm is substantially enhanced by the use 
of phase-type distributions. For example, this allows 
certain queueing networks with nonexponential serv- 
ice and interarrival times. Represent a phase-type 
distribution by an initial distribution x and an absorb- 
ing generator R. (See Neuts 1981 for background.) A 
phase-type service time, lifetime, etc., is the time to 
absorption through R starting according to x. Without 
loss of generality, let R have a unique absorbing 
state 0. 

CM imposes restrictions on R and x; the specific 
restrictions depend on the system. As a simple exam- 
ple, consider queues in series. Consider distributions 
(a, R) for which: a) there is just one r such that 

xr> 0; b) if Rso > 0, then for all s', s ? s' ? 0, 

RssI = 0; and, c) R satisfies CM. If the interarrival 
times and all service times are drawn from this class 
of distributions, then CM is satisfied. 

When CM is not satisfied, it is tempting to try to 
extend the applicability of our method by replacing 
the true generator Q with a modified generator QE, in 
which transitions of rate E have been added to satisfy 
the condition. If E is small, one might hope that this 

would produce reasonable estimates because the pro- 
cess is not greatly changed. Though this idea may 
work in some cases, it may be problematic. Introduc- 
ing new transitions may allow meaningless state 
sequences in a physically meaningful system. More 
fundamentally, even if we make the reasonable 
assumption that the corresponding performance 
measures E[LE] converge to E[L] as E -> 0, it seems 
less reasonable to assume that dE[LE]/dO -> dE[L]/ 
do. (The convergence of a sequence of functions does 
not imply convergence of their derivatives.) Also, since 
transition rates appear in denominators in Algorithm 
1, the estimates may diverge when e -> 0. For the 
same reason, the algorithm may perform poorly when 
some transition rates are very small. 

Different conditions corresponding to a different 
class of perturbation analysis derivative estimates can 
be obtained using the generalized semi-Markov 
process (GSMP) framework, which does not rely 
on exponential distributions. This is done in 
Glasserman (1988b, 1991). It is important to stress 
that the key condition in these references, though 
superficially similar to CM, does not coincide with 
CM even when restricted to Markovian GSMPs. Nei- 
ther condition implies the other, though there is over- 
lap. Even when both conditions are in force, the 
corresponding derivative estimates may be different. 
A detailed comparison is not possible without the 
extensive GSMP notation. For Jackson networks, the 
difference may be summarized as follows. Results in 
Glasserman (1 988b, 1991) place essentially no restric- 
tions on the routing topology (compare Example 2) 
at the expense of strong conditions on the state- 
dependence allowed. Also, these results require 
that the routing not depend on the parameter of 
differentiation. 

Finally, let us point out a limitation (alluded to 
earlier) associated with the performance measures we 
may consider. We cannot, in general, replace the time 
horizon T or Tn with the passage time to a state. 
Speaking loosely, what CM guarantees is that if a 
change in 0 causes X to jump to the "wrong" state, 
under a sufficiently small change, the next jump will 
be to the "right" state. This allows the jump epochs Tn 
to be continuous in 0; see Lemma 1. But this correc- 
tion is too coarse for passage times. If a parameter 
perturbation changes the state of the process for even 
a very short time, an entrance to a specified state may 
be created or eliminated, thus introducing a disconti- 
nuity in the passage time to that state. A consequence 
of this limitation is that our results are not immedi- 
ately extensible to regenerative simulation. 
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5. CONDITIONING TO REDUCE VARIANCE 

Simulations of continuous-time Markov chains are 
candidates for application of a variance reduction 
technique introduced by Hordijk, Iglehart and 
Schassberger (1976) and generalized by Fox and 
Glynn (1986, 1990). The idea-sometimes called 
"discrete-time conversion"-is to replace calcula- 
tion of some estimate, r, from simulation of X with 
calculation of another estimate, r, from simulation of 
the embedded chain Y. These estimates are related by 
r = E[r I Y]. Simulating Y instead of X eliminates the 
need to generate exponential state holding times. Tak- 
ing a conditional expectation reduces variance (see 
Fox and Glynn for details). Thus, r is preferable to r 
provided it is no harder to compute. In this section, 
we apply this method to the derivative estimates LI 
and L2 produced by Algorithm 1. 

From the right-most expression in (3), it is easy to 
see that 

n-I 

E[L2I Y] E f(Yi)E[Ti+I - TjI Y] 
1=o 

n- I 

= Ef(Y1)/q(Yi). 
i=O 

Thus, calculation of E[L2 I Y] simply requires replac- 
ing the holding time in each state by the mean holding 
time in that state. Conversion of L2 is similar, as we 
show below. The conditional expectation for LI, 
which is harder, is handled in Fox and Glynn (1990). 
We adapt one of their methods, based on uniformi- 
zation, to convert LI. 

Inspection of the recursion that defines bi(x) 
(Algorithm 1) reveals that we may write 

i-I 

bi(Yi)= E {i-Jj(i.., Yi)(,Tj+l- Tj) 
j=O 

for some function 1 2, . The value taken by 
each X~V is completely determined by Yand is otherwise 
independent of -r, T2, .... Similarly, we find that the 
quantity, L2 computed by our algorithm can be 
expressed as 

n-I 
L2 = {Yin ..., Yn)(Ti+I -i) ...A.. (9) 

i=O 

for some (other) function 46. Thus, 
n-1 

E[L" I Y]= E f(Y1, ..., Yn)/q(Yi). 
i=O 

In other words, the conditioned estimator E[L' I Y] 
is evaluated using the algorithm for L", replacing each 

holding time, -i, - Ti with its conditional mean, 
q-'(Yi). Thus, we may simulate only the embedded 
chain Y and apply essentially the same algorithm as 
before. 

The case of L1 is different because the number of 
transitions NT in (0, T] is not determined by Y. If (as 
we assume) there is a finite upper bound q* on all 
transition rates, we may follow Fox and Glynn (1990) 
and uniformize the process at rate q*. (Uniformization 
restricts us to simulation and is not applicable if the 
chain is merely "observed".) Denote by N* the Poisson 
process of jumps of the uniformized chain, and by 
Y* the ith state under uniformization. Let Yi be the 
ith distinct state, and let Mi be the number of visits to 
Yi the uniformized chain makes before proceeding to 
Yi+1. Given Yi, we generate the geometric variate Mi 
in 0(1) time. Given N*, the ith holding time of the 
uniformized chain has mean T/(N* + 1); see Fox and 
Glynn (1990). 

