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Abstract—Stringent performance standards for computing and
telecommunications systems have motivated the development of
efficient techniques for estimating rare event probabilities. In
this paper, we analyze the performance of a multilevel splitting
method for rare event simulation related to one recently pro-
posed in the telecommunications literature. This method splits
promising paths into subpaths at intermediate levels to increase
the number of observations of a rare event. In a previous paper
we gave sufficient conditions, in specific classes of models, for this
method to beasymptotically optimal; here we focus on necessary
conditions in a general setting. We show, through a variety of
results, the importance of choosing the intermediate thresholds
in a way consistent with the most likely path to a rare set, both
when the number of levels is fixed and when it increases with
the rarity of the event. In the latter case, we give very general
necessary conditions based on large deviations rate functions.
These indicate that even when the intermediate levels are chosen
appropriately, the method will frequently fail to be asymptotically
optimal. We illustrate the conditions with examples.

Index Terms—Large deviations, Monte Carlo, rare event, sim-
ulation, variance reduction.

I. INTRODUCTION

A. Background and Summary

DEVELOPMENTS in computing and telecommunications
technology over roughly the last decade have brought

special significance to rare events, and this in turn has driven
the development of new modeling and analysis tools. Per-
formance standards for failure probabilities in fault-tolerant
computing and buffer overflow probabilities in ATM networks,
for example, are stringent enough to make rare event asymp-
totics relevant for performance analysis. This has led to a
burgeoning literature on methods based on large deviations
techniques in particular; see, e.g., [3], [4], [19], [30], [33], and
the references there.

Approximations based on asymptotics must ordinarily be
supplemented with simulation for a more precise analysis, but
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the estimation of rare event probabilities by simulation poses a
serious computational challenge. Indeed, for sufficiently small
probabilities, straightforward simulation is simply infeasible
and the use of powerful variance reduction techniques becomes
essential. Interestingly, based in part on early work of Cottrell
et al. [8], Parekh and Walrand [24], Siegmund [31], and
others, it is now well known that the same large deviations
asymptotics that give a rough approximation to a rare event
probability often suggest a highly effectivechange of measure
for variance reduction viaimportance sampling(see, e.g., [3],
[5], [6], [12], [21], [23], [25], [26], and [29]).

This observation has led to numerous successful imple-
mentations of importance sampling in computer and com-
munications applications and, furthermore, to an interesting
link between optimal simulation and effective bandwidths [5],
[23], [33]. At the same time, the method faces two serious
shortcomings. First, it requires that the model to be simulated
be amenable to a large deviations analysis, and this currently
excludes most networks. Second, and perhaps even more
worrisome, results in [16], [17], and [27] show that importance
sampling techniques suggested by large deviations are not
automatically effective and may in fact lead to poor results.
These references show how extremely unlikely sample paths
can contribute significantly to the variance of the estimate.
This can lead to a loss in efficiency and, in some cases, can
even result in an infinite variance. Thus importance sampling
should be applied with caution.

Against this backdrop, a much simpler approach to rare
event simulation recently advanced in a series of papers
focused on telecommunications looks attractive. The method,
introduced in Vilĺen-Altamirano and Vilĺen-Altamirano [35]
and called RESTART there and in [28], [34], and [36], is
in fact a multilevel splitting technique of the type used in
simulation at least since Kahn and Harris [22] and frequently
used in physics applications in particular (e.g., [11] and [32]).
The technique is illustrated in Fig. 1. Suppose we want to
estimate the probability that a process reaches a rare set

before returning to the origin, starting from the origin.
(Estimation of steady-state rare events like buffer overflow
probabilities and failure probabilities can often be reduced to
the estimation of this type of probability; see [19] and [24].)
Since few paths make it to, straightforward simulation may
require a very large number of trials to produce an estimate of
reasonable accuracy. Multilevel splitting introduces a series of
intermediate thresholds between the starting state zero and the
target set ; in the figure there are just two, but in practice
there could be many. Each path that reaches a threshold is split
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Fig. 1. Illustration of multilevel splitting with two intermediate levels and a
splitting parameter of three. Of the three subpaths at the first split, two reach
the next level, and of their subpaths, all but one reachA.

into a (possibly level-dependent) number of subpaths which
subsequently evolve independently. Each path is terminated
upon entry into or zero. Dividing the number of paths that
reach by the product of the splitting parameters yields an
unbiased estimate of the probability of reachingbefore zero.

Much of the attractiveness of this method lies in its simplic-
ity. It does not appear to require an extensive analysis of the
underlying process for implementation; indeed it appears to
be almost universally applicable. Appropriately implemented,
it promises to use computation time effectively by reinforcing
the informative paths that reach intermediate thresholds.

