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We analyze the performance of a splitting technique for the estimation of rare event probabilities by simulation. A straightforward
estimator of the probability of an event evaluates the proportion of simulated paths on which the event occurs. If the event is rare,
even a large number of paths may produce little information about its probability using this approach. The method we study
reinforces promising paths at intermediate thresholds by splitting them into subpaths which then evolve independently. If imple-
mented appropriately, this has the effect of dedicating a greater fraction of the computational effort to informative runs. We analyze
the method for a class of models in which, roughly speaking, the number of states through which each threshold can be crossed is
bounded. Under additional assumptions, we identify the optimal degree of splitting at each threshold as the rarity of the event
increases: It should be set so that the expected number of subpaths reaching each threshold remains roughly constant. Thus
implemented, the method is provably effective in a sense appropriate to rare event simulations. These results follow from a
branching-process analysis of the method. We illustrate our theoretical results with some numerical examples for queueing models.

INTRODUCTION

The estimation of rare event probabilities poses some of
the most difficult computational challenges for Monte
Carlo simulation and, at the same time, some of the great-
est opportunities for efficiency improvement through the
use of variance reduction techniques. Current interest in
rare events stems primarily from developments in com-
puter and communications technology: Many industrial
and scientific applications require highly reliable computer
systems (with correspondingly small failure probabilities),
and standards for emerging telecommunications systems
call for extremely small buffer-overflow probabilities. The
performance of these types of systems is frequently studied
through simulation, but straightforward simulation can
easily produce estimates that are off by orders of magni-
tude in estimating small probabilities. In these settings,
variance reduction is essential.

Importance sampling, based on changing probability dis-
tributions to make rare events less rare, has been used to
obtain dramatic improvements in efficiency in estimating
small probabilities in queueing and reliability systems; see
Asmussen and Rubinstein (1995), Heidelberger (1995),
and Shahabuddin (1995) for surveys. But the effectiveness
of importance sampling depends critically on the ability to

find the right change of measure; indeed, used improperly,
importance sampling is liable to produce worse results
than straightforward simulation. Finding the right change
of measure generally requires identifying at least the rough
asymptotics of a rare event probability, often described by
a large deviations result. This type of analysis can be for-
midable in complex models, so the domain of importance
sampling, while substantial, does not include all problems
of interest.

Villén-Altamirano and Villén-Altamirano (1991) describe
an alternative method for rare event simulation that ap-
pears to require rather little analysis or model structure for
its applicability. Their method, called RESTART, can be
viewed as an application of a classical idea in variance reduc-
tion called splitting (see, e.g., Hammersley and Handscomb
1964, especially p. 131). It is closely related to methods
described by Kahn and Harris (1951), Bayes (1970), and
Hopmans and Kleijnen (1979). (Regrettably, Bayes called
his version “importance sampling,” in conflict with standard
terminology.) Recent investigations are reported in Schreiber
and Görg (1994), Villén-Altamirano et al. (1994), and
Villén-Altamirano and Villén-Altamirano (1994); Sha-
habuddin (1995) gives a brief survey. The essence of the
method is captured in the following description from Kahn
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and Harris (1951, p. 28), in the setting of particle transmis-
sion: “Whenever a particle passes from a less important to
a more important region, it is split in two. Each of the
resulting particles is given one-half the weight of the orig-
inal particle and is treated independently from then on.”
The purpose of this paper is to describe a class of models
and implementation conditions under which this type of
method is provably effective and even optimal (in an as-
ymptotic sense) for rare event simulation.

More recent analysis of particular splitting procedures
used in nuclear physics appears in Dubi (1985), Dubi et al.
(1986), and Burn (1990). The general idea is to derive an
expression for the variance, which is quite complicated but
which may be simplified by making certain approximations.
Terms in the variance are then estimated in pilot studies.
The splitting factors to minimize the estimated variance
are then computed via numerical optimization.

Melas (1993, 1994) and Ermakov and Melas (1995) also
consider particular forms of splitting for Markov chain
simulations, similar to the setting considered here al-
though their focus is not on rare event simulations. They
derive “quasi-optimal” splitting factors, which are given by
solutions to linear equations related to the distribution of
the Markov chain over a regenerative cycle. Rare event
asymptotics are not examined except in particular cases:
the tail of the waiting time distribution in the GI/G/1
queue (Melas 1993) and the probability that the M/M/1
queue exceeds a fixed queue length as the traffic intensity
approaches zero (Melas 1994).

The splitting method we consider is best described
through a simple example. Consider the simulation of a
nonnegative process that returns to the origin infinitely
often—think of the queue-length process in a stable
queue. Consider the probability that, starting from the or-
igin, the process reaches some level b before returning to
the origin. (As discussed in, e.g., Heidelberger 1995, effi-
cient estimation of this type of probability is central to
efficient estimation of the steady-state probability that a
queue length exceeds b.) If b is large, this may well be a
rare event; starting even a large number of sample paths at
the origin may result in very few that reach b before re-
turning, and thus little information about the probability of
this event is obtained. To get around this problem we may
partition the state space using intermediate thresholds as
illustrated in Figure 1, where b corresponds to Level 3. Then,
each time a sample path reaches a threshold higher than any
it has reached before, we split it into a number of subpaths,
which subsequently evolve independently of each other. A
path is terminated when it reaches level b or returns to the
origin.

Reaching an intermediate level is more likely than
reaching b itself, and by splitting at each threshold we
reinforce successful outcomes and end up allocating more
effort to simulating more promising paths. Dividing the
total number of paths that reach b before 0 by the total
number potentially started at any level yields an unbiased
estimate of the desired probability. (Villén-Altamirano

and Villén-Altamirano 1991 and 1994 describe a slightly
different implementation in which a path splits every time
it crosses a threshold—even one it has reached before.
Kahn and Harris 1951 mention both versions.)

The central issues in implementing this method are
choosing the thresholds and choosing the number of sub-
paths to generate when a path splits. In this paper, we
address only the second issue. Some of our conditions may
be interpreted as roughly requiring that the thresholds be
eventually nearly evenly spaced. More precisely, we will
require that the dynamics of the process between thresh-
olds approach a limit at high thresholds. In a separate
paper (Glasserman et al. 1998) we have examined neces-
sary conditions on the choice of thresholds; that analysis
involves rather different tools. Indeed, on more general
state spaces than those we consider here the term “thresh-
old” may be misleading; we require, in general, a nested
sequence of subsets.

Our analysis in this paper is based on modeling the
movement from one threshold to the next rather than ex-
plicitly modeling the underlying process. Thus, our results
may be viewed as an exact analysis of processes for which
these models apply literally and an approximate analysis
for more general cases. Briefly, we consider three settings
allowing for increasing levels of generality:

● On crossing a threshold, the underlying process has a
fixed success probability p of achieving the next
threshold before terminating, independent of its past.
Hence, the process that records the highest threshold
reached so far is Markov. The requirement that the
success probability be independent of the past holds if
the underlying process is itself a Markov chain and
there is a single entry state for each threshold. If, in
addition, the underlying process is spatially homoge-
neous and the thresholds are evenly spaced, then the
success probability is indeed constant.

● The process that records the highest threshold
reached so far becomes homogeneous Markov when
augmented with a supplementary variable taking on
finitely many values. If, for example, the underlying
process is Markov and the number of entry states per

Figure 1. Splitting with three levels and two split sub-
paths.
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threshold is bounded, it suffices to record the highest
threshold reached and the index of the state in which
it was entered to get a Markov chain. In this setting,
the movement from one threshold to the next is de-
scribed by a matrix of transition probabilities.

● The movement from one threshold to the next is again
described by transition probabilities, but we drop the
requirement that a single transition matrix apply at all
thresholds and replace it with the condition that the
transition matrices converge to a limiting matrix.

The last setting is evidently the most general. For a
specific example in which it applies, consider a queue in
discrete time. Exactly one job is completed at each time
increment so long as the system is not empty. Arrivals per
time increment are i.i.d. and bounded. Take the underlying
process to be the queue length and suppose the thresholds
are at �, 2�, 3�, . . . for some positive integer � larger than
the greatest number of arrivals possible in a single time
increment. Given that the queue length first achieved the
threshold at k� by entering state k� � i, for some 0 � i �
�, the probability that it will achieve the next threshold
(before returning to 0) by entering state (k � 1)� � j, for
some 0 � j � �, is independent of the past. The move-
ment from level k to k � 1 can thus be described by a � �
� transition matrix with entries Pk(i, j), and it is easy to see
that these matrices converge as k 3 �.

For each of the settings above we show that appropri-
ately choosing the degree of splitting at each threshold is
critical to the effectiveness of the method. The choice must
balance two competing concerns: excessive splitting creates
an explosive computational burden, and insufficient split-
ting eliminates the advantage over straightforward simula-
tion. But with just the right amount of splitting, the
method becomes asymptotically optimal (in a sense re-
viewed in Section 1) and is thus in some respects as effec-
tive for rare event simulation as any method can be. Our
main results identify the ideal level of splitting for the
three settings above: in the first setting, each path should
be split into approximately 1/p subpaths; in the second
setting the splitting parameter should be the reciprocal of
the spectral radius of the transition matrix; and in the third
setting it should be the reciprocal of the spectral radius of
the limiting transition matrix. Often, this entails randomiz-
ing the number of subpaths. We obtain these results by
modeling the paths that reach each threshold as the popu-
lation at subsequent generations of a branching process.
They may be loosely interpreted as stating that when a
path splits, the number of subpaths should be chosen so
that on average one subpath makes it to the next thresh-
old. This keeps the expected number of paths alive at each
threshold roughly constant.