Using the ij's above and (4), we can write Li as 

NT 

[P(Yi- l) - f(Yi)Ab(Yi) 

NT i-I 

= mr [(-1) -f(Ym) Z fi-J(Yj,.. Yi)(-ri+ 1-0-) 
i=1 j=O 

Therefore: 

E[L IY*, AT] 

NT 

= I [f(Yi-1) -f(Yi)] 
i=l1 

i-l 

* E Vi-J(Y1, ..., Y1)E[rj+ -rTj Y*, N*] 
j=O 

NT 

i=l1 

i-I 
~Mi * E ijY Y) M1T 

j=O T 

In words, the algorithm is modified by first generating 
N*, generating Mi-1 as well as Yi in Step 2, and 
replacing the holding times with their expectations 
conditioned on Y* and N*. Thus, in (7), we replace 
rTi- ri1 by Mi-1 T/(N* + 1). 

While conditioning L2 is virtually guaranteed to 
reduce variance with no additional work, there is a 
tradeoff in converting L' 1. Uniformization typically 
involves slightly more work, so this must be compen- 
sated by the variance reduction, as discussed in Fox 
and Glynn (1990). Counterparts of more intricate 
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results in Fox and Glynn (1990) further reduce vari- 
ance with only a slight effect on work. 

6. DERIVATIVES BASED ON LIKELIHOOD 
RATIOS 

Various authors (Glynn 1986, Reiman and Weiss 
1989, and Rubinstein 1989) have proposed estimating 
derivatives from simulation through likelihood ratios. 
The idea is to view 0 as a parameter not of the sample 
paths of a process (as we have viewed it so far), but of 
a measure on the space of sample paths. Changes in 0 
lead to changes in the measure which lead naturally 
to likelihood ratios. 

The domains of problems with which "perturbation 
analysis" and "likelihood ratio" derivative estimates 
can be used overlap but neither contains the other. It 
is interesting to compare their performance in cases 
where both can be applied. Markov chains satisfying 
condition CM are one such case. (While it is custom- 
ary to think of these as alternative methods, in 
Glasserman (1990) we show that, for Markov chains, 
likelihood ratio estimates are perturbation analysis 
estimates obtained through yet another special con- 
struction. L'Ecuyer (1989) and Rubinstein (1989) also 
make connections between the methods.) 

Let X, Q, Y and I r,} be as before and let Yo yo be 
fixed. Using basic properties of Markov chains 

P(, I-,ro EEdto, Y = yl,. . . ITn- Tn- IE=-din -I Yn= Yn) 

= e-q(Yo)to dtoq(yo, yi)e-q(Y)t1 dtlq(y1, Y2) 

.. e-q(Yn,-)tn-i dtn lq(yn1, yn). (10) 

We wish to consider small changes-in fact, deriva- 
tives-with respect to transition rates. We begin by 
differentiating with respect to a single q(x, y), with 
q(x, y) > 0, then generalize to the parametric case. 
Collecting terms depending on q(x, y), we may rewrite 
(10) as 

q(x, y)Nxye-q(x)Tx . R (11) 

where Nxy is the number of transitions (x, y) among 
(Yo, Yi), (y1, y2), . . . , (Yn-, yn), Tx is the sum of those 
ti for which Yi = x, and R does not depend on q(x, y). 
(The same expression holds if Yo is chosen from an 
initial distribution that does not depend on q(x, y).) 
The "likelihood ratio" of (yl, ti, . . ., Yn-i , tn- 1, yn) at 
q(x, y) + 6 relative to q(x, y) is, therefore: 

(q(x, y) + 6)N-ye-((x)+6)T, . R ( \\NXYx 

q(x, y)Nxye-'(x)Tx . R 1 (x+ ) 

Differentiating with respect to 6, we get 

q(x, y) + q(;) ex 

\ Nxy 

+ + q(x, y) Tx)e-'Tx. 

Evaluating this at 6 = 0 we get 

Nxy - T (12) 
q(x, y) 

Taking a likelihood ratio directly in (10) leads to a 
different expression; see (14) and also Section 3 of 
Glynn and Iglehart (1989). Collecting terms as in (12) 
does not change the work required, but does yield an 
analog of the Reiman and Weiss estimator for Poisson 
processes. Their analysis shows that expectation can 
be taken outside the derivative; more precisely, it 
yields the following proposition. 

Proposition 1. Let Nxy be the number of jumps from 
x to y on (0, T) and Tx the time spent in state x during 
the same interval; then 

dE[L1 ] = tL Nx NiT 
dq(x, y) L q(x, y) X) 

Proof. The proof of Theorem 1 in Reiman and Weiss 
applies here almost word for word. The "amiability" 
condition required there can be satisfied by taking the 
f in their notation equal to T + NT, and taking their 
d to be any upper bound on the If in our notation. 

The case of L2 is similar. One form of the likelihood 
ratio derivative estimate is given by 

L2((x 7y) - (13) 

where, now, Nxy is the number of jumps from x to y 
in (0, Tnr, and Tx is the time spent in x during that 
interval. This is easily derived from (16) in Glynn and 
Iglehart. 

When the entire generator Q depends on some 
parameter 0, if the absolute continuity condition of 
Section 1 is in effect, then the chain rule yields the 
estimate 

I 
= LI NX(qjx - Tx)q'(x, y), 

where the sum runs over all pairs of states with 
q(x, y) > 0. If only finitely many pairs have 
q'(x, y) $ 0 and if where derivatives are bounded 
uniformly in 0, x, y, then unbiasedness follows from 
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Proposition 1. Estimates for L2 can be found by sum- 
ming over pairs of states in the same way. 