In [13] we identified a class of systems and implementation
conditions for which multilevel splitting results inasymp-
totically optimal estimates of rare event probabilities. This
notion is reviewed in Section IV; briefly, it ensures that the
computational effort required to achieve a fixed precision does
not grow too quickly with the rarity of the event. This is the
standard criterion in theoretical analyses of importance sam-
pling for large deviations rare events. Hence, the results in [13]
show that—under the right conditions—multilevel splitting is
as asymptotically effective as the best importance sampling
estimators arrived at using large deviations techniques. A key
observation in [13] is that the splitting parameters should be
chosen to keep the expected number of surviving subpaths at
each level roughly constant. This balances the loss of variance
reduction from too little splitting and the exponential growth
in computational effort from too much splitting.

The purpose of this paper is to explore in more detail the
relation between effective splitting and the large deviations
behavior of the underlying process. We show that, despite its
apparent simplicity, splitting ultimately relies on a detailed
understanding of a process’s rare event asymptotics, much as
importance sampling does. This leads to necessary conditions
for asymptotic optimality that balance the sufficient conditions
given in [13] and show that splitting is by no means a panacea
for rare event simulation.

A central issue in implementing multilevel splitting is the
choice of thresholds. A little thought suggests that they should
be chosen consistent (in some sense) with the most likely path
to the rare set—the path sought by a large deviations analysis.
To see why, consider the setting illustrated in Fig. 2. Suppose
that, conditional on reaching before zero, the process tends
to follow the path ending at , and conditional on reaching

Fig. 2. The most likely path toB ends atx, but the most likely path to
A hits B at b.

before zero it tends to follow the path ending at. Since
the paths do not coincide, we would say that the intermediate
threshold has not been chosen consistent with the most likely
path.

If we now apply splitting in this setting, we will end up
reinforcing a lot of subpaths that start near. To reach it
would be better to have many subpaths starting near, but few
of the paths that make it to will hit near . This suggests
that unless we know how to choose the intermediate thresholds
to make the conditional entry points (nearly) coincide, splitting
will not result in an effective allocation of computational
effort. Put another way, the most likely path to an intermediate
level must coincide with the most likely path to the final level.

This insight will be made precise in various ways throughout
the rest of the paper. In Section II, we treat cases with a
fixed number of levels and small probabilities of moving from
one level to the next; this type of setting arises in models
of highly reliable computing systems. We show that under
conditions corresponding to Fig. 2, there is indeed a loss of
efficiency. Furthermore, in Section III, we show that there is
a type of instability resulting from the mismatch between the
entrance distributions at conditional on hitting or ;
with high probability, the splitting estimator will appear biased
over even a large number of runs. A similar problem can
occur in importance sampling if the simulation is “overbiased”
[1], [10], [26]. In the context of importance sampling, this
phenomenon was called “apparent bias” in [10]; we adopt this
terminolgy when this phenomenon occurs in the context of
splitting.

In Section IV we develop necessary conditions for asymp-
totic efficiency in cases where events become rare because
the number of levels increases while the dynamics of the
underlying process remain fixed; this setting is relevant to
buffer overflow models, for example. We first give a necessary
condition on the splitting parameter: the log of this parameter
should equal the exponential rate of decay of the probability to
be estimated. This is consistent withsufficientconditions given
in [13] under much more specific assumptionsand implies that
the expected number of subpaths entering each level neither
grows nor shrinks too quickly.

Next we show that even choosing the right splitting parame-
ter does not in general guarantee asymptotic optimality (though
it did in the special cases analyzed in [13]). The problem in
the general case again arises from the possibility illustrated in
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Fig. 2. To preclude this possibility in a very strong sense, we
give a further necessary condition based on large deviations
techniques. This condition may be interpreted as requiring a
strong tendency to follow the most likely path, conditional on
reaching a rare set. We give a class of processes for which
this necessary condition is satisfied.

Section V shows that our necessary conditions are violated
by a simple Jackson network under what appears to be the
optimal choice of thresholds, suggesting that even if splitting
is implemented in the best possible way it may fail to be
asymptotically efficient. Numerical results confirm that split-
ting fails to be completely effective in this Jackson network
example. A brief discussion summarizing the implications of
the results in [13] and this paper may be found in [15].

B. Framework and Notation

To obtain reasonable generality without excessive complex-
ity, we assume throughout that the underlying process to be
simulated is a countable-state Markov chain in either discrete
or continuous time. The initial distribution of the process
is concentrated on a set of states to which the process
returns with probability one after exiting. We are interested in
estimating , the probability of hitting a target set before
returning to . To apply multilevel splitting, we define a
nested sequence of sets (also called levels), ,
with and .
We assume that the process cannot enter , without
first entering , where is the complement of

. Paths are split uponfirst entrances to the sets . We
can think of the process being absorbed in, when it re-
enters . Hence, there may be a positive probability that a
set is never entered. Let denote the probability of
entering the set , given that the set has been entered.
We set and then . We assume that each

is positive, as otherwise the problem is trivial.
Let denote the splitting parameter for level —the

number of subpaths generated from each path that reaches
. The splitting estimator of is

(1)

where is defined recursively as follows.

