Copyright © 1998 IEEE. Reprinted from IEEE Transactions on Automatic Control.

This material is posted here with permission of the IEEE. Such permission of the IEEE
does not in any way imply IEEE endorsement of any of Columbia Business School's
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.



1666 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 12, DECEMBER 1998

A Large Deviations Perspective on
the Efficiency of Multilevel Splitting

Paul Glasserman, Philip HeidelbergEellow, IEEE Perwez Shahabuddivember, IEEE and Tim Zajic

Abstract—Stringent performance standards for computing and the estimation of rare event probabilities by simulation poses a
telecommunications systems have motivated the development ofserious computational challenge. Indeed, for sufficiently small
efficient techniques for estimating rare event prababilities. In probabilities, straightforward simulation is simply infeasible

this paper, we analyze the performance of a multilevel splitting . . .
method for rare event simulation related to one recently pro- and the use of powerful variance reduction techniques becomes

posed in the telecommunications literature. This method splits €ssential. Interestingly, based in part on early work of Cottrell
promising paths into subpaths at intermediate levels to increase et al. [8], Parekh and Walrand [24], Siegmund [31], and
the number of observations of a rare event. In a previous paper gthers, it is now well known that the same large deviations

we gave sufficient cond_ltlons, |n_speC|f|c classes of models, for th'sasymptotics that give a rough approximation to a rare event
method to be asymptotically optimglhere we focus on necessary

conditions in a general setting. We show, through a variety of Probability often suggest a highly effectiedange of measure
results, the importance of choosing the intermediate thresholds for variance reduction vianportance samplingsee, e.g., [3],

in a way consistent with the most likely path to a rare set, both [5], [6], [12], [21], [23], [25], [26], and [29]).

when the number of levels is fixed and when it increases with  This observation has led to numerous successful imple-

the rarity of the event. In the latter case, we give very general : : : .
necessary conditions based on large deviations rate functions.mem"jltlons of importance sampling in computer and com

These indicate that even when the intermediate levels are chosenr_nu"‘icationS app_licatio_ns an_d- furthermorg, to an ilflteresting
appropriately, the method will frequently fail to be asymptotically  link between optimal simulation and effective bandwidths [5],

optimal. We illustrate the conditions with examples. [23], [33]. At the same time, the method faces two serious
Index Terms_Large deviations' Monte Car'o' rare event’ sim- Shortc0m|ngs FIfSt, |t I’equn’es that the mOde| to be S|mu|ated
ulation, variance reduction. be amenable to a large deviations analysis, and this currently

excludes most networks. Second, and perhaps even more
worrisome, results in [16], [17], and [27] show that importance
sampling techniques suggested by large deviations are not
automatically effective and may in fact lead to poor results.
These references show how extremely unlikely sample paths
EVELOPMENTS in computing and telecommunicationgan contribute significantly to the variance of the estimate.
technology over roughly the last decade have broughhis can lead to a loss in efficiency and, in some cases, can
special significance to rare events, and this in turn has driveven result in an infinite variance. Thus importance sampling
the development of new modeling and analysis tools. P&hould be applied with caution.
formance standards for failure probabilities in fault-tolerant Against this backdrop, a much simpler approach to rare
computing and buffer overflow probabilities in ATM networksevent simulation recently advanced in a series of papers
for example, are stringent enough to make rare event asymgeused on telecommunications looks attractive. The method,
totics relevant for performance analysis. This has led toigroduced in Vilen-Altamirano and Vikn-Altamirano [35]
burgeoning literature on methods based on large deviatiansd called RESTART there and in [28], [34], and [36], is
techniques in particular; see, e.g., [3], [4], [19], [30], [33], anth fact a multilevel splitting technique of the type used in
the references there. simulation at least since Kahn and Harris [22] and frequently
Approximations based on asymptotics must ordinarily hgsed in physics applications in particular (e.g., [11] and [32]).
supplemented with simulation for a more precise analysis, brtie technique is illustrated in Fig. 1. Suppose we want to
Manuscript received December 19, 1996; revised December 1, 19&73.t|mate the prpbablllty that_a, proces_s reaches a ra}re set
Recommended by Associate Editor, W.-B. Gong. This work was supported 8y before returning to the origin, starting from the origin.
the NSF National Young Investigator Award under Grant DMI-94-57189, thEstimation of steady-state rare events like buffer overflow
NSF University-Industry Cooperative Research Program under Grant D'\%obabilities and failure probabilities can often be reduced to

95-08709, and the NSF Career Award under Grant DMI-96-25297. . - . =
P. Glasserman is with the Graduate School of Business, Columbia Univiite estimation of this type of probability; see [19] and [24].)

I. INTRODUCTION

A. Background and Summary
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Fig. 1. lllustration of multilevel splitting with two intermediate levels and aig. 2. The most likely path td3 ends atz, but the most likely path to
splitting parameter of three. Of the three subpaths at the first split, two readhhits B at b.
the next level, and of their subpaths, all but one redch

B before zero it tends to follow the path endingzatSince

into a (possibly level-dependent) number of subpaths whighe paths do not coincide, we would say that the intermediate
subsequently evolve independently. Each path is terminatgdeshold has not been chosen consistent with the most likely
upon entry intoA or zero. Dividing the number of paths thaipath
reach A by the product of the splitting parameters yields an | we now apply splitting in this setting, we will end up
unbiased estimate of the probability of reachitidpefore zero. reinforcing a lot of subpaths that start nearTo reachA it

Much of the attractiveness of this method lies in its SImplquou|d be better to have many subpaths starting heglant few
ity. It does not appear to require an extensive analysis of thethe paths that make it t& will hit B nearb. This suggests
underlying process for implementation; indeed it appears figat unless we know how to choose the intermediate thresholds
be almost universally applicable. Appropriately implementegs make the conditional entry points (nearly) coincide, splitting
it promises to use computation time effectively by reinforcingjill not result in an effective allocation of computational
the informative paths that reach intermediate thresholds. effort. Put another way, the most likely path to an intermediate

In [13] we identified a class of systems and implementatiggyel must coincide with the most likely path to the final level.
conditions for which multilevel splitting results iasymp-  This insight will be made precise in various ways throughout
totically optimal estimates of rare event probabilities. Thishe rest of the paper. In Section Il, we treat cases with a
notion is reviewed in Section IV; briefly, it ensures that théixed number of levels and small probabilities of moving from
computational effort required to achieve a fixed precision dogge level to the next; this type of setting arises in models
not grow too quickly with the rarity of the event. This is theof highly reliable computing systems. We show that under
standard criterion in theoretical analyses of importance sagbnditions corresponding to Fig. 2, there is indeed a loss of
pling for large deviations rare events. Hence, the results in [1gficiency. Furthermore, in Section Ill, we show that there is
show that—under the right conditions—multilevel splitting i type of instability resulting from the mismatch between the
as asymptotically effective as the best importance sampligg@trance distributions aB conditional on hitting A or B;
estimators arrived at using large deviations techniques. A ke@jth high probability, the splitting estimator will appear biased
observation in [13] is that the splitting parameters should kser even a large number of runs. A similar problem can
chosen to keep the expected number of surviving subpaths)étur in importance sampling if the simulation is “overbiased”
each level roughly constant. This balances the loss of variaj¢g [10], [26]. In the context of importance sampling, this
reduction from too little splitting and the exponential growtlphenomenon was called “apparent bias” in [10]; we adopt this
in computational effort from too much splitting. terminolgy when this phenomenon occurs in the context of