Derivative estimates based on likelihood ratios can 
also be converted to discrete time. Consider the 
estimate 

d = L2 E ( TX )q (X Y) dO (x,y) q(x, y) xqX 

based on (13). Without L2, the right side could be 
rewritten as 
n-1 ,(y yi+1) n-I 

E q (Y1, Y1+1)_ f q'(Yi)(ri+1 - r), (14) 
i=o q(yi, Yi+,) i=O 

using the fact that A,, q'(x, y) = q'(x). Multiplying 
by L2 introduces terms involving (ri+I - Ti)(rj+I - ri). 
Each factor is exponentially distributed; given Y, the 
two factors are independent if j $ i. Using these 
observations, we get 

EdL2 y 
LdO 

n-i n-i 
q'Y1, Yi+1) 

E q~~1f(YJ)/q(YJ) 
i=o j=o q( i, Yi+l ) 

n-1 

- E Eq'(Yi)f(Yj)/q(Yi)q(Y1) 
i=o joi 

n-1 

-2 E q'(yi)f(yy)/q2(yi). 
i=O 

This equation also uses the fact that the second mo- 
ment of an exponential random variable is twice the 
square of its mean. Collecting terms we get 

n-i n~i ~,(i qyY)(Y/Y 

1'=0j= I qY, i+, ) q,(yi) fy)lyj i=O 0= q(Y1) 
n-i 

- E q'(Yi)f(Y1)/q2(Y1), 
i=O 

=L2 (4Y - TX)q'(x y) 
x Y q(x, y) 

X 

n-1 

- > q'(Yi)f(Y1)/q2(Yi) (15) 
i=O 

with L2 = E[L2 I Y] and Tx = E[Tx Y]. The first term 
in this last expression is what would be obtained if in 
the original estimate every holding time ri+I - ri were 
replaced by its conditional mean 1/q(Y1). Thus, in 
this case (in contrast to that of Section 5) simply 
replacing holding times by means it not legitimate; an 
additional term must be computed. 

It is interesting to note-and not hard to check- 
that in (15), likelihood ratio differentiation and 

discrete-time conversion "commute": The likelihood 
ratio derivative estimate, based on the process Yn, 
applied to E[L21 Y] is the same as the conditional 
expectation evaluated above. Indeed, the two terms 
on the left side of (15) correspond to the two terms in 
(4.5) of Glynn for discrete-time chains. In our appli- 
cation, the first term reflects the dependence of the 
embedded transition probabilities on 0, the second the 
dependence of the mean holding times. 

To convert dLl/dO to discrete time we use uni- 
formization, as we did with Lj', again adapting 
the method of Fox and Glynn (1990). Let N* and Y* 
be as in Section 5, let r* be the ith transition epoch 
for i S N*, and let r*k+1 = T. Given N*, the jumps 
of N* are uniformly distributed on [0, T]. Using this 
fact, it can be shown that for i, j < N*, j $ i: 

E[-r*+1A N*T, Y*] = TG+ T 

E[(rTi -r *)2 1 N*, Y*] = (N 2T+ 2)(N+ 2)' 

and 

E[(-ri+i - -r1)Crj+ I - -rj) IN*, }*] E[(T+1-i)(;+1Tj)I NT, Y](N* + 1)(N* + 2) 

An argument similar to that used for L2 yields 

EFdL, *Y 
dO T 

N- 1N 

i=Oj ~ i NT NT * T 2 
-2 E E(i )#( (N*T + 1 )(N* + 2) 

where q'(y, y) 0 for all y, and, from Fox and Glynn 
(1990) 

T NT 
E1 = E[L1 I N*, Y*] N* + 1 

Fox and Glynn (1990) discuss several improve- 
ments to L1, which should be applicable to 
E[dL1/dO I N*, Y*] as well. 

7. COMPARISONS AND COMPUTATIONAL 
EXPERIENCE 

A complete comparison of the relative efficiencies of 
derivative estimates based on the methods of 
Sections 3 and 6 is well beyond the scope of this paper. 
Nevertheless, some comparisons can be made in 
special cases and some conclusions drawn based on 
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computational experience. (Further comparisons are 
made in L'Ecuyer 1989 and Rubinstein 1989.) The 
single greatest advantage of the likelihood ratio 
method, which cannot be quantified, is the fact that 
it appears to be applicable (to Markov chains) with 
only mild restrictions. 

Implementation of the infinitesimal perturbation 
analysis estimate required from 30% to 50% more 
lines of code than the likelihood ratio method and 
typically took approximately twice as long to run. 
(Neither of these observations applies to simulations 
driven by future-event schedules. Most of the over- 
head in the perturbation analysis calculations goes to 
keeping track of the clocks (implicitly via Si). When a 
future-even schedule is used, clock information is 
already available.) The larger the number of possible 
transitions from each state, the greater the work re- 
quired just to generate transitions and the smaller the 
relative additional work to calculate derivatives by 
either method. For finite chains, checking condition 
CM and building the common successor matrix K 
requires a one-time effort of O(k3), where k is the 
number of states. For large k, this is prohibitive. For 
highly structured chains of the type arising in appli- 
cations (such as those in Section 4) it is often possible 
to check CM and specify K from a verbal description 
of the process. (For Jackson networks, constructing a 
common successor matrix for the routing matrix P is 
sufficient; see Section 4.) In general, entries of K may 
be generated only as needed. 

These apparent computational advantages are, how- 
ever, quickly overwhelmed by the large variance typ- 
ical of the likelihood ratio method. Consider (12): its 
variance is Var(E[(12) 1 TJ) + E[Var((12) I Tx)] = 
E[Var((12) I T1)] because E[(12) I = 0. At the root 
of the problem is the fact that when q(x, y) > 0, 

Var(( 12) I Tx) = E Nqxy y)TX TX] T~X y V~~l2' I 
_ 

) Tiy = 
q(x,y) 

(see also Reiman and Weiss, Section VIII), because 
given Tx, NxY is Poisson distributed with parameter 
q(x, y)Tx. Since, typically, E[Tx] increases in the 
length of the simulation, so would the variance of the 
differentiated likelihood ratio (12). 

In examining the effect of run length on variance it 
makes sense to consider, for example, L2(n)/n since 
this usually has variance O(n-') (whereas the variance 
of L2(n) may increase without bound). If 2(n) and 
2a(n), respectively, denote the variances of the pertur- 

bation analysis and likelihood ratio derivative esti- 
mates of L2(n)/n, then typically 

al(n) O(n-') and 2(n) 0(n). (16) 

For example, we can expect the variance of L2(n) to 
be 0(n); that of the differentiated likelihood ratio is 
often also 0(n) as noted above. Multiplying the dif- 
ferentiated likelihood ratio by L2(n)/n we expect to 
obtain an estimator with variance 0(n), because, for 
large n, L2(n)/n is roughly a constant. The comparison 
in (16) can be verified exactly in special cases, and is 
also consistent with computational experience. 