1) if the th path from level 0 hits level 1; it is
0 otherwise. If , then subpaths are started
and the th of these is labeled .

2) If then .
If and path hits
level , then ; it is 0 other-
wise. If path hits level then
subpaths are started and the th of these is labeled

.

Clearly, each has expectation .
It follows that has the same expectation and is therefore
unbiased.

II. A SYMPTOTIC EFFICIENCY: SMALL

INTERLEVEL UPCROSSINGPROBABILITIES

In this section, we consider splitting with a fixed number of
intermediate levels, specifically two levels. Reaching the set

becomes rare because the probability of reaching each
level from the previous one goes to zero with a rarity parameter

. This setting is typical of models of highly depend-
able fault-tolerant computing systems [29], where reaching
a failed state becomes increasingly rare as the failure rates
of individual components decrease to zero. Settings in which
reaching becomes rare becauseincreases are treated in
Section IV; these are more typical of buffer overflow problems
and reliability systems with a high degree of redundancy.

Our first objective is to formalize the intuitive discussion of
Fig. 2 in Section I, beginning with the case illustrated
there. We show that if there is a statesuch that entering
level 1 in state is highly unlikely, but entering it via
becomes likely conditional on level 2 being reached, then a
loss in efficiency occurs. This loss in efficiency comes about
because only rarely does the method concentrate its effort on
trials from an important state at level 1.

As described in Section I-B, the estimate is obtained
by simulating samples from and splits for each
success (orhit) at level 1. Specifically, the splitting estimator
for the two-level case is

(2)

As described in [14], the two-level splitting procedure can
be viewed as picking arandomprobability for success in
going from level 1 to 2, where . Conditional on
the entry state at level 1, the second-stage hit probability is
constant, but because the entry state is unknown at the start,
the situation is equivalent to choosing a random. All
subpaths generated from a single hit at level 1 have the same
probability of reaching level 2, determined by their common
entrance state at level 1.

To study the relative efficiency of the method we are
interested in the behavior of where is the
expected work to obtain the estimate and denotes the
variance of (see [18], [20], and Section IV-A for a further
discussion of this performance measure). In our case, assuming
a constant computational cost for each split path, we
have . Using an expression for derived
in [14] we obtain

(3)

We are interested in the behavior ofwhen the ’s tend to
zero, which as explained above might be the case in simu-
lations of highly dependable fault-tolerant computer system
models [29]. We index the probabilities byand assume that
as , the transition probabilities change to make the set
increasingly rare. Since is fixed, for the asymptotics, we can
also consider the and the ’s, , to be fixed as

varies. Assume that where the ’s govern the
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relative rates with which the ’s approach zero. We see that
(3) grows at a rate of at least . This lower bound on the
growth rate is achieved provided

and . These last two conditions hold if,
e.g., and for some constant. Thus, the
splitting procedure does not satisfy the bounded relative error
property [29], which would require (3) to remain bounded as

. However, for standard simulation ( ), (3)
grows at rate , so at best, two-level splitting can be of
order times more efficient than standard simulation.

To understand the circumstances under which the lowest
possible growth rate of order is obtained for , we must
examine the behavior of . To do so, we introduce
some additional notation. Let

probability that level is entered at state

for any

(in particular, )

conditional probability of entering level

at state , given level is reached

probability of reaching level,

given that level was entered at.

With this notation the probability that is given
by and where for simplicity
we assume that the process starts out in state with
probability . We thus obtain

(4)

Since , (4) is at most which implies
that two-level splitting is no worse than standard simulation
provided and . However, determining
verifiable conditions under which remains bounded
is not always a simple matter. One case in which it is true is if

for all states and some constant; in this case
is bounded. The following theorem provides additional

insight into more general situations. For any state , let

probability of entering level at

conditional on eventually reaching level

for any

Hence . Finally, let
. We now have the following.

Theorem 1:

1) If for some state , we have ,
then as .

2) Suppose there exists a state such that, as

and (5)

Then as .

3) Suppose there is a finite set such that
for all . Then

provided

(6)

Before proving the result, we interpret its meaning. Let
us say that a state is “on a likely path to ” if
remains bounded away from zero as . Part 1 indicates
that must not be too large, relative to the conditional
probability of hitting level 2 by passing through stateat
level 1. In particular, if is on a likely path to , then

must remain bounded, i.e., for any such statethe
probability of going from to level 2 must not be much
larger than the average probability of going to level 2. Even
if is not on a likely path to , there are limits on how
large may be. Part 2 states that if entering level 1
at state is unlikely, but is on a likely path to , then
the method loses efficiency, supporting the discussion around
Fig. 2 in Section I. Consider Part 3 with a finite setsuch that

and suppose further that is not on a likely path
to , i.e., Thus passing through the set
contributes insignificantly to and the simulation spends a
negligible fraction of its time simulating splits from (since

). However, even in this case it is not guaranteed
that . Part 3 gives a sufficient condition, in
terms of the worst case .