The purpose of this paper is to explore in more detail thgplitting.
relation between effective splitting and the large deviations In Section IV we develop necessary conditions for asymp-
behavior of the underlying process. We show that, despite itgic efficiency in cases where events become rare because
apparent simplicity, splitting ultimately relies on a detailethe number of levels increases while the dynamics of the
understanding of a process’s rare event asymptotics, muchuaslerlying process remain fixed; this setting is relevant to
importance sampling does. This leads to necessary condititwsfer overflow models, for example. We first give a necessary
for asymptotic optimality that balance the sufficient conditionsondition on the splitting parameter: the log of this parameter
given in [13] and show that splitting is by no means a panacehould equal the exponential rate of decay of the probability to
for rare event simulation. be estimated. This is consistent wihfficientconditions given

A central issue in implementing multilevel splitting is than [13] under much more specific assumpti@ms&l implies that
choice of thresholds. A little thought suggests that they shoutie expected number of subpaths entering each level neither
be chosen consistent (in some sense) with the most likely pgtows nor shrinks too quickly
to the rare set—the path sought by a large deviations analysisNext we show that even choosing the right splitting parame-
To see why, consider the setting illustrated in Fig. 2. Suppotr does not in general guarantee asymptotic optimality (though
that, conditional on reaching before zero, the process tenddt did in the special cases analyzed in [13]). The problem in
to follow the path ending at, and conditional on reachingthe general case again arises from the possibility illustrated in



1668 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 12, DECEMBER 1998

Fig. 2. To preclude this possibility in a very strong sense, we [I. ASYMPTOTIC EFFICIENCY: SMALL
give a further necessary condition based on large deviations INTERLEVEL UPCROSSINGPROBABILITIES

techniques. This condition may be interpreted as requiring &, yhis section, we consider splitting with a fixed number of

strong tendency to follow the most likely path, conditional Ofyermediate levels, specifically two levels. Reaching the set
reaching a rare set. We give a class of processes for whigh. 4, pecomes rare because the probability of reaching each

this necessary condition is satisfied. - _ level from the previous one goes to zero with a rarity parameter
Section V shows that our necessary conditions are violated |  This setting is typical of models of highly depend-

by a simple Jackson network under what appears to be Hje 5 t-tolerant computing systems [29], where reaching
optimal choice of thresholds, suggesting that even if splitting t5jjeq state becomes increasingly rare as the failure rates
is implemented in the best possible way it may fail to bg¢ jngividual components decrease to zero. Settings in which
allsymp.toucally efficient. Numerlcgl rgsultg confirm that Sp“tfeaching A, becomes rare becauseincreases are treated in
ting fails to be completely effective in this Jackson networkection |v: these are more typical of buffer overflow problems
example. A. brief d|scuss.|on summarizing the |m.pI|cat|ons o reliability systems with a high degree of redundancy.
the results in [13] and this paper may be found in [15]. Our first objective is to formalize the intuitive discussion of
Fig. 2 in Section |, beginning with the cage= 2 illustrated

B. Framework and Notation there. We show that if there is a staliesuch that entering

To obtain reasonable generality without excessive compldgvel 1 in stateb is highly unlikely, but entering it viab
ity, we assume throughout that the underlying process to Becomes likely conditional on level 2 being reached, then a
simulated is a countable-state Markov chain in either discrd@ss in efficiency occurs. This loss in efficiency comes about
or continuous time. The initial distribution of the proces§ecause only rarely does the method concentrate its effort on
is concentrated on a set of statds to which the process trials from an important statgh) at level 1.
returns with probability one after exiting. We are interested in As described in Section I-B, the estimate= 4. is obtained
estimating~, the probability of hitting a target set before by simulating R, samples fromA, and R. splits for each
returning to Ao. To apply multilevel splitting, we define asuccess (ohit) at level 1. Specifically, the splitting estimator

nested sequence of sets (also called levels) A, - - -, A,_,, for the two-level case is
with A4y D Ay D --- D A1 D Ay = AandA; N Ay = 0. 1 R R
We assume that the process cannot ertgr, ¢ > 1, without A(Ry,Ra) = > I(i,ia). 2)

R Ry

t1=11%=1

first enteringA¢,; N A;, where A7, is the complement of

Ai+1.h|_32|1(thsf arr]e split upoﬁbrsfc entrz;)mcebs glithe sheteti._ We ' As described in [14], the two-level splitting procedure can

can think of the process being a sorbedAp, w en_|t "®" be viewed as picking andom probability . for success in

entersAo. Hgnce, there may be a positive probab|I|t.y. that Soing from level 1 to 2, where&[js] = ps. Conditional on

SEtA’}’ ¢ Zhl IS never enterhed. 'r‘]% denotehthetp))robablllty Oc]; the entry state at level 1, the second-stage hit probability is

entering the S?ﬂ“ given thatt isem_l as been r(]antere r‘\constant, but because the entry state is unknown at the start,

We sety; = [;_, p; and theny = .. We assume that eachyhe gjyation is equivalent to choosing a randgsm All R,

pi is positive, as otherwise the problem is trivial. subpaths generated from a single hit at level 1 have the same
Let R; denote the splitting parameter for level— 1)—the robability of reaching level 2, determined by their common

number of subpaths generated from each path that reac ffance state at level 1

Ai-1. The splitting estimator ofy is To study the relative efficiency of the method we are

. R R, interested in the behavior of = wo?/4% wherew is the
4= 4 - - P k in th [ h
4 =4(Ry, -, Ry) = oL Z Z I(iy, -+ ig) expected work to obtain the estimate and denotes the

PO R | variance ofy (see [18], [20], and Section IV-A for a further
A 7, discussion of this performance measure). In our case, assuming
= Ry--- Ry (1) a constant computational coétl) for each split path, we
havew = R;(1 + p1 Ry). Using an expression far? derived
where (i, ---,4;) is defined recursively as follows. in [14] we obtain
1) I(i;) =1 if the i;th path from level O hits level 1; it is _ ar(s _
0 otherwise. IfI(i1) = 1, then R, subpaths are started 7 = [M} [(1 —p1) + L ;2 V“(p"’l(;? D) )
and theiyth of these is labeledi,, ). b P22tz Patt2 3
2) If I(i1,~ .- ,’I;jfl) = 0 then I(il, .- ','L'jfl,ij) = 0. ( )
If I(i1,---.i;—1) = 1 and path(ii,---,é;-1,4;) hitS We are interested in the behavior gfwhen thep;’s tend to
level j, then I(i1,---,i;-1,4;) = 1; it is O other- zero, which as explained above might be the case in simu-
wise. If path (i1,---,4;-1,%;) hits level j then R;11 |ations of highly dependable fault-tolerant computer system
subpaths are started and theth of these is labeled models [29]. We index the probabilities lyand assume that
(i1, 851,05, 541)- ase — 0, the transition probabilities change to make theAet
Clearly, eachi(iy,...,4) has expectation; ---pr = v. increasingly rare. Sinc4 is fixed, for the asymptotics, we can

It follows that 4 has the same expectation and is therefomso consider thé and the4;’s, 1 < i < k—1, to be fixed as
unbiased. e varies. Assume that; = Q(¢"") where ther;’s govern the
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relative rates with which the;’s approach zero. We see that 3) Suppose there is a finite sét such thatliminf._.q