As an illustrative example for experimental com- 
parison we chose a finite state birth-death process. 
Following standard practice, we compare the esti- 
mators on the basis of their relative efficiency: Let I2 
be the variance of a perturbation analysis estimate 
and o29 that of a corresponding likelihood ratio 
method, and let t1 and t2 be the expected time to 
generate one estimate under each method. The per- 
turbation analysis estimate is more efficient than the 
likelihood ratio estimate if 

el = (f t1)' > (2 t2)-l = e2. 

This gives a basis for trading off variance against 
computational effort, and also allows us to check the 
benefit of discrete-time conversion. (When samples 
are generated in constant time ti, vi ti is the normali- 
zation in the ordinary central limit theorem for esti- 
mate i. When generation times are random, as in the 
present setting, this notion of efficiency is justified via 
more general central limit theorems in Glynn and 
Whitt 1989, and Fox and Glynn 1990.) 

Tables I and II summarize our computational ex- 
perience in the case of a five state birth-death process 
with Xi- I = Ai = 1, i = 1, . . ., 5 andf- 1, for different 
values of n, with the without discrete-time conversion. 
(The simulations were written in FORTRAN and 
run on an AT&T PC 6300 PLUS.) The tables show 
estimates (based on a thousand replications) of 
dE[rn]/d;X, using perturbation analysis and likelihood 
ratios, with estimated half-widths of 95% confidence 
intervals in parentheses. (In measuring relative effi- 
ciency it makes no difference whether we consider Tn 
or rn/n.) The last column shows the (estimated) 

Table I 
Results for Birth-Death Process 

n $n PA $n LR ele2 

5 -0.675 (0.037) -0.681 (0.221) 20.3 
10 -1.29 (0.06) -0.970 (0.543) 42.7 
20 -2.18 (0.09) -1.75 (1.28) 105 
30 -3.14 (0.11) -2.33 (2.20) 206 
40 -3.99 (0.13) -3.42 (3.23) 320 
50 -4.99 (0.14) -2.85 (4.35) 486 
75 -7.21 (0.17) -1.33 (7.98) 1080 

100 -9.61 (0.20) -5.35 (12.28) 1890 
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Table II 
Results for Birth-Death Process, Converted to 

Discrete Time 

n Wn PA in LR ele2 

5 -0.674 (0.022) -0.699 (0.130) 22.4 
10 -1.29 (0.05) -1.17 (0.333) 29.8 
20 -2.21 (0.07) -2.19 (0.859) 74.6 
30 -3.16 (0.09) -2.92 (1.51) 140 
40 -3.99 (0.11) -3.36 (2.28) 240 
50 -5.00 (0.12) -3.90 (3.21) 373 
75 -7.25 (0.15) -4.80 (5.90) 844 

100 -9.62 (0.17) -7.11 (9.21) 1515 

relative efficiencies; for each n, the number in the last 
column is how many times more efficient than the 
LR estimate is the corresponding PA estimate. These 
suggest that, very quickly, the smaller variance asso- 
ciated with the perturbation analysis estimate domi- 
nates the increased computational requirement. (The 
average CPU times per thousand replications per n 
for the two methods are 3.6 and 1.9 seconds, and 3.2 
and 1.7 seconds with discrete-time conversion.) 
Similar results were observed with other examples. 

Our experience (not shown explicitly in the tables) 
is that the direct benefit in computation time from 
discrete-time conversion is modest-about 10%. The 
direct effect on variance (also modest) is indicated by 
the slightly tighter confidence intervals. (Theoretically, 
however, the benefit from conversion can be arbitrar- 
ily large or small; see Example 1 of Fox and Glynn 
1990.) Overall, our experience is that converting to 
discrete-time benefits estimates of L, and L2 more 
than estimates of their derivatives, and benefits the 
likelihood ratio method a bit more than perturbation 
analysis (compare the last columns of the two tables). 
However, it is unclear if such conclusions can be 
drawn more generally. 

8. DERIVATION OF THE ESTIMATOR 

We now detail the construction outlined in 
Section 3, and show how Algorithm 1 follows from 
this construction. 

8.1. The Construction 

We construct a Markov process with generator Q(O) 
for a range of 0 values. There are two parts: We first 
follow the steps outlined in Section 3 at a "nominal" 
value 00. This is the value at which the actual simu- 
lation would take place. We then "perturb" the evo- 
lution of the nominal process to obtain a Markov 
process with generator, say Q(Oo + h). 

We begin at some 00 but suppress the parameter. As 

before, we denote by {X, t 3 0} the constructed 
Markov chain. The following summarizes the rest of 
our notation: 

Tn= the epoch of the nth transition; 
Yn = the nth state = X~n; 
Jn= the index of clock that determines the nth 

transition; 
rn (j) = the arc to which clock j is assigned at Tn; 
cn(j) = the time remaining on clock j at Tn; 

Cn = the set of clocks assigned at Tn ; 
Nn = the number of clocks assigned or used up 

to _rn; 
= max~i E Cn U V1, 4 ..X n ; 

A(x) = the set of arcs (x, y) with q(x, y) > 0; 
d(a) = the destination of arc a-e.g., d((x, y)) = y. 

Assume for the moment that for every x, if K(x, y) = 

K(x, z), then y = z. Then the trajectories of Xt are 
determined as follows. Initialize by setting ro = 0; 
sampling Yo from an initial distribution; setting 
No = I A(Yo) I and C0 = {1, . .., No}. Ifj E C0, then 
co(j) = Zj. Assign (using ro) the clocks in Co to arcs in 
A(Yo) arbitrarily (but one to one). Then repeat the 
following recursion: 

Tn+ I = Tn + min{cn( j)/q(rn( j)): j E Cn }; (17) 

Jn + I = mintI j E Cn: cn (j)lq (rn (j)) = (rn + I - Tn)} I -(18) 

(We allow the possibility that two clocks run out at 
the same time. Although such an event has probability 
zero for any given Q, the possibility must be admitted 
as Q is varied.) 

Yn+ I = d(rn(Jn+I)) (19) 

Let 

Nn+1 = Nn + IA(Yn+)I - Cn I + 1, (20) 

and 

Cn+ = Cn - {Jn+ } U {En + 1, ... X Nn+1}. (21) 

(The right-most set in (21) is empty if Nn+ 1 = Nn.) For 
j E Cn+I n Cn; 

cn+,(j) = cn(j) - q(rn(j))[Tn+l - Tn] (22) 

and 

rn+ I ( j) = (YEn+ I n K(YEn+ 1, d (rn( j))); (23) 

while any j E C"+ I\Cn is assigned a Cn+ I (j) arbitrarily 
from {Zln+,1 . . . , ZNn+1} and an rn+i(j) from the 
unassigned elements of A ( Yn+ I). 