We analyze the three settings above in §§1–3. Section 4
reports numerical results supporting the theoretical analy-
sis and exploring the robustness of the method. Section 5
contains some concluding remarks and cautionary observa-
tions. Indeed, whereas the results of this paper are essen-

tially positive, it is important to emphasize that they are
obtained under restrictions. Our purpose here is to show
how well the method works under ideal conditions; in
Glasserman et al. (1998) we address some of the limita-
tions of the method, particularly in higher dimensional
problems. For a nontechnical overview of the work in this
paper and Glasserman et al. (1998), the reader is referred
to Glasserman et al. (1998a).

1. THE SIMPLEST SETTING

In this section, we analyze the performance of multilevel
splitting in a simplistic model. This setting provides insight
into more general cases with minimal notation. Before
proceeding with the analysis, we briefly review the general
issue of rare event simulation. This discussion is relevant
to later sections as well.

Consider a family of events {Ak, k � 1, 2, . . .} with �k –
P( Ak) 3 0 as k 3 �. Think of k as indexing rarity. The
most obvious estimator of �k is the sample mean of inde-
pendent copies of the indicator of Ak. By the central limit
theorem, the width of an approximate confidence interval
for �k based on m replications is proportional to the stan-
dard error ��k(1 	 �k)/m. For small �k, this is approxi-
mately ��k/m. It follows that the number of replications
required to achieve a fixed relative error (i.e., to make the
confidence interval width a fixed fraction of �k) is roughly
proportional to 1/�k, and thus increases without bound as
the rarity parameter k increases.

Consider an alternative family of estimators {�̂k, k � 1,
2, . . . } that is given by the sample mean of independent
copies of some random variable Y(k). The estimator �̂k is
said to have bounded relative error if

lim sup
k3�

Var
Y 
k��

� k
2 � � , (1)

where Var� denotes the variance of the random variable
inside the parentheses. When this holds, the number of
replications required to achieve a fixed relative error re-
mains bounded as k increases. A weaker requirement is

lim
k3�

log E

Y 
k�� 2�
log � k

� 2, (2)

termed asymptotic efficiency or asymptotic optimality. This
condition may be interpreted as stating that the exponen-
tial rate of decrease of the second moment of the estima-
tor is twice that of the first moment. Nonnegativity of
variance implies that this is the best possible rate—i.e., the
limsup of the ratio on the left side of (2) can never exceed
2. See, e.g., Heidelberger (1995) or Shahabuddin (1995)
for background.

The conditions in (1) and (2) reflect the impact of vari-
ance but not of computational effort. This is appropriate in
comparing estimators with similar computational require-
ments; but in our setting the effort required can be vastly
different depending on the amount of splitting, so it is
important to reflect effort directly. A standard measure,
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dating at least to Hammersley and Handscomb (1964) and
formalized in a general framework by Glynn and Whitt
(1992), compares estimators based on the product of vari-
ance and expected effort per run. This is the work-
normalized variance. Comparing work-normalized
variances is equivalent to comparing the variance resulting
from a fixed computational budget. In light of these con-
siderations, the following work-normalized notion of as-
ymptotic efficiency seems most appropriate for our setting:

lim
k3�

log(Var(Y 
k�)w
k�)
log � k

� 2, (3)

with w(k) denoting the expected computational effort to
generate a sample of Y(k). This condition states that the
exponential rate of decrease of the work-normalized vari-
ance is twice that of the probability �k itself. Straightfor-
ward simulation (generating replications of the indicator
of Ak) has a variance per replication of �k 	 �k

2, which is
approximately �k for large k. If the expected work per
replication of an indicator is bounded in k (as would often
be the case) then (3) compares the exponential rate of
decrease in work-normalized variance for Y(k) and straight-
forward simulation. If the expected work to generate an
indicator of Ak actually increases with k, then the work-
normalized variance for straightforward simulation might
decrease at a slower rate than that reflected in the denom-
inator of (3). In this respect, (3) is a conservative measure
of the performance of Y(k) compared with straightforward
simulation.

With these definitions in mind, we now proceed with our
first analysis of the effectiveness of multilevel splitting.
Suppose we want to estimate � – P( A) for some event A.
Consider intermediate events A1 � A2 � . . . � Ak � A
and let P( Ai�1�Ai) � pi, i � 1, . . . , k 	 1, and P( A1) �
p1, so that

� � � k–P
 A k � � P
 A 1 � P
 A 2 �A 1 � · · · P
 A k �A k	1 �

� p i · · · p k . (4)

We suppose we have a mechanism, perhaps only implicit,
for generating independent Bernoulli trials with success
parameter pi, for each i � 1, . . . , k. We estimate �k by
first generating R1 independent Bernoullis with parameter
p1. For each positive outcome of this first stage we gener-
ate R2 independent Bernoullis, with parameter p2. We
continue in this fashion for k iterations and then form the
sample

Y 
k� �
1

R 1 · · · R k
�

i1 �1

R1

· · · �
ik �1

Rk

1 i1
1 i1 i2

· · · 1 i1 · · ·ik
, (5)

where 1i1
� 1 if the i1th Bernoulli trial at stage 1 is suc-

cessful, and 0 otherwise; 1i1i2
� 1 if both the i1th trial at

stage 1 and its i2th subpath are successful, and 0 otherwise,
and so on. It is readily verified that this provides an unbi-
ased estimator of P( A). Note that if Ri � 1 for i � 1, . . . ,
k, then the procedure reduces to a single replication of a
standard simulation of the rare event.

This is an exact description of the multilevel splitting
estimator in the following setting. A real-valued Markov
chain starts at the origin and takes only nonnegative values.
The event A corresponds to the chain attaining a given value,
b say, before returning to the origin. The events Ai corre-
spond to the chain attaining a value bi before returning to the
origin, where 0 � b1 � . . . � bk � b. Suppose the chain must
take the value bi before taking any value greater than bi, for
i � 1, . . . , k. (For example, the bi could be integers and the
chain integer-valued and skip-free to the right.) Then
P( Ai�Ai	1) is the probability of achieving the value bi, be-
fore returning to the origin, starting from bi	1. Thus, we
may generate Bernoulli trials with parameter pi	1 (without
knowing pi	1) by simulating the underlying Markov chain
from state bi	1, recording a success if the chain reaches bi

before 0 and a failure otherwise.
The estimator in (5) has a natural description in the

language of branching processes. Think of an initial popu-
lation of size one. The offspring distribution of this individ-
ual is Binomial(R1, p1). Each member of the first
generation in turn has offspring distribution Binomial(R2,
p2), and so on. The estimator in (5) can be interpreted as
the number of individuals in the kth generation divided by
the maximum possible number of individuals in the kth
generation. (Kahn and Harris 1951 also mention a connec-
tion between splitting and branching processes but do not
pursue it.)

To further simplify the setting, we assume that the pi

and Ri are constant, denoted by p and R respectively, so
that P( A) � pk. With � � Rp, classical results from
branching process theory (see, for example, p. 6 of Harris
1963) yield

Var
Y 
k�� � �
1

R 2k

� k
� k � 1�

� 2 � �

� � �p�, � � 1,

k � � �p
R 2k , � � 1.

We will use the following terminology in this and later
sections. A nonnegative function f(k) is O( g(k)) (resp.
O�( g(k))) if for all k large enough f(k) � cg(k) (resp.
f(k) � cg(k)), some constant c. A function f(k) is ( g(k))
if it is both O( g(k)) and O�( g(k)). Given this, we may write

Var
Y 
k�� � �
O
 p 2k�, � � 1,

O
kp 2k�, � � 1,

O

 1
�� k

p 2k� , � � 1.

Thus, Y(k) is asymptotically optimal, in the sense of (2), in
case � � 1.

If � � 1, the reduction in variance is achieved at the
expense of a geometric growth in the number of paths to
be simulated, so some accounting for computational effort
is essential to a meaningful comparison. We consider two
cost models. The simpler of the two assigns constant cost,
taken to be unity, to each sample at each level. The second
model takes the effort required per sample at level i to
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increase linearly with i. (This case is motivated by the
Markov example given earlier in this section, where most
of the effort at level i might be devoted to simulating
failing paths back to 0.) The total expected number of
samples is given by

R �
i�0

k	1

� i � �R

� k � 1�

� � 1
, � � 1,

Rk , � � 1,

� �
O
� k� , � � 1,

O
k�, � � 1
O
1�, � � 1.

