
RESOURCE ALLOCATION AMONG SIMULATION TIME STEPS

PAUL GLASSERMAN
Graduate School of Business, Columbia University, New York, New York 10027, pg20@columbia.edu

JEREMY STAUM
Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois 60208, staum@iems.nwu.edu

Motivated by the problem of efficient estimation of expected cumulative rewards or cashflows, this paper proposes and analyzes a variance
reduction technique for estimating the expectation of the sum of sequentially simulated random variables. In some applications, simulation
effort is of greater value when applied to early time steps rather than shared equally among all time steps; this occurs, for example, when
discounting renders immediate rewards or cashflows more important than those in the future. This suggests that deliberately stopping some
paths early may improve efficiency. We formulate and solve the problem of optimal allocation of resources to time horizons with the
objective of minimizing variance subject to a cost constraint. The solution has a simple characterization in terms of the convex hull of points
defined by the covariance matrix of the cashflows. We also develop two ways to enhance variance reduction through early stopping. One
takes advantage of the statistical theory of missing data. The other redistributes the cumulative sum to make optimal use of early stopping.
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1. INTRODUCTION

In a standard finite-horizon simulation, every path reaches
every time step. This is an implicit allocation of computa-
tional resources among the time steps. This paper proposes
and analyzes a variance reduction technique that sets the
number of paths reaching each time step optimally accord-
ing to the solution of a resource allocation problem.
This investigation is motivated by problems of estimat-

ing cumulative discounted rewards or cashflows. In various
applications, cashflows resulting from business operations
or a financial security are potentially generated at each
time step; their timing and magnitude are determined by
an underlying stochastic model of physical operations or
market prices. Mortgage-backed securities provide a spe-
cific illustration. The cashflows of these securities result
from payments from a pool of mortgages, and valuing such
a security entails calculating the expected present values
of these payments. Valuing a security backed by 30-year
mortages making monthly payments nominally requires
simulating 360 time steps; but most of the value of the
security is typically determined over a far shorter hori-
zon. Cashflows occurring late in the security’s life are
less important because of two effects: discounting, which
reduces the present value of money received in the future,
and the homeowners’ right to prepay their mortgages,
which reduces the nominal amount of mortgage payments.
Discounting is favorable for our method, while prepay-
ments may be favorable or unfavorable, depending on the
effect they have on the covariances among cashflows, as
we explain in §§6.1–6.2.

In §2 we pose the problem abstractly. To summarize
briefly, our goal is efficient estimation of the expected value
of a finite sum of sequentially generated random variables.
The summands are correlated—for example, they may be
functions of the state of a Markov chain. Simulating each
summand entails simulating all previous summands. The
length of a path is the number of summands simulated.
We plan in advance to simulate a fixed number of paths of
each length; by appropriately weighting paths of different
lengths, we obtain an unbiased estimator. We find the opti-
mal number of paths of each length to simulate by minimiz-
ing variance subject to a computational budget constraint
and a monotonicity constraint requiring that the number
of paths reaching each horizon decreases as the horizon
increases. The optimal allocation has a simple character-
ization in terms of the convex hull of points that reflect
the contributions of each step to total work and variance.
Section 3 makes this precise.
This method may be interpreted as stratification in time.

Indeed, our optimal allocation bears a superficial resem-
blance to the optimal allocation for stratified sampling.
However, whereas in stratified sampling different strata can
ordinarily be sampled independently, in our setting later
time steps can be sampled only if earlier time steps are
sampled, too.
The idea of varying the time horizon of paths in sim-

ulation recalls Fox and Glynn’s (1989) investigation of
estimation of expected reward over infinite time horizons.
However, their work uses random stopping to remove bias
from truncating an infinite integral, as does Asmussen
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(1990), while we consider a strategy of deterministic stop-
ping optimized to reduce estimator variance.
The variables not generated when we stop a path early

may be viewed as missing data. This interpretation suggests
the possibility of improved output analysis using missing
data techniques, as in Little and Rubin (1987, §6.5). With
these techniques, Hocking and Smith (1972) find the cost-
minimizing experimental design for bivariate data subject
to simultaneous constraints on the variance of estimators
of six parameters: means, variances, and regression coef-
ficients. In §4, we show how the theory of missing data
can be applied to reduce variance in our more general set-
ting and how to solve the resource allocation problem when
estimation employs missing data techniques.
Estimators resulting from the application of missing data

techniques may be interpreted as redistributing cashflows
across time steps. This suggests consideration of other esti-
mators that produce “fictitious cashflows” at intermediate
time steps while keeping the sum constant. Section 5 ana-
lyzes this case and finds the optimal fictitious cashflows for
early stopping.
A discussion of the effectiveness of the techniques devel-

oped in this paper appears in §6. Section 7 concludes
the paper. All proofs are deferred to Appendix A, and
Appendix B contains an algorithm for solving the resource
allocation problem.

2. THE SIMPLE EARLY STOPPING PROBLEM

We seek to estimate, by simulation, the expectation of the
sum X of m discounted cashflows X1� � � � �Xm having finite,
positive variance. Each Xk is a function of the history
�S1� � � � � Sk�, with Sk denoting the state of the simulation
at time step k. The cost of generating Sk and Xk given the
process up to step k−1 is a constant ck, and the total com-
putational budget is C. We plan in advance to simulate Xk
only on paths 1� � � � � nk, where the nk satisfy the mono-
tonicity constraint

nk � nk+1� k = 1� � � � �m−1� (1)

and the budget constraint

m∑
k=1
cknk � C� (2)

Define the feasible set � as the set of all vectors n =
�n1� � � � � nm satisfying these two constraints.
There are n=max�nk�= n1 paths. Let Xik be the value

of Xk on path i. The simulation generates this value if and
only if i � nk. This simulation structure also allows us to
define the length of the ith path mi = max�k �nk � i�, so
that Xik is observed (i.e., simulated) if and only if k �mi,
and m=max�mi�=m1 by the monotonicity constraint (1).
Let m be the vector �m1� � � � �mn. The simulation produces
an n×m matrix of data X whose ith row (the path i) is
observed up to column mi and then unobserved, and whose
kth column (the random variable Xk) is observed up to row
nk and then unobserved.

Example. When the vector n = �4�2�1, then the vector
m= �3�2�1�1 and the matrix X is



X11 X12 X13

X21 X22 ·
X31 · ·
X41 · ·



�

This structure for simulation is equivalent to stipulating
that if Xk is generated on path i, so were X1� � � � �Xk−1 and
hence necessarily S1� � � � � Sk−1. Then we say that for k < l,
Xk is more observed than Xl. This is necessary in simu-
lation when the process is specified in terms of transition
probabilities, so that generating Sk requires knowing Sk−1.
Now define �Xkl �= �1/nl

∑nl
i=1Xik, the average of Xk on

those paths where Xl is observed. For this to make sense,
we must have k� l so that Xk is at least as observed as Xl.
The matrix �X is an upper-triangular m×m matrix.

Example. Continuing the previous example, the matrix
�X is

�X11+X21+X31+X41/4 �X11+X21/2 X11

· �X12+X22/2 X12

· · X13


 �

In this simple setting, we estimate �k
�= E�Xk� by �̂k =

�Xkk and � �=∑m
k=1�k by �̂=∑m

k=1 �̂k. Finding the exper-
imental design n = �n1� � � � � nm that minimizes variance
given the fixed computational budget is a resource alloca-
tion problem with constraints (1) and (2). We ignore the
issue that the ni must actually be integral; because they
will be large in reasonable applications, rounding errors
are likely to be insignificant. We suggest rounding up for
safety.
To solve the resource allocation problem, we first give

an explicit expression for the objective.