Proof: The proof of Part 1 is immediate since each term
in the summation of (4) must be finite. To prove Part 2, we
have

(7)

which by (5). To prove Part 3, write (4) as
where (respectively, ) is the sum over terms in
(respectively, ). Since , for any
we have , and thus is by the
definition of and the fact that is finite. Next

(8)

III. A PPARENT BIAS IN SPLITTING ESTIMATES

As noted in Section I-B, the splitting estimatorin (1) is
an unbiased estimator of, i.e., . However, now
we will show that unless the levels are chosen consistent with
the most likely path, the estimator appears biased with high
probability, even for large sample sizes.

We consider a family of problems indexed by a rarity
parameter . Associated with each are splitting factors

, an intermediate level , a final level , and a
particular subset, , of . For notational simplicity, we
will typically suppress the dependency of , and on
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. is best thought of as the total number of replications
of the splitting procedure starting at level zero, i.e., we view
the procedure as consisting of i.i.d. replications where
each replication consists of following all the offspring from
a single path starting at level 0. As , we seek a situation
such as that shown in Fig. 2 with the set representing a
neighborhood about the point: entrance to the intermediate
level in is rare, but entrance to the intermediate level in
given that the final level is hit is not rare. We imagine two
ways in which this happens.

1) and remain fixed, but the probability of hitting the
next level goes to 0 as . This is similar to the
setting of Section II and is represented by models of
highly dependable computing systems.

2) The probability of hitting the next level is independent
of , but and increase as . This is similar to
the multilevel setting of Section IV and is represented
by buffer overflow models.

Theorem 2: Suppose

and as (9)

If and as , then there
exists a set such that

and

as

Remarks: Condition (9) states that entering via is
unlikely, whereas, conditional on reaching , entering in

becomes likely. The expression is simply
the expected number of subpaths in the first replications
that enter ; we assume that is large, but small enough
so that entrances to are still rare. The theorem states that
under the given conditions, with probability approaching one,

appears biased. More specifically, while is unbiased,
with high probability the event (as defined below) occurs.
Thus with high probability, the estimate ofproduced by the
simulation is . Because the intermediate level is chosen
incorrectly, , i.e., the estimate “appears biased.”
If , then the process does not pass through the “correct”
intermediate set of states on its way to with probability
approaching one. In this case, the splitting estimator appears to
arbitrarily underestimate. Note also, that the result remains
true if in (9) the unconditional probability is
replaced by the conditional probability [since

].
Proof: Let be the index of the first replication from

zero such that at least one subpath hitsand define
. First we will show that as .

Note that has a geometric distribution with some success
probability, say . Let be the total number of offspring
from level 0 on a replication that enter level in . Note
that . Furthermore,

. Therefore . Hence

as since, by hypothesis, and
.

For the next part, define to be the total number of
offspring from level 0 on replication that enter level and
let denote the number of these that pass through.
Note that

(10)

since on , i.e., all subpaths that reach level
must do so by passing through since on no subpath

even enters . Furthermore

(11)

where is the probability of reaching level after
entering level in state . Thus dividing (10) by , using
(11), and letting , we obtain

by (9).

IV. A SYMPTOTIC EFFICIENCY: LARGE NUMBER OF LEVELS

In Section II we considered the splitting method applied
to systems where the rare set was fixed and the probability
of moving from one level to the next is small. As already
noted, models of highly reliable computing systems provide
motivation for this case. In such settings, insight into the
performance of the method is obtained by keeping the interme-
diate sets fixed and considering asymptotics as the intermediate
level hitting probabilities tend to zero. In this section, we
consider cases in which the probability of moving from one
level to the next is not very small, but the number of levels
is potentially large. Overflow events in queues with large
buffers provide motivation for this case. We now consider
asymptotics in which we keep the ’s fixed but let increase
to infinity— , rather than , is now the rarity parameter.

We derive conditions that must be satisfied in order for
multilevel splitting to be asymptotically optimal as .
We begin with a formal definition of asymptotic optimality
and then derive our first necessary condition. This condition
specifies a unique value for the number of splits per
level (assumed constant across levels). However, even if this
value of is selected, the method is not guaranteed to be
asymptotically optimal. We develop necessary conditions on
the large deviations rate functions to enter an intermediate level
near some point, , and the rate, , to move from that
point to the final level. This necessary condition requires that,
for all cannot be too large relative to and the
overall probability of the rare event being estimated.