This is the cost under the constant cost model. The cost in
the second model is bounded by a proportionality constant
times k times the cost in the first model. In both cases, we
see that �̂k performs best, as k 3 �, when � � 1. Indeed,
with � � 1 the work-normalized variance satisfies

log{work � variance}
log � k

�
log�O
k 	�O
kp 2k��

log p k 3 2, (6)

with 	 � 1 or 2, depending on the cost model. With � � 1
the limit is less than 2 either because the variance is too
large (� � 1) or the effort is too great (� � 1). Note that
for standard simulation (R � 1), � � p and the work-
normalized variance is of order pk. Thus using (6), we see
that the asymptotically optimal splitting estimator is of
order 1/( pkk	�1) times more efficient than standard simu-
lation. The result that the optimal R satisfies R � 1/p is
consistent with a recommendation of Villén-Altamirano
and Villén-Altamirano (1994) that p and R should be ap-
proximately e	2 and e2, respectively, and also with the
formulation of Kahn and Harris (1951), in which p � 1/2
and R � 2.

Although we would therefore like to choose R so that
Rp � 1, we are constrained to choose R to be a positive
integer. To circumvent this constraint, we randomize. Let
R1, . . . , Rk be random variables, independent of every-
thing else, taking only positive integer values, and having
means m1, . . . , mk. Then the sample

Y 
k� �
1

m 1 · · · m k
�

i1 �1

R1

· · · �
ik �1

Rk

1 i1
1 i1 i2

· · · 1 i1 · · ·ik

has an expected value of �k, as can be seen by a condition-
ing argument using induction and Wald’s equation. Hence
the estimator remains unbiased. If all Ri have the same
distribution and mi � 1/p, we find that the variance be-
comes

Var
Y 
k�� � kp 2k 
 �
1 � p� � p Var
R i �� ,

and in fact (6) continues to hold. To minimize Var(Ri), we
should randomize between the two integers closest to 1/p,
when 1/p itself is not an integer, choosing  1/p � 1 with
probability (1/p) mod 1 and  1/p with the complementary
probability. In a different but related setting, Fox (1997)
proposes an alternative to randomization.

2. SPLITTING AS A MULTITYPE BRANCHING
PROCESS

We continue to consider the estimation of a probability
�k � P( Ak) decomposed as in (4), but broaden the scope
of splitting estimators. In the previous section, we assumed
a mechanism for generating Bernoulli trials with each of
the probabilities in the decomposition in (4) as parameter.
This is motivated by the case in which each An represents
the entry of a Markov chain into a set with the restriction
that there be just one state through which the set can be
entered, for then the Bernoulli trials can be generated
implicitly by simulating the Markov chain.

We generalize this setting by supposing that each An can
be expressed as the union of disjoint sets An

(1), . . . , An
(r) in

such a way that we have a mechanism for generating inde-
pendent trials taking the values 0, 1, . . . , r with probabili-
ties

1 � �
j�1

r

P
 A n�1

 j� �A n


i��, P
 A n�1

1� �A n


i��,

P
 A n�1

2� �A n


i��, . . . , P
 A n�1

r� �A n


i��, (7)

for each i � 1, . . . , r, for each level n. The main object of
study in this setting becomes the matrix Pn with entries

P n 
i, j� � P
 A n�1

 j� �A n


i��.

In this section, we assume Pn does not change with n, and
in the next section we assume merely that it converges as n
3 �.

To make this setting more concrete, again think of An as
the event that a Markov chain enters some set before
returning to its initial state, designated 0. The framework
above allows the set to be entered through r different
states, and An

(i) is just the event that entry at the nth level
first occurs through the ith possible state, before a return
to 0. We can generate a trial with outcomes 0, 1, . . . , r
having the probabilities in (7) by simulating a path of the
Markov chain out of the ith entry state at level n until it
returns to 0 or reaches the (n � 1)th level through one of
its r possible entry states. Because this Markov chain ex-
ample is the most vivid one, we will use its associated
terminology of levels and states in the analysis that follows.
Except for the requirement that r be finite, this setting
seems general enough to encompass a substantial portion
of the rare event probability problems one encounters in
queueing and reliability; see, e.g., Heidelberger (1995).

We proceed, then, with the case in which the probability
of going from level n to level n � 1, before hitting level 0,
depends on the state when the process hits level n, but not
on n itself. At each level there are r possible entry states
and for simplicity we assume that the initial state at level 0
is 1 (in the notation of (7), this corresponds to relabeling
the sample space as A0

(1), though we could also allow an
initial distribution over {1, . . . , r}. In the matrix P � (P(i,
j)), interpret P(i, j) as the probability of reaching level n �
1 through its jth entry state, before hitting level 0, given
that level n was reached through its ith entry state. Note
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that P is a substochastic matrix, as starting from level k
there may be a positive probability of not hitting level n �
1 before hitting level 0.

Before proceeding further we introduce some vector
and matrix notation. For any matrix A let A� denote its
transpose and let Aabs be the matrix whose entries are the
absolute values of those of A. Let 1 denote a column vec-
tor of 1’s and ei a column vector with ith entry 1 and all
other entries 0. In this notation, �k, the probability of
hitting level k before hitting zero, is given by �k � e�1Pk1.

In the present setting, we model the splitting method as
a multitype branching process. A standard multitype
branching process starts with one individual of type 1 in
generation 0. In generation 1 this individual produces a
random number of offspring of r types and then dies. Each
of these offspring lives for one generation, produces its
own offspring, and then dies. The progeny distribution of
each individual depends only on its type and not on the
generation in which it lives.

In our application, types correspond to entry states.
When we split a path into R independent subpaths, the
number of subpaths that reach the next level through the
ith entry state can be modeled as the number of progeny
of type i. Let (X1

(i), . . . Xr
(i)) be the progeny random vector,

i.e., Xj
(i) is the number of type- j offspring produced by a

type-i individual. To specify the progeny distribution in the
branching process succinctly, let X0

(i) � R 	 ¥j�1
r Xj

(i) (in
the simulation this is the number of subpaths that do not
reach the next level before 0). Then the distribution of
(X0

(i), X1
(i), . . . , Xr

(i)) is Multinomial(R, (1 	 ¥l�1
r P(i, l )),

P(i, 1), . . . , P(i, r)); these are the same cell probabilities
as in (7). Let Z(k) � (Z1

(k), Z2
(k), . . . , Zr

(k)) where Zi
(k) is the

number of individuals of type i in generation k. In our case
Z(0) � e1. Then the sample generated using splitting, Y(k),
can be expressed as ¥i�1

r Zi
(k)/Rk: the total number of sub-

paths that reach the kth level, divided by the total potential
number of paths started at any level.

We use the analogy with multitype branching processes
to prove results about �k and the splitting estimator. Let
�A� denote the sum of the elements of Aabs, i.e., �A� �
1�Aabs1. It is easy to show that � � � is a matrix norm (see,
e.g., p. 291 of Horn and Johnson 1985). In particular, for
any two matrices A and B, �AB� � �A� � �B�. All equalities
and inequalities on vectors and matrices will be
elementwise.

A fundamental result that we use frequently is a version
of the Perron-Frobenius theorem from Harris (1963, p.
37). For convenience we restate the result here.

THEOREM 1. Let A be an r � r nonnegative matrix such
that Ak � 0 for some integer k � 0. Then A has an eigen-
value � that is positive and real and is bigger in absolute
value than any other eigenvalue; � corresponds to positive
right and left eigenvectors � � (�i) and  � (j) which are
the only nonnegative eigenvectors. Moreover, we have Ak �
�kÃ � Âk where Ã � �� with the normalization ¥i�1

r

�ii � 1. Hence ÃÃ � Ã. Furthermore ÃÂ � 0 and �Âk� is
O(��k) where 0 � �� � �.

To use this theorem in our setting, we assume that

there exists an integer N � 0 such that P N � 0. (8)

This seems quite harmless in practice, given our interpre-
tation of types. Let � be the spectral radius of P—the
maximal eigenvalue provided by Theorem 1. We use The-
orem 1 to characterize the rate of decrease of �k, and for
later comparison with the variance and cost of the splitting
estimator.

LEMMA 1.

lim
k3�

� k

� k 3 e�1 P̃1 � 0.

PROOF. The proof follows easily from Theorem 1. Note
that

� k

� k � e�1 
 P̃ �
1
� k P̂ k�1 � e�1 P̃1 �

1
� k e�1 P̂ k1.

Now �e�1P̂k1� � e�1(P̂k)abs1 � 1�(P̂k)abs1 � �P̂k� � O(��k)
where �� � �. Also, since by Theorem 1, P̃ � �� � 0, we
get the result of the lemma. □

Next we examine the computational effort required by
the splitting estimator. We assume that each split path
takes unit effort until it hits either a higher level or level 0,
though as in Section 1 this is by no means essential, and we
could easily study other cost models. For any multitype
branching process, we let M � (M(i, l )) denote the ex-
pected number of type-l progeny produced by a type-i in-
dividual. In our context, it is easy to see that M � RP. Let
w(k) be the expected effort required to simulate for k
levels. Then

w
k� � Re�1� �
j�0

k	1

M j� 1

� R� �
j�0

k	1

R je�1 P j1�
� R � R� �

j�1

k	1

R je�1 
� jP̃ � P̂ j�1�
� R � R� �

j�1

k	1

R j� j� e�1 P̃1 �
1

� j
O
�� j�� � . (9)

We use this to prove the following theorem.