Lemma 1. The variance objective is

Var��̂�=
m∑
k=1

vk
nk
� (3)

where �kl =Cov�Xk�Xl� form the covariance matrix � and

vk = �kk+2
m∑

l=k+1
�kl = Var

[ m∑
l=k
Xl

]
−Var

[ m∑
l=k+1

Xl

]
� (4)

The resource allocation objective is then

min
n∈�

m∑
k=1

vk
nk
� (5)

3. SOLUTION OF THE RESOURCE
ALLOCATION PROBLEM

The variance component vk defined in Equation (4) is that
part of the variance of

∑m
k=1Xk attributable to step k, much
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as ck is the component of a complete path’s cost attributable
to simulating step k. Because of the monotonicity con-
straint (1), doing a unit of work at step k requires doing a
unit of work at all steps j � k, so we are also interested in
partial sums of the variance components vk and cost com-
ponents ck. Define the partial sums

Vk
�=

k∑
j=1
vj and Ck

�=
k∑
j=1
cj

and the point set

�
�= ��Ck�Vk �k = 0� � � � �m��

The tail sum Vm−Vk =
∑m
l=k+1 vl = Var�

∑m
l=k+1Xl� is the

variance of the last m−k discounted cashflows. Likewise,
Cm−Ck is the cost of simulating the last m−k steps.
We assume that each tail variance Vm−Vk is finite and

strictly positive. If for some k it were zero, then it would be
proper to end the simulation at step k, because

∑m
l=k+1Xl

would be a constant. This is equivalent to setting nl = 0
for l > k, which, as one may verify, is what the solution in
Theorem 1 yields in this case.
The solution to the resource allocation problem (5)

involves the upper convex hull of the graph � as follows.
Let conv��  denote the convex hull of � and let V ∗ be
the function on �0�Cm� defined by V

∗�x= sup�y� �x� y ∈
conv�� �; this is the upper portion of the boundary of the
convex hull, connecting �C0� V0= �0�0 to �Cm�Vm. Also,

Figure 1. Illustration of convex hull solution.
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V ∗ is a concave function and it is the least concave func-
tion that lies above � . Write V ∗

k for V ∗�Ck and define v∗k
as the increment V ∗

k −V ∗
k−1. Finally, define the slopes

uk
�= vk/ck and u∗k

�= v∗k/ck�
The transformation from v to v∗ is illustrated in Figure 1.

The upper left panel illustrates a hypothetical v; the upper
right panel plots its cumulative sum V ; the lower left panel
shows the upper convex hull V ∗ of V ; the increments v∗ of
V ∗ appear in the lower right panel. We now have Theorem 1.

Theorem 1. The solution to the resource allocation prob-
lem (5) is

nk =
√
u∗k
�
� (6)

� =
(
1
C

m∑
k=1
ck
√
u∗k

)2

� (7)

and the ratio of optimal variance to standard variance is

R=
∑m
i=1

∑m
j=1 vicj

√
u∗j /u

∗
i∑m

i=1
∑m
j=1 vicj

� (8)

The result parallels the classical result for stratified sam-
pling that the variance of an estimator of a mean is min-
imized when the number of samples from each stratum is
proportional to the square root of the ratio of the variance
in that stratum and the cost to sample from that stratum.
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See, for example, Cochran (1953, Theorem 5.7). To make
the analogy, interpret the time steps as strata of equal size.
The v∗k are not variances but they play a similar role.
This resource allocation problem is also nearly a spe-

cial case of a problem that arises in planning production-
distribution systems. Maxwell and Muckstadt (1985,
p. 1323) pose “problem RP,” which is to minimize∑
k�Kk/Tk+ gkTk, where the sum is over all nodes k in

a directed graph, subject to the constraints Tj � Tk for
each arc �j� k in the graph. Federgruen and Zheng (1992,
Theorem 1) describe the solution of problem RP in
greater generality, but the case considered here has special
features—in particular, the convex hull characterization—
not shared by the general case. Roundy (1986, p. 720) notes
connections between the production-distribution planning
problem and statistical applications such as isotonic regres-
sion and multidimensional scaling and provides references.
The solution to the resource allocation problem depends

on the covariance matrix of the variables Xk, which is
presumably unknown in realistic situations. However, the
covariance matrix can be estimated in pilot runs, as demon-
strated numerically in §6. In either case, the design opti-
mal for a good estimate of the covariance matrix may
be better than either the standard design where all paths
reach all time steps or a guess at a design. Also, we have
assumed that the costs ck are fixed. If the cost of generat-
ing random variables at step k is itself random, we could
use its expected value as ck, provided we interpret C as a
constraint on the expected cost.
The savings due to implementing the scheme should be

weighed against the overhead costs of finding the optimal
nk. As expressed in the resource allocation problem, the
new scheme is a variance reduction technique, but this is
equivalent to a reduction of cost to attain the same variance.
If the technique reduces variance to a fraction R of the
original variance, then by applying it, one could attain the
original variance with a fraction R of the original budget.
So such a reduction is equivalent to saving the fraction
1−R of the cost, which is ��mn.
Finding a planar convex hull is ordinarily ��m logm,

because of the intimate connection to sorting, as remarked
by Preparata and Shamos (1985, p. 94). In our case, the
points of � are already sorted by abscissa Ci. Taking
advantage of this and our lack of interest in the lower con-
vex hull, we can use a stripped-down Graham scan which
is only ��m. We present the algorithm in Appendix A; for
a discussion of the Graham scan, see Preparata and Shamos
(1985, §3.3.2). Estimating the variance components vk as
given in Equation (4) from a pilot run with a fixed num-
ber of paths also takes ��m work, in computing partial
sums of the m random variables X1� � � � �Xm, sample vari-
ances of these m partial sums, and differences of these m
sample variances. So when the number n of paths planned
for a standard simulation is large, it is indeed efficient to
use this algorithm.

4. MISSING DATA PERSPECTIVE

If some paths stop early, we can view the cashflows not
generated as missing data and use missing data techniques
to get an estimator with lower variance. However, the
resource allocation problem we solved assumed a particu-
lar estimator �̂. If we know in advance that we plan to use
a different estimator, that should be reflected in the alloca-
tion problem.
In this section, we first formulate estimators that take

advantage of missing data techniques. We then show, con-
veniently, that the optimal resource allocation problem for
these estimators has the same form as the problem solved
in §3, but with a different set of variance contributions vk.
Thus, the solution in §3 continues to apply in this more
general setting.
As discussed in §2, stopping early on some paths results

in a data matrix X in which Xk is more observed than Xl
for k < l. Little and Rubin (1987, Example 6.7) consider
data sets with this structure, but with the further assumption
that the vector �X1� � � � �Xm is multivariate normal. Then
the maximum likelihood estimate of the mean �k is