If we allow K(x, y) = K(x, z) even when y $ z, then 
it may be necessary to assign multiple clocks to the 
same transition; upon entry to x, any clocks previously 
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assigned to y and z would be reassigned to K(x, y) = 
K(x, z). This case works the same way, except that 
when m clocks are assigned to an arc, (x, y), each is 
run down at rate q(x, y)/m. This makes it possible in 
(23) to have d(rn(j)) = Y,+I (ifj and J,+I are assigned 
to the same arc). To cover this case, every K(y, y) 
may be defined to be an arbitrary element of A (y). In 
other words, any clocks other than Jn+, previously 
assigned to (Yr, Yn+1) may be assigned arbitrarily to 
some transition out of Y,+,. (Notice also that, by 
construction, once two clocks are assigned to a com- 
mon transition, they remain assigned to a common 
transition: in (23), rn(j) = rn(j') implies rn+i(j) = 
rn+ (I)) 

Let X, = Yn on [An, Tnl+l). Using basic properties of 
the exponential distribution (mentioned in Section 2), 
one verifies the following proposition. 

Proposition 2. X, is a continuous-time Markov chain 
with generator Q. 

We now describe how the "perturbed" 00 + h process 
is obtained from the "nominal" Oo process, denoting 
these by Xt(Oo) and X,(Oo + h). This step is needed to 
complete the construction, but does not directly enter 
into the derivation of Algorithm 1. The evolution of 
Xt(1o + h) begins by following the construction above 
(but driven by Q(Oo + h) rather than Q(Oo)). As h is 
increased (or decreased) there may be a change in 
which a clock triggers a transition. Let N be the 
number of transitions, either n or NT. It may happen 
that, for some i - N, Ji(0o + h) $ Ji(0o). This poten- 
tially introduces a change in the state sequence. Let h 
be just large enough for such an order change to occur, 
and let i be, in fact, the smallest index for which 
Ji(0o + h) has a discontinuity at 00 + h. At this point, 
we distinguish two cases. 

Case 1. Yi+ (SO + h) = Yi+1 (00). This is the case if 
Ji(0o) and Ji+ (0o) have simply changed order; the 
construction has brought us back to the "right" state. 
There is, however, a possible discrepancy in the 
assignment of clocks. To correct it, simply set 
Cn+1(Oo + h) = Cn+1(0o), set Nn+1(60 + h) = N, 1(0o) 
and for any j E Cn+ (Oo), set rn+i(j, Oo + h) = 
rn+1(j, Oo). Now let the chain continue to evolve 
according to (17)-(23), driven by Q(0o + h). 

Case 2. Yn+1(Oo + h) $ Yn+1(0o). For this case to 
occur, more than two clocks must run out at the same 
time as J,. As we will see, this case is actually negli- 
gible. In order, however, that X#(00 + h) be defined 
even in this case, we simply allow it to continue to 

evolve according to (1 7)-(23), but driven by 
Q(0o + h). 

The advantage of this construction is made precise 
in Lemmas 1 and 2, below. To state them, fix a real 
number T > 0 and an integer n > 0 and, as above, the 
N denotes either n or NT(0O). The first result is proved 
in Section 9. 

Lemma 1. Suppose that CM holds and the elements 
of Q(O) are continuously differentiable functions of 0. 
Suppose there are positive constants B, qa, and q* 
independent of 0, such that at every 0 in 0, for all x 
and y, I q'(x, y) I j B, and if q(x, y) > O, then 

o < q* < q(x, y) < q(x) < q* < oo. 

For any 0o E 0, under the construction above, the 
following hold with probability 1 - 0(h2): i) Every rT, 
i < N is continuous in 0 throughout (06 - h, 0o + h). 
ii) For every i < N. at any discontinuity of Y, in 
(0o - h, Oo + h), Ti+I = Ti. 

From Lemma 1 we get: 

Lemma 2. Li and L2 are, with probability 1 - 0(h2), 
continuousfunctions of 0 throughout (0o - h, 0 + h). 

Proof. Rewrite L2 as 
n-l 

L2= f(Y1)[,ri+ - ri]. (24) 
i=O 

Consider the set of values of {ZJ} for which the con- 
clusion of Lemma 1 holds. On this set, part i of 
Lemma 1 implies that the only possible points of 
discontinuity in (0o - h, 00 + h) are those of some Yi. 
Part ii guarantees that L2 is continuous even at such 
points. Thus, the probability that L2 is continuous 
throughout (0o - h, 00 + h) is as great as the probability 
that i and ii hold. For Li, there is an additional case 
corresponding to a possible discontinuity in YNT = XT; 
see the right-most expression in (2). But a disconti- 
nuity in YNT occurs only when there is transition right 
at T, in which case [T - TNT] = 0, SO LI is still 
continuous. 

8.2. The Estimator 

We now show how to calculate sample path deriva- 
tives resulting from the construction of the previous 
section. The result, as proved in Theorem 1, is an 
unbiased derivative estimate. This form of the esti- 
mate requires keeping track of the evolution of the 
clocks. In Section 8.3, we modify the estimate to make 
it applicable without reference to clocks, and obtain 
Algorithm 1. 



304 / GLASSERMAN 

For notational convenience, we use qi(j) for the rate 
at which clock j is run down during [iri, Ti+ ); thus, 
qi(j) is q(ri(j)) divided by the number of clocks in Ci 
assigned to (Yi, ri(j)). With each clock j associate an 
accumulator D(j) which takes the value Di(j) at ri. 
Initialize every Do(j) to zero. At the ith transition 
update according to 

Di(Ji) = D-, (Ji) - -1 I (Ji); (25) 
qi -I(J1) 

ifj E.- c C_-1, then 

Di(j)= - qiIq) (Di(I)(j) ) q 
qi(j) Iqi- I(j) 

+ (1 -qi> (j))Di(Ji); (26) 

and if j E Ci\Cj_ l then, 

Di(j) = Di(Ji). (27) 

Roughly speaking, Di(j) is the infinitesimal delay 
in the time clock j is scheduled to run out. Suppose 
that a clock running in isolation at rate q takes A time 
units to run out. Then the derivative of the time it 
takes to run out this clock is -(A/q)q'. Thus, the term 
added on the right in (25) is the (negative) delay in 
the time Ji runs out, due solely to an increase in 
qj1 (Ji). This is the "perturbation" in clock Ji gener- 
ated by a change in qj_1(J1). At the ith transition, 
clocks in j E Ci n Ci 1 are reassigned; the factor 
qj- I (j)/qi(j) in (26) rescales the perturbation in clock 
j to its new rate. A delay in the consumption of clock 
Ji delays the reassignment of clock j, causing it to run 
longer at rate qj11 (j) and shorter at rate qi(j). The last 
term in (26) captures this effect. Finally, ifj E Cj\Cj_ 1, 
then j is set when Ji runs out, so any delay in Ji is 
directly propagated to j. This explains (27). 

