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COMPARING MARKOV CHAINS
SIMULATED IN PARALLEL

PauL GLASSERMAN*
Columbia Business School, 403 Uris Hall, New York, New York 70027

PIROOZ VAKILI**

Manufacturing Engineering Department, Boston University,
Boston, Massachusetts 02215

We investigate the dependence induced among .multiple Markov chau'nsl wher:
they are simulated in parallel using a shared Poisson stream o'f potential even

occurrences. One expects this dependence to facilitate cF)anarlsons among s.ys-
tems; our results support this intuition. We give conditions on the ‘transmon
structure of the individual chains implying that the coup!ed process is an asso-
ciated Markov chain. Association implies that variaflce is reduced in compar-
ing increasing functions of the chains, relative to independent snlr'lula.tlonst,‘
through a routine argument. We also give an apparently new app 1ca;llor} od
association to the problem of selecting the better of two s.yste_ms from H'mtﬁ

data. Under conditions, the probability of incorrect selection is asymp}otwa y
smaller when the systems compared are associated thar'x when they are mdlepen.-
dent. This suggests a further advantage to linking multiple systems through par-

allel simulation.

1. INTRODUCTION

Most work on parallel simulation stresses efficiency il} evaluating the per'for-
mance of a single system. The implications of parallelism for the comparison

*Research supported by NSF grant MSS-9216490.

**Research supported by NSF grants DDM-9215368 and EID-9212122.
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310 P. Glasserman and R. Vakili

of several systems have received less attention; exceptions include Heidelberger
and Nicol [9], Ho, Sreenivas, and Vakili [10], and Vakili [19]. When multiple
systems are simulated together, in parallel, their outputs often become depen-
dent, and this dependence must be considered in the statistical evaluation of
comparisons.

Our purpose here is to examine the dependence introduced among multi-
ple Markov chains when they are coupled through parallel simulation. One
expects this dependence to facilitate comparisons; we give conditions that val-
idate this intuition. Our model of parallelism is rather simple: we assume that
each chain is uniformizable and that the various chains share a single Poisson
stream of potential event times; this is the method of Vakili [19]. It seems rea-
sonable to expect our results to extend, at least qualitatively, to other imple-
mentations based on uniformization, such as those described in Heidelberger
and Nicol [9].

Our results are based on conditions ensuring that the coupled process
obtained by simulating multiple chains in parallel is an associated Markov chain.
Association is a strong form of positive dependence, implying that all increas-
ing functions of the various chains are positively correlated. Our use of asso-
ciation in this setting is similar to that in the analysis of common random
numbers of Heidelberger and Iglehart [8] and Glasserman and Yao [5], but the
conditions used here are quite different from the ones in those papers. A key
difference is that we establish association by directly examining the transition
structure of the coupled chain, rather than by attempting to show that the cou-
pled process is an increasing function of i.i.d. random variables. A principal
contribution of this paper is to identify conditions on the individual chains
ensuring that the coupled chain is associated.

It is easy to show that a class of comparisons are statistically more efficient
when the different chains are associated than when they are independent. This
is one sense in which the coupling induced by parallel simulation is advanta-
geous. We introduce another sense. Suppose the goal is to select the system with
the best performance. Under reasonable assumptions, the probability of failing
to select the best system from finite simulation runs vanishes exponentially as
the number of runs grows. For pairwise comparisons, we argue that when the
systems compared are associated, the exponential rate is at least as great as when
they are independent.

Section 2 formalizes our model of parallel simulation. Section 3 reviews
association and its connection with monotone Markov chains. Section 4 puts
conditions on the transition structure of individual chains ensuring that the cou-
pled chain is associated. Section § looks at the implications of association for
correctly selecting the better of two systems.

A preliminary version of this paper appeared in the Proceedings of the Win-
ter Simulation Conference (Glasserman and Vakili [4]). This paper extends the
earlier one in several réspects, most notably in Section 5.

MARKOV CHAINS SIMULATED IN PARALLEL 31

2. MARKOV CHAINS SIMULATED IN PARALLEL

. , . .. .
In this section we describe a mechanism for smula}:mf ft\/ld Mz;rskgﬁ 2};211?155 13 rﬁi]_
ic i i i hared clock that driv
allel. The basic idea is to use a single s ( rives s smu
justificati i truction of chains is the we
taneously. The justification for th{s cons ( _ _
uniformization procedure. We begin with a brief review of this procedure.