In particular, this implies the analog of Part 2 of Theorem 1:
the method is not asymptotically optimal if there is a pointat
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some intermediate level such that the process is highly unlikely
to enter the intermediate level near, given theintermediate
level is hit, but it is likely that the process passes near,
given the final level is hit. In this sense, the intermediate
levels should be chosen so as to be consistent with the large
deviations path (assuming it exits) to thefinal level, i.e., if the
process is likely to pass near conditional on reaching the
final level, then it must also be likely to enter the intermediate
level near conditional on reaching the intermediate level.
We then give an example of a process and level structure such
that the necessary conditions are satisfied.

A. Asymptotic Optimality

We will call a sequence of estimators asymptoti-
cally optimal if

(12)

with denoting the expected computational effort per
replication of . If has an exponential decay rate, (12)
requires that the product of the second moment ofand
the expected computational effort per replication have a de-
cay rate twice as large. In balancing estimator variance and
computational effort, it is conventional in simulation to con-
sider thework-normalized variance , rather than

. (This criterion dates at least to Hammersley and
Handscomb [20] and is justified in a general framework by
Glynn and Whitt [18].) For this reason, in [13] we used the
condition

(13)

A simple consequence of Jensen’s inequality is

from which it is evident that (13) implies (12) while the
failure of (12) implies that of (13). Since our focus here
is on necessary conditions (and in [13] it was on sufficient
conditions) it is appropriate to work with the somewhat simpler
requirement (12).

We will not make detailed assumptions about the computa-
tional effort . Instead, we assume (rather conservatively)
that each path started at any level consumes at least one unit
of computing time, so that grows at least as fast as the
number of paths.

B. Necessary Conditions on the Number of Splits

In this section, we derive a necessary condition on the
number of splits per level in order for multilevel splitting to be
asymptotically optimal. We assume that has a logarithmic
limit, i.e.,

(14)

for some constant . This holds quite generally;
in particular, it holds in the settings treated in [13] and in the
Jackson network considered in Section V.

We assume that the splitting factor at each level isand let
be the number of paths that enter level. We can express

the (unbiased) splitting estimator of as

(15)

Taking expectations of (15) and using (14), we have for any
value of

(16)

where . Write
where

. We further assume the limits

and

(17)

exist, in which case . We remark that
in case these limits fail to exist, by considering appropriate
subsequences the following theorem continues to hold with
the definitions of and appropriately modified.

Theorem 3: If (14) and (17) hold, then a necessary condi-
tion for splitting to be asymptotically optimal is

in which case and hence .
Proof: We will show that splitting cannot be asymp-

totically optimal if either or
. First, suppose . We need to show that

where
is the expected work. Since

(the variance is nonnegative), it suffices to show
that . However, this follows
immediately since . Now, suppose ,
in which case the expected number of paths to reach level

is exponentially small. There are two cases to consider:
and . We first consider the case when

. (In this case, with high probability, but
when , can be very large.) We will show that

. The unbiasedness of
implies that

(18)

Since and
, we have

(19)

(20)

(21)
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where the strict inequality follows since and the
last equality is true by (18).

We next consider the case , in which case
. Let is Bernoulli with

success probability . Thus and

(22)

(23)

Note that the line of reasoning in (19)–(21) also shows that
splitting is not asymptotically optimal if , but

and .
Theorem 3 gives a necessary condition for splitting to be

asymptotically optimal. In the Markovian cases considered
in [13], the necessary condition is also sufficient
for asymptotic optimality. If , the requirement that

means that the probability of getting at least one
success at level cannot be too small while the requirement
that means that, given at least one success at level
, the expected number of successes must be subexponential.

Roughly speaking, if then there are not enough
splits so that entering the final level is still a rare event,
thereby precluding asymptotic optimality. If , then
the expected number of subpaths entering the final level
grows exponentially. This exponential increase in the work
precludes asymptotic optimality. In the finite Markovian case,
if , then the expected number of splits entering each
level remains roughly constant. In this more general setting,

implies that the expected number of splits entering
each level neither grows nor shrinks too quickly.

Note also that the theorem remains valid if, instead of a
constant splits per level, there are splits at level
and . Furthermore, results in [13]
imply that if the number of splits at level is random, i.i.d.
with mean and independent of everything else, then

is an unbiased estimate of .
Theorem 3 thus remains valid if

, i.e., a necessary condition for asymptotic optimality
is still .

C. Necessary Conditions on the Rate Functions
for Asymptotic Optimality

In this subsection we consider necessary conditions on the
rate functions for entering an intermediate level near a point
and moving from that point to the final level (see, e.g., Dembo
and Zeitouni [9] for background on rate functions). In proving
our results we will rely on the following simple lemma.

Lemma 1: If (14) and (17) hold, a necessary condition for
asymptotic optimality is that

Proof: By Theorem 3 it follows that we must have
. We then have, using that , is

unbiased, and Jensen’s inequality, that

From this the statement of the lemma follows.
The setting for the remainder of this subsection is as follows.