The precise result, proved in Section 9, is 

Proposition 3. With probability one, for every n > 0, 
dTnI/dO = Dn(Jn). 

From the construction of the previous section it is 
clear that at any 0, every Tn is differentiable with 
probability one; the only points where Tn may not be 
differentiable are the points of discontinuity of Jn- 
where two clocks run out at the same time. Also, every 
Yn is piecewise constant in 0. From the right-most 
expressions in (2) and (3) we conclude that, at each 0, 
Li and L2 are differentiable with probability one, and 
their derivatives are indeed given by (4) and (5). 
Hence, these derivatives can be computed from the 
{Dn(j)l as the process evolves. 

We now come to our main result. As discussed in 
Section 1, we restrict attention to a set ? throughout 
which every lq(x, y) > 0} is a constant function of 
0; i.e., no positive transition probabilities are created 
or eliminated through changes in the parameter. The 
following is proved in Section 9. 

Theorem 1. Under the conditions of Lemma 1, at any 

[ dL 1 dE[L] 
LdOj dO il2 

8.3. Simplification of the Estimator 

One way to implement our derivative estimate gen- 
erates sample paths of a Markov process using the 
construction in Section 8.1 and applies the recursion 
for {Dn(j)} of Section 8.2. However, it is neither 
necessary nor particularly desirable to use the con- 
struction in applying the estimate. Indeed, if the al- 
gorithm is to be applied to observation of a real 
system, then using our special construction is not even 
an option. 

Algorithm 1 keeps track only implicitly of how the 
clocks would be evolving if they were driving the 
process. It depends only on X = {Xt, t > 0}, and not 
on the mechanism that generates X. In fact, we now 
show that the Li', i = 1, 2 computed by Algorithm 1 
are just E[dL1/dO I X], i = 1, 2. Once conditioned on 
X, the estimators depend only on X, and can be 
applied to sample paths observed or simulated by any 
means. In particular, they can be coupled with spe- 
cialized, efficient methods for simulating Markov 
chains (such as the one described in Fox 1990) which 
are otherwise incompatible with our construction. 

If, for some Q, it is never necessary to assign mul- 
tiple clocks to a single arc in the construction of 
Section 8.1 (e.g., if K(x, y) = K(x, z) => y = z), then 
the evolution of the clocks is, in fact, completely 
determined by X, and E[dLi/dO I X] = dL1/dO, i = 1, 
2. In this case, it is possible to keep track of the Dn(j) 
from observation of X. More generally, we get 

Ep daL X] = E [f(Yi-1) -f(Yi)]E[Di(Ji) I X], 

and an analogous expression for L2. But once a set of 
clocks is assigned to a common arc, they remain 
assigned to a common arc, and become indistinguish- 
able. By construction, given X, Ji is equally likely to 
be any of the clocks assigned to (Yi-1, Yi) at ri; so to 
get E[Di(Ji) I X] we average. 

Under the initialization of our construction, at time 
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0 there is just one clock assigned to (Y0, YI); thus: 

E[D1 (J.) I X] = D1 (J1) = qi - (T Y1) 
q(Y0, YI)q( 

the second equality following from (25). Since the 
D,(j)'s enter linearly in the recursion of Section 8.2, 
we can apply the recursion to their conditional expec- 
tations to get E[Di(Ji) I X]. This is precisely what 
Algorithm I does; bi(Yi) is just E[Di(Ji) I X]. The 
correspondence between (6) and (25), and between (8) 
and (27) is clear. To compare (7) and (26), recall that 
Si(x) is the set of states y, such that a clock assigned 
to (Yi-1, y) at T-i- is reassigned to (Yi, x) at Ti. Thus, 
(7) averages (26) over clocks reassigned to the same 
transition. The I Si(x) I -i that makes the sum more 
obviously an average is cancelled by the rate in 
the denominator, because if ri(j) = x, then qi(j) = 
q(Yi, x)/ I Si(x) I. 

Since E[LIj] = E[E[dLi/dO I X]] = E[dLi/dG], i = 
1, 2, from Theorem 1 we have a corollary. 

Corollary 1. Under the conditions of Lemma 1, 
Algorithm 1 produces unbiased estimators of dE[L1]/ 
dO,i= 1,2. 

9. PROOFS 

As in Section 8, here we use qi(j) for the rate at which 
clock j is run during [ri, Ti+i). 

Proof of Lemma 1. The proof proceeds in two parts. 
We first restrict attention to the case where for at 
most one i < N. Ji or Ji+1 has a discontinuity in 
(Oo - h, 00 + h), and show that i and ii hold in this 
case. We then verify that this case indeed has proba- 
bility 1 - O(h2). We refer to this as the single order- 
change case. 

From the construction, it is clear that all Tk and Yk, 

k < i are continuous at a point Oo + h if J1, . . ., J1 
are. As h is increased, let i7 be the smallest index such 
that J, has a discontinuity in (00 - h, 0o + h), with 
q = oo if no such discontinuity arises. If q > N, then i 
and ii hold automatically. Thus, suppose < s N, and 
suppose, also, that the discontinuity in J, occurs right 
at 00 + h. In order that J, be discontinuous, there must 
be two clocks j and k which run out at the same time; 
i.e.,, 

c, ( j)lq,7 1 ( j) = c,1 (k)lq-o (k) 

=rmin{c, 1 (i)/q,-_1 (i ): i E- C7 -1 },(28) 

with all quantities evaluated at 00 + h. Comparing (28) 
and (17) we see that regardless of any discontinuity 

in Jn, at Oo + h, 

T.= T- 1 + c77- I(j)/q 1(j) = rq_1 + cnq (k)1q I(k) 

is continuous. Shortly, we show that this extends to 
every ri, i s N. 