2.1. Uniformization

Let X = [ X,,t = 0} be a continuous-time Markov. ghain (CTMC) otn ast(aftlénsté
or) countable set S. Denote by Q;; the rate of transmo? fro\an stat;1 fr,l eothat 5 JI;
te of transition out of s;. We as .
and let g; = —Q;; be tue total rate o . ‘ o
boundedl(i.e., u’;liformizable), meaning that su;) qi <doo;ltCi}$\rfletrL ;ktlai‘; gl(t; (cmen—
is i i ins i t state for a dur
is in some state, say s;, it remains in tha : jat s exponen
i istri i ! journ times of the chain in sta
tially distributed with mean g;~'. These 80 of t n m
be zj/mformized by appropriately introducing extra fictitious trzfu"‘ls(lltl?;s ufér(ice
states to themselves. The inter-event times can thus be made a;nt 11].;.C};ainq
of exponential random variables independent of the s_tate.s of the 1 ;mera—
More precisely, let X = { X,z = 0} be a CTMC with 1nf1n1te51m§1.hg e
tor Q bounded by ’A Let NA = [(N,,t = 0} be a Poisson process wit ra: \
and Y = {Y,,n = 0} a discrete-time Markov chaiq (DT_MC) Wlth ]\tlrflzls; dloY
robability ;’natrix P =1+ A~'Q (where [ is the identity), with - o and
?nutually independent. If X, has the distribution o}v Xoci tthen i[n)efs,,tz;l e_(pOten_
i i ocess eterm
Yy, = 0] are equal in law. The Poisson pr _ ne ]
t[ialh)l' state tr]ansition epochs of the CTMC X, wl}lle tl‘le state tr:.:msmon;. a;rzacrilet:ge
mined by the DTMC Y. Multiple Markov chains simulated in paralie

the same dominating Poisson process.

2.2. Simulating One Markov Chain

i i i cific
Before discussing simulation of multiple Markov chains, we des;:l?bzie:n s;lplz eine
representation of the uniformized chain that corresponds to the
implementation discussed in this paper. - o
P Our central assumption is that all state transitions can be class1'flec<1:l ;tn;rci
finitely many types of events where the current state zlmd thg ei\‘/entt Itlgfspi; e
i i bilistically. The only restriction
mine the next state, in general proba re ey,
i the number of transitions ou
is that there be an upper bound on I . L ey state.
i iti i t in many physically meaning :
This additional structure is often presen_ sica
els but is suppressed by the matrix Q. It is worth mentlcf)‘rlllilg th;tetgsaﬁ?]llc?:llgi
ion i [ uni ] representations of the sa
representation is not unique. Severa of
delz‘ined some more appropriate than others for spe({,lfllc purlz-:’)"s}esb.e e st of
’ Let E={e’,...,
s before, let S denote the state spe.lc.e.' = e’
evenfxs with K finite. To model probabilistic transitions explicitly, we assume
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that to each event e and each v € [0,1], there corresponds a state transition
function

f(e,u) 85—,

with the interpretation that event e and random number u change the system
state from s to f,,,,) (s). Notice that £, is defined on all of S. If event e is not
active in state s, then Jie,uy (8) = s, corresponding to a null transition.

For each event e, let \; be the maximum possible rate of event e’ and NM
a Poisson process with rate \;, dominating the instances of e’. These Poisson
processes are assumed to be independent. The superposition of these processes
is a Poisson process N4 with rate A = 2K\, and the original process can be
recovered by thinning N (with probability A;/A) to recover N™. This leads to
the following model of the simulation clock.

Let (7,(g,u)) = {(7,,(€,,u,)),n = 0} be a marked Poisson process, where
{74,n = 0} is the sequence of arrival instances of N, and {(g,,u,),n = 0} is
an i.i.d. sequence of random vectors, independent of the Poisson process N4,
such thate, € E, P(g, = e’) = \;,/A, and Uy is uniformly distributed on [0,1].
A is the rate at which the clock ticks, 7, is the nth tick of the clock, €, is the
type of event that occurs at the nth tick of the clock, and u, is the random var-
iate used to generate the nth state transition.

Given initial state ¥, = X,, the state of the system evolves as follows:

Y, =f(5m“n) °f(8u—1,un-|) o °f(a|,u|) (Xo)
and

X=2 Y Ir,st<7,.,}, fort=0.

n=0Q

To illustrate we give some examples. We return to these in subsequent
sections.

Example 1: Consider a tandem queueing network consisting of K exponential
servers, the ith having rate ;. Assume a Poisson stream of arrivals (with rate
A) to the network. Let B; be the buffer space (including wne space at the server)
preceding server i + 1 (Bj< o, i=1,. .. ,K). Assume service at a server does
not begin if the immediate downstream buffer is full (the so-called communi-
cation blocking). In this case, we may take S = {(x,...,xx); 0 < x; < B;},

E={a,d;,i=1,...,K}, where a = arrival to the network and d; = departure
from server /.