(3) grows at a rate of at leadyp;. This lower bound on the é1(a) > 0 for all a € G. Then E[p3]/p3 = O(1)
growth rate is achieved providéchr (52 ) /p3 = O(1), p1 Ry = provided

O(1) andl/(p2R2) = O(1). These last two conditions hold if, 52(G°)

e.g.,l2> = 1/ps andp; < cps for some constant. Thus, the &1 2(G°) PR O(1). (6)

splitting procedure does not satisfy the bounded relative error
property [29], which would require (3) to remain bounded as Before proving the result, we interpret its meaning. Let
¢ — 0. However, for standard simulatiol®( = R, = 1), (3) Us say that a staté is “on a likely path toAy” if & »(b)
grows at ratel/plp27 so at best, two-level splitting can be ofremains bounded away from zero as—~ 0. Part 1 indicates
order1/p, times more efficient than standard simulation. thatpz(b)/p2 must not be too large, relative to the conditional
To understand the circumstances under which the lowdXpbability of hitting level 2 by passing through staieat
possible growth rate of orddr/p; is obtained fom, we must level 1. In particular, ifb is on a likely path toA,, then
examine the behavior oE[p3]/p3. To do so, we introduce p2(b)/p2 must remain bounded, i.e., for any such state

some additional notation. Let probability of going fromb to level 2 must not be much
larger than the average probability of going to level 2. Even
¢;(a) = probability that level is entered at state if b is not on a likely path toA,, there are limits on how
ei(B) = Z ei(a), for any B C A; Iargep2(b)_/p2 may be. Par_t 2 state_s that if entering level 1
! at statet is unlikely, butb is on a likely path toA,, then
(in particular,c;(4;) = ;) the mgthod Iqses efficie_ncy, support.ing th.e'discussion around
) B Fig. 2 in Section |. Consider Part 3 with a finite ésuch that
Gi(a) = ei(a)_/fyi - . ¢1(G) — 1 and suppose further thét° is not on a likely path
= conditional probability of entering level to Ag, i.€., &1.0(G¢) — 0. Thus passing through the st
1 at statea, given level: is reached contributes insignificantly tey, and the simulation spends a
pi(a) = probability of reaching level, negligible fraction of its time simulating splits frol&¢ (since

é1(G°) — 0). However, even in this case it is not guaranteed
that E[p3]/p3 < oc. Part 3 gives a sufficient condition, in
terms of the worst casg:(b)/po.

Proof: The proof of Part 1 is immediate since each term
in the summation of (4) must be finite. To prove Part 2, we

given that level(< — 1) was entered ai.

With this notation the probability thai. = pa2(a) is given
by é:(a) andp; = > é_1(a)pi(a), where for simplicity
we assume that the process starts out in state Ay with

probability é,(a). We thus obtain have S (Bpa(h)? (Dpa(1)?
N R El32] /o2 > €1\Y)P2 _ &(0)p2
Elp3] _ X, (a)pa(a)? 4 pl/rzz = pip}
P P2 _a®’p®)’ n

. . R s al) (él’Q(b))Qef(lb) )
Since pa(a)? < po(a), (4) is at mostl/p; which implies 1572

that two-level splitting is no worse than standard simulatioffhich — co by (5). To prove Part 3, write (4) aSc + Sg-
providedp, = 1/R, andp; Ry = O(1). However, determining Where S¢; (respectively,S¢-) is the sum over terms i
verifiable conditions under whic&/[p2]/p2 remains bounded (respectively,G%). Sincep; > éi(a)pz(a), for anya € G
is not always a simple matter. One case in which it is true is\fe havepz(a)/p2 < 1/é1(a), and thusSe is O(1) by the
p2(a) < ¢po for all statese and some constart in this case definition of G and the fact that7 is finite. Next

P2/p2 is bounded. The following theorem provides additional See = Ypcae E1(b)p2(b)? < Yovcge e1(D)p2(b) p2(G°)
insight into more general situations. For any state A;, let 2 = PLP2 D2
¢ 1(a) = probability of entering level ata = 3172(G0)p2(G ), (8)
conditional on eventually reaching levkl Pz
éz7k(B) = Z éijk(a),for anyB C A;. .
ach [ll. APPARENTBIAS IN SPLITTING ESTIMATES
Hence ¢, 2(a) = ei(a)pa(a)/(pips). Finally, let pa(B) = As n(_)ted in Sgction I-B, 'Fhe spli}ting estimatdrin (1) is
sup{p2(b) : b € B}. We now have the following. an unbiased estimator of, i.e., E[§] = . However, now
Theorem 1: we will show that unless the levels are chosen consistent with

the most likely path, the estimator appears biased with high
probability, even for large sample sizes.
We consider a family of problems indexed by a rarity
parametere. Associated with each are splitting factors
&(b) — 0 and & o(b) — a > 0. (5) R;(e), an intermediate leveL(c), a final levelk(e), and a
particular subsetA,, of A;. For notational simplicity, we
Then E[p3]/p3 — oo ase — 0. will typically suppress the dependency &%, L, k, andA on

1) If for some staté € A;, we havet; 2(b)pa(b)/p2 — o0,
then E[p3]/p3 — oo ase — 0.
2) Suppose there exists a state A; such that, ag — 0
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e. Ry is best thought of as the total number of replicationss ¢ — 0 since, by hypothesisR; — oo and Ry --- Ry,
of the splitting procedure starting at level zero, i.e., we vieWL(/i) — 0.
the procedure as consisting &f; i.i.d. replications where For the next part, defing; (i) to be the total number of
each replication consists of following all the offspring fronoffspring from level O on replication that enter levek and
a single path starting at level 0. As— 0, we seek a situation let Y;.(¢) denote the number of these that pass through
such as that shown in Fig. 2 with the sdtrepresenting a Note that
neighborhood about the poiht entrance to the intermediate 1 Ry
level in A is rare, but entrance to the intermediate leveHin EAlfp] = R ZE[Zk(i)lFC]
given that the final level is hit is not rare. We imagine two LA S
ways in which this happens. 1 Ry
1) L andk remain fixed, but the probability of hitting the = RR > EN(i)1r] (10)
next level goes to 0 as — 0. This is similar to the =1
setting of Section Il and is represented by models sfnce onF., Z (i) = Y(i), i.e., all subpaths that reach level
highly dependable computing systems. k must do so by passing througlr since onF. no subpath
2) The probability of hitting the next level is independengven entersd. Furthermore
of ¢, but L and % increase ag — 0. This is similar to . .
the multilevel setting of Section IV and is represented E[Yi(0)1r] < ENe(@)] = Ro--- Ry Z er(@)pr,i(a)
by buffer overflow models. agds
Theorem 2: Suppose
cr(A) =0 and ¢pp(d) —a>0 ase—0. (9) where pr, (a) is the probability of reaching levek after
entering levelL in statea. Thus dividing (10) by~, using
(11), and lettinge — 0, we obtain

(11)