�̂k = �Xkk+
k−1∑
i=1
#̂ik��̂i−�Xik� (9)

where #̂ik is the estimated coefficient of Xk on Xi in
the regression on X1� � � � �Xk−1, using the nk observations
where all of these variables are observed. The resulting esti-
mator of � =∑m

k=1�k is the sum
∑m
k=1 �̂k. In our setting,

the estimator (9) has the following interpretation: Values of
X1� � � � �Xk−1 are used to predict missing values of Xk by
taking advantage of the relation between X1� � � � �Xk−1 and
Xk on paths where all are observed.
In the case of simulation, requiring the random vari-

ables Xk to be multivariate normal would be too restrictive,
but their sample averages should be approximately normal.
Define the constants qi = ni/n, so q1 = 1. As the budget C
goes to infinity, the number of paths n goes to infinity, and
thus each ni goes to infinity. Therefore, the joint distribu-
tion of the appropriately scaled averages �Xik converges to
the multivariate normal, by the central limit theorem. This
large-sample result frees us to use functions of the data
Th = th�S1� � � � � Sh for h < k as predictors of Xk (rather
than just X1� � � � �Xk−1), as long as they have finite variance.
The vector ��T1k� � � � ��Tk−1� k� �Xkk of sample averages on the
first nk paths is also approximately multivariate normal,
although in general �T1� � � � � Tk−1�Xk is not. This approx-
imate multivariate normality justifies the use of Little and
Rubin’s (1987) maximum likelihood estimator for use with
missing data.
Using these T1� � � � � Tk−1 instead of X1� � � � �Xk−1 as pre-

dictors for Xk, (9) is replaced with

�̂k = �Xkk+
k−1∑
h=1
'̂hk�(̂h−�Thk� (10)

where '̂hk is the estimated multiple regression coefficient
of Xk on Th in the regression on T1� � � � � Tk−1, while (̂h is
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a missing-data estimate of the mean ( = E�Th�. Expressed
with a different subscript, this estimate is

(̂k = �Tkk+
k−1∑
h=1
b̂hk�(̂h−�Thk� (11)

where b̂hk is the estimated coefficient of Tk on Th in the
regression on T1� � � � � Tk−1.
Our objective now is to show that the missing data esti-

mator
∑m
k=1 �̂k can be put in a form in which the resource

allocation of §3 applies. To this end, we define an adjusted
data matrix X′ = X+TW where W is a matrix of esti-
mated weights. The matrix T has typical element Tik, the
realization of the predictor Tk on the ith path. As Lemma 2
states, the missing data estimator takes the form of a sum
of averages of random variables X ′

k. This means that the
minimization of this missing data estimator’s variance is a
resource allocation problem based on X′ rather than X. Let
1 and 0 be the vectors whose components are respectively 1
and 0. The condition W1= 0 will make the new estimator
unbiased, as shown in Theorem 2.

Lemma 2. Let �̂k be as given in Equation (10). Then,

m∑
k=1
�̂k = �̂ �=

m∑
k=1

1
nk

nk∑
i=1
X ′
ik� (12)

with X′ �= X+TW for an upper-triangular m×m matrix
W whose elements whi are given as follows. For h� i� k,
define

+hik
�=




1 if h= i = k
−b̂hi if h < i = k
k−1∑
j=i
b̂jk+hij otherwise

(13)

whik
�=




0 if h= i = k
−'̂hi if h < i = k
k−1∑
j=i
'̂jk+hij otherwise

(14)

whi
�=

m∑
k=i
whik� (15)

This matrix W satisfies W1= 0.

In the definition of the elements of W, the third sub-
script k indicates that the +··k is a weight used in estimat-
ing (̂k and the w··k are weights in �̂k; the w with only two
subscripts are weights in the estimate �̂ of the sum.
Motivated by this case, we henceforth letW be any upper-

triangular m×m random matrix that satisfiesW1= 0. Then

X′1= X1+TW1= X1+T0= X1�

and thus the adjusted X ′
k differ from the discounted cash-

flows Xk, but their sums on a complete path are the same.

Theorem 2. The estimator �̂ is unbiased for �.

If W is constant, not random due to dependence on the
simulated data, the covariance matrix of �X ′

1� � � � �X
′
m is

�′ =�+W�+�W+W�W� (16)

where �, �, and � are the matrices defined by hav-
ing the typical element in row k and column l be
respectively Cov�Xk�Xl�, Cov�Xk� Tl�, and Cov�Tk� Tl�, all
assumed finite. The following theorem implies that the opti-
mal resource allocation for the estimator �̂ is given by
Theorem 1 with �′ replacing �. It also establishes asymp-
totic normality in order to facilitate the construction of a
confidence interval for �̂.

Theorem 3. If W is constant, �̂ has variance ,2 given
by Equations (3) and (4), but with �′ replacing �. As
the budget C goes to infinity, the distribution of ��̂−�/,
converges to standard normal.

What if W is not constant? It could depend on the sim-
ulated data, in which case we think of it as an estimator of
some constant matrix W�.

Theorem 4. If there is a constant matrix W� such that
each element whi of W is a consistent estimator of w�

hi,
then as the budget C goes to infinity, the distribution of
��̂−�/, converges to standard normal.

The matrix W of Lemma 2, based on estimated least-
squares regression coefficients, does satisfy this consistency
condition with the matrixW� of true regression coefficients.
Thus, through this result, the solution to the resource allo-
cation problem in §3 applies to the missing data estimator.
This general missing data procedure requires computa-

tion of ��m3 coefficients whik. However, restricted models
with fewer coefficients to estimate can save computation,
reduce estimation error, and make implementation easier.
The key to the effective use of this variance reduction tech-
nique is to use knowledge about the model to find predic-
tors which are known as early as possible in the simulation
and explain as much as possible of the variance in pay-
offs. Such knowledge may suggest that it is unnecessary
to allow for a completely general relationship between all
predictors and payoffs.
For instance, in the important special case when Tk is

Markov, bhk = 0 for h< k−1 and should not be estimated.
If, furthermore, Xk is a function of Tk only, likewise 'hk =
0 for h < k− 1. Plugging into Equations (13)–(15) and
expanding the recursion, in this case the elements of W are

whi =




m∑
k=i+1

'̂k−1� k
k−1∏
j=i+1

b̂j−1� j if h= i�

−'̂hi− b̂hi
m∑

k=i+1
'̂k−1k

k−1∏
j=i+1

b̂j−1� j if h < i�

(17)

To compute these takes only ��m2 work because compo-
nent sums and products can be reused.
This use of missing data techniques to produce improved

estimates of the means �k bears a strong resemblance to
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control variates. In the above setting, the predictor mean
(k = E�Tk� is unknown. If each Tk is a control variate for
Xk, (k is known, and X

′
k =Xk+'̂k�(k−Tk, where '̂k is the

estimated simple regression coefficient of Xk on Tk. Again,
the covariance matrix relevant to resource allocation is that
of �X ′

1� � � � �X
′
m. A key distinction is that whereas the con-

trol variate method relies on E�Tk�−Tk having mean zero,
the missing data estimator relies on the property (embod-
ied in the condition W1= 0) that each Tk gets a net weight
of zero when we take the expectation of X′. This is possi-
ble only because different paths stop at different times in
simulation with early stopping, and would not be possible
in standard simulation.