Example 2: Consider a reliability system consisting of X binary components,
i.e., the state space of the system is S = {0,1}%. Assume the lifetime of each
component is exponentially distributed (with rate A; for component i) and that
there are m repair facilities for repairing failed components (using some sched-
uling scheme for the order in which failed components are repaired). Assume
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the repair times of the components are exponentially distributed, with rgte Hj
for resource j. Let X, = (x;(¢),...,xx (1)) be the state of the system at time /.
Note that the processes {x;(¢);¢=0},i=1,...,K, may be dependept due to,
e.g., a limited number of repair facilities or the po_hcy used to repair compo-
nents. We assume that the process X = { X,; ¢ = 0} is Markov. In this case, let
E={e,r,i=1,...,K,k=1,...,m}, with g; = failure of component i/ and
r, = end of repair of a component by repair facility k. The rates of events are
as already given.

2.3. Simulating Multiple Markov Chains

We now use the preceding construction to simulate M Markov chains simulta-
rneously. Let

S/ = the state space of system j,
E/ = F = event set of system j, and
f (je «) = State transition rule for event e in system J.

By possibly enlarging some event sets, we can always assume (as above) that all
M systems have the same event sets. .
Define F.,,,,: [1¥'S/ - II}'S/ componentwise:

Ee,ll)(xli e :XM) - (f(le,u)(xl)’ R :f(Ae/’I,u)(xM))-
Given X, = (X{,..., X", define X = {X,,t > 0} on S < II}’ §/ by
)/’1 = F(En»”n) OF(F-M—I:“n-—I) e F(EI-UI) (XO)

and

X, =2, Y, {1, st <7y}, fore=0
n=0
This construction defines a coupling of the M chains with each component pro-
cess X/ having the correct marginal probability law. In general, the state space
S of [X,,¢ = 0} is a strict subset of [J}S/. . .

A note on implementation is in order. The preced_mg construction can egs—l
ily be implemented in a variety of computational env_lrom?nents. In this mo ef
of simulation, at each tick of the clock, the present time (i.e., 7,), the type o
the event (i.e., &,), and the uniform variate (i.e., u,,) are announced to all sys-

: 1 My ;
tems. In a serial implementation on a single proceisor, F_(e_ ) (x. A )}\}S
implemented sequentially in a loop that execulbes f(q,,,)(xf) for j = 1, d .t,..b.
In a parallel implementation, Foy(x', ..., x™) is implemented in a distrib-

uted fashion where each f/(x/) (or possibly a group of therp) is .exec‘ute.d at
a separate processor simultaneously and in para}le_l. In a smgle-msltlu?lor:,
multiple-data (SIMD) implgmentaﬁion, the clock is implemented at .t he Sl](]:/l[]D_
end computer and each f{, ,,(x/) is executed at a processor of the
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machine. At each tick of the clock, the time, type of event, and the uniform
variate are broadcast to all processors. The processors then execute their respec-
tive f{;,,,) (x/) in a SIMD fashion. For further discussion on the computational
aspects of this approach, see Vakili [19].

Example 1 (continued): Multiple versions of the tandem queueing network of
Example 1 can be considered that differ in their service rates, number of buff-
ers, or arrival rate. Let M be the rate of arrival and p! the service rate of the
ith server at the jth version of the network. The rates of these events at the
shared clock are, respectively, A = max{M; j = 1,...,M} and p, = max{u?;
J=1,...,M}.

Example 2 (continued): Consider different versions of the reliability system of
Example 2 where the differences between versions are, e.g., in rates of failures
of components, repair rates, number of components or repair facilities, or the
scheduling policy for repairing components. If A/ and w; are the rates of events
e; and ry at version j, then the rates of these events at the shared clock are,
respectively, N = max{\/; j=1,...,M} and p; = max{ul;j=1,...,M}.

We now turn our attention to another potential advantage of this approach
and to the main question we address in this paper. Because the M chains are
simulated simultaneously and in parallel, it is possible to compare their perfor-
mance simultaneously and in parallel. Does coupling the chains facilitate their
comparison compared to, say, simulating them independently?

Let L' be a sample statistic from a simulation of system i. Then

Var[L/— L/] = Var[L'] + Var[L/] —2Cov[L',L/]. (1)

To the extent that the coupling introduces positive covariance among the sam-
ple statistics, it reduces variance in (pairwise) comparisons, relative to indepen-
dent simulations.

Equation (1) motivates an examination of when (and in what sense) Mar-
kov chains simulated with a shared clock are positively dependent. In particu-
lar, we develop conditions for these chains to exhibit association, a strong type
of positive dependence. Association implies variance rec :ction in the setting of

Eq. (1) and related comparisons. In Section 5 we investigate another dividend
of association.

3. ASSOCIATION AND MARKOV CHAINS

We now review some basic properties of association and conditions for a Mar-
kov chain to be associated. Association was introduced in Esary, Proschan, and
Walkup [2] as a property of sets of (real-valued) random variables: they defined

the random .variables {X1,...,X,) to be associated if all increasing functions
of these variables are positively correlated, i.e., if

COV[f(Xl,. . ’Xn)9g(X]:~ * ':Xn)] = 0
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for all increasing f/ and g for which the covariance exists. Esary et al. [2] sum-
marized simple properties of associated random variables, Among these are the
following: subsets of associated random variables are associated, independent
random variables are associated, increasing functions of associated random vari-
ables are associated, and a set consisting of a single random variable is associ-
ated. Association has proved to be a useful condition in many settings, including
reliability, interacting particle systems, and the analysis of variance reduction
techniques.