A fixed set is scaled by a parameter, and the resulting set
becomes rare as increases. In simulating the probability

of hitting the set , a set has been chosen so that
and the th splitting occurs upon entry into

. (For notational simplicity, we henceforth assume that
in such a way that is an integer, although the result

is true in general provided is used to denote .) A
special case is when in which case we are considering
the th splitting to take place at .

The assumptions of the following theorem state that there
exists an such that the probability of entering the set in
an appropriately chosen neighborhood of satisfies a large
deviations lower bound. In addition, the probability of hitting
the set starting from any of the points in this neighborhood
satisfies a uniform large deviations lower bound. The result,
(26), places a constraint on the relative magnitudes of these
lower bounds. For example, if entering in a neighborhood
of is unlikely, it cannot be too “easy” to then enter
from this neighborhood.

We let denote the event that has been entered and
and denote the events that

has been entered atand at
, respectively.

Theorem 4: Fix and suppose that for some positive
and we have

(24)
and

(25)

Then, for asymptotic optimality to hold it is necessary that

(26)

Proof: Let be the number of paths that enter
at and let be the number

of successors of theth of these that reaches . For every
we have the relation

and the are i.i.d. This implies
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and Wald’s equation then allows us to write

where has the distribution of the . Since
is an unbiased estimator of

Similarly

Therefore, we may write

Letting and recalling Theorem 3 and Lemma 1 yields
the desired result.

Note that we always have

(27)

since the probability of entering level by passing near a
particular point is less than the overall probability of entering
level . Comparing (26) and (27), we see that (26) places
additional restrictions. In particular, the difference between
(26) and (27) is that the left-hand side (LHS) of (26) contains
an additional factor of , while the right-
hand side (RHS) of (26) contains an additional factor of

. Thus (26) may fail to hold if ,
i.e., if it is too “easy” to reach the final level from.

In the following theorem the assumption is made that a
point exists such that it is likely to hit the final level by
passing near the pointat the intermediate level. (Technically
(28) states that the probability that is hit in ,
given that is hit, decays subexponentially and the large
deviations lower bounds of Theorem 4 are supplemented with
corresponding upper bounds of (29) and (30).) In this case
the upper bound of (27) becomes an equality (31). More
importantly, we may then rephrase the necessary condition
of Theorem 4 as (32), which is best understood if ,
in which case the intermediate set is a scaled version of the
final set. If this is the case, the probability of hitting
has rate and the probability of hitting near

has rate . The necessary condition (32) then
states that if , then the method cannot be
asymptotically optimal. In other words, the sort of situation
illustrated in Fig. 2 must be precluded for all intermediate
levels. This is the analog of Part 2 of Theorem 1, since it
states that the method is not asymptotically optimal if the most
likely point to enter an intermediate level is not contained in
the most likely path to the final level.

Theorem 5: Suppose there existssuch that in addition to
(24) and (25) it holds that for every

(28)

(29)

and

(30)

It then follows that

(31)

and a necessary condition for asymptotic optimality is that

(32)

Proof: For every

and so, by (28)

From (24), (25), (29), and (30) it follows that

and therefore that

Relation (32) now follows upon recalling the necessary con-
dition of Theorem 4.
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D. A Setting Where the Necessary Conditions Are Satisfied

In the previous subsection, a number of highly technical
assumptions were made on the rate functions, i.e., (24), (25),
(28), (29), and (30). In this section we demonstrate a setting in
which these conditions are satisfied. We further show that the
optimality condition (32) is satisfied in this setting provided
the sets and are appropriately defined.

Theorem 6: Suppose the underlying process is given by
, where is an i.i.d. sequence of bounded

random variables, and are open and convex, and, for
simplicity, that . Under the conditions of [7, Th. 2.1],
(24), (25), (28), (29), and (30) hold.

Proof: That an satisfying (28) exists is a straightfor-
ward consequence of [7, (5.2)] and [37, Th. 4].

We next consider (24) and (29). With fixed, let
, for any positive integer. We have that, for

any and sufficiently close to (note that ),
the existence of an , independent of , such that

(33)

By Mogulskii’s large deviation theorem (cf. [9, Ch. 9]) it
follows that this last quantity is greater than or equal to

, where is the Fenchel–Legendre transform
of the moment-generating function of . As in the proof
of the lower bound part of [7, Th. 2.1], given that
was arbitrary, it follows that (33) is greater than or equal to

, which in turn implies, letting
, that (33) is greater than or equal to .

For (29) we first note that

the last equality following from [7, Th. 2.1]. It therefore holds
that

and we may set

We now consider (25) and (30) being treated in a similar
fashion. It is readily verified that for each there exists
a such that and for such that

where

for all

From [7, Th. 2.1] it follows that

From this we have that (25) holds with

The same value of may be shown to hold for (30).
Corollary 1: In the setting of Theorem 6, if the set is a
-plane and , the necessary condition (32) is satisfied.
Proof: It follows from [37] that the point satisfying

(28) is in and such that

By the proof of Theorem 6 we see that

the last equality following since and is a 1/2-
plane. Recalling again the proof of Theorem 6 we see that

. We now have that (32) holds, indeed
with equalities.