If Ri — oo and R, ---Rpep(A) — 0 ase — 0, then there
exists a setF, such that
E[#1 EWlr| _ Yaci-ec(@pre(a) . =,
lim P(F,) =1 and limsup 1] <l-« [ ] < = =ép(A°) =1 -«
¢—0 e—0 Y Y Y
ase —> 0. by (9). O
Remarks: Condition (9) states that enterind; via A is

unlikely, whereas, conditional on reachirl, enteringAz, in  IV. ASYMPTOTIC EFFICIENCY: LARGE NUMBER OF LEVELS
A becomes likely. The expressidfy - - - Ryer,(A) is simply
the expected number of subpaths in the fifst replications

In Section Il we considered the splitting method applied

= : to systems where the rare set was fixed and the probability
that enter4; we assume thatt, is large, but small enough ot aving from one level to the next is small. As already

so that entrances td are still rare. The theorem states thafioeq, models of highly reliable computing systems provide
under the given conditions, with probability approaching ong,qjvation for this case. In such settings, insight into the
7 appears biased. More specifically, white is unbiased, performance of the method is obtained by keeping the interme-
with high probability the event’. (as defined below) occurs. giate sets fixed and considering asymptotics as the intermediate
Thus with high probability, the estimate gfproduced by the |eye hitting probabilities tend to zero. In this section, we
simulation isy1r, . Because the intermediate level is chosefynsider cases in which the probability of moving from one
incorrectly, E[y1r,] < v, i.e., the estimate “appears b!“'ised-le,\,/el to the next is not very small, but the number of levels
If @ =1, then the process does not pass through the “correet” hotentially large. Overflow events in queues with large
intermediate set of state$ on its way toA; with probability pyffers provide motivation for this case. We now consider

approaching one. In this case, the splitting estimator appear%g?/mptotics in which we keep th&’s fixed but let increase

arbitrarily underestimatg. Note also, that the result remaingg infinity—1/k, rather thare, is now the rarity parameter.

true if in (9) the unconditional probabilityr(4) — 0is  we derive conditions that must be satisfied in order for
replaced by the conditional probability,(4) — 0 [since muylilevel spliting to be asymptotically optimal ds — oc.
er(4) < er(4)). We begin with a formal definition of asymptotic optimality
Proof: Let 7. be the index of the first replication fromang then derive our first necessary condition. This condition
zero such that at least one subpath hitsand defineF, = specifies a unique value for the numb&r of splits per
{re = Ry}. First we will show thatP(Fe) — 1 ase — 0. |evel (assumed constant across levels). However, even if this
Note thatr. has a georpetric distribution with some succesglue of R is selected, the method is not guaranteed to be
probability, sayé. Let Z be the total number of offspring asymptotically optimal. We develop necessary conditions on
from level 0 on a replication that enter levélin_A. Note the large deviations rate functions to enter an intermediate level
that E[Z] = Ry --- Rper(A). Furthermoref = P(Z > 1) < near some poini; (), and the rated,(z), to move from that
E[Z]. ThereforeP(r. > j) = (1 - ¢)’ > (1 - E[Z])’. Hence point to the final level. This necessary condition requires that,
) Ry Rpen(A) e for all =, 62(x) cannot be too large relative #(«) and the
E[Z])f <1 - #> overall probability of the rare event being estimated.
Ry In particular, this implies the analog of Part 2 of Theorem 1.
—exp(0) =1 the method is not asymptotically optimal if there is a pairat
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some intermediate level such that the process is highly unlikétyr some constanp, 0 < p < 1. This holds quite generally;
to enter the intermediate level neay given theintermediate in particular, it holds in the settings treated in [13] and in the
level is hit, but it is likely that the process passes near Jackson network considered in Section V.

given thefinal level is hit. In this sense, the intermediate We assume that the splitting factor at each levetiand let
levels should be chosen so as to be consistent with the latgebe the number of paths that enter leeM/e can express
deviations path (assuming it exits) to tfieal level, i.e., if the the (unbiased) splitting estimator ef, as

process is likely to pass near conditional on reaching the X Z

final level, then it must also be likely to enter the intermediate = (15)
level nearz conditional on reaching the intermediate leve
We then give an example of a process and level structure s
that the necessary conditions are satisfied.

ll]&king expectations of (15) and using (14), we have for any
value of R
log(p) = lim w — log(R) = log(n) — log(R)

A. Asymptotic Optimality (16)

We will call a sequence of estimatofg,.}72, asymptoti- _
cally optimal if where log(p) = limg_colog(E[Zy])/k. Write E[Z;] =
P(Z, > O)E[Z, | Zx > 0] = prE[Zx | Z > 0] where
log(E[42]w(k))

lim 9 (12) pr = P(Z; > 0). We further assume the limits
k—oo log(~vx) . log(E[Zy | Zy, > 0]) A
lim = log(f1)
with w(k) denoting the expected computational effort per k—oo k
replication of4,. If v, has an exponential decay rate, (125" .
requires that the product of the second momentypfand lim M 2 log(p) (17)
the expected computational effort per replication have a de- koo k

cay rate twice as large. In balancing estimator variance aexist, in which caséog(:) = log(ji) +log(p). We remark that
computational effort, it is conventional in simulation to conin case these limits fail to exist, by considering appropriate
sider thework-normalized varianc&/ar[4;]w(k), rather than subsequences the following theorem continues to hold with
E[#Z]w(k). (This criterion dates at least to Hammersley anihe definitions ofj; and / appropriately modified.

Handscomb [20] and is justified in a general framework by Theorem 3:If (14) and (17) hold, then a necessary condi-
Glynn and Whitt [18].) For this reason, in [13] we used th&on for splitting to be asymptotically optimal is

condition log(ﬁ) = 10g(/:b) =0
log(Var[yx]w(k))

klim Tog(72) =2 (13) in which caselog(;:) = 0 and henceR = 1/p.
e OB\ Tk Proof: We will show that splitting cannot be asymp-
A simple consequence of Jensen’s inequality is totically optimal if either log(x) > 0 or log(p) <
- 0. First, supposelog(p) > 0. We need to show that
. log(Var[yx|w(k)) _ log(E[4]w(k)) liminfy_o log(w(k)EFI)/E >  2log(p) where w(k)
lim > lim —————~ >2 . L ~ 2
ko0 log() k—oo log(vx) is the expected work. Sincminfs ., log(E[37])/k >

vk >1 2log(p) (the variance is nonnegative), it suffices to show
that liminfy_ . log(w(k))/kE > 0. However, this follows
from which it is evident that (13) implies (12) while theimmediately sincev(k) > E[Z:]. Now, supposéog(s:) < 0,
failure of (12) implies that of (13). Since our focus hergn which case the expected number of paths to reach level
is on necessary conditions (and in [13] it was on sufficient is exponentially small. There are two cases to consider:
conditions) it is appropriate to work with the somewhat simplasg(/i) > 0 andlog(ji) = 0. We first consider the case when
requirement (12). log(zi) > 0. (In this caseZ; = 0 with high probability, but
We will not make detailed assumptions about the computahen Z;,, > 0, Z; can be very large.) We will show that
tional effortw(k). Instead, we assume (rather conservativelfm inf;_.., log(E[57])/k > 2log(p). The unbiasedness of
that each path started at any level consumes at least one gpitimplies that
of computing time, so that (k) grows at least as fast as the

number of paths. log(p) = log(p) +log(fi) — log(R). (18)
Since E[Z7] = P(Zy > 0)E[Z] | Zx > 0l and E[Z] | Z). >
B. Necessary Conditions on the Number of Splits 0] > E[Zx | Zr > 0]?, we have
In this section, we derive a necessary condition on the .. log(E[47])
number of splits per level in order for multilevel splitting to be h,gg{gf — r
asymptotically optimal. We assume thgt has a logarithmic 1Og( E[ ZQ])
limit, i.e., = lim inf p k2 2log(R) (19)
o (v, > log(p) + 2log(jt) — 2log(R 20
i J080n) _ log(p) (14) > log(p) + Og(/{) og(R) (20)
k—oo kK > 2(log(p) + log(j1) — log(R)) = 2log(p)  (21)
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where the strict inequality follows sind@ > log(p) and the unbiased, and Jensen’s inequality, that
last equality is true by (18).