The utility of association is enhanced through a connection with a class of
Markov chains. Da'ey [1] defined a Markov chain on R to be monotone if its
transition kernel P satisfies

X< ye Px(z,0) = P(y[z,2)), vZER Q)

He noted that a monotone Markov chain (X,,n = 0} is an gssociated
sequence, in the sense that all finite subsets of {X,,n = 0} are associated. The
condition in Eq. (2) could alternatively be written as P(X| = z[Xo = x) =
P(X, = z| X, = y) whenever x = y. An equivalent characterization 1s tbat
E[f(X)) | X, = x] is an increasing function of x for all.bou.ndefi, increasing
functions /. In some ways the most natural characterization is thlSZ. a Markov
chain on R is monotone if for any pair x, » € R with x < pitis posmble to con-
struct two copies of the chain, {X;,n =0} and (X;,n = 0}. with X()“.= x and
X¢ =y, such that XY = X for all n. Just such a constructloq, star_tmg from
an i.i.d. sequence of uniform random variables, is carried out in Heidelberger
and Iglehart [8] as part of their analysis of common random numbers: Be-
cause this construction transforms independent random variables.m'onotomcally
to {X,.n = 0}, it actually proves that a monotone Markov chain is an associ-
ated sequence. _ . .

Analogous properties and definitions apply in continuous time. A Markov
process {X,,!= 0} on R is monotone if for all 0 5 1y < tp the trgnsmon kerne;
P, ., given by P, ,,(x,A) = P(X, € A|X,, = x) is mgno‘gone in the serllse ((1)
Eq. (2). This condition admits a sample-path interpretation just like that already
given for discrete-time chains. Any finite subset of a monotone Markc_Jv process
is associated, so in this sense monotone Markov processes are associated pro-
cesses. For Markov processes on finite sets, Keilsor{ a.md Kester [13] gave con-
ditions on the infinitesimal generator for mqnotomcx'ty. . |

If we simulate M Markov processes { X/, 7 =0}, i = 1,...,M, in parallel,
the resulting coupled process {(X/,. .. ,X,’Y),t > 0} will often })e a I;/Iaékov
process, as well. In particular, this holds using thevset-up of Section 2.3. veg
if each X' is a scalar process, the coupled process 15 vector-valued, so we nee

iti association in higher dimensions. ‘ -
Cond\;t/leofessti?crt asttention to subsets of R?, although most p{riqpertles we dls.cuss
ially ordered sets. We assume R is endowed with a
2Pply Lo more genelfal P y. twise order, although it
partial order =, which need not be the usual componen e
often will be. A set A is called an upper set (with respect to <) if x
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X = y together imply y € A; thus, an upper set cannot be exited through upward
movement. A probability measure . on R? is called associated if

p(A; N Az) = p(A)u(A,) Q)

for all upper sets 4,,A4, [15]. This says that indicator functions for upper
sets are positively correlated under u. An equivalent characterization is that all
bounded, increasing functions are positively correlated under . A random vec-
tor on RY is called associated if its distribution is associated. Perhaps the most
important distinction between association on R and association on R d=2,
is that in higher dimensions the set consisting of a single random element may
not be associated, as it is in R. To put it more generally, on totally ordered
state spaces all probability measures are associated, but not so on partially
ordered spaces.

Equation (2) has a natural generalization to R?. A transition kernel P and
the corresponding chain {X,,n = 0} are called monotone if

x<sye P(x,A) < P(y,A), for all upper sets A.

It is still true that E[ f(X,) | X, = x] increases in x for all increasing £, and the
sample-path characterization remains valid, as well. However, on a partially
ordered set a monotone Markov chain may not be associated —a stronger con-
dition is needed. If P is monotone and if, in addition, every probability mea-
sure P(x,-), x € R? is associated in the sense of Eq. (3), then the chain is
associated as well as monotone. This is proved in Lindqvist [15].

As before, conditions for continuous-time processes can be reduced to dis-
crete time by considering transition operators from one fixed time to another.,
For our purposes, it is more convenient to restrict attention to countable par-
tially ordered sets and work with conditions on the infinitesimal generator. We
only consider bounded generators, i.e., those that are uniformizable. Follow-

ing Massey [16], we say that a generator ) is monotone if, for all uppers sets
A containing both x and y or neither,

xX=yeQxnA) = Q(yA). )

Monotone generators indeed generate monotone Markov processes. A genera-
tor is called up-down if it permits transitions only betweer. comparable states,
ie., if Q(x,y) > 0 implies that either x < yor y =< x The key result linking

monotone Markov processes on countable sets and association is the following
lemma.