THEOREM 2. (i) For R � 1/�, w(k) � (1).
(ii) For R � 1/�, w(k) � (k).
(iii) For R � 1/�, w(k) � O�((R�)k).

Hence, we see that in the first case the effort remains
bounded as k increases, in the second case the effort grows
linearly in k, and in the third case it grows exponentially.

PROOF. The bound in (ii) is obvious from (9) and the fact
that (e�1P̃1 � �	jO(��j)) approaches a constant. The upper
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bound in (i) follows from the additional fact that the sum
of the geometric series (R�)i, i � 1, is bounded for R� �
1. For the lower bound in (i) it suffices to consider the first
term in the summation for w(k), which yields w(k) � R.
For the lower bound in (iii), it suffices to consider the last
term in the summation for w(k), i.e.,

w
k� � R
R�� k	1
e�1 P̃1 �
1
� k O

��� k��

� R
R�� k	1 e�1 P̃1
2 ,

for sufficiently large k. □

To analyze the variance of Y(k), we use an expression for
the variance of ¥i�0

r Zi
(k) in a multitype branching pro-

cesses (from p. 37 of Harris 1963) to get

Var
Y 
k�� �
1

R 2k
�
j�1

k

1�
M�� k	j� �
i�1

r

V i 
e�1 M j	1e i �� 
M� k	j1.

(10)

Here, Vi � (Vi(l, m)) � (Cov(Zl
(1), Zm

(1)�Z(0) � ei)). When
the progeny distribution is multinomial, Vi(l, l ) � RP(i,
l )(1 	 P(i, l )) and Vi(l, m) � 	RP(i, l ) P(i, m) for l � m.
Hence, the Vi(l, m) are functions only of R and P(i, l ), for
l � 1, . . . , r. The assumption in (8) implies that for each i
there exists an l such that P(i, l ) � 0. Hence, for each i
there exists an l such that Var(Zl

(1)�Z(0) � ei) � Cov(Zl
(1),

Zl
(1)�Z(0) � ei) � 0 so for all i, Vi is a positive-definite

matrix for at least one i, i.e., for all vectors x � 0, x�Vix �
0. The following result is proved in the appendix.

THEOREM 3. (i) For R � 1/�, Var(Y(k)) is O(�2k(1/R�)k)).
(ii) For R � 1/�, Var(Y(k)) is O(k�2k).
(iii) For R � 1/�, Var(Y(k)) is (�2k).

Combining the asymptotic results for the variance
Var(Y(k)) and the effort w(k), we see that we have asymp-
totic efficiency for the case of R � 1/�. For R � 1/� we do
not have asymptotic efficiency: the simulation effort re-
quired to achieve a given relative error grows exponen-
tially with k. Noting that standard simulation (R � 1) has a
work-normalized variance of order �k, these results imply
that asymptotically optimal splitting is of order 1/(�kk2)
times more efficient than standard simulation.

3. THE NONHOMOGENEOUS CASE

In the previous section we assumed that the transition
probabilities P(i, l ) (and thus the progeny distribution in
the corresponding branching process) did not depend on
level k. As the queueing example in the introduction sug-
gests, a more realistic model allows the transition matrices
to depend on the level k but requires that they converge as
k 3 �. We now analyze this case.

3.1. Asymptotics for the Probability

As before, Pk denotes the transition matrix at the kth level.
We assume that Pk 3 P elementwise as k 3 �. We will
also need to assume that:

ASSUMPTION 1. There exists an integer N � 0, such that
PN � 0.

ASSUMPTION 2. For j � 1, for each i there exists an l such
that Pj(i, l ) � 0.

As before, we let � be the spectral radius of P. The
probability �k � P( Ak) (in the notation of (4)) is now
given by

� k � e�1 P1 P2 · · · Pk 1.

As before, we interpret this as the probability that a
Markov chain hits level k before level 0.

Assumption 1 ensures that for each k, the vector
e�1P1P2

. . . Pk has at least one positive component so that
�k � 0. In this more general setting, we have the following
weaker counterpart of Lemma 1, proved in the appendix.

LEMMA 2.

1
k log
� k �3 log
��,

as k 3 �.

3.2. Asymptotics for the Effort

Let Rj be the number of splits at the jth level and let us
assume that Rj � 0 for all j and that Rj 3 R as j 3 �. In
practice, one would probably set Rj � R for all j; however,
it is worth considering the more general case, for which we
obtain the following theorem.

THEOREM 4. (i) lim infk3� log(w(k))/k � 0 if R � 1/�.
(ii) limk3�log(w(k))/k � 0 if R � 1/�.
(iii) w(k) is (1) for R � 1/�.

Hence in the first case we have an exponential growth in
effort, in the second case we have at most a subexponential
growth in effort, and in the third case the effort remains
bounded. The proof of this theorem is given in the appen-
dix.

3.3. Asymptotics for the Variance

We can modify the expression for the variance for the
multitype branching process case to include the nonhomo-
geneous case as well. Proceeding along the same lines as
the derivation in the homogeneous case (Harris 1963, p.
37), we get that

Var
Y 
k�� �
1


R 1 R 2 · · · R k � 2
�
j�1

k

1�M�k · · · M�j�1

� � �
i�1

r

V i

 j�
e�1 M1 · · · M j	1 e i ��Mj�1 · · · Mk 1. (11)

Here, Vi
( j)(l, m) � Cov(Zl

( j), Zm
( j)�Z( j	1) � ei). Similar to

the homogeneous case, the elements of Vi
( j) are polynomial
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functions of Rj and Pj(i, l )’s. Due to Assumption 2, Vi
( j) is

positive definite for all i and j. Since Rj3 R and Pj3 P as
j 3 �, limj3� Vi

( j) exists and it is the same function of R
and P(i, l ). Let us call the limit matrix Vi. Due to Assump-
tion 1, Vi is positive definite for all i. An alternative repre-
sentation of the variance will also be useful:

Var
Y 
k��

�
1


R 1 R 2 · · · R k � 2
�
j�1

k


R 1 · · · R j	1 �
R j�1 · · · R k � 2

� 1�P�k · · · P�j�1� �
i�1

r

V i

 j�
e�1 P1 · · · P j	1 e i ��

� P j�1 · · · Pk 1. (12)

We can now summarize the asymptotic behavior of the
variance, leaving the proof for the appendix.

THEOREM 5. (i) lim infk3� log(Var(Y(k)))/k � 2 log(�) if
R � 1/�.

(ii) lim supk3� log(Var(Y(k)))/k � 2 log(�) if R � 1/�.
(iii) limk3� log(Var(Y(k)))/k � 2 log(�) if R � 1/�.

Hence in the first case we have an exponential growth in
the Var(Y(k))/�k

2, and in the second and third cases we
have at most subexponential growth in the Var(Y(k))/�k

2.

3.4. Asymptotic Efficiency

Using Lemma 2, Theorem 4, and Theorem 5, we see that
for R � 1/�

lim
k3�

log(Var
Y 
k��w
k�)
log
� k �

� 2,

and for R � 1/�

lim
k3�

log(Var
Y 
k��w
k�)
log
�k �

� 2.

Hence we have asymptotic efficiency for R � 1/� and we
do not have asymptotic efficiency for R � 1/�.

Note that this generalizes and complements a result for
the M/M/1 queue in Melas (1994), which considers esti-
mating the probability that the M/M/1 queue exceeds a
fixed level k during a cycle. As the traffic intensity � 3 0,
one generates an average of 1/� splits upon each arrival
transition.

3.5. Randomized Splitting

As discussed in Section 1, though ideally we want Ri �
R � 1/�, in practice we are constrained to make the num-
ber of subpaths an integer when we split. We circumvent
this problem by randomizing, using a level-dependent dis-
tribution for the number of subpaths. Let Rj denote a
generic random variable having the distribution of the
number of subpaths generated from each path that hits
level j. The actual number generated from each path is
sampled independent of everything else. We use

Y 
k� �
No. of paths that hit level k

E�R 1 � · · · E�R k �
(13)

as our sample.
We now show that Y(k) is unbiased and asymptotically

efficient. We can again model its evolution using a branch-
ing process but with new Mj and Vi

( j) matrices correspond-
ing to a new progeny distribution. In particular, Mj �
E[Rj]Pj. Using the same notation as before we can express
the Y(k) in (13) as

Y 
k� �
� i�1

r Z i

k�

E�R 1 � · · · E�R k �
.

Then

E�Y 
k�� �
1

E�R 1 � · · · E�R k �
E� � i�1

r Z i

k��

�
1

E�R 1 � · · · E�R k �

e�1 M1 · · · Mk 1�

� e�1 P1 · · · Pk 1

� � k .