5. FICTITIOUS CASHFLOWS

The effect of using predictors of future cashflows is to
replace the actual step-k cashflow Xk with X

′
k, which we

may interpret as a fictitious cashflow at that time. This sug-
gests consideration of other estimators based on redistribut-
ing cumulative cashflows across time steps. More precisely,
we consider sequences �X ′

1� � � � �X
′
m� having two proper-

ties. First, X ′
k is measurable with respect to �k, the sigma-

algebra generated by the state vectors S1� � � � � Sk: that is,
it is actually known at step k of the simulation. Second,
the sum on a complete path stays the same:

∑m
k=1X

′
k =∑m

k=1Xk
�=X. We now have X′ =X+TW after the fashion

of §4, with W equal to the identity matrix and the random
variable Tk =X ′

k−Xk. Even thoughW1 �= 0, still X′1=X1,
and Theorem 3 applies. Let � be the set of random vectors
�X ′

1� � � � �X
′
m satisfying the two properties of summation to

X and adaptation to the filtration ��k�. What is the optimal
�X ′

1� � � � �X
′
m in � for resource allocation?

The significance of fictitious cashflows is that the covari-
ance matrices � of �X1� � � � �Xm and �′ of �X ′

1� � � � �X
′
m

generally differ even though the Xk and X
′
k have the same

sum. Let v′k and V
′
k be respectively the variance compo-

nents, derived from �′ according to Equation (4), and their
partial sums. Because the sums

∑m
k=1Xk

�= X and
∑m
k=1X

′
k

are equal, their respective variances Vm and V ′
m are equal,

but the intermediate partial sums Vk and V
′
k may be unequal.

As a consequence, the variance achieved after stopping
early may be different. The next result identifies the best
set of fictitious cashflows, as measured by the remaining
variance after we apply optimal early stopping.

Theorem 5. Given X =∑m
k=1Xk, the optimal sequence of

random variables

arg min
�X′
k�∈�

min
n∈�

m∑
k=1

v′k
nk

is given by X ′
k =E�X ��k�−E�X ��k−1�, k= 1� � � � �m; i.e.,∑k

j=1X
′
j = E�X ��k�.

The optimal fictitious cashflows are thus the martin-
gale differences associated with the martingale E�X ��k�,
k = 1� � � � �m. Of course, the conditional expectations
E�X ��k� are presumably unknown. However, the proof of

the theorem shows that early stopping is most effective
with fictitious cashflows whose partial sums get as close
as possible to these conditional expectations, because this
reduces the variance Var�X−∑k

j=1X
′
j � attributable to steps

after k. Even if
∑k
j=1X

′
j is biased for E�X ��k�, Theorem 2

applies, and the estimator under consideration is unbiased
for E�X�

�= �. We benefit as long as
∑k
j=1X

′
j is a better

estimator of E�X ��k� than
∑k
j=1Xj is. Examples of ficti-

tious cashflows designed to resemble unknown conditional
expectations appear in §6.
We can re-interpret the approach of §4 in this light.

We want to reduce Var�X −∑k
j=1X

′
j �, but we do not

know E�X ��k� =
∑k
j=1Xk + E�

∑m
l=k+1Xl ��k�. We do

know
∑k
j=1Xj , and we find the projection of

∑m
l=k+1Xl

onto the space of random variables linear in the predic-
tors T1� � � � � Tk. The primary attraction of this approach
is the possibility of estimating the regression coefficients
involved in the linear projection; for success it requires only
a good choice of linear predictors, not extensive knowledge
of the conditional expectations. The other embellishment
is the substitution of missing-data estimators (̂k for sample
averages �Tk in the final estimator of the mean.

6. EFFECTIVENESS

Here we will offer some numerical examples that illus-
trate the dependence of variance reduction on the particular
problem. The goal is to give some guidance about when the
variance reduction technique is effective and what kind of
missing data predictors and fictitious cashflows are practi-
cal. First, we discuss more abstractly the characteristics of
a problem that make this method effective. Effectiveness
consists in achieving a low ratio R of optimal variance to
standard variance as given in Equation (8), possibly after
introducing fictitious cashflows or missing data techniques.
The infimum of this ratio R over all problems with m steps
of equal cost is 1/m, as follows. Consider a sequence of
such problems for which the proportion of the total vari-
ance that is associated with the first step, v1/

∑m
k=1 vk, goes

to 0. Then n1 → C and nk → 0 for k > 1, that is, almost
all resources are optimally allocated to the first step. For
instance, if we consider a sequence of problems with iden-
tical cashflows and a discount rate going to infinity, steps
after the first become negligible compared to the first. With
a sufficiently high discount rate, the ratio R can be made
arbitrarily close to 1/m for any X1� � � � �Xm. Even better
variance reduction is possible if the costs are not constant,
as the first step becomes cheaper relative to the rest of the
problem. In most of the examples we have tried, the vari-
ance reduction achieved is modest, but the method is not
difficult to apply.
However, suppose that the number of steps m is not

small, and the first step is not of overwhelming importance.
Then m is not very important at all. The degree of vari-
ance reduction is determined primarily by the shape of the
graph � . A sequence of problems whose size m increases
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and whose cost-variance shape converges also has conver-
gence of resource allocation shape and variance objective
value. For a precise statement and proof of this assertion,
see Glasserman and Staum (2001).
In the numerical examples that follow, for the sake of

transparency, each step has unit computational cost ck = 1
and the budget is m. Then standard simulation has resource
allocation nk = 1 for each step. (Of course, any reason-
able budget C would be much larger, and then the standard
resource allocation would be nk = C/m. We are simply
standardizing C =m.) The results use the optimal nk com-
puted from the true covariance matrix, ignoring deviation
due to pilot estimation of the covariance matrix and round-
ing the nk. All results are reported for standard simulations
of n= 10�000 paths.
We also measure costs solely in terms of the numbers of

steps nk, disregarding any extra costs incurred in computing
predictors or fictitious cashflows from the state vector and
true cashflows. Assessment of such costs, while of impor-
tance in practice, would be dependent on implementation
of numerical algorithms, which is unrelated to the variance
reduction method under consideration. For instance, in the
example of §6.3, simulating the state vector involves gen-
erating a normal random variable and taking its exponen-
tial, while computing the fictitious cashflows requires two
evaluations of the standard normal cumulative distribution
function. These costs depend on the desired accuracy of the
approximate algorithms. The issue of the overhead in com-
puting predictors is essentially the same as the overhead in
computing control variates.
Another issue is the overhead involved in computing the

convex hull solution. The total time taken by our algorithm
is a function of p, the fraction of total work used in the pilot
run to estimate variances. Let R�p be the variance ratio
discussed above, but based on the random realization of
sample variance components from the pilot run. It tends to
decrease in p as better estimation leads to a resource alloca-
tion closer to optimal. Let T0 be the standard simulation run
time, T1 be the time required to compute sample variance
components using all paths, and T2 be the time required to
solve the convex hull problem to get a resource allocation.
Our algorithm’s time as a fraction of that required by stan-
dard simulation to achieve the same variance is

R�p+ pT1+T2
T0

� (18)

A larger pilot run requires more overhead for computing
sample variance components but results in a resource allo-
cation that probably yields more variance reduction.
Also, because the pilot run uses up some of the comput-

ing budget by simulating m-step paths, if it uses too many
paths it may result in overcommitting resources to later
time steps, preventing the optimal resource allocation from
being attained at a fixed budget level. For instance, a pilot
run of 500 paths might reveal that the optimal number of
paths to reach the last step m should be only 100. Then step
m has received five times more resources than is optimal.