LEemMa 3.1: A Markov process | X, 11 = 0] on a countable partially ordered set
S with bounded generator is associated Jor all associated initial distributions if
and only if its generator is monotone and up-down.

The original version of this result, requiring a finite state space, was given
in Harris [7]; a far more general result, not even requiring a countable state
Space, appears in Liggett [14, p. 80].
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4. ASSOCIATION OF PARALLEL MARKOV CHAINS

Let X',...,X™, be M Markov chains as in Section 2, X Y ha\_/ing countable
state space S/, Each S/ is assumed to be partially ordered. To avoid cumbersotr_nei
notation, we use < to denote the partial order on all state spaces. These partia

i —_ 1 M
orders are not necessarily identical (nor are the Sf s). Lc;t X=(X"... ,)t(hai
be the coupled process on S € Hj"il S/ as defined in Section 2. We assume 5
the partial order on S is the componentwise order, which we also denote by <.

4.1. Conditions for Association

We derive our result on the association of the coupled chain by fOf:usmg on tfhci
transition kernels. We begin with the following lemmfl that es-tabhshe.s a ucslet }111
relation between properties of the generator of ahcontl{luous-tlfne chan} and the
transition kernel of the corresponding uniformized discrete-time chain.

LEMMA 4.1: Assume that a generator Q and a transition kernel P are related via
P =1+ A'Q, I the identity matrix. Then,

(i) if P is up-down, Q is up-down.

(ii) if P is monotone, Q is monotone.
Proor: From Q(x,y) > 0, it follows that x =f-y.. Note t;hat for x ;tyl,)P(x,)y);;
AQ(x,y) and Q(x,y) > 0implies P(x,y) > 0. $1nce Pis up-do:vn, (dx’t);ence
yields x = y or x < y. Therefore Q(x,y) >0 yields x = y or x < y and, )

is up-down. This proves condition (i).
. Afsume that x < y, A is an upper set, andx,y€ Aorx,y&A. Clearly,

I{x,A) =1I(y,A). Hence, P(x,A) = P(y,A) yields

O(x,A) = A(P(x,4) ~ I(x,A)) < A(P(»,4) = [(3A)) = Q(xA);
therefore, P monotone (x <y & P(x,A) = P(y,A4)) implies Q monotone, an:l
condition (ii) is proved.

Consider a single Markov chain defined via the representation in SSecti(Zln 211
Define f, = fi., to be up-down if either fio..) (x) < x for all xf§ far;o %e
1 € [0.1] O fiou (x) = x for all x € S and all u € [0,1]. Define /

increasing if x < y implies fi¢..) (X¥) = fle.n (y) for all u € [0,1].

LemMa 4.2: If f, is increasing and up-down for a{l e € E, then Zi; Z:ijot’ﬁn
kernel P for the discrete-time process {Y,,n = 0} is up-down an .

Proor: For x,z € S, define P, (x,2) by

1 if fiom(x) =2
x,z) =
P(e,u)( ) 0 iff(e‘,u)(x) #2

and P,(x,z) by
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1
P.(x,z) =f Py (x,2) du.
0

Let p; = P(g, = ). Then, the transition kernel P is determined via

K
P(x,2) = 3} pi Pei(X,2).

i=1
If P(x,z) >0, then P,(x,z) > 0 for some e € E; hence, z = fre.y (x) for some
u € [0,1] and because f, is up~-down z = xor z = x. Therefore,' P is up-down.
Now assume x < y; then, by hypothesis £, (x) < flem(y) foralle e E
and u# € [0,1]. For any upper set A, feun(x) € A implies that fi, ,, (¥) € A by
the definition of upper sets. Note that P y(x,A)y =11if f, ,,)'(x) € A and
Py (x, Ay =0if £, ) (x) & A. Hence, the conclusion in the pfevious sentence
can be rewritten as x < y implies P, ,,, (x,4) < P, .,y (3, A). Therefore, we have
1

1
xsy@Pe(x,A) = ‘f;) P(e,u)(x,A) du = f P(e,u)(y:A)du = Pe(y’A)
: Q

for any e € E. Note that P(x,A) = K, p; P.i(x,A). Hence, if x < y, then

K
P(x,A) = 3] p; P (x, A)
f=1

f=

K
= 2 DiPei(p,A) = P(y,A).
i=1
Therefore, P is monotone. |

Combining Lemmas 4.1 and 4.2, we obtain the following theorem.

THEOREM 4.3: If f, is increasing and up-down for all e € E, then the generator
Q of the continuous-time process X = {X,,t = 0} is up-down and monotone;
hence, the process X is associated for all associated initial distributions.