We next consider the cadeg(i) = 0, in which case 2log(p) < log(E[%]) _ log(£[Z{]) — 2log(R)
log(p) = log(p). Let Yy, = min(Z,1); Y3 is Bernoulli with k k
success probability,.. Thus E[Z2] > E[Y?] = px and _ log (E'[Z]) + 21og(p)
i .
liminf 10g(E [’Vz%]) From this the statement of the lemma follows. |
k—oo k The setting for the remainder of this subsection is as follows.
> log(p) — 2log(R) = log(p) — 21og(R)  (22) A fixed setA is scaled by a parametér and the resulting set
> 2(log(i) — log(R)) = 2log(p). (23) kA becomes rare asincreases. In simulating the probability

of hitting the setkA, a set B has been chosen so that

Note that the line of reasoning in (19)—(21) also shows thitk]B C kA and the[ak]th splitting occurs upon entry into
splitting is not asymptotically optimal ilog(x) = 0, but [ok] B. (For notational S|mpI.|C|ty, we henceforth assume that
log(j1) > 0 andlog(p) < 0. k —ooin such a way thactxk is an integer, although the result
Theorem 3 gives a necessary condition for splitting to & true in general providedkB is used to denotguk]5.) A
asymptotically optimal. In the Markovian cases consideréiPecial case is wham = 1/2in which case we are considering
in [13], the necessary conditioR = 1/p is also sufficient the %/2th splitting to take place atk/2)B.
for asymptotic optimality. IfR = 1/p, the requirement that _The assumptions of the foIIo_yvmg theorc_em state tha_t there
log(p) = 0 means that the probability of getting at least on@XiSts anz such that the probability of entering the setB in
success at levet cannot be too small while the requiremen@ appropriately chosen neighborhoodhéfr satisfies a large
thatlog(ji) = 0 means that, given at least one success at |egViations Iower bound. In add|t|on,_ the_propabllqy of hitting
k, the expected number of successes must be subexponerii§ SetA starting from any of the points in this neighborhood
Roughly speaking, ifR < 1/p then there are not enoughsatlsfles a uniform large deviations lower bound. The result,
splits so that entering the final level is still a rare event26), places a constraint on the relative magnitudes of these
thereby precluding asymptotic optimality. B > 1/p, then lower b(')unds'. Fore_xample, if entering: B in a neighborhood
the expected number of subpaths entering the final leyd|akz is unlikely, it cannot be too “easy” to then enter
grows exponentially. This exponential increase in the wofkom this neighborhood.
precludes asymptotic optimality. In the finite Markovian case, We let{kA} denote the event thatd has been entered and
if R =1/p, then the expected number of splits entering eadl+B; ¥} and{akB; B(akz, ke)} denote the events thakB
level remains roughly constant. In this more general settirig?s been entered gtand atB(akz, ke) = {z : |z — akz| <
R = 1/p implies that the expected number of splits enterinj} respectively. . d
each level neither grows nor shrinks too quickly. Theorem 4:Fix = and suppose that for some posititgzx)
Note also that the theorem remains valid if, instead of @d é2(x) we have
constantR splits per level, there ard?; splits at levelj |
andlog(R, - - Ri)/k — log(R). Furthermore, results in [13] limliminf - log(P({akB; Blakz, ke)})) 2 alog(81(x))
imply that if the number of splits at level is random, i.i.d. (24)
with mean E[R;] and independent of everything else, theand
Y = Zy/(E[R1]---E[Ry]) is an unbiased estimate of,. o . 1
Theorem 3 thus remains valid ibg(E[R,]- - - E[Ry])/k — fm lminf  nf 7 los(P({kA} [ {akB;y}))
};)gs(t}ﬁl),}%.e; ?/r;.ecessary condition for asymptotic optimality > (1 = a) log(62(x)). (25)
Then, for asymptotic optimality to hold it is necessary that
alog(81(2)) +2(1 — @) log(82(x)) < (2 — ) log(p). (26)

In this subsection we consider necessary conditions on the Proof: Let Ni(y) be the number of paths that enter
rate functions for entering an intermediate level near a poinktB at y and let Z;(y), ¢ = 1,...,N1(y) be the number
and moving from that point to the final level (see, e.g., Demlsf successors of théh of these that reachédsA. For every
and Zeitouni [9] for background on rate functions). In proving > 0 we have the relation

C. Necessary Conditions on the Rate Functions
for Asymptotic Optimality

our results we will rely on the following simple lemma. Ny
Lemma 1: If (14) and (17) hold, a necessary condition for 7~ Z Z Zi(y)
asymptotic optimality is that k= i e iy
Yy akz, ke =
lim log(E[Z7]) _ 0 and theZ;(y) are i.i.d. This implies
hmeo k Ni(y)
Proof: By Theorem 3 it follows that we must have Zin > Z Z Zi(y)?

log(R) = —log(p). We then have, using that(k) > 1, 9, is yeB(aka,ke) i=1
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and Wald’'s equation then allows us to write Theorem 5: Suppose there existssuch that in addition to
(24) and (25) it holds that for every > 0
EZi> Y. EMNMWIEZW)P

Y€ B(akz,ke)

A
where Z(y) has the distribution of theZ;(y). Since klggoﬁlog< Z

Ni(y)/R** is an unbiased estimator @t({akB;y}) yeBlake ko)

P({akB;yt | {kA})> =0 (28)

lim lim sup % log(P({akB; B{akz, ke)})) < alog(61(x))

I p({akB;y)). koo
Rk ({or v (29)
Similarly
E[Z(y) e
Y
(I—a)k = P({kA} | {akay}) . . 1
R hII(l) limsup sup z log(P({kA} | {okB;yl}))
Therefore, we may write 77 koo Blaka,ke)
< (1 o) log(52(2)). (30)

1
Jim log(EZ})

>(2—«)log R+ 2limin{ inf
k—oo B(akz,ke)

It then follows that

1 log(p) = alog(61(z)) + (1 — a)log(62(z))  (31)
x o log(P({kA} [ {ahB;y})) . o
1 and a necessary condition for asymptotic optimality is that
+ liminf — log(P({akB; B(akz, ke)})).
koo K log(62(x)) < log(p) < log(é1(x))- (32)
Letting ¢ — 0 and recalling Theorem 3 and Lemma 1 yields
the desired result. O Proof: For everye > 0

Note that we always have
Y PHakBiy}| {kA})

alog(61(z)) + (1 — a)log(62(x)) <log(p)  (27) yeB(aka,ke)
since the probability of entering levél by passing near a — Z P({akB;y} 0 {kA})
particular pointz is less than the overall probability of entering yeBlaks ko) P({kA})

level k. Comparing (26) and (27), we see that (26) places

additional restrictions. In particular, the difference betweeand so, by (28)