V. SPLITTING IN A JACKSON NETWORK

In this section, we show by means of a counterexample
that splitting is not always asymptotically optimal, even when
the intermediate sets are consistent with the large deviations
behavior.

A. Preliminaries

Consider an queue Jackson network with traffic intensity
at queue. Let be given constants (for simplicity

assume is an integer). Let and let
for integers .

Let be the probability of hitting and
let denote the probability of hitting the set

during a cycle. Let denote
the probability that is first hit somewhere in the set .
Define . Let denote the steady-
state probability of a set and let

where is the first time to return to the state where
for all . Then, by regenerative process theory

(34)

where denotes expectation starting when all queues are
empty.
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Lemma 2: In a Jackson network with for all :

1)
2)
3) for any
4) for any .

Proof: To prove 1), apply (34) with . In
this case . Furthermore, there exist
constants and such that

. The lower bound is true since the process must
spend at least one transition in (given that is hit). The
upper bound is true by [2, Corollary 1] which states that

when the initial queue lengths are. The
result then follows since .
To prove 2), let , use (34), the lower bound

and the form of to show that
. For the lower bound on ,

since . Thus, from (34) we obtain

(35)

Using the form of we thus obtain
. To prove 3), consider

which is the conditional probability of hitting in ,
the complement of . The numerator in this expression
is less than , which is simply the probability of
hitting during a cycle. Assume now, without loss of
generality, that for each . The various bounds used
in proving 1) and 2) imply that .
Furthermore, (35) implies that .
Thus which is equivalent to 3). Part 4
follows directly from Parts 3 and 2.

We next give an example of a Jackson network for which
the sets are consistent with large
deviations in the sense that given that the process reaches,
it passes close to the point with high probability for
any . (For notational simplicity, we will assume
is an integer, but the result is true in general.)

Consider a tandem M/M/1 queue with rates .
Time reversal states that if the reversed process starts at,
it empties at rate and at rate until one of
the boundaries is hit. Thus the slope1 if .
In particular, this is true if and
where is chosen so that . In this case,
this strongly suggests that the large deviations path builds up
at slope and therefore the sets are consistent with the
large deviations path. The below argument makes this rigorous.

Part 2 of Lemma 2 states that where
. Furthermore, Part 4 of Lemma 2 states that

the probability of hitting in a neighborhood about the
point during a cycle, , has rate . Now,
starting at a point , apply importance sampling with
rates consistent with time reversal, i.e., , and

. Consider the event such that the process hits
by transitions and for transitions stays within a tube

of width about the straight line implied by these drifts that
goes from to . Formally, in , after
transitions

for (36)

Under this change of measure, the approximate time to hit
satisfies , so define and

. Now

(37)

where denotes the expectation under the change of measure
and is the likelihood ratio. For small enough, if
occurs, the process stays in the interior and has a simple
likelihood ratio

(38)

where is the number of arrivals, is the number of
departures (arrivals to ), and is the number of
departures. This simplifies to

(39)

Now, on this event at time
[by (36) and the definition of ]. Since

, and , we
obtain and

. Applying these
inequalities to (39), we obtain

(40)

Thus

(41)

We now show that

(42)

Let be any so that the infimum in (42) is
achieved at (note it suffices to consider only
of the form for some , of which there are
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only finitely many). We may assume without loss of generality
that converges to a point . We then have, with

an i.i.d. sequence each element distributed according to
the change of measure

where the last equality follows by our choice of . As
and , (42) follows from the

functional law of large numbers. Given this, we may write

(43)

and the desired result follows by letting .

B. Counterexample

In this section, we show numerically that the necessary
condition of Theorem 4 does not hold for the tandem Jackson
network even when the intermediate sets are constructed so
as to be consistent with large deviations. As in the previous
subsection, we consider the network that is consistent with
time reversal. The intermediate level corresponds to . In
the following, we will refer to a path from a point to ;
by this we mean a path that starts with within of
and ends with within of . We consider a path that
enters at for some , i.e., enters
such that is within of . The necessary condition for
asymptotic optimality is then

(44)

We will show that a lower bound on the LHS of (44) is greater
than the RHS. We do so by considering a particular path that
enters level at a point . To construct a lower
bound on consider a path that first goes from to

; by part 4 of Lemma 2, this has rate .
Next consider a straight line path from to
with rates such that . Let

be the rate associated with this path.
Since such a path stays in the interior the likelihood ratio for
such a path is given by

(45)

If the process is simulated for transitions, then in an
appropriately defined event whose probability approaches one,
we have and . As in the
previous section, the approximate number of transitions
to reach can be determined; we have

and which leads to a
formal constraint on the rates

(46)