Now assume that the Ri converge in distribution to a
random variable R as i 3 �. In practice, it is not a restric-
tion to suppose that the support of all the Ri is contained
in a finite set (typically, we would randomize between just
two points) so that E[Ri] 3 E[R]. Then it is easy to see
that Theorems 4 and 5 hold with Ri replaced by E[Ri] and
R replaced by E[R]. For the effort, the only change in the
basic Equation (17) is that the Ris will now be replaced by
E[Ri]s. For the variance, the only change in the basic
Equation (12) is that the Ri’s are replaced by E[Ri]s and
the Vi

( j) matrices are different from the deterministic num-
ber of splits case. In particular, Vi

( j)(l, l ) � E[Rj]Pj(i,
l )(1 	 Pj(i, l )) � Var[Rj]Pj(i, l ) and similarly for Vi(l, l ).
Hence under Assumptions 1 and 2, the new Vi

( j)s and Vis
are still positive definite, so this change does not affect the
proof of Theorem 5.

4. EXPERIMENTAL RESULTS

In this section, we empirically examine the sensitivity of
the splitting estimator’s performance with respect to the
rarity of the event, number of levels, and number of sub-
paths per level for several different queueing network
models. For the models studied, � can be determined nu-
merically by solving an appropriate system of linear equa-
tions (Chung 1967, §1.9), thereby permitting comparison
of simulation with exact results. In this section, �b is the
probability that a queue length reaches b before returning
to the empty state. The thresholds are even spaced at
multiples of some �, so the event of interest occurs when
the kth threshold is reached, with k �  b/� . In the nota-
tion of previous sections, we should write �k for this prob-
ability, but in the context of specific examples it is more
convenient to write �b with b indicating the queue length
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that must be reached, rather than the threshold. Through-
out this section, �b was numerically computed by solving
linear equations and for the purpose of these studies is
considered known.

To perform an experiment, i.i.d. replicates {Yj
(k), j � 1}

of Y(k) may be generated. The point estimate from m such
replications is the usual sample average: �̂k � ¥j�1

m Yj
(k)/m.

We can then build confidence intervals by estimating the
variance of Y(k), by using its replicates. We adapt a slightly
different procedure that allows us to make more efficient
use of the finite time simulation runs that we conduct. For
example, in the simplest setting of Section 1, we can inter-
pret Y(k) in (5) as ¥j�1

R1 Yj
(k,1)/R1 where Yj

(k,1)’s are i.i.d.
replicates of Y(k,1) � (¥i2�1

R2 . . . ¥ik�1
Rk 1111i2

. . . 11i2ik
)/

(R2
. . . Rk); the Yj

(k,1)’s track all the split paths originating
from a single path starting at level 0. Hence �̂k may be
interpreted as the sample mean of mR1 i.i.d. replicates of
the random variable Y(k,1). We can then build confidence
intervals by estimating the variance of Y(k,1) by using its
replicates. Henceforth we will call each copy of Y(k,1) as a
“replication” (instead of each copy of Y(k)). Similar proce-
dures were applied for the more complex settings.

The embedded discrete time Markov chains of the mod-
els were simulated and the CSIM (Schwetman 1986) pack-
age was used to coordinate the execution of the different
trials. CSIM is a C language function library that enables
users to develop “process-oriented” models. Specifically,
we had a different CSIM process for each threshold and
used CSIM messages and mailboxes to exchange informa-
tion between levels. We used a “depth first” scheduling
algorithm in which no pending trial at level k is executed
until all the trials at level k � 1 are complete. This guar-
antees that only a linear amount (in the number of levels)
of storage will be used. If a “breadth first” algorithm is
used, i.e., do not simulate a level k � 1 trial until all the
level k trials are completed, then the storage requirements
will grow exponentially in the supercritical case.

4.1. Mixed Open and Closed Queueing Network

We first consider a mixed open and closed queueing net-
work as shown in Figure 2. The open jobs arrive to service
center 1 with rate �. There are N2 closed jobs that circu-
late between service centers 1 and 2. Closed jobs have
pre-emptive priority over open jobs at service center 1. All
service and interarrival times are exponentially distributed.
The service rates at center 1 are �11 and �12 for open and
closed jobs, respectively. The service rate at center 2 is �2.
States are denoted by (i, j) where i is the number of open
jobs at center 1 and j is the number of closed jobs at
center 1. As j is bounded by N2, this model fits into the
class of nonhomogeneous Markovian models analyzed ear-
lier. Notice that if N2 � 1, this model is equivalent to the
M/M/1 queue with server breakdowns or vacations. In this
model, �b is the probability that the number of open jobs
reaches b before returning to the state (0, 0), given that
the system starts in (0, 0). The thresholds are sets of the
form {(k�, j), j � 0, 1, . . . , N2}; thus, there are N2 � 1

entry states for each threshold, making r � N2 � 1 in the
branching process formulation.

All experiments for this model were run for approxi-
mately 500 seconds on a dedicated RS/6000 workstation.
More specifically, after a group of replications completed,
the CPU time was checked. An experiment terminated
when the total CPU time used first exceeds 500 seconds.
The group size was chosen (depending on the splitting
factor R) so that the CPU time was checked every few
seconds, typically every 3 to 5 seconds. This balances the
overhead of checking the CPU time against the desire to
stop all experiments after exactly the same amount of CPU
time has been expended (which would have been harder to
implement). Note that at the time the experiment termi-
nates, there are no replications or split paths in progress.
The number of replications thus obtained depends on the
splitting factor. For example, in the last part of Table 1,
490,000 replications from level 0 are completed when the
splitting factor is appropriately chosen (R � 5) but only
1,150 replications from level 0 are completed when the
splitting factor is too large (R � 8).

In Tables 1 and 2, for a given set of model parameters
and R, the estimates �̂20 and �̂40 were obtained from the
same (approximately) 500 second run. In Table 3, separate
runs were done for each value of b.

As �b was obtained numerically, we can use its value to
approximate �, the spectral radius of the limiting 1 level
transition matrix P. This was done as follows. In Table 1,
with b � 40, we compute �̂ so that �b � �̂b, i.e., log(�̂) �
log(�b)/b. We use �̂ as an approximation to � (since �̂ 3 �

as b 3 �). While such numerically obtained estimates of �

would not be available in most models, we use it here so as
to enable sensitivity studies as R deviates from its asymp-
totically optimal value. The threshold spacing � was fixed
at 2. Thus Qk � P2k	1P2k denotes the transition matrix of
the process embedded at threshold crossing times. The
asymptotically optimal splitting factor is thus one over the
spectral radius of the matrix Q � limk3�Qk � P2. Since
�(P2) � �(P)2 � �2, the optimal splitting factor is 1/�2.

Figure 2. Mixed open and closed queueing network.
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Thus, as an approximation to the optimal splitting param-
eter, with � � 2, we should start R̂ � 1/�̂2 trials per level.
The table examines the performance of the method for
different values of R. In agreement with theory, the best
results are obtained when R is close to R̂.

In Table 2, we vary the number of levels by varying �,
the amount by which the queue length has to increase to
reach the next level. We attempt to use a near optimal

number of subpaths per level by setting R � 1/�̂�, rounded
to the nearest integer. Note that, with one exception, the
results are uniformly good and relatively insensitive to �.
The exception is for �2 � 0.5 and b � 40 with � � 1. The
problem in this case is one of rounding. Here R̂ � 1/�̂ �
2.33. Rounding R̂ to the nearest integer yields R � 2.
However, with this value of R and so many levels, reaching
level 40 is a relatively rare event. The estimated E[Zk] �
0.001 for b � 40, suggesting that the number of subpaths
surviving to successive levels is dropping to zero. The
problem is corrected by using a random, state-
independent, number of splits per level. For example, if we
fix E[R] � 2.33 and select R � 3 with probability 0.33 and
R � 2 with probability 0.67, then our estimate is �̂b �
2.06 � 10	15 � 6.3%. With this random splitting parame-
ter, E[Zk] increases to 0.44, suggesting that the number of
subpaths surviving to successive levels remains roughly
O(1).

In most problems � is not known and must be estimated.
Furthermore, the problem of nonintegral � is generic so
that an asymptotically optimal procedure must use a ran-
dom number of splits. Table 3 indicates the effect that
errors in estimating � would have within this context. In
this table, � � 2 and R has the two point distribution
concentrating its mass on the two integers on either side of
E[R] � 1/[��̂]2 for differing values of �. Here � represents
the error in an estimate of the near optimal value of �̂ that
might be obtained from a pilot study (� � 1.0 represents
no error). Since �̂ was obtained numerically, no pilot stud-
ies actually needed to be performed; however, the effect of

Table 1. Results for the mixed open and closed network.

�2 b �b R̂ R �̂b Relative Error

1.0 20 5.96 � 10	7 4.1 2 6.35 � 10	7 �11.5%
3 5.98 � 10	7 �3.5%
4 5.83 � 10	7 �3.5%
5 5.76 � 10	7 �9.7%
6 5.21 � 10	7 �31%
7 1.58 � 10	6 �130%

1.0 40 5.68 � 10	13 4.1 2 0 —
3 5.44 � 10	13 �15.7%
4 5.49 � 10	13 �5.0%
5 5.40 � 10	13 �10%
6 4.92 � 10	13 �33%
7 1.52 � 10	12 �131%

0.5 20 3.91 � 10	8 5.4 3 3.90 � 10	8 �8.9%
4 3.91 � 10	8 �4.0%
5 3.86 � 10	8 �3.6%
6 3.91 � 10	8 �6.1%
7 3.88 � 10	8 �12%
8 2.92 � 10	8 �33%
9 4.42 � 10	8 �115%

0.5 40 2.02 � 10	15 5.4 3 7.68 � 10	16 �182%
4 2.10 � 10	15 �17%
5 1.98 � 10	15 �6.2%
6 2.06 � 10	15 �7.1%
7 1.96 � 10	15 �13%
8 1.49 � 10	15 �34%
9 2.92 � 10	15 �113%

� � 2. Note: Network parameters are � � 1.0, �11 � 4.0, �12 � 2.0, N2 � 1.