(26) and (27) is that the left-hand side (LHS) of (26) contains

an additional factor of(1 — «)log(62(x)), while the right- lim llog(p({kA}))

hand side (RHS) of (26) contains an additional factor of k—ook

(1 — a)log(p). Thus (26) may fail to hold ifé2(z) > p, 1

i.e., if it is too “easy” to reach the final level from. = lim +log > P({k4}
In the following theorem the assumption is made that a y€B(aka,ke)

point & exists such that it is likely to hit the final level by

passing near the pointat the intermediate level. (Technically | {akB;y})P({akB;y})> )

(28) states that the probability that B is hit in B(«kz, ke),

given thatkA is hit, decays subexponentially and the large

deviations lower bounds of Theorem 4 are supplemented wkrom (24), (25), (29), and (30) it follows that

corresponding upper bounds of (29) and (30).) In this case

the upper bound of (27) becomes an equality (31). More ] 1

importantly, we may then rephrase the necessary condition }E}% klggoglog Z P({kA}

of Theorem 4 as (32), which is best understoodBif= A, yEB(akz, ke)

in which case the intermediate set is a scaled version of the

final set. If this is the case, the probability of hitting:B | {akB;y})P({akB;y})
has ratealog(p) and the probability of hittingaekB near

x has ratealog(é1(x)). The necessary condition (32) then = alog(61(x)) + (1 — @) log(62(x))

states that iflog(61(x)) < log(p), then the method cannot be

asymptotically optimal. In other words, the sort of situatioand therefore that

illustrated in Fig. 2 must be precluded for all intermediate

levels. This is the analog of Part 2 of Theorem 1, since it log(p) = alog(é1(z)) + (1 — ) log(62(2)).

states that the method is not asymptotically optimal if the most

likely point to enter an intermediate level is not contained iRelation (32) now follows upon recalling the necessary con-
the most likely path to the final level. dition of Theorem 4. O
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D. A Setting Where the Necessary Conditions Are Satisfiedwhere

In the previous subsection, a number of highly technical

AV =z € A: |z —w| > ~(c) for all w € dA}.

assumptions were made on the rate functions, i.e., (24), (25),
(28), (29), and (30). In this section we demonstrate a settingfinom [7, Th. 2.1] it follows that

which these conditions are satisfied. We further show that

optimality condition (32) is satisfied in this setting provided

the sets4 and B are appropriately defined.

Theorem 6: Suppose the underlying process is given by
{308 Yoo, where{Y;}$2, is ani.i.d. sequence of boundedF
random variablesA and B are open and convex, and, for
simplicity, thatoe = 1/2. Under the conditions of [7, Th. 2.1],

(24), (25), (28), (29), and (30) hold.

the .1 v()
i 2 log (P({(A - 5/2))
= — i f 97 :
yEA”lECl)_ﬂ?/Q {91?(%1;=0}< y>

rom this we have that (25) holds with

2 log(6a(e)) = - (0.9)

inf sup
YEA—T/2 (6:A(6)=0}

Proof: That anz satisfying (28) exists is a straightfor-

ward consequence of [7, (5.2)] and [37, Th. 4].
We next consider (24) and (29). With > 0 fixed, let

The same value of;(x) may be shown to hold for (30).C
Corollary 1: In the setting of Theorem 6, if the set is a

n(m) = [m/7], for m any positive integer. We have that, forl/2-Plane ands = A, the necessary condition (32) is satisfied.

anye > 0 andr > 1 sufficiently close tal (note thatz € B),
the existence of aA > 0, independent of;, such that

1

k
> i ‘fll | P
e S e

—mrz/2n(k)| < é) ) . (33)

log(P({akB; B(1/2kx, ke)}))

lim inf
k—oo

|Sim /()

sup
0<m<n(k)

By Mogulskii's large deviation theorem (cf. [9, Ch. 9]) it

follows that this last quantity is greater than or equal
—7 Y (rrx/2), wherel is the Fenchel-Legendre transfor
of the moment-generating function af,. As in the proof
of the lower bound part of [7, Th. 2.1], given that > 0
was arbitrary, it follows that (33) is greater than or equal
— Supyg.a()—0} (> 7x/2), which in turn implies, letting- —
1, that (33) is greater than or equal4osup 4.5 (sy—03 {0, 7/2).
For (29) we first note that

lim sup % log(P({akB; B(1/2kx, ke)}))

k—oo
1
< limsup p log(P(B(1/2kx, ke)))

k—oo
(6, )

inf sup
yEB(1/2,€) (g:A(6)=0}

the last equality following from [7, Th. 2.1]. It therefore hold
that

1
lim lim sup z log(P({akB; B(kx/2,ke)}))
e~V koo

S - sup <97 .’17/2>
{6:A(8)=0}
and we may set
1
5 log(bi(e)) = — sup (0,2/2).
{6:A(6)=0}

We now consider (25) and (30) being treated in a similayr(A) —

fashion. It is readily verified that for each> 0 there exists
a v(e) > 0 such thatlim. .ov(e) = 0 and fory such that
ly — kx/2| < ke

P({kA} | {akB;y}) 2 P({K(A™) —2/2)})

Proof: It follows from [37] that the pointz satisfying
(28) is in 34 and such that

log(p) =—inf sup (f,y)=— sup (0,2).
¥€A {6:A(8)=0} {6:A(8)=0}
By the proof of Theorem 6 we see that

1

—log(62(x)) = — inf su 0,y
2 B(2(w)) yCA—1/2z [e:A(eI)):o}< >

=— sup (0,1/2x)
{8:A(6)=0}

tthe last equality following since: € 9A and A is a 1/2-
lane. Recalling again the proof of Theorem 6 we see that
og(61(x)) = log(62(x)). We now have that (32) holds, indeed

with equalities. O

to
V. SPLITTING IN A JACKSON NETWORK
In this section, we show by means of a counterexample
that splitting is not always asymptotically optimal, even when
the intermediate sets are consistent with the large deviations
behavior.

A. Preliminaries

Consider anm queue Jackson network with traffic intensity
pi < 1atqueue. Letz; > 0 be given constants (for simplicity
Qassumekz; is an integer). Letd; = {z;k < @;} and let
Ar(D) = {z;k < Q; < z;k + D,} for integersD; > 0.
Let v (v (D)) be the probability of hittingA; (A (D)) and
let v4(¢) denote the probability of hitting the sé;(¢)
{z:k < Q; < (x; + ¢)k} during a cycle. Lety,(¢) denote
the probability that4;, is first hit somewhere in the sét(e).
Definelog(p) = Y.~ x;log(p;). Letw(A) denote the steady-
state probability of a seft and letY (A) = [ I(X(s) €
A)ds where «y is the first time to return to the state where
@; = 0 for all <. Then, by regenerative process theory

Eo[Y(A)] _ Eo[Y(A) [Y(A) > 0]P{Y(4) > 0}
Eo[vo] Eo[ao]