Combining the above facts shows that

(47)

is a lower bound on the rate to follow the straight line
path where

. We can maximize (47), subject to the con-
straint (46), to obtain the greatest lower bound. Such maxi-
mization becomes algebraically complex; however, it can be
carried out numerically. In doing so, we observed that the best
rate seemed to occur when and certainly evaluating

when is a lower bound regardless of what the
optimum is. Thus fixing together with the constraints
(46) and determines and ; i.e., a
lower bound on the optimum rate of
can be written as a function . We note that
this approach can also be justified by an appeal to Sanov’s
theorem [3] and is essentially the same heuristic technique
presented in [24]. However, it is clear by the analysis of
the previous subsection that one can carefully construct the
appropriate tubes and make everything perfectly rigorous.
Thus we obtain the lower bound

. A similar approach can be taken to obtain
a lower bound where is
again obtained by fixing as in (47), but starting at the
point and ending at .

Now define the function by

(48)

(Because of the way the model is parameterized,is a
function of .) The necessary condition (44) for splitting to be
asymptotically optimal cannot be satisfied if .
Fig. 3 plots as a function of the arrival rate for
two fixed pairs of and . (The
axis in the figure is actually the physically more meaningful
traffic intensity at queue 2, which turns out to be .)
Fig. 3 shows that for all traffic intensities and
these values of . Thus we have shown numerically that
splitting cannot be asymptotically optimal for this example.

C. Experimental Results

In this section we consider simulation results when applying
splitting to a two-queue tandem Jackson network. The rare
event of interest is hitting during
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Fig. 3. A numerical counterexample to asymptotic optimality in the two-queue tandem Jackson network showing thatH(a; b; �) < 0 for all arrival
rates and certain values ofa and b.

a cycle. By the results of the previous section,
. We consider two instances of this network both of

which have . Thus, the necessary condition for
asymptotic optimality requires that . The two cases are
as follows.

• Case I: . Time reversal strongly
suggests that the way occurs is for queue 1 to first
build up to a certain level greater than, and then for
queue 2 to build up while queue drains until is hit
near the point . Thus the intermediate sets are
inconsistent with this buildup behavior.

• Case II: . This is the case in
which the buildup to occurs along the diagonal line
from to and thus the intermediate sets are
consistent with the large deviations behavior.

The simulations were run for 16 h on an IBM RS/6000
workstation, which resulted in approximately 12 billion tran-
sitions per run. From a single run at a given parameter setting,
we simultaneously estimated for . Split-
ting was done upon entry to the set for and
we used splits per level, consistent with the necessary
condition for optimality. By solving sets of linear equations,
numerical values of can be computed thereby permitting
comparison of the simulation estimates to numerically precise
results. The results are reported in Table I, which displays

and the relative error (defined to be the relative width of
a 99% confidence interval).

In Case I, notice that the relative error increases as
increases and that the estimateis orders of magnitude too
low for large , e.g., is five orders of magnitude off. The

TABLE I
SPLITTING RESULTS FOR THETWO-QUEUE TANDEM JACKSON NETWORK

estimates are much better in Case II, but the facts that the
relative error increases with and that the associated 99%
confidence interval for does not come close to containing

are symptoms that the method is not asymptotically opti-
mal. These experimental results are completely consistent with
the theory developed in this paper. As a point of comparison,
experimental results in [13] for the finite Markovian case (in
which case splitting when done properly is asymptotically
optimal) obtained relative errors of less than20% for

in less than 10 min of CPU time on the same RS/6000
workstation. The computer codes used in these two papers
were also identical, save for the differences in generating the
transitions of the embedded Markov chains.

VI. CONCLUDING REMARKS

We have developed necessary conditions for the effective-
ness of multilevel splitting in estimating rare event proba-
bilities. Our results address two settings—one in which the
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number of levels remains fixed and the probabilities of moving
from one to the next become small and another in which
the number of levels increases while the probabilities remain
fixed. In both settings we have emphasized the importance
of choosing the levels in a way consistent with the most
likely path to a rare set. Our results suggest that the apparent
simplicity of multilevel splitting may be somewhat misleading.
In the end, the effectiveness of the method depends critically
on an understanding of the way a rare event occurs, much as
an understanding of the large deviations of a process is central
to importance sampling.

We briefly contrast the conclusions reached here with the
more positive results in our earlier paper [13]. There, we
identified classes of models where splitting provided asymp-
totically optimal estimates. In the settings we considered, the
most important condition was that the number of splits per
level be chosen correctly. Theorem 3 of this paper indicates
that the sufficient conditions we gave are in fact necessary in
far greater generality. But we have also seen that this necessary
condition ceases to be sufficient without the additional model
structure used in [13]. The models we treated there could
be roughly described as having the property that an event
can become rare essentially along just one dimension. As a
consequence, the most likely path to the ultimate level cannot
differ too greatly from the most likely path to an intermediate
level, and it is precisely this that our necessary conditions
seek to ensure.
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