Now we turn to the construction of M chains in parallel. To ensure that the
.couplec.l process X = (X',...,XM) is associated, we make F, up-down and
increasing. Keeping in mind that S is typically a strict subset of JT% SV, let

us say tlhat fi.j=1,...,M, are up-down in the same direction on S if for all
x=(x',...,x™) € Sand all u € [0,1] either

flow ) =x/,  j=1,...,M,
or

flow(x)) sxi,  j=1,...,M.
The following theorem is the main result of this section.

TPHEOREM 4.4: If 7 are increasing functions for all e € E and 1 < j < M, and
Jor each e € E, the functions f, j =1, ... yM, are up-down in the same
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direction on S, then the coupled process X = (X L. ., XMy is associated for all
associated initial distributions.

Proor: Because the partial order on § is the componentwise order, it is trivial
to verity that f} increasing for 1 < j < M implies that F, is increasing. The
up-down property extends the same way from f J to F. Hence, by Lemma 4.2
X is associated. L

Example I (continued): Consider M versions of the tandemqueu_eing network
introduced in Section 2.2. Let 87 = {x/ = (x{, ..., x%); 0 <x/ < B/} be the state
space of the jth network. Define the following partial order on S§7: x/ = x"/
if and only if {ZX, x/ = XX, x/; r=1,...,K}. For tandem queueing net-
works this partial order is a useful one; e.g., in this setting the departure inten-
sity of the network is an increasing function. With respect to this partial order
all departure events cause a “down” move and the arrival event causes an “up”
move. Moreover, it is simple to verify that the state transition functions asso-
ciated with the events are all increasing. Using a shared clock, as in Section 2.3,
any clock event, say &,, will be a departure event from the same server at all
networks or an arrival event at all networks (in both cases the event may be a
fictitious event at some networks). Hence, the transition functions correspond-
ing to all events are up-down in the same direction on the state space of the cou-
pled chain, §, and the conditions of Theorem 4.4 are satisfied.

Example 2 (continued): Consider M versions of the reliability system introduced
in Section 2.2. Let S/ = {0,1}%/ be the state space of the jth system. Define the
following partial order on S$/: x/ < x“Yifandonlyif x/ = x,i=1,...,K;.
With respect to this partial order, all failure events cause a “down” move and
all repair events cause an “up” move. Assuming that the component failures
within each system occur independently of each other, it is easy to verify that
for all failure events, ¢;, f‘_{',, is increasing. Assume that the repair scheduling
policy at each system is such that the transition functions associated with the
repairs are also increasing (this is not automatically guaranteed for all repair pol-
icies). Again, using a shared clock that synchronizes events across systems such
that the same event occurs at all systems at the same time ensures that the tran-
sition functions corresponding to all events are up-down in the same direction
on the state space of the coupled chain, S, and the conditions of Theorem 4.4
are satisfied. , .

We now point out an easy consequence of association. Suppose L' is an
increasing real-valued function of {X I,t =0}, interpreted as a cost or perfor-'
mance measure for system i. Then, association of {X,,t= 0) implies that L'
and L are positively correlated, for all / and j. Via Eq. (1), we get the follow-
ing corollary.

COROLLARY 4.5: If L', i=1,...,M, isan increasing function of (xit=03,

then under the conditions of Theorem 4.4, Var[L/ — L/] < Var[L'] +.Var [ L.f] )
Thus, coupling the chains reduces variance compared to independent simulation.
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4.2. Discrete-Time Conversion

A common use of uniformization in the context of simulation of Markov chains
is discrete-time conversion. We give a brief description and refer to Fox and
Glynn [3] for details.

Let X = {X,;/ = 0} be a CTMC and let {Y,;n = 0} be a corresponding
uniformized discrete-time chain, Consider a finite deterministic horizon, [0, T].
Let N = Ny be the number of events during [0,T). Let t;, = 7, — 7,_,, i =
I,...,Nand tyy =T —75. Let g: S— R be a real-valued function on the state
space S, and let L, a performance index, be defined by

N+1

T
L =f g(X))dt= 3 g(Y,_),.
0 i=1

N is a Poisson random variable with parameter AT and E[; IN] =T/(N+ 1),
i=1,...,N+ 1. Hence,

T N+l
K—-E[L|N, Y] = Nl Z} g(Y;_)).
In the discrete-time conversion approach, samples of K are used to estimate
6 = E[L]. Under some conditions X is a preferred estimator of 4, in comparison
to L, because to obtain samples of K only the discrete-time chain {Y,;n=0]}
need be simulated and it can be further shown that Var(K) < Var(L) and,
hence, K is a more accurate estimator of 4.

The conditions of Theorem 4.4 do not guarantee association when M
uniformized discrete-time chains [Y,{;n =0},j=1,...,M, are simulated in
parallel. The up-down property and monotonicity of the transition kernel of a
discrete-time chain are neither necessary nor sufficient for association of the
chain (see Harris [7]).