(34)

where Fy denotes expectation starting when all queues are
empty.
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Lemma 2: In a Jackson network witl; < 1 for all ¢: 1 = A. Consider the everfil,. (¢, T') such that the process hits
1) limg_ oo log(vi (D)) /k = log(p); Ay by Tk transitions and fok7’ transitions stays within a tube
2) limy_, o0 log(vi) /k = log(p); of width 2¢ about the straight line implied by these drifts that
3) limg—oo Jx(€)/7 = 1 for any e > 0; goes from(a,a) to (1,1). Formally, in Hy(¢,T), after [kt]
4) limy_ oo log(Vr(e))/k = log(p) for any e > 0. transitions
Proof: To prove 1), apply (34) withA = Ax(D). In Qi([k])
this caseP{Y (A) > 0} = (D). Furthermore, there exist "T —a— 6t < 2e, fori=1,2. (36)

constantse; and c; such thate; < Eg[Y(4) | Y(4) >
0] < czk. The lower bound is true since the process mu
spend at least one transition i (given thatA is hit). The
upper bound is true by [2, Corollary 1] which states th
Eqlao] < ¢ | ¢; when the initial queue lengths age The

result then follows sincer(A) = [, [p2* — pl*F DL,

/
To prove 2), letA = Ay, use (34), the lower bound, < P({Ar} [ ) 2 PUH)(e, S(e)} = E'[LI(Hi(e, 5(e))]
Eo[Y(A) | Y(A) > 0] and the form ofr(A) to show that (37)
limsup;,_, . log(v)/k < log(p). For the lower bound ony,
since Ay (D) C Ax, v(D) < . Thus, from (34) we obtain whereE’ denotes the expectation under the change of measure
andL is the likelihood ratio. For small enoughif Hy(¢, S(¢))

E}nder this change of measure, the approximate time to hit
x satisfiesTké = (1 — a)k, so defineS = (1 — a)/§ and
() = S+ 3¢/6. Now

Eo[Y (Ar(D)) | Y (Ar(D)) > 0]vi(D) occurs, the process stays in the interior and has a simple
n(Ax(D)) = = Fofo] likelihood ratio
EolY (Ax(D)) | Y (Aw(D)) > Oy 2k A D Ds
- Epao] ~ Folao]’ L= <_/> </“L_/1> <N_/2>
(35) A H1 Ha
_ <A)A<&) . ()™
Using the form ofr(A(D)) we thus obtailim inf;_ ., log K1 h2. A
(v)/k > log(p). To prove 3), considefy, — Fx(€)]/ = \A D2y Pr=Ay D= (38)

which is the conditional probability of hittingl;, in Bg(e),

the complement oB,(e). The numerator in this expressionwhere A is the number of arrivalsD; is the number ofQ;
is less thany.(B{(¢)), which is simply the probability of departures (arrivals t@).), and D, is the number ofQ,
hitting Bj(e) during a cycle. Assume now, without loss ofdepartures. This simplifies to

generality, thatp; > p; for eachi. The various bounds used

in proving 1) and 2) imply thaty,(Bg(e)) = O(p* ] p7™"). L= pit=Piphi=ns, (39)
Furthermore, (35) implies thayy. < ck/[[] p¥*(14+0(1))].

Thus 4(Bg(€))/m — 0 which is equivalent to 3). Part 4 Now, on this event at iméS(e), k(1 —3¢) < Q; < k(1+3¢)

follows directly from Parts 3 and 2. L by (36) and the definition 0 (e)]. Since@; = y; +A— D,
We next give an example of a Jackson network for which, _ y2 + Dy — Dy, and k(a — ¢) < y; < k(a +¢€), we

the _se_tsAj = {Qi =4} (z = (1_, 1)) are consistent with large jpiain (1—a)k —4ek < A— Dy < (1— a)k + 4ek and
_deV|at|ons in the sense that given that the process _r_ea4:}aes 1—a)k —dek < D1 — Dy < (1 —a)k + 4ek. Applying these
it passes close to the poittk, ak) with high probability for inequalities to (39), we obtain
any0 < « < 1. (For notational simplicity, we will assumek
is an integer, but the result is true in general.)

Consider a tandem M/M/1 queue with rates< po < 1.
Time reversal states that if the reversed process stafis /A,
it empties; at rateus — 11 and@ at rateA — uo until one of Thus
the boundaries is hit. Thus the slogel if ps — 1 = A — po.
In particular, this is true ifu; = A+ 25 and o = A+ ¢ log(P{Ax} [ 9))/k = [(1 — a) + 4e]log(p)
where 6 is chosen so thah + p; + 2 = 1. In this case, + log(E'[I(Hy (e, S(€)) | y])/k. (41)
this strongly suggests that the large deviations path builds up
at slope+1 and therefore the setd; are consistent with the we now show that
large deviations path. The below argument makes this rigorous.

Part 2 of Lemma 2 states thhtg(yx)/k — log(p) where o . 1o _
p = pipa. Furthermore, Part 4 (of)iemma 2( )states that 1lﬁ££fyegi£(e)ﬁlog(E (I(Hx(e, S(€) | 9)) = 0. (42)
the probability of hitting A, in a neighborhood about the
point (ak, ak) during a cyclei,x(e), has ratexlog(p). Now, Let y; be anyy € A,ix(e) so that the infimum in (42) is
starting at a poiny € A (€), apply importance sampling with achieved aty;, (note it suffices to consider only € A, (¢)
rates consistent with time reversal, i.&.,= u1, iy = p2, and of the formy, = n/k for somen € IN, of which there are

(proa) =2 < [ < (py )= =2 0 (40)
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only finitely many). We may assume without loss of generalitly the process is simulated fon; transitions, then in an

thaty; /k converges to a poinj € 4,(e). We then have, with

appropriately defined event whose probability approaches one,

{Y;}, an i.i.d. sequence each element distributed accordingvte have|A/n; — X'| < e and |D;/ny, — )| < e. As in the

the change of measure

E'(I(Hi(e,5(6)) | un)
kS(e)

yr 1
P[P Ny eq
<k+k;Zem

max
o<t<1| k k

=P

max
o<t<1| k k

where the last equality follows by our choice 6fe¢). As
EY) = (6,6) and |4 — (a,a)| < ¢, (42) follows from the
functional law of large numbers. Given this, we may write

lim inflog(P({Ax} | ya))/k = [(1 — a) + 4e]log(p)  (43)
and the desired result follows by lettirg— 0.

B. Counterexample

previous section, the approximate number of transitiops
to reach(b,.5) can be determined; we have.(\ — pu}) =
k(b — a) and nx(pf — ph) = k(0.5 — a) which leads to a
formal constraint on the rates

b—a 05-a

sy T o
Combining the above facts shows that
log(ra( N . . i __ b pv
03(72()‘ y 1y Hoy @y b)) T v = Nl I()‘ 7“17“2) (47)
1

is a lower bound on the rate to follow the straight line
path wherel(X', uy, piz) = X'log(XN'/A) + pylog(py/pn) +

wh log(ph /12). We can maximize (47), subject to the con-
straint (46), to obtain the greatest lower bound. Such maxi-
mization becomes algebraically complex; however, it can be
carried out numerically. In doing so, we observed that the best
rate seemed to occur wherh, = A and certainly evaluating

ro when uy = X is a lower bound regardless of what the
optimum is. Thus fixings;, = A together with the constraints
(46) and X + p} + pb = 1 determines) and uf; i.e., a
lower bound on the optimum rate dbg(ra(N, 111, 15, a, b))

can be written as a functiotvg(r,(A, a,b)). We note that
this approach can also be justified by an appeal to Sanov's
theorem [3] and is essentially the same heuristic technique
presented in [24]. However, it is clear by the analysis of
the previous subsection that one can carefully construct the