Next, note that a discontinuity in .J may introduce 
one in Y,-in particular, Y, would jump from 
d(r, 1 (i)) to d(r, l (k)) if J, jumped from j to k (see 
(19)). But regardless of this possibility, (28) and (22) 
together imply that there will be at least one clock 
in C, with a residual time of zero. In light of (17), 
this means that T .+1 = A. Next, we extend this to 
every i s N. 

In the single-order change case we are considering, 
at most the two clocks j and k run out at the same 
time (at rT, = r1+ ). Regardless of the order in which 
they occur, Y.+ is the same state-namely, 
K(d(r,1_ (i), d(r-, 1(k))). Hence, Case 1 of the construc- 
tion of X#(00 + h) is in effect, so N,+1, C,+1 and every 
cow+ I (j') with j' E Ca+ 1 remain unchanged at a discon- 
tinuity of J. and Ye. Thus, every ri and Yi, i > r + 1, 
are continuous at 00 + h if J+2, . .. , Ji are. But in the 
single-order change case, every Ji, n + 1 < i N is, in 
fact, continuous. Thus, i and ii hold. 

We now verify that exceptions to the single-order 
change case occur with probability at most O(h2). 
There are two types of exceptions. It could happen 
that through an increase in h, more than two clocks 
run out at the same time; or, it could happen that 
there are two Yi, i s N, with discontinuities in 
(00 - h, 0o + h). We refer to either of these cases as 
multiple order changes. 

To consider the probabilities of these events, we first 
need to bound the change in the ri due to changes in 
h. Let Ii be the infimum over h for which a multiple 
order change occurs in (00 - h, 00 + h) (h is strictly 
positive with probability one). For h < h, the 
Tri(O + h) are continuous and have (at least) left and 
right-hand derivatives. Taking the larger of these at 
each point, the bound (38) proved below (which is 
valid throughout (00 - h, 00 + h)) yields 

dTr, 
dO (Bpi/q)Tri, (29) 

where p is a positive constant. Integrating, we get, for 
h < h, 

e-hBpT(q*ri(OO) 
< 

ri(0o + h) < e p lq* 
TOO; 

so, 

I Ti(0o + h) - -i(Oo) I e (eBP/q* - 1),Ti(O). (30) 

Using the mean value theorem (or expanding the 
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exponential in a Taylor series), the right side can be 
replaced with hehBPi/q*ri. Since we are interested only 
in the limit as h -- 0, we may, without loss of gener- 
ality, consider only h < 1. Thus, the bound becomes 
heBpTi, which we rewrite as hfiri by letting fi - 

eBPi/ *. For Ji and Ji+I to run out at the same time at 
do + h, h s h, the epochs Ti and ri+I must coincide. 
For this to happen, the net movement of Ti and Ti+I 
as the parameter varies from 00 to 00 + h must exceed 
their original separation, ri+1 (0o) - Ti(Oo). That is, we 
must have 

| i+I(0O) - ri(0) I 

I Ti+I(0o+h)-Ti+I(0o) I + I Ti(0o+h)-Ti(0o) I 

s fhhri(0o) + /i+ 1 hTi+ 1 (0o) < 2/i+ 1 hri+ 1 (0o). (31) 

Note that this last inequality is a statement about 
X1(00) only, and is independent of the construction 
used. We may drop the argument 00. 

For fixed i, P(T1i+ 1 ri 2f 'hT1i+i) = O(h) because 
Ti+1 - Ti is exponentially distributed and 1 - e-h = 
O(h). The probability that this holds for fixed i and j, 
(i ? i) is O(h2), by the statistical independence of 
disjoint spacings. Hence, the probability that this holds 
for some i and j less than a fixed n is (2) times the 
probability that it holds for a fixed i and j; i.e., it is 
O(h2). The case N = NT is a bit more involved. 

If i s NT, then ri < T so we may replace (29) 
with I dil/d0 I s (Bp '/q )T. Since we need to con- 
sider only transitions in (0, T], this makes 
I Ti(0o + h) - Ti(0o) I < (Bp'/q*)Th < b'Th, where 
b = max(l, B/q*)p. Arguing as in (31), we now need 
to bound the probability that I Ti+l (00) - T,(00) I 
2b'+lTh for more than one i. 

Uniformize the process at rate q*. Let N* be the 
number of transitions in (0, T] using uniformization. 
For i s N*, let Tr* denote the epoch of the ith such 
transition, and let * +1 = T (this is conservative 
because TNT+ 1 > T). We view the original (nonhull) 
transition epochs at a subset of the T-* . 

Since all transitions are constrained to occur in 
(0, T], for i s N* we may replace the bound bi+ ITh 
with b'*+1, and consider 

P(for some i, j s N*, ri+I - Ti 

, 2b"1*+ Th, 41-4* * r 2bN*+"'Th). (32) 

Given N*, the points corresponding to IT i 
are uniformly distributed on (0, T]. For fixed, distinct 
i, j < N* and any ti, tj > 0, 

P(-r *+ - * < ti and T y*+ -j* _< tj I N*) i- S j+i - Tj N 

ti t 

Hence, 

P(T * - O 2bN*+ 1Th 

and 1 - T 2bN*+'Th I N*) 

S(2 bN*+h)2. 

Since there are (2 ) < N*2 ways of choosing i and j, 

P(for some i,j N*,Tj+ - ~ 2bv*+1 Th, 

Tj+I - TJ < 2bv*+I 1Th I N*) < (N* . 2bN*+1h 

Unconditioning, we get 4h2E[(N*b*t+l)2]. Since N* 
has a Poisson distribution, the expectation is finite, 
and the product is 0(h2). 

Proof of Proposition 3. Define, for j E Cn, 

Rn(j) = -T + cn(j)/qn(j); (33) 

then, since cn(j) is the time remaining on clock j at 
Tn, Rn(j) is the time at which clock j is scheduled to 
run out, as of Itn. By definition, Jn runs out at Tn, SO 

cn(J) = 0; hence, Tn = R,(Jn), and showing that Tn = 
Dn(Jn) reduces to showing that Rn(Jr) = Dn(Jn). In 
fact, we will show that for all j 

Rn(j) = Dn(]j) - 
j)2 (34) 

provided that j E Cn. This implies R,(Jn) = Dn(J n) 
because cn(Jn) = 0. Also, since Jn+1 runs out at rn+1, 

Cn(Jn+l )n(Jn+l ) = Tn+l -n; (35) 

Hence, once we have shown that Rn (Jn) = Dn(Jn), for 
all n, (34) will imply that Dn+1(Jn+l) = Dn(Jn+l) - 
qn'(Jn+ )[-rn+1 a- Tn]lqn(Jn+1), which explains (25). 