In the proposition to follow, we show that the conditions of Theorem 4.4

lead to induction of positive correlation between the discrete-time statistics in
some more restricted settings.
Let

T N+1
Lr:f gr(X,) dt = Zg"(},i—l)[i, r= 1)2)
0 i=]

and let
K,:E[L,[N, Y], r=1,2.

Assume that the functions g, are bounded, ie, |g(x)| =C, forallx €S, and
r=1,2. Then we have the following proposition.

ProposiTion 4.6: If Cov(L,,L,) > 0, then Cov(Ky,K3) > 0 for all sufficiently
large uniformization rates A.
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PRrOOF:
Cov(L,,L,) = E[Cov(L;,L,|N, Y)] + Cov(E[L;|N, Y], E[L;|N, Y))
= E[Cov(L,,L,|N, Y)] + Cov(K,K3)
It can be shown that (see Karlin and Taylor [12, Ch. 13])
1

=-T2 when i/ # j
N
— 2 .
Var(6[N) = T (TN + )
Hence,
COV(L],inN, Y)
T2 N+1 N+l

= (Yio)g2(Yizy) — & (Vi) £2(Y-1))-
_(N+1)2(N+2),§1,§1 (£ 1)82 1

Note that |g,(Y;-1)g2(Yi-1) — g1 (Y1) g (Yj—1)| = 2C%; therefore,

1
T? 2 2N 22
2C*(N + 1)3) =2T*C* ——
Cov(Li, La|N.Y) = Ty ) | N+2
and
1 e M+ AT~ 1
E[COV(L“LZIN, Y)] SBE[m] =B A2 s

for some constant B. From the preceding it can be deduced that
e M+ AT -1
AZ

COV(K],Kz) = COV(Ll,Lz) - B

Hence, if Cov(L,,L,) > 0, there exists a sufficiently large A such tha;t
Cov(K,,K;) > 0.

5. PROBABILITY OF CORRECT SELECTION

The previous section showed that parallel simulatior} of Markovk;;roc;s;e; alrf;:
sulting in an associated cou?fled pr?cess rfggf;; ;/r?;:;ln;i éne;?:bllisﬁ comper-
. We now consider a different type o . .
Zg?lssec\::/lence of association. Suppose that from the processes w; sm:ll;lzrartlz ):3
parallel we wish to choose the one with best Qerformance, e.g., t e c;n naxi-
mizing some expectation. With finite simulation runs, there. is t);;ilti:e ozfle ome
probability that the process with the best sample' peFformance is ng) e e
the best expected performance. In this case, picking the best obser
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may result in incorrect selection. We show that if the systems compared are asso-
ciated, then the probability of incorrect selection is asymptotically smaller than
if the simulations are carried out independently.

To motivate an examination of asymptotic error probabilities, we first give
an example to show that association does not suffice to reduce the probability
of incorrect selection (relative to independent sampling) for all sample sizes. Let

the random variables X, X, take values in {0,1,2} according to the following
joint distribution:

X,
0 1 2
X, 002 02 o
1 02 0 0
2 0 0 0.3

A simple calculation verifies that X, and X, are associated and that X, has the
larger mean. Suppose we observe a sample of (X, X>) and apply the follow-
ing decision rule to the problem of determining which has the higher mean:

choose the index of the larger value; in case of a tie, randomize. Then, the prob-
ability of correct selection is

P(X] <X2) + %P(X] =X2) = 0.55.

If, however, X, and X, are independent random variables with the marginal
distributions of X and X3, respectively, then the same rule applied to (X 1, X5)
results in a correct-selection probability of

P(X <X) +iP(% =X, =0.56.

Thus, the positive dependence induced by association does not guarantee a
lower error probability.

We will show, however, that association is advantageous in an asymptotic
sense that seems well suited to simulation problems. To develop this idea in
more detail while avoiding technical complications, we restrict attention to
irreducible, finite-state Markov processes X = {X,,¢ =0} and {Y,,/ = 0]. We
allow X and Y to be dependent and assume that the bivariate process (X, Y) is
irreducible and Markov. We denote by X and ¥ a pair of independent copies

of X and Y. Let f, g be increasing, real-valued functions on the state space of
X and Y, respectively. Let

!
U=t f F(X) du— u
0
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and
{
V,=1t"" f g(Y,)du—v
0

almost surely, for constants p,». Let U, and V, be the corresponding quanjt;;les
for X and ¥. Suppose that > v leads us to prefer 'system.X to system Y. tetr
simulating the two systems for a finite time, we pick whichever has the great-
est observed performance. The events

G, = U - V<0
and
G(={0!—12<0]

are the events of incorrect selection at time ¢ using, respectively, coupclled :md
independent simulations. Various decision rules hav.e been propqsed a? fexm ZI;:
sively analyzed in the simulation literature, some with the explicit go(;t 1(21 e
imizing the probability of correct selection; for a recent survey, see old § il;
Nelson, and Schmeiser [6]. A different perspective on related issues is give

o0, Sreenivas, and Vakili [10]. ‘
" Ideally, we would like conditions on the dependence of X arﬁd t);/ cl)mcrlgl-
which P(G,) = P(G,). Intuitively, positive dependence b‘etween t 1e : d.g:ltes
cesses would seem to support this inequality, but the preceding example In 11 ;
that association by itself does not imply it. Both P(G;) and 'P(G,) vatrlnst h Va:,sith
increases; in fact, both go to zero exponentially fast. We will showft ap:(G )
association, the exponential rate for P(G,) is at least as great as that for ).