We now investigate whether the theoretical variance ratio
R gives an accurate picture of the actual variance reduc-
tion (18). We do this by comparing the two quantities for
a particular example, that of §6.1. In that example, a pilot
run of approximately 700 paths produced the minimal cost
for our algorithm, as described in Equation (18). The dif-
ference between the reduced variance R and the actual cost
was 0.10%. The solution time T2 and the overcommitment
of resources to later time steps turned out to be negligible
in comparison to the other factors. These are the impact of
imperfect estimation, which leads to a suboptimal resource
allocation, leading to an attained variance ratio R�p > R,
and the cost pT1 of computing sample variance compo-
nents. For a version of the same problem with only 30
instead of 360 steps, the efficiency loss was only 0.03%,
minimized with about 200 paths in the pilot run, and the
solution time T2 was no longer negligible. These results
suggest that the theoretical variance ratio R gives a good
indication of the effectiveness of our method; we therefore
report estimates of R in the examples that follow.

6.1. Mortgage-Backed Security

In this application, the simulation values a mortgage-
backed security (MBS), a financial security whose cash-
flows are the total payments made on a pool containing a
large number of mortgages. The difficulty of pricing this
security arises from the possibility of prepayment: The
mortgages include an option for the homeowner to prepay
at any date the balance of the principal and cease mak-
ing payments thereafter. Prepayments increase when inter-
est rates are low and homeowners have an incentive to
refinance their mortgages at more favorable rates.
The prepayment model is based on Richard and Roll

(1989), who provide further background on mortgage-
backed securities. We assume that the pool is divided into
individual mortgages of equal and negligible size. The refi-
nancing ratio is the ratio of the current 30-year mortgage
rate to the rate locked in for this pool of mortgages at its
creation. A refinancing ratio less than 1 gives homeowners
an incentive to refinance their mortgages and thus prepay
the old ones. Figure 2 graphs the fraction of existing mort-
gages that prepay per year as a function of the refinancing
ratio. Even when the refinancing ratio is very low, only
approximately half the homeowners will refinance per year,
perhaps because some have lost creditworthiness and have
no opportunity to refinance, or because it takes them time to
become aware of and respond to financial incentives. Even
when the refinancing ratio is very high and unfavorable,
some homeowners prepay, perhaps when moving house.
The instantaneous interest rate rt obeys the Vasicek

model, following the stochastic differential equation drt =
0�r̄ − rt dt + � dWt with volatility � = 1%, long-term
average interest rate r̄ = 8%, and mean reversion strength
0= 2%. The initial interest rate is r0 = 6�5% and the mort-
gages are 30 years long. The refinancing rate is always 2%
above the yield of a 30-year risk-free bond. The parameters
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Figure 2. Annual prepayment fraction.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

refinancing ratio

fr
ac

tio
n 

pr
ep

ay
in

g 
in

 a
 y

ea
r

are such that the expected fraction of mortgages surviv-
ing to term is about 0.11 and the price of a 30-year zero-
coupon bond is about 17 cents for a dollar of face value.
These two quantities reflect the insignificance of the last
step relative to the first: At the end of the MBS’s life, there
are fewer mortgages still in the pool, and payments have a
lesser present value.
Figure 3 graphs the variance components v of the MBS’s

discounted cashflows. More explicitly, at each step k, the
height of the graph of v is the variance of the cashflow
at step k plus twice the sum of the covariances between
the cashflow at k and the cashflows at all subsequent
steps. As expected, there is very little variance at later
steps. The graph also reveals a characteristic feature of
MBSs: negative covariance between cashflows at early and
late steps. Consider a single mortgage. An unusually large
cashflow (the principal balance) occurs when it prepays,

Figure 3. MBS example: Variance components.

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2
x 10

−4

year

v

and afterwards cashflows are unusually low (zero). This
accounts for the presence of negative variance components
in the first five steps. At these steps, the negative covari-
ance of Xk with the sum of future discounted cashflows
outweighs the positive variance of Xk in Equation (4).
This feature is unfavorable for variance reduction by

resource allocation among time steps. Theorem 1 indicates
that there is greater variance reduction when early variance
components vk are large and positive, not when they are
negative. Figure 4 shows that, in this example, the optimal
resource allocation n does not drop below that of standard
simulation (which is 1) until approximately year 20 out of
30. With this optimal n, variance is reduced to 84.0% of
standard simulation.
It is possible to reduce the impact of negative covariance

by using the missing data technique. At step k, we have
both a discount factor and the number of remaining mort-
gages at step k+ 1. The discount factor for step k+ 1 is
the product of the stochastic discount realized up to step k
and a one-period bond price, known in closed form for this
model. The number of mortgages left at k+1 is the product
of the number left at k and the prepayment ratio based on
the history up to k. We take the predictor Tk to be the prod-
uct of this discount factor and number remaining at step
k+1, which is known at step k. The intuition is that, ignor-
ing the variability of the nominal cashflow per mortgage,
the discounted cashflow is proportional to both the discount
factor and the number of mortgages. For this reason, we
estimate a reduced model with 'hk = 0 for h < k−1.
Applying the missing data technique yields variance

components with a smaller initial negative dip. Their par-
tial sums V ′ are in Figure 5, which shows that V ′ is larger
than V after one year, often much larger. Then Theorem 5
suggests that the variance of the estimator using the missing
data technique will be better than that without. Indeed the
variance is now only 50.5% compared to standard estima-
tion. The new optimal resource allocation n′ in Figure 4 has

Figure 4. MBS example: Resource allocation.
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Figure 5. MBS example: Cumulative sums.
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more resources devoted to the earliest steps and less at later
steps. The optimal allocation stops early more aggressively
when using the cashflows after adjustment using the miss-
ing data technique than for the actual cashflows, because
the former bring more of the total variance to early steps
in the simulation, which is the recipe for success.

6.2. Seasoned Interest-Only Security

The cashflows generated by a pool of mortgages are often
divided unevenly among different “tranches” to create dif-
ferent types of securities. One example of this is an interest-
only security (IO) that is backed solely by the interest
portion of the monthly payments of the mortgage holders.
As with an ordinary MBS, an IO is valued by calculating
the expected present value of its cashflows, and these cash-
flows are sensitive to prepayments.
In this example, the parameters for the interest rate pro-

cess are � = 1%, long-term average interest rate r̄ = 5%,
and mean reversion strength 0 = 0�5%. The initial inter-
est rate is r0 = 10% and the mortgages are 25 years long.
This is an example of a seasoned security, that is, one that
was issued in the past, in this case, five years ago. The rate
on the mortgages is 12%, or 2% above the 10% yield that
a risk-free 30-year bond offered when the mortgages were
issued. The idea behind this example is that since the mort-
gages were issued, a new expectation has developed that
interest rates will start to decline over the long term.
This means that it is likely that many homeowners will

prepay, which is favorable for this method. The variance
reduction is to 22.3% without use of the missing data tech-
nique and to 13.7% with it.
That we find greater variance reduction with the IO than

with the ordinary MBS is to be expected in light of the
discussion in §6.1. For an ordinary MBS, prepayments
introduce negative correlation between current and future
cashflows because a larger payment now implies a smaller

payment later. The effect on an IO is different: A prepay-
ment has no impact on the current interest received (the
prepayment is an additional payment of principal) and it
reduces interest cashflows at all future dates.