Table 2. Results with a near optimal splitting
parameter for the mixed open and closed
network.

�2 b �b � �̂b Relative Error

1.0 20 5.96 � 10	7 1 5.98 � 10	7 �3.9%
2 5.83 � 10	7 �3.5%
4 5.90 � 10	7 �4.2%

1.0 40 5.68 � 10	13 1 5.67 � 10	13 �5.5%
2 5.49 � 10	13 �5.0%
3 5.56 � 10	13 �5.4%
4 5.46 � 10	13 �6.1%

0.5 20 3.91 � 10	8 1 3.84 � 10	8 �4.4%
2 3.86 � 10	8 �3.6%
3 3.78 � 10	8 �6.1%

0.5 40 2.02 � 10	15 1 2.05 � 10	16 �20.2%
2 1.98 � 10	15 �6.2%
3 2.00 � 10	15 �6.8%
4 1.89 � 10	15 �8.3%

Note: Network parameters are � � 1.0, �11 � 4.0, �12 � 2.0,
N2 � 1.
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poor estimates of � can be studied by appropriately setting
�. In this table, a separate run is made for each value of b.
For the near optimal runs (� � 1.0), notice the slow in-
crease in the relative errors as b increases. In addition, the
relative error is roughly comparable to the corresponding
entry in Table 1 in which a near optimal constant splitting
parameter is used (b � 40, �2 � 0.5, R � 5). Also, notice
that the performance of the method is more sensitive to �

as b increases. Thus, it becomes more important to obtain
good estimates of � as the event of interest becomes rarer.

The results reported in Tables 1–3 all used a truncation
procedure to discard unpromising trials. Specifically, con-
sider a trial that starts with a queue length of i. If that trial
ever reaches a queue length of (i 	 d) for some specified
value of d, then the trial is discarded and counted as a
failure. (Our experiments used d � 10.) This introduces
some error since there is always some possibility that the
trial will rebound and reach the next level. This error,
which was analyzed for special cases in Glasserman et al.
(1996), is small since the confidence intervals all contain
the true value of �b when the number of splits is appropri-
ately chosen. If d is fixed, the expected amount of work per
trial is constant. Without truncation, the expected amount
of work per trial from level k is of order k since, with
positive probability bounded away from zero, the queue
will return to 0 before reaching the next level. In an as-
ymptotically optimal splitting procedure, truncation then
reduces the total expected work per replication from order
b2 to order b.

To see the numerical effect of truncation, we re-ran the
near optimal (� � 1.0) simulations of Table 3 without
truncation (i.e., d � �). Because we held the total CPU
time fixed, truncation produced a larger number of repli-
cations. Compared to the d � 10 run, the b � 40 relative
error increases from 5.9% to 8.0%, while the b � 80 rela-
tive error increases from 12% to 22%. For queueing mod-
els the benefit of truncation increases with the number of
levels. For b � 80 the run with truncation executed 3.4
times as many replications (from (0, 0)), and reduced the
average number of transitions per trial from 75 to 17.
Interestingly, the d � � run simulated a total of 87 million
transitions compared to only 66 million transitions for the
d � 10 run. With d � 10 a greater percentage of the time
is spent in overheads such as process switching and state
space copying. However, that is time well spent compared

to executing an unpromising trial on its long way back to
(0, 0).

4.2. A Queue with On-Off Sources

The second model we consider is a queueing model with
multiple Markov-modulated sources of the type arising in
models of ATM (Asynchronous Transfer Mode) networks.
There are N on-off sources that operate as follows. If a
source is in the on state, the packet arrival rate is � while if
it is in the off state, the arrival rate is 0. The source re-
mains in the off (on) state for an exponentially distributed
amount of time with rate 	0 (	1). The service rate is �.
The state of the system is denoted by (i, j) where i is the
total queue length and j is the number of sources in the on
state. The steady-state average number of sources in the
on state is m� � N	0/(	0 � 	1) and the overall utilization is
u � m� �/�. We fix � � 10, 	0 � 1, N � 20, and u � 0.25
and vary the “burstiness” of the sources by varying � (this
uniquely determines 	1). This is a model fitting our theo-
retical framework.

We let the initial state be (0,  m�  ) and consider estimat-
ing �b, the event that the queue length reaches b before
returning to the initial state. Again, �b is computed numer-
ically allowing us to approximate � by �̂ where �b � �̂b.
Table 4 examines the method’s sensitivity to E[R], again
representative of the situation in which the � is estimated
with some error from pilot studies. We fix � � 2 and use a
random number of splits with the two-point distribution on
either side of E[R] � 1/[��̂]2. All runs were for approxi-
mately 500 seconds on an RS/6000 workstation. As in the
mixed open and closed network, the results are very satis-
factory if there is no error in estimating �̂ (� � 1.0) but
degrade as the error increases.

4.3. Tandem Jackson Network

We next consider a queueing network model that has re-
ceived considerable attention in the importance sampling
literature (Anantharam et al. 1990, Frater et al. 1991,
Glasserman and Kou 1995, Heidelberger 1995, Parekh and
Walrand 1989). The model is an open tandem Jackson
network with two queues. Let � be the arrival rate and let
�i denote the utilization at queue i. The state space is
denoted by (i, j) where i ( j) is the number of jobs at queue
1 (2). Since i and j can both be simultaneously large, our
earlier results do not strictly apply. In this example, �b �

Table 3. Results for the mixed open and closed network � � 2 and E[R] � 1/[��̂]2.

�
b � 40 b � 60 b � 80

�b � 2.02 � 10	15 �b � 1.04 � 10	22 �b � 5.40 � 10	30

0.85 1.90 � 10	15 � 25% 2.49 � 10	22 � 141% 1.06 � 10	29 � 258%
0.90 1.98 � 10	15 � 12% 1.03 � 10	22 � 39% 5.72 � 10	30 � 107%
0.95 2.01 � 10	15 � 7.3% 1.02 � 10	22 � 14% 6.28 � 10	30 � 25%
1.00 1.97 � 10	15 � 5.9% 1.06 � 10	22 � 9.2% 5.30 � 10	30 � 12%
1.05 2.02 � 10	15 � 6.6% 1.04 � 10	22 � 12% 5.30 � 10	30 � 19%
1.10 2.01 � 10	15 � 9.9% 1.11 � 10	22 � 24% 7.31 � 10	30 � 57%
1.15 2.08 � 10	15 � 16% 1.53 � 10	22 � 61% 1.32 � 10	30 � 57%

Note: Network parameters are � � 1.0, �11 � 4.0, �12 � 2.0, �2 � 0.5, N2 � 1.
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P( Ab) with Ab denoting the event that the number of jobs
in the second queue reaches b before the system empties,
given that the system is initially empty.

The runs reported in Table 5 all used � � 2 and R � 4
since the numerically computed �̂ is very close to �2 � 0.5
for all cases considered. All runs were for approximately
1000 seconds on a dedicated RS/6000 workstation, with a
different run for each b.

If the second queue is the bottleneck, i.e., �1 � �2, we do
not expect the first queue to be large on Ab. Thus the
behavior of the system is approximated by one in which i is
bounded and we therefore anticipate that splitting will
work well when queue 2 is the bottleneck.

However, if queue 1 is the bottleneck, results in Anan-
tharam et al. (1990), Frater et al. (1991), and Heidelberger
(1995) based on time-reversal strongly suggest that the way
Ab happens is for queue 1 to first build up to a certain
large level and then for queue 2 to build up as queue 1
drains down. If this is indeed the most likely overflow path,
then the assumption that the state space is finite in one
dimension breaks down, and we should have E[Q� 1�Ab] 3
� where Q� 1 denotes the maximum length of queue 1 dur-
ing a cycle. Furthermore, selecting intermediate sets of the
form Ai � {Q2 � i} (where Qj denotes the queue length at
node j, j � 1, 2) would be inconsistent with the presumed
large deviations behavior. More specifically, the distribu-
tion of queue 1 upon entrance to A[b/2] would be concen-
trated near 0, however the distribution of queue 1 upon
entrance to A[b/2] given that Ab is eventually hit would be
concentrated about the point cb for some positive c. Thus,
the splitting procedure would be starting most of its trials
from level [b/2] with Q1 near 0 when in fact it should be
starting them from near level cb. We therefore do not
expect splitting to work well in this situation. We verify this

empirically in this paper and study this issue theoretically
in a different paper, Glasserman et al. (1998).

Indeed, if queue 2 is the bottleneck, the method works
well. However, if queue 1 is the bottleneck, the relative
errors increase dramatically with b. For b � 100 the point
estimate is also too low by a factor of 40.