To prove (34), first notice that it holds at n = 0 
because Do(j) 0. Take as induction hypothesis that 
it holds up to n. If j E Cn+I n Cn, then solving for 
cn(j) in (33) and plugging the answer into (22) we get 
Cn+l(j) = qn(j)[Rn(j) - Tn+1+] Substituting this back 
into (33) applied to Rn+1( j), we get 

Rn+1(j) = Trn+1 + qn(j)[Rn(j) -n+l]/qn+l(j). 

As noted, n+l = Rn(Jn+l). Making this substitution 
and differentiating yields 

R 
I( qnej)) R(j) (1I qn4(j) R'(Jn+,) 

+ (Rn( j) -Rn(Jn+ 1 )) 
qn I U)) 

This expresses Ra+ 1 (j)-the derivative of the time of 
the scheduled consumption of j-as the sum of three 
factors: The first is the derivative in the previous 
scheduled time, resealed to the new rate for clock j. 
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The second is the contribution of a delay in the 
consumption of Jn+1; if Jn+1 runs out later, j runs 
longer at qn(j) and shorter at q+ 1 (j). Finally, the time 
it takes to complete the residual scheduled time 
Rn(j) - Rn(Jn+ I ) = Rn(j) - Tn+ i depends on the rates 
qn(j) and qn+I (i); this is reflected in the last term. 

Using the induction hypothesis, i.e., (34), this 
expression for R + 1 (j) becomes 

q()(Dfl(J) - 2qnJ)) 
qn(j)2 

( qn,/)Dn(Jn+l) If (A ) qn(Jn+l)) 

+ (Rn( j)- Rn(Jn+ 1)) 
qn I W) (36) 

This is also valid when j E Cn+ 1\Cn provided that we 
understand qn(j) and cn(j)/qn( j)2 to be identically 
zero in this case. Now, the residual scheduled time 
Rn(j) -Rn(Jn+1) is just cn+I(j)/qn(j), so we may make 
this substitution in (36). Also, Cn( j), the time on clock 
j at Tn, is Cn+ 1 (j) plus the amountj was reduced during 
[Tn, Tn+ ), so we have 

cn(j) = qn(j)[Tn+l - Tn] + cn+1(j). 

Make this substitution in (36) as well. Finally, sub- 
stitution for cn(Jn+l ) according to (35). These 
substitutions make (36) 

( q'j~) )[DDn(j) - T+i T () 

qn~~~~~~j) 'r~~~~~ n+ I 
+ 

q 
- 

l 
I))/[ - Dn(Jn+)- qn(A_ I qn n+_)] 

qn( j) 0Cn+ I (i) , Cn+ 1( j) t qn( j) 

_n+i) q2( " 
n 

qn(ik n+1(i) 

Comparison with (25) and (26) reveals that the first 
two terms combine to give simply, Dn+l(j); i.e., we 
have 

R 'qn) () ( aj) )Cn+ l (j) q o(j) 

kqn(j)jAq qn {Cn+ I ( j) t qn(i)A 
+ 

qn(j) /\qn+(j)J 

Expanding the last derivative and cancelling terms 
we get R'+l(j) = Dn+l(j) - qn+ (j)cn+1(j)/qn+ I (j) 
which is what we needed to show; see (34). 

Proof of Theorem 1. Let AhL = L(6 + h) - L(6) for 
either L = L1 or L2. Let h be the infimum over h for 
which L has a discontinuity in (6 - h, 0 + h) (which 
is strictly positive with probability one). We consider 

separately the two terms in 

[ ] h h l h<h ]+E h l{ -} 

For the first term, we show that 

lim E h l{h 'hj }] E(37] 

Since L is continuous and piecewise differentiable on 
(0 - h, 0 + h) when h - h, the mean value theorem 
implies 

AhLl h sp dL 
h (0-h,o+h) dO 

Then (37) follows from the dominated convergence 
theorem if we can show that 

E[sup(O-hO+h) I dL/dO I ] < oo* 

Let f* be the supremum of the (bounded) function 
If , and let p = 2[1 + (q*/q*)]. Clearly, p > 1. Note 
that 

max I DI (j) I B( qo) 

and 

max ID+I(j) 
jECn+l 

< p FmaxIDn(j) I +B( 'Tn+ I l 
Le C q* 

Thus, 

c/rn = IDn(Jn) I j( i )Bp 

<- Brnpn lq* * (38) 

Using (5), we find that 

dL2 < 
_* 

n 
dTi 

do = dO 

n 

2f*(B/q*) E Tip' 
i=l 

S 2f*Bnrnp l/q*. 

Since Sup(-ho+h)Tn is bounded by (X1 + ... + Xn)/q*, 
which is integrable, the result follows for L2. For L1, 
we get, in the same way, the bound 

| (2f*B/q* )TNTNTp NT (2f*B/q* )TNTp NT* 

At each 0, NT is stochastically bounded by a Poisson 
random variable with parameter q*T; hence, so is 
SUp(0-hO+h)(NT). For a Poisson random variable N, a 
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simple calculation shows that E[NpN] < oo, which 
concludes verification of (37). 

For the second term, we need to verify that as 
h -. 0, E[AhL/h)1lh > h}] -> 0. Using the Cauchy- 
Schwarz inequality; we get 

[( h 1h )2] f E[ZAhL 2P h ) 

Since P(h < h) 0(h2) (Lemma 2) we need only 
verify that E[AzhL2] goes to 0. With probability one, 
AhL -- 0 as h -- 0; and for all 0, E[L2(0)] S (f*T)2 
and E[L'(0)] < 2n(f*/q* )2 so the dominated conver- 
gence theorem yields the result. 

10. CONCLUDING REMARKS 

The results of this paper show that good derivative 
estimates are available for a range of functionals of 
continuous-time Markov chains. Preliminary experi- 
ence suggests using infinitesimal perturbation analysis 
if possible and the likelihood ratio method otherwise. 
In some cases, it is reasonable to use both: for example, 
if the distribution of the initial state depends on 0, 
then it should be possible to use likelihood ratios to 
capture this dependence while perturbation analysis is 
used to capture that of Q(6), assuming CM is satisfied. 
L'Ecuyer ( 1989) proposes similar combinations of the 
two methods. 
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