In this section, we show numerically that the necessagppropriate tubes and make everything perfectly rigorous.
condition of Theorem 4 does not hold for the tandem Jacksdhus we obtain the lower bourfd/2) log(é:(x)) > alog(p)+
network even when the intermediate sets are constructedleg(r,(A, a,b)). A similar approach can be taken to obtain
as to be consistent with large deviations. As in the previoaslower bound(1/2)log(62(x)) > log(rs(A, b)) wherer, is
subsection, we consider the network that is consistent wilgain obtained by fixing/, = A as in (47), but starting at the

time reversal. The intermediate level correspondsig,. In
the following, we will refer to a path from a point to y;
by this we mean a path that starts with /& within e of z;

and ends with?; /& within ¢ of ;. We consider a path that

entersAy, atz = (b,0.5) for someb > 0.5, i.e., entersi;,/»

such thatQ); /k is within e of x;. The necessary condition for

asymptotic optimality is then

1o (6:(0) +log(5a(0) < S lox(). (44)

We will show that a lower bound on the LHS of (44) is great
than the RHS. We do so by considering a particular path t

enters levelk/2 at a pointz > 0.5. To construct a lower
bound oné; (x) consider a path that first goes frof@,0) to
(a,a); by part 4 of Lemma 2, this has raliez(r;) = alog(p).
Next consider a straight line path froru,a) to (b,0.5)
with rates (X', u), nb) such thatN + p) + ph = 1. Let
log(r2(X', pt, 113, @, b))

be the rate associated with this path:

point (b, .5) and ending af1,1).
Now define the functior (a, b, \) by

H(ab, ) = 5 log(p) — (alog(p) +log(r2(\ 0, )

+ 2log(rs(A. b)) (48)

(Because of the way the model is parameterizedis a
function of A.) The necessary condition (44) for splitting to be
aig. 3 plots H(a,b, A) as a function of the arrival rat& for
two fixed pairs of(a,b) : (0.1,0.6) and (0.1,0.7). (The X
axis in the figure is actually the physically more meaningful
traffic intensity at queue 2, which turns out to pg = 3)\.)
Fig. 3 shows tha# (a, b, A) < 0 for all traffic intensities and

these values ofa,b). Thus we have shown numerically that
splitting cannot be asymptotically optimal for this example.

e}symptotically optimal cannot be satisfiedAf(a, b, \) < 0.

Since such a path stays in the interior the likelihood ratio for

such a path is given by

A A Dy Do
Lo (AY () (2
TN Nl Nl '
1 2

(45)

C. Experimental Results

In this section we consider simulation results when applying
splitting to a two-queue tandem Jackson network. The rare
event of interest is hittingd, = {@Q1 > k, Q2 > k} during
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Numerical Counterexample: Two Queue Tandem Jackson Network
0 T T

T

-0.2

41— a=01,b=06
- -—-a=01,b=0.7

-0.4

I -0.6f i .
/
/
/
/
_0_8—1 -
,I
!
!
_17 -
_12 1 i i L | ] 1 11 i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1

Traffic Intensity at Queue 2

Fig. 3. A numerical counterexample to asymptotic optimality in the two-queue tandem Jackson network showiAgdtHat\) < 0 for all arrival
rates and certain values aef and b.

a cycle. By the results of the previous sectibwg(vx)/k — TABLE |
10g(p1p2). We consider two instances of this network both of SPLITTING RESULTS FOR THETWO-QUEUE TANDEM JACKSON NETWORK
which havep; x p = 1/6. Thus, the necessary condition for

asymptotic optimality requires thdt = 6. The two cases are Case | & T s Relative Error

follows T |10 9.64x10°° || 9.82x 10-¢ £7.4%
as - 20 | 1.60 x 10-38 || 2.37 x 10-1 +76%
e Case I:A =1, pu; = 2, ue = 3. Time reversal strongly 30 | 2.64 x 107 || 6.21 x 1072 +104%

. . -31 —36
suggests that the wayl;, occurs is for queue 1 to first 40 | 4.36 X107 | 3.17x 10 +111%

. . =) 8
build up to a certain level greater than and then for S Pod DA Badalidie isl;%
queue 2 to build up while queue drains unti}, is hit 30 | 2.64 x 10-2 || 1.92 x 10-23 £37%
near the pointk, k). Thus the intermediate set$; are 40 | 4.36 x 1073 || 2.50 x 10~ +£46%

inconsistent with this buildup behavior.
e Case I:A =1, uyy = 3, p2 = 2. This is the case in
which the buildup toA, occurs along the diagonal lineestimates are much better in Case II, but the facts that the
from (0,0) to (k, k) and thus the intermediate sets are rejative error increases with and that the associated 99%
consistent with the large deviations behavior. confidence interval fotyy, does not come close to containing
The simulations were run for 16 h on an IBM RS/6006., are symptoms that the method is not asymptotically opti-
workstation, which resulted in approximately 12 billion tranmal. These experimental results are completely consistent with
sitions per run. From a single run at a given parameter settittige theory developed in this paper. As a point of comparison,
we simultaneously estimateg, for & = 10, 20, 30, 40. Split- experimental results in [13] for the finite Markovian case (in
ting was done upon entry to the sét for j = 1,---,k and which case splitting when done properly is asymptotically
we usedR = 6 splits per level, consistent with the necessargptimal) obtained relative errors of less th&20% for v, ~
condition for optimality. By solving sets of linear equations!0~>" in less than 10 min of CPU time on the same RS/6000
numerical values ofy, can be computed thereby permittingvorkstation. The computer codes used in these two papers
comparison of the simulation estimates to numerically preci¥ére also identical, save for the differences in generating the
results. The results are reported in Table I, which disptays transitions of the embedded Markov chains.
41, and the relative error (defined to be the relative width of
a 99% confidence interval).

In Case I, notice that the relative error increaseskas We have developed necessary conditions for the effective-
increases and that the estimgteis orders of magnitude too ness of multilevel splitting in estimating rare event proba-
low for large k, e.9.,949 is five orders of magnitude off. The bilities. Our results address two settings—one in which the

VI. CONCLUDING REMARKS
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number of levels remains fixed and the probabilities of moving

from one to the next become small and another in whidh3]
the number of levels increases while the probabilities remain
fixed. In both settings we have emphasized the importance
of choosing the levels in a way consistent with the most4

likely path to a rare set. Our results suggest that the apparent

simplicity of multilevel splitting may be somewhat misleading(15]
In the end, the effectiveness of the method depends critically

on an understanding of the way a rare event occurs, much;as

an understanding of the large deviations of a process is central

to importance sampling. [17]
We briefly contrast the conclusions reached here with the

17

more positive results in our earlier paper [13]. There, we

totically optimal estimates. In the settings we considered, tigy
most important condition was that the number of splits per
level be chosen correctly. Theorem 3 of this paper indicates
that the sufficient conditions we gave are in fact necessary i)
far greater generality. But we have also seen that this necessar
condition ceases to be sufficient without the additional mod&t-
structure used in [13]. The models we treated there could
be roughly described as having the property that an evdffl
can become rare essentially along just one dimension. As a
consequence, the most likely path to the ultimate level canrigg]
differ too greatly from the most likely path to an intermediate
level, and it is precisely this that our necessary conditionsy,
seek to ensure.
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