5. CONCLUDING REMARKS

We have analyzed the use of multilevel splitting in estimat-
ing rare event probabilities. Our results show that for
problems with a certain structure, choosing the degree of
splitting correctly produces asymptotically optimal esti-
mates; whereas too much splitting results in explosive com-
putational requirements, and too little splitting eliminates
any reduction in variance. Numerical results support these
conclusions, but also suggest that the method is reasonably
robust to approximating the optimal splitting parameter.
Robustness is important because in practice one would not
know the spectral radius that determines the optimal level
of splitting. This suggests that pilot runs could be used to
get a rough estimate of �k from which � can be approxi-
mated. Some promising experimental results on the effec-
tiveness of using pilot studies in the context of the
RESTART procedure are reported in Kelling (1996), al-
though this is an area requiring further study.

Of the restrictions we imposed to obtain our results, the
most significant is the requirement that there be only fi-
nitely many ways of achieving each threshold. As the ex-
amples of Section 4 indicate, this generally restricts us to
models whose state spaces are infinite in only one dimen-
sion. In these examples, the event of interest becomes rare
along the one unbounded dimension and the thresholds
are defined along this dimension as well. This structure is

Table 4. Results for the queue with on-off sources, � � 2 and E[R] � 1/[��̂]2.

� �b � �̂b Relative Error

0.5 2.33 � 10	21 0.8 1.96 � 10	21 �155%
0.9 3.03 � 10	21 �39%
1.0 2.29 � 10	21 �16%
1.1 2.47 � 10	21 �19%
1.2 1.94 � 10	21 �51%

4.0 2.33 � 10	20 0.8 1.29 � 10	20 �129%
0.9 2.18 � 10	20 �34%
1.0 2.33 � 10	20 �13%
1.1 2.14 � 10	20 �17%
1.2 2.93 � 10	20 �42%

Note: Model parameters are b � 40, N � 20, �� 10.0, and 	0 � 1.0. 	1 � 3.0 if � � 0.5 and 	1 � 31.0 if � � 4.0.

Table 5. Results for the two queue tandem Jackson networks, � � 2 and R � 4.

�1 �2 b �b �̂b Relative Error

0.25 0.50 20 1.27 � 10	6 1.25 � 10	6 �2.4%
0.25 0.50 60 1.16 � 10	18 1.10 � 10	18 �9%
0.25 0.50 100 1.05 � 10	30 9.73 � 10	31 �20%
0.75 0.50 20 3.82 � 10	6 3.85 � 10	6 �3.9%
0.75 0.50 60 3.47 � 10	18 9.61 � 10	19 �73%
0.75 0.50 100 3.16 � 10	30 7.85 � 10	32 �188%
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central to our analysis and, perhaps, to the method itself.
On more complex state spaces—even the two-queue ex-
ample of Section 4.3—it is not always clear how interme-
diate thresholds should be defined to estimate a rare event
probability. Results in Glasserman et al. (1998) suggest
that the proper implementation of splitting in higher di-
mensions requires an understanding of the way rare events
occur, i.e., the large deviations behavior, not unlike what is
often needed to use importance sampling.

APPENDIX: PROOFS

PROOF OF THEOREM 3. To simplify notation, we define
Mc � P/�. The spectral radius of Mc is 1. From Theorem 1
we find that e�1Mc

j ei � 1�M̃c1 � O(�j), with 0 � � � 1.
Define Vabs � (Vabs(l, m)) where Vabs(l, m) � r max1�i�r

Vi,abs(l, m).
First consider the case where R � 1/�, so that M � Mc.

then from (10) we get

Var
Y 
k�� � � 2k�
j�1

k

1�
M�c � k	j

� � �
i�1

r

V i 
e�1 Mc
j	1e i �� 
Mc � k	j1 (14)

� � 2k �
j�1

k

�M�c
k	jVabs Mc

k	j�
a�M̃c 1 � O
� j��

(15)

� � 2k �
j�1

k

�Vabs � � �Mc
k	j� 2
1�M̃c 1 � O
� j��

� � 2k �
j�1

k

�Vabs �
1�M̃c 1 � O
� k	j��

� 
1�M̃c 1 � O
� j�� .

Note that the O(�j) terms are bounded for all j � 0.
Hence the O((�)k	j) terms are bounded for all k � 1 and
0 � j � k. Hence, we have Var(Y(k)) � O(�2kk).

Now consider the case R � 1/�. In that case we can
express Var(Y(k)) as

Var
Y 
k�� � � 1
R
� 2k �

j�1

k


R�� 2k	j	11�
M�c � k	j

� � �
i�1

r

V i 
e�1 Mc
j	1e i �� 
Mc � k	j1

� � 2k 1
R�

�
j�1

k � 1
R�

� j
1�
M�c � k	j

� � �
i�1

r

V i 
e�1 Mc
j	1e i �� 
Mc � k	j1. (16)

Writing it in this form allows comparison with (15). From
the steps used there, we find that for R � 1/�, we have
Var(Y(k)) � O(�2k).

Next we prove the lower bounds in (i) and (iii). Because
the Vi matrices are positive definite and Mc � 0, all the
terms in the summation in (16) are nonnegative. Hence,

for the lower bound in (iii) it suffices to consider the first
term in the summation for Var(Y(k)); i.e.,

Var
Y 
k�� � � 2k� 1
R�

� 2

1�
Mc
k	1��� �

i�1

r

V i� 
Mk
k	1�1.

Then, using Theorem 1 we have that

Var
Y 
k�� � � 2k� 1
R�

� 2� 1�M̃�c� �
i�1

r

V i� M̃c 1 � O
� k	1�� ,

where � � 1. Now using the fact that the Vi is a positive
definite matrix for all i and the fact that Mc � 0 (recall
that M̃c � �� where � and  are positive left and right
eigenvectors of Mc), we get the result we want. For (i) we
can bound the Var(Y(k)) in (16) from below by the last
term in the summation and use the fact that

Var
Y 
k�� � � 2k� 1
R�

� � 1
R�

� k�
i�1

r

1�V i 1
1�Mc
k	1e i �

� � 2k� 1
R�

� � 1
R�

� k �
i�1

r

1�V i 1
1�M̃c e i � O
� k	1�� .

PROOF OF LEMMA 2. First consider the case when N � 1.
For all � � 0 there exists k0 � k0(�) such that for all k �
k0, (1 	 �)P � Pk � (1 � �)P. Hence, for all k � k0,

� k � e�1 P1 · · · Pk0
P k	k0 1
1 � �� k	k0

� e�1 P1 · · · Pk0

� k	k0 P̃ � P̂ k	k0 �1
1 � �� k	k0

� 
1 � �� k	k0 � k	k0

� 
e�1 P1 · · · Pk0
P̃1 �

1
� k	k0

e�1 P1 · · · Pk0
P̂ k	k0 1� .

The last equality follows from Theorem 1. Taking loga-
rithms we have that

1
k log
� k � �


k � k 0 �
k log
1 � �� �


k � k 0 �
k log
��

�
1
k log
e�1 P1 · · · Pk0

P̃1

�
1

� k	k0
e�1 P1 · · · Pk0

P̂ k	k0 1)

� log
1 � �� � log
�� �
k 0

k log
1 � ��

�
k 0

k log
�� �
1
k log
e�1 P1 · · · Pk0

P̃1

�
1

� k	k0
e�1 P1 · · · Pk0

P̂ k	k0 1� .

Now for any � � 0, there exists an integer k1 � 0 such that
for k � k1 the absolute value of each of the last three
terms is less than �/3. Also, what we want is that log(1 �
�) � �/3 or � � e�/3 	 1. Then for all k � k2 � max(k1, k0)
we will have that log(�k)/k � log(�) � �.

Similarly, we can show that for all � � 0, there will exist
k3 such that for all k � k3, log(�k)/k � log(�) 	 �. Hence,
we will have the result for N � 1.

Note that for the case of general N (recall that we as-
sume PN � 0 for some N � 0), we will define Bk �
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P(k	1) N�1
. . . PkN. Then clearly Bk3 PN as k3 �. Hence,

for every � � 0 there exists k(�), such that for k � k(�),
(1 	 �)PN � Bk � (1 � �)PN. Then using the same
method as above we can show that a subsequence of
{log(�k)/k; k � 1}, i.e., {log(�kN)/kN�k � 0}, converges to
log(�). We can show the same thing for all the N nonover-
lapping subsequences {log(�kN�j)/(kN � j)�k � 0} for j �
0, 1 . . . N 	 1, which when put together form the com-
plete sequence. Hence, the overall sequence converges to
log(�). □

PROOF OF THEOREM 4. We will need the following lemma
for proving the theorem.

LEMMA 3. Consider a sequence {ai�i � 0} with ai � 0 and
define dk � ¥i�0

k ai. If logk3� log(ak)/k � 0 then limk3�

log(dk)/k � 0.

This simply states that if the terms of a summation have
a subexponential growth rate then the summation has a
subexponential growth rate in the number of terms.

PROOF OF LEMMA 3. For all � � 0, there exists k0 � k0(�)
such that for k � k0, 	� � log(ak)/k � � or e	�k � ak �
e�k. Now for all k � k0,

d k � �
i�1

k0

a i � �
i�k0 �1

k

a i

� �
i�1

k0

a i � 
k � k 0 �e k�.