For the coupled process (X, Y), define

U—n, == = ,
P}Y((Xl,yl),(xz,h)ao) = E(x.,y.)[em( X, = X2, Y ¥a)

and for the marginal processes define

P)’((X] ,XZ,B) = EX1 [EOIUI;XI = xZ]
and

Pi(y1,)2,0) = E,, [C’o’V‘; Y, = y.l,
where in each case the subscript on the expectation opleratqr indicateast;cil: ::(;
tial state. Each of the matrices Py (8), P}((G),‘and 1{,,(0) is nonlrie% e
(when finite) has a maximal (Perron—Frobemus) eigenvalue. Let Axy (),

Ax(8), and Ay (6) denote these eigenvalues. Suppose that the domain of each

the set on which it is finite) is open. . o .
( These functions play a central role in the large deviations of Markov addi

tive processes, through results of Miller [17], Iscoe, Ney, and Nummelin (1,
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and Ney and Nummelin [18]. The results i
: . of Iscoe et al. ar i
to our setting. For real v, set © pardeularly suted

i) = sup {v6 — log Axy (6))
and

Yvi(v) = sgp{vﬁ ~log Ax(8) — log Ay (—8)).
We now have the following theorem.

THEOREM 5.1: With the preceding notation,

1
lim — log P(G/) = —y*(0) ©)
and
lim * 1 5 I+
lim —log P(G/) = —¢(0). (6)

If (X, Y) is associated, then *(0) = $*(0).

The novelty of this result lies in the last statement, which follows from this.
LEMMA 5.2: For all §,y*(8) = ¥*(6).

Proor: i
ooF: For all values of 6, one of the two functions x — e and y » e~ is

1r.1cr_easing and the other is decreasing. Consequently, it follows from the asso-
ciation of (X, Y) and the monotonicity of f and g that

E[eer(ul_yl)] SE[GO’U’]E[e_mV’L (7)

It follows from Iscoe et al. [11] that

log Axy(8) = lim ; log E[e%(Y—=Y01,
100

log Ax(8) = lim ; logE[e?Y],
{00

and
log Ay (8) = lim % logE[e"];
{— oo
so we conclude from Eq. (7) that

log )\Xy(e) = lOg )\X(g) -+ lOg )\y(—e),
from which it follows that y*(6) = §*().
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We now turn to the final proof.

ProOF OF THEOREM 5.1; It only remains to verify that the limits in Egs. (5) and
(6) are as claimed. From Theorem 5.1 of Iscoe et al. [11], we know that

lim inf ! log P(G,) = ~ing\//*(v)
u>

{— t

and

1 . *
lim sup - log P(F)) = —infy*(v),
vz

t-r00

where F, is defined like G, but with a weak inequality in place of the strict
inequality. In particular, P(F,) = P(G,). By Theorem 5.2 of Iscoe et al. [11],
zero is a dominating point for both these limits, so

ingw*(v) = igg\ﬁ*(v) =70},

and Eq. (5) holds.

Because independence is a special case of association, Eq. (6) follows
from Eq. (5). More precisely, if X and Y are independent, then Ayy(8) =
Ax (B)hy(—0), so ¥* reduces to ¢* and Eq. (5) to Eq. (6). ]
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We consider a closed queueing network with a fixed.number qf customerF,
where a single server moves cyclically between N stations, repdmg serv1cle Ln
each station according to some given discipline (Gated, Exhaustlve', or th‘e G 0 t
ally Gated regime). When service of a customer (mf:ssage) Fx}ds in stat.lon Jf, i
is routed to station & with probability Py. We derive explicit expresfsxoni or
the probability generating function and the moments of the number o cl:usd om_
ers at the various queues at polling instants and calculate the meanvcyc e 1f1.1rat
tion and throughput for each service discipline.. We t'hen obtain the 1lrs
moments of the queues’ length at an arbitrary point In time. A few ?xan Zsl
are given to illustrate the analysis. Finally, we address the problem of optim
dynamic control of the order of stations to be served.

1. INTRODUCTION

In polling systems that have been studied in the literature [e.g., 1,3,4,6_;9];ic;rr112
usually asserts independent Poisson arrivals. However, there are Si L:r;\ ons
where arrivals strongly depend on the departure process. One encounte
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