6.3. Asian Option

An Asian derivative is a financial security whose pay-
off depends on the average of an underlying price over
time. There are m averaging dates t1� � � � � tm, and the arith-
metic average of the underlying price S up to step k is
Ak =

∑k
j=1 Sj/k, where Sj is the price at time tj . This exam-

ple is an Asian call, with payoff �Am−K+, where K is a
strike price. The underlying price obeys the Black-Scholes
lognormal model, following the stochastic differential equa-
tion dSt = St�r dt+� dWt under a risk-neutral probability
measure. The difficulty of pricing the Asian derivative is
that while the geometric average of jointly lognormal ran-
dom variables is lognormal, there is no convenient expres-
sion for the distribution of the arithmetic average.
This example has m = 5 averaging dates, which are the

last five days in the option’s one-year life. The constant
interest rate r = 6�5% and the volatility � = 20%. The
strike price K and initial underlying price S0 are both 100.
The simulation has m steps because we need to gener-

ate a price at each averaging date, but the only cashflow
occurs at the terminal date. Therefore resource allocation
applied directly produces no benefit. However, it is usable
in combination with fictitious cashflows or the missing data
approach. The intuition is that the first step in the simula-
tion is most important because S1 both appears directly in
the average and has a great influence on later prices.
To design fictitious cashflows, we rely on our knowledge

about the distribution of a geometric average of lognormal
prices. There is a formula f �k�Sk�Gk, which gives the
value at time tk of a call on the geometric average, given
the price Sk and geometric average price to date Gk at step
k. That is, f �k�Sk�Gk = e−r�tm−tkE��Gm−K+ �Sk�Gk�,
and this price is given by the Black-Scholes call pric-
ing formula, but incorporating the parameters of the dis-
tribution not of Sm but of Gm, which Curran (1994, §2.2)
provides. Our approximation for the step-k value of the
arithmetic Asian call is f �k�Sk�Ak. This approximation
is exactly correct at step m. The fictitious cashflows are
Xk = e−rtk f �k� Sk�Ak− e−rtk−1f �k−1� Sk−1�Ak−1.
These produce the cumulative sums V of variance com-

ponents in Figure 6. This curve coincides with its con-
vex hull. The resulting optimal allocation n in Figure 7
reflects this absence of binding monotonicity constraint: n
decreases at each step. However, the variance reduction is
to 26.2%, close to the best possible reduction, which is
20%, as discussed at the beginning of this section.
The purpose of the Asian feature in this option might be

to smooth the price used in computing the payoff, dilut-
ing the effect of possible large short-term deviations. We
also considered an Asian option with m = 5 averaging
dates spaced equally over a year. The averaging feature
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Figure 6. Asian option example: Cumulative sums.
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Figure 7. Asian option example: Resource allocation.
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makes such an option useful, for instance, for limiting the
risk of a company which plans to make regular purchases
of a commodity whose price underlies the option payoff.
For this Asian option with equal spacing, the results are
not as good: variance reduction only to 87.6% using ficti-
tious cashflows. The first Asian option was more favorable
because almost all the information about the payoff is con-
tained in S1, because it has nearly a year of variability in
it, while the later steps take only days.

7. CONCLUSION

We have proposed and analyzed a variance reduction tech-
nique based on allocating greater computational effort to
earlier steps along a simulated path. The method is moti-
vated by the application of simulation to estimating the
expected present value of a finite stream of cashflows,
where discounting or other features render later times steps

less important than earlier time steps. We pose and solve a
resource allocation problem to determine the optimal num-
ber of paths to simulate of each length and develop con-
nections with the statistical theory of missing data. Further
variance reduction can be achieved through a decompo-
sition into fictitious cashflows; we find the optimal such
decomposition.
Examples confirm that this method is most effective

when early steps are indeed more important than later steps,
as would often be the case at higher discount rates. Some-
what less obviously, the covariances between cashflows
at different dates also have a significant influence on the
effectiveness of the method: The method works best when
early cashflows have positive covariance with later ones.
Resource allocation yields variance reduction only if the
problem has this sort of structure. The computational over-
head incurred in solving the allocation problem is justified
when the number of paths to be simulated is large relative
to the number of steps per path.

APPENDIX A: PROOFS

Proof of Lemma 1.

Var��̂�= Var
[ n∑
i=1

mi∑
k=1

Xik
nk

]
=

n∑
i=1

Var
[ mi∑
k=1

Xik
nk

]

=
n∑
i=1

mi∑
k=1

mi∑
l=1

�kl
nknl

=
m∑
k=1

m∑
l=1

min�nk�nl�∑
i=1

�kl
nknl

=
m∑
k=1

m∑
l=1

�kl
max�nk�nl�

=
m∑
k=1

1
nk

(
�kk+2

m∑
l=k+1

�kl

)
�

Proof of Theorem 1. First, see that the stated solu-
tion (6) is primal-feasible. It clearly satisfies the budget
constraint (2). The upper convex hull V ∗ is a concave
function, so the slopes u∗k of its segments are nonin-
creasing. These segments’ endpoints are extreme points of
the original graph � , so in particular there is a k < m
such that u∗m = �Vm−Vk/�Cm−Ck. Assuming that costs
are positive, Cm − Ck > 0. Also Vm − Vk =

∑m
l=k+1 vl =

Var�
∑m
l=k+1Xl� > 0. Therefore u∗m > 0, and since these are

nonincreasing, all are positive. Consequently, all nk are pos-
itive and nonincreasing, satisfying the monotonicity con-
straint (1).
Next, show that the solution is dual-feasible. The

Lagrangian is

� =
m∑
k=1

vk
nk

−�
(
C−

m∑
k=1
cknk

)
−
m−1∑
k=1
6k�nk−nk+1�

Differentiating with respect to nj , the first-order conditions
are, for j = 1� � � � �m,

6j−1 = 6j +vj/n2j −�cj�
where 60 denotes zero.
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Dual-feasibility is the existence of nonnegative Lagrange
multipliers 6j and � which satisfy these first-order equa-
tions and the complementary slackness conditions 6j�nj −
nj+1 = 0. Let � be as given in Equation (7), which is
positive, and let

6j = �V ∗
j −Vj/n2j �

which is nonnegative by definition of the upper convex hull.
So j is the index of an extreme point if and only if 6j = 0,
and otherwise 6j > 0. Therefore, 6j �= 0 implies that j is
not the index of an extreme point, and because V ∗ is linear
between extreme points, the slopes u∗j+1 = u∗j , hence, nj −
nj+1 = 0. Thus complementary slackness is satisfied.
Define l�j as the index of the first extreme point to the

right of �Cj�Vj:

l�j
�=min�k > j �V ∗

k = Vk��
As mentioned above, V ∗

m = Vm so this is well-defined for
j = 1� � � � �m−1. Then

6jn
2
j = V ∗

j −Vj = �Vl�j−Vj− �V ∗
l�j−V ∗

j 

=
l�j∑
k=j+1

�vk−v∗k�

Again, because V ∗ is linear between extreme points, nk is
constant for k = j + 1� � � � � l�j. Also, from Equation (6),
n2k = v∗k/�ck, so

6j =
l�j∑
k=j+1

vk−v∗k
n2k

=
l�j∑
k=j+1

(
vk
n2k

−�ck
)
�

Suppose j is not the index of an extreme point. Then
l�j−1= l�j and we see directly from this that the first-
order condition is satisfied. If j is the index of an extreme
point, then l�j−1= j and 6j = 0, so 6j−1 = 0+ vj/n2j −
�cj and the first-order condition is satisfied.
Finally, there is the matter of the variance reduction ratio.