Therefore,

1
k log
d k � �

1
k log� � i�1

k0 a i � 
k � k 0 �e k�


k � k 0 �e k� �
�

1
k log
k � k 0 � � � .

Note that the first two terms on the right side approach
zero as k 3 �. For any � � 0, let k1 (k2) be such that
the absolute value of the first term (second term) is
less than �/3. Also choose � � �/3. Then for k � max{k0,
k1, k2}, log(dk)/k � �. We can similarly show that
log(dk)/k � 	 �. □

PROOF OF THEOREM 4. The proof makes use of the asymp-
totic property of �k given in Lemma 2. Define �0 � 1.
Using the fact that Mj � RjPj we can express

w
k� � �
i�0

k	1

e�1� �
j�1

i

M j� 1R i�1

� �
i�0

k	1

e�1� �
j�1

i

P j� 1 �
j�1

i�1

R j

� �
i�0

k	1

� i �
j�1

i�1

R j . (17)

It is also easy to show that since Rj 3 R,

1
k log � �

j�1

k

R j� 3 log
R�. (18)

Hence, from Theorem 2 we get that

lim
k3�

1
k log� � k �

j�1

k�1

R j� � log(�) � log
R� � log
R��. (19)

Now for the case of R � 1/�, since all the terms in the
summation for w(k) are positive,

lim inf
k3�

1
k log
w
k�� � lim inf

k3�

1
k log� � k	1 �

j�1

k

R j�
� log
R�� � 0.

The last equation follows from (19). For the case of R �
1/�, the proof follows straight from (19) and Lemma 3. For
the case of R � 1/�, to show that w(k) � O(1), we use the
root test, i.e., we need to show that lim supi(�i �j�1

i�1 Rj)
1/i

� 1 or lim supi log(�i �j�1
i�1 Rj)/i � 0. This follows from

(19). To show that w(k) � O�(1) we can just use the fact
that w(k) � R1 from (17). □

PROOF OF THEOREM 5. As before, from the positive
definiteness of the Vi

( j) matrices and the fact that M � 0,
we find that all the terms in the summation in (11) are
nonnegative. To show (i) we will consider only the last
term of (12), i.e.,

Var
Y 
k�� �
R 1 · · · R k	1


R 1 · · · R k � 2
� �

i�1

r

1�V i

k�1�

� 
e�1 P1 · · · Pk	1 e i �

� � 2k 1

� 2k
R 1 · · · R k �

1
R k

� �
i�1

r

1�V i

k�1� (20)

� 
e�1 P1 · · · Pk	1 e i � � 0.

Using exactly the same method as for Lemma 2, we can
show that log(e�1P1

. . . Pk	1ei))/k 3 log(�) as k 3 �. Tak-
ing logarithms of both sides of (20), dividing by k and
using (18), we get that lim infk3�(log(Var(Y(k)))/k) � 2
log(�) � log(1/(R�)) � 2log(�).

For the case where R � 1/�, we will only consider the
case where P � 0 and therefore M � RP � 0. Then one
can work along lines similar to Lemma 2 to extend it to the
case where PN � 0 for some N � 0. Since Rk 3 R and Pk

3 P as k 3 �, we have Mk 3 M. Also, Vabs
(k) 3 Vabs.

Hence, for any � � 0, there exists j0 such that for j � j0,
(1 	 �)M � Mj � (1 � �)M and �Vabs

( j) (l, m) 	 Vabs(l, m)�
� � for all l and m.

First we will show that lim supk3� log(Var(Y(k)))/k � 2
log(�) for R � 1/�. Note that for this case since Mc � P/�,
M � (R�)Mc. For k � j0, we will divide the summation in
(11) into two parts; the first is summation from j � 1 to j0
which we call Var1(k), the other from j � j0 � 1 to k
which we call Var2(k).
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Var1
k� 	 �
j�1

j0

1�
M�k · · · M�j�1 �

� � �
i�1

r

V i

 j�
e�1 M1 · · · M j	1 e i �� 
M j�1 · · · Mk �1

� �
j�1

j0


1 � �� 2k	2j0 1�
M�� k	j0 
M�j0
· · · M�j�1 �

� ��
i�1

r

Vabs

 j� 
e�1 M1 · · · Mj	1 ei ��
Mj�1 · · · Mj0

�
M�k	j0 1�

� 
1 � �� 2k	2j0 �
j�1

j0


e�1 M1 · · · M j	1 1�

� �
M�� k	j0 
M�j0
· · · M�j�1 Vabs


 j� M j�1 · · · M j0
�
M� k	j0 �

� 
1 � �� 2k	2j0 �
Mc � k	j0 � 2
R�� 2k	2j0

� �
j�1

j0


e�1 M1 · · · M j	1 1��M�j0
· · · M�j�1

� Vabs

 j� M j�1 · · · M j0

�

� 
1 � �� 2kc 1 
R�� 2k,

where c1 is a positive constant (independent of k, possibly
depending on j0). The last inequality follows because
�Mc

k	j0� � 1�(M̃c � M̂c
k	j0)1 � 1�M̃c1 � �M̂c

k	j0� � 1�M̃c1 �
O(�k	j0) where � � 1.

Var2
k� 	 �
j�j0 �1

k

1�
M�k · · · M�j�1 �

� ��
i�1

r

Vi

 j�
e�1 M1 · · · Mj0

· · · Mj	1 ei ��
Mj�1 · · · Mk �1

� �
j�j0 �1

k


1 � �� 2k	2j1�
M�� k	j

� � �
i�1

r

Vabs

 j� 
e�1 M1 · · · M j	1 e i �� 
M� k	j1�

� �M1 · · · M j0
� �

j�j0 �1

k


1 � �� 2k	2j

� �M j0 �1 · · · M j	1 �

� �
M�� k	j
Vabs � 11���
M� k	j�

� �Vabs � 11��� � �M1 · · · M j0
� �

j�j0 �1

k


1 � �� 2k	2j

� 
1 � �� j	1	j0 �
M� k	j� 2�M j	1	j0 �

� �Vabs � 11��� � �M1 · · · M j0
� �

j�j0 �1

k


1 � �� 2k	2j

� 
1 � �� j	1	j0 �
Mc �k	j� 2 �Mc
j	1	j0 �
R��2k	j	1	j0

� �
j�j0 �1

k


1 � �� 2k	2j
1 � �� jc 2 
R�� 2k	j	1	j0

� �
j�j0 �1

k


1 � �� 2kc 2 
R�� 2k

� k
1 � �� 2kc 2 
R�� 2k,

where c2 is a positive constant. Hence we have that for k �
j0,

1
k log
Var
Y 
k��� � 	2 1

k log
R 1 · · · R k �

�
1
k log
c 1 � kc 2 � � 2 log
1 � �� � 2 log
R��. (21)

Note that as k 3 �, the first term on the right converges
to 	2log(R) and the second term converges to 0. So for
any � � 0, we can choose k1 and k2, such that the first term
is less than 2 log(�) � �/3 for all k � k1, and the second
term is less than �/3 for all k � k2. Choose a � such that
the third term is equal to �/3. Then for all � � 0, there
exists kmax � max(k1, k2, j0) such that for all k � kmax,
log(Var(Y(k)))/k � 2 log(�) � �. Thus the lim sup results
of the theorem, for R � 1/�, follow.

Finally, we will show that lim infk3� log(Var(Y(k)))/k �
2 log(�) for R � 1/�. We will just need to look at the first
term in the summation of (11). Hence, for k � j0,

Var
Y 
k��

�
1


R 1 R 2 · · · R k � 2 1�M�k · · · M�2� �
i�1

r
V i


1��M2 · · · Mk 1

�

1 � �� 2
k	j0 �


R 1 R 2 · · · R k � 2 1�M� k	j0 M�j0
· · · M�2

� � �
i�1

r
V i


1��M2 · · · M j0
M k	j0 1

�

1 � �� 2
k	j0 �


R 1 R 2 · · · R k � 2 
R�� 2k	2j0 1�M�c
k	j0 M�j0

· · · M�2

� � �
i�1

r
V i


1��M2 · · · M j0
Mc

k	j0 1

�

1 � �� 2
k	j0 �


R 1 R 2 · · · R k � 2 
R�� 2k	2j0 1
M̃�c � M̂�c
k	j0 �M�j0

· · ·

� M�2 � �
i�1

r
V i


1��M2 · · · M j0

M̃c � M̂c

k	j0 �1

�

1 � �� 2
k	j0 �


R 1 R 2 · · · R k � 2 
R�� 2k	2j0 
1�M̃�c M�j0
· · · M�2

� � �
i�1

r
V i


1��M2 · · · M j0
M̃c 1 � O
� k	j0 �,

where � � 1. Note that due to the fact that M̃c � 0, Mi �
0 for all i, and the positive definiteness of Vi

(1) for at least
one i, we have that

1�M̃�c M�j0
· · · M�2� �

i�1

r
V i


1��M2 · · · M j0
M̃c 1 � 0.

Taking logarithms of both the sides and using similar tech-
niques as in the case where R � 1/�, we get (iii). □
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