Under standard simulation,

nk=
C∑m
i=1ci

and Var=
m∑
k=1

vk
nk

=
( m∑
i=1
ci

)( m∑
k=1
vk

)/
C�

Using the optimal solution,

nk=
C
√
u∗k∑m

i=1ci
√
u∗i

and Var=
( m∑
i=1
ci
√
u∗i

)( m∑
k=1

ckuk√
u∗k

)/
C�

so changing indices and substituting for slopes u= v/c, the
ratio of variances is

�
∑m
j=1 cj

√
u∗j �

∑m
i=1 vi/

√
u∗i 

�
∑m
j=1 cj�

∑m
i=1 vi

�

which equals the formula given in Equation (8).

Proof of Lemma 2. First we show that
∑m
k=1 �̂k can

indeed be written in the form given by Equations (12)–(15).

By substituting for (̂h in the recursive definition (11), we
see that (̂k is a linear combination of averages �T , where the
weights in the linear combination involve estimated regres-
sion coefficients b̂. As remarked in §2, the average indexed
as �Thi must have h � i because it is the average of Th
on paths i� � � � � ni so we must have nh � ni for Th to be
observed on all these paths. Also, if �Thi is to feature in (̂k,
then we must have i � k so that �Thi is based on at least as
many paths as �Tkk, the obvious estimate of (k, and thus can
be of use in correcting it. Having established that the ran-
dom variable Tik does not appear in (̂h for h< k, by inspec-
tion, +kkk = 1 is the coefficient of the average �Tkk in (̂k and
+hkk =−b̂hk is the coefficient of the average �Thk in (̂k. For
i < k, the random variable Thi does not appear directly in
(̂k, only through its appearance in (̂j for j = i� � � � � k− 1.
Therefore we can write

(̂k =
k∑
i=1

i∑
h=1
+hik�Thi

following the definition of Equation (13).
By substituting for (̂h in definition (10) and repeating the

reasoning of the previous paragraph,

�̂k = �Xkk+
k∑
i=1

i∑
h=1
whik�Thi�

following the definition of Equation (14). Whereas +kkk
is 1, wkkk is 0, because Xkk appears in �̂k where Tkk appears
in (̂k. Then

m∑
k=1
�̂k =

m∑
k=1

(
�Xkk+

k∑
i=1

i∑
h=1
whik�Thi

)

=
m∑
k=1

�Xkk+
m∑
i=1

i∑
h=1

(
�Thi

m∑
k=i
whik

=
m∑
k=1

�Xkk+
m∑
i=1

i∑
h=1

�Thiwhi =
m∑
k=1

(
�Xkk+

m∑
h=1

�Thkwhk
)

using Equation (15), which says that whi =
∑m
k=i whik and

is zero if h > i. Continuing,

m∑
k=1
�̂k =

m∑
k=1

1
nk

nk∑
i=1

(
Xik+

m∑
h=1
Tihwhk

)
=

m∑
k=1

1
nk

nk∑
i=1
X ′
ik�

Next, we show that W1 = 0 by virtue of the recursive
definitions (13)–(15). Recall that +hik and whik are zero
unless h� i � k. We begin with a proof by induction on k
that for any k > h,

∑k
i=h +hik = 0.

k∑
i=h
+hik = +hkk+

k−1∑
i=h

k−1∑
j=i
b̂jk+hij =−b̂hk+

k−1∑
j=h
b̂jk

j∑
i=h
+hij

=−b̂hk+ b̂hk+hhh+
k−1∑
j=h+1

b̂jk

j∑
i=h
+hij

=−b̂hk+ b̂hk+
k−1∑
j=h+1

b̂jk0= 0�
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where
∑j
i=h +hij = 0 is justified by inductive hypothesis

because h < j < k.
To complete the proof that W1 = 0, we must establish

that for any k� h,
∑k
i=h whik = 0. If k= h, this is whhh = 0.

Otherwise,
k∑
i=h
whik = whkk+

k−1∑
i=h

k−1∑
j=i
'̂jkwhij =−'̂hk+

k−1∑
j=h
'̂jk

j∑
i=h
+hij

=−'̂hk+ '̂hk+hhh+
k−1∑
j=h+1
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j=h+1

'̂jk0= 0�

Consequently, for any h,
m∑
i=h
whi =

m∑
i=h

m∑
k=i
whik =

m∑
k=h

k∑
i=h
whik =

m∑
k=h

0= 0�

Proof of Theorem 2. The expectation is

E
[ m∑
k=1

nk∑
i=1

X ′
ik

nk

]
= E

[ m∑
k=1
X ′
k

]
�

But
m∑
k=1
X ′
k =

m∑
k=1

(
Xk+

m∑
h=1
Thwhk

)

=
m∑
k=1
Xk+

m∑
h=1
Th

m∑
k=1
whk

=
m∑
k=1
Xk+

m∑
h=1
Th0=

m∑
k=1
Xk�

becauseW1= 0 so for each h,
∑m
k=1whk = 0. By definition,

E�
∑m
k=1Xk�= �.

Proof of Theorem 3. We have X ′
ik =Xik+

∑m
h=1 Tihwhk =

Xik+
∑k
h=1 Tihwhk. When i and j index distinct paths, X ′

ik

and X ′
jk are independent. Also, X

′
ik does not involve the

decision variables n. Therefore, from
∑m
k=1

∑nk
i=1X

′
ik/nk =∑n

i=1
∑mi
k=1X

′
ik/nk the proof of Lemma 1 applies, with

X ′ replacing X. Similarly, using the v′k instead of vk,
Theorem 1 gives the optimal nk for this estimator.
Rewrite from Equation (12)

�̂=
n1∑
i=1

mi∑
k=1

1
nk
X ′
ik =

m∑
k=1
�̂k where

�̂k
�= 1
nk−nk+1

nk∑
i=nk+1

k∑
j=1
X ′
ij

(
nk−nk+1
nj

)
�

As the computational budget C goes to infinity, each
nk−nk+1 goes to infinity, and �nk− nk+1/nj approaches
some finite limit pjk such that

∑m
k=j pjk = 1 for each j .

Because
∑k
j=1 pjkX

′
j has finite variance, the Lindeberg cen-

tral limit theorem, for which see, e.g., Billingsley (1995,
p. 359), implies that for each k, the distribution of

�̂k−E�
∑k
j=1 pjkX

′
j �√

Var�
∑k
j=1 pjkX

′
j �/�nk−nk+1

(19)

converges to standard normal as C→�. The �̂k are inde-
pendent because they are taken over different sample paths,
and they sum to �̂. The sum of the expectations in (19) is

m∑
k=1

k∑
j=1
pjkE�X

′
j �=

m∑
j=1

E�X ′
j �

m∑
k=j
pjk =

m∑
j=1

E�X ′
j �= ��

and the sum of the variances in (19) is

m∑
k=1

1
nk−nk+1

Var
[ k∑
j=1
pjkX

′
j

]

=
m∑
k=1

1
nk−nk+1

k∑
i=1

k∑
j=1
pikpjk�

′
ij

=
m∑
i=1

m∑
j=1
� ′
ij

m∑
k=max�i� j�

(
pikpjk

nk−nk+1

)
� (20)

From the proof of Lemma 1, with a change of indices,
we have

,2=
m∑
i=1

m∑
j=1

(
� ′
ij

max�ni�nj�

)
=

m∑
i=1

m∑
j=1
� ′
ij

m∑
k=max�i�j�

(
nk−nk+1
ninj

)
�

The ratios(
pikpjk

nk−nk+1

)/(
nk−nk+1
ninj

)

all converge to 1 as C→�, so the ratio of (20) to ,2 also
converges to 1. Therefore, the distribution of ��̂−�/,
converges to standard normal as C→�.
Proof of Theorem 4. While , is the standard deviation
given by Equation (16), let ,� be that produced by substi-
tuting W� in Equation (16). The assumption of consistency
says that whi−w�

hi converges in probability to 0 for each h,
i. Because of this convergence in probability, the random
variable , converges in probability to ,�. Put differently,
,/,� converges in probability to one.
Also let �̂� be like �̂, but with the constant matrix W�

substituted for the random matrix W. Then

�̂− �̂� =
m∑
k=1

1
nk

nk∑
i=1

k∑
h=1
Tih�whk−w�

hk�

so to prove that �̂− �̂� converges in probability to zero, it
suffices to show that for all h and k, Th�whk−w�

hk con-
verges in probability to zero.
We already know that for any positive 7 and 8, there

is some C�7� 8 such that if the budget C > C�7� 8, then
P��whk−w�

hk� > 8� < 7 for each h, k. We must next show
this is also true for �Th�whk−w�

hk�. Let F be the cumulative
distribution function of maxh �Th�, and �F = 1−F be its tail
probability. The event

{�Th�whk−w�
hk�> 8

}⊂ {�Th�> �F −1�7/2
}

∪ {�whk−w�
hk�> 8/�F −1�7/2

}
�
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Then for C > C�7/2� 8/�F −1�7/2,

P��Th�whk−w�
hk�> 8� < P��Th�> �F −1�7/2�

+P��whk−w�
hk�> 8/�F −1�7/2�

< 7/2+7/2= 7�
i.e., �Th�whk−w�

hk� converges in probability to zero. This
proof works because there are a finite number of Th, each
of which is finite with probability one.
It is established that �̂− �̂� converges in probability to

zero, and because ,� is positive, ��̂−�/,� − ��̂� −�/,�
also converges in probability to zero. Using the con-
vergence in probability of ,/,� to one, finally we see
��̂−�/,− ��̂� −�/,� converges in probability to zero.
Because W� is constant, by Theorem 3, ��̂� −�/,� con-
verges in distribution to standard normal, so ��̂−�/, does
as well.

Proof of Theorem 5. Suppose that sequences X ′
1� � � � �X

′
m

and X ′′
1 � � � � �X

′′
m in � satisfy V ′

k � V
′′
k for all k = 0� � � � �m.

One is tempted to say that this condition on the partial
sums means that v′ majorizes v. However, this is not quite
so, for the definition of majorization involves partial sums
of terms placed in decreasing order. Majorization is a rela-
tion between sets, not vectors; see, for instance, Marshall
and Olkin (1979, p. 7, 12). Here the sequences retain their
original order.
Let n′ and n′′ be the optimal resource allocations for the

problems using respectively X ′ and X ′′. Define the function

f �x1� � � � � xm
�=

m∑
k=1

xk
n′′k
�

The derivative of f with respect to its kth argument is
1/n′′k . This is nondecreasing in k because the n

′′
k are non-

increasing, due to the monotonicity constraint (1). Because
we can move from v′ to v′′ by subtracting from early com-
ponents and adding equal amounts to later components,
f �v′1� � � � � v

′
m� f �v

′′
1 � � � � � v

′′
m. This informal argument par-

allels Theorem A.3 of Marshall and Olkin (1979), but with-
out the restriction that components be decreasing. Then
m∑
k=1

v′k
n′k

�

m∑
k=1

v′k
n′′k

�

m∑
k=1

v′′k
n′′k
�

where the first inequality is true because n′ minimizes
the objective based on v′ and the second inequality is
the result about f just established. Consequently, the
sequence X ′

1� � � � �X
′
m produces the resource allocation

problem whose optimal objective is least if for any ficti-
tious cashflow X ′′

1 � � � � �X
′′
m, V

′
k � V

′′
k for each k.

Next,

V ′
k = V ′

m−
m∑

l=k+1
v′l = V ′

m−Var
[ m∑
l=k+1

X ′
l

]
�

Also, because the sequence X ′
1� � � � �X

′
m is in � ,

∑m
k=1X

′
k =

X, so
∑m
l=k+1X

′
l = X−∑k

j=1X
′
j , and

∑k
j=1X

′
j must be �k-

measurable. Thus each V ′
k is maximized by minimizing

Var�X − Y � over �k-measurable random variables Y . As
is well known, it is E�X ��k� that minimizes this residual
variance; see, for instance, Williams (1991, §9.4).

APPENDIX B: ALGORITHM

Step 1. Construct a doubly linked list of points that are
candidate extreme points of the upper convex hull in that
they are above the line connecting the endpoints:

(a) Let s = Vm/Cm, k = m, and CARRY = START, a
pointer to a newly created blank node.

(b) If Vk � sCk, create a node with COST = Ck,
VALUE = Vk, PREV = CARRY, NEXT = NULL,
and let both PREV→NEXT and CARRY be point-
ers to this node.

(c) Decrease k by 1. If k � 0, go to Step 1b.

Step 2. Scan the list and eliminate points that are not
extreme:

(a) Let the pointers K = START → NEXT, J = K →
NEXT, and I= J→ NEXT.

(b) Compute < = VJ �CK − CI − �VI �CK − CJ  +
VK�CJ −CI.

(c) If < � 0, advance the scan: K = J, J = I, I = I→
NEXT.
Otherwise, delete node J and back up: J = K, K =
K→ PREV.

(d) If I �= NULL, go to Step 2b.

Step 3. Produce n from the extreme points:

(a) Initialize k = m, K = START → NEXT, J = K →
NEXT, and u∗k = �VK−VJ /�CK−CJ .

(b) If k� J , let K= J and J= J→NEXT, and recompute
uk.

(c) Assign v∗k = u∗kck and decrease k by 1. If k > 0,
repeat Step 3b.

(d) Compute n from v∗ as in Equation (6).

Preparata and Shamos (1985, §3.3.2) provide a proof that
the Graham scan does produce the convex hull. Our algo-
rithm departs from the standard Graham scan in three ways:
(1) It does not include a sort, because the points of the

graph � are already sorted.
(2) In Step 1b, it discards points below the line con-

necting �0�0 and �Cm�Vm, which cannot form part of the
upper convex hull. In Step 2d, the algorithm stops loop 2
when it reaches �0�0 and has completed the upper convex
hull instead of going on to find the lower convex hull, too.
(3) This means that �0�0 must always be included

in the output of loop 2. We already know �0�0 and
�Cm�Vm are the leftmost and rightmost points and must
be in the upper convex hull. The algorithm also ensures
that �Cm�Vm is in the output. In the first iteration of
Step 1b, the algorithm sets START→ PREV= PREV. Then
in Step 2b, if K = START and < < 0, the result of back-
ing up is to leave K = START and J = START. The next
time Step 2b executes, < = 0 and the scan will advance.
The result is that the START node representing �Cm�Vm
can never be deleted.
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