
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 17, No. 1, February 1992
Printed in U.S.A.

MONOTONICITY IN GENERATJ7,FD
SEMI-MARKOV PROCESSES*

PAUL GLASSERMAN AND DAVID D. YAO

We establish stochastic monotonicity of the event epoch sequences of generalized semi-
Markov processes through the structure of the generalized semi-Markov schemes on which
they are based. Our main condition states, roughly, that the occurrence of more events in the
short run never leads to the activation of less events in the long run. We consider
monotonicity with respect to two types of inputs: clock times (which translate to, e.g., service
and interarrival times in queueing systems), and structural parameters (which translate to,
e.g., buffer size, number of servers, and job population). For the second type of comparison,
we replace a structural change with an equivalent change in clock times to reduce the
comparison to one of the first type. When applied to queueing systems, our results yield new
comparisons and also unify several existing results previously established using special
properties of individual systems.

1. Introduction. Optimal design of a stochastic system is often a difficult prob-
lem. Stochastic ordering results make it possible to compare systems and determine
which performs "better" without evaluating their performance quantitatively. Hence,
they can provide a qualitative basis for design improvement. This paper contributes to
a growing literature on stochastic ordering for queues and related systems by
identifying structural properties, for a broad class of models, that lead immediately to
the monotonicity of performance as a function of key inputs.

We take the point of view that a system is designed to perform certain useful tasks.
The completion of such a task constitutes an "event". One system performs better
than another, in a very strong sense, if it completes all tasks sooner when both
systems are subjected to the same input-i.e., if the event sequences are stochasti-
cally ordered. These are the kinds of comparisons we make. In particular, we do not
make comparisons between the states of different systems; indeed, we do not even
assume that our state spaces are in any sense ordered. When applied to queueing
systems, our results translate to comparisons between service completion sequences,
throughputs, arrival processes, etc.; but not, however, to comparisons between queue
lengths or waiting times. Stochastic orderings for these quantities hold less generally.
On the other hand, results in Whitt [24] show how orderings between event epoch
sequences sometimes imply orderings between queue lengths and waiting times, and
our results are likely to have similar applications in specific cases.

Casting our results in the framework of generalized semi-Markov processes (GSMP)
provides significant generality, and-more importantly-allows us to identify key
structural properties from which monotonicity follows. When applied to queueing
systems, our approach yields new comparisons and also unifies and extends many
existing results previously established for specific examples. In particular, several of

*Received November 6, 1989.
AMS 1980 subject classification. Primary: 60K15, 90B22, 60K20.
IAOR 1973 subject classification. Main: Stochastic processes.
OR/MS Index 1978 subject classification. Primary: 571 Probability/Regenerative Processes. Secondary: 697
Queues/Networks.
Key words. Stochastic monotonicity, generalized semi-Markov processes, networks of queues, discrete event
systems.

1

0364-765X/92/1701/0001/$01.25
Copyright ? 1992, The Institute of Management Sciences/Operations Research Society of America

PAUL GLASSERMAN & DAVID D. YAO

the results in Sonderman [18,19], Shanthikumar and Yao [16,17], and Tsoucas and
Walrand [22] fall within our framework. Our conditions point to common features
among these examples.

Since we do not make comparisons based on states, many known results for systems
which could be modeled as GSMPs do not follow from our results. For example, we
do not generalize Sonderman's [20] comparisons for semi-Markov processes. Our
results have only trivial implications for an ordinary semi-Markov process, which is
far too special a case to be an interesting GSMP. Nor do we consider monotonicity in
time as in Daley [2], Massey [11], or Whitt [25], though finding conditions-and
appropriate orderings, as in [11], [24] and [25]-for spatial and temporal monotonicity
of GSMPs would certainly be worthwhile.

We adopt the now common approach of establishing (strong) stochastic ordering by
making sample path comparisons-that is, we compare two processes by constructing
them on a common probability space and showing that one always dominates the
other, in a suitable sense. (See Kamae, Krengel, and O'Brien [10], and Stoyan [21].)
?2 gives a description of GSMPs, and outlines the natural construction on which our
comparisons are based. Glasserman [3,4] provides more detailed recursions for the
evolution of a GSMP, and those would apply here directly. The construction via point
processes of Helm and Schassberger [9] could also be tailored to our formulation.
(See Burman [1], Glynn [7], Haas and Shedler [8], Schassberger [13,14,15], and Whitt
[23] for other approaches in slightly different settings.)

We first present our main conditions and results for a restricted class of
GSMPs-those with what we call deterministic routing and unit speeds. Starting out
with less than full generality helps clarify the arguments. For these GSMPs, ?3
establishes monotonicity with respect to clock times (e.g., service times, interarrival
times), and ?4 monotonicity with respect to structural parameters, such as buffer size,
number of servers, and network population. A novel feature of our approach is that it
translates structural changes into equivalent changes in clock times, thus reducing the
second type of comparison to the first. This mechanism is based on the notion of
subscheme. Under appropriate conditions, a reduction in buffer size, number of
servers, or network population, for example, can be "simulated" through an increase
in service and interarrival times to facilitate comparisons. ?5 and ?6 establish
analogous conditions and results for more general processes-GSMPs with proba-
bilistic routing and with nontrivial speeds. ?7 shows how our conditions can sometimes
be weakened if we ask for weaker conclusions, using a relation called relevance. ?8
generalizes and recasts our main results from a different point of view, replacing
subschemes with extractions. ?9 and ?10 consider simple variants of the GSMP notion
of "event". We conclude in ?11 with some remarks on further extensions and
applications.

2. Generalized semi-Markov processes and schemes. A generalized semi-Markov
process (GSMP) evolves by moving from state to state through the occurrence of
events at random time instants. Associated with each state is a set of active events,
any of which potentially triggers the transition out of that state. To each active event
there corresponds a (random) clock reading, which determines when that event is
scheduled to occur next. Clocks for different events may run at different speeds in
different states; when a clock runs out, the associated event occurs. The process
moves to the next state according to transition probabilities that depend on the
current state and on the event that triggers the transition. After the transition, the
clocks are adjusted to reflect the set of active events in the new state. In particular,
new clocks are set for any newly active events, and clocks from the old state continue
to run if the associated events are still active in the new state.

2

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

We characterize a GSMP by (S,A, 6, p, ., r) where S is a (finite or) countable
state space representing the possible "physical" configurations of a system; A is the
set of events, which we take to be finite. We denote generic events by a and P, and
also let m = IAI and write A = {a1,..., am}. The mapping 6: S - 2A yields the set
of active events in a state-for s E S, ((s) is called the event list, and is never empty.
To avoid trivialities, we require that A = U s,(s). For each s E S and a eE 6(s),
p('; s, a) is a probability mass function on S; with probability p(s'; s, a), the next state
is s' when a transition out of s is triggered by a. 4 is a probability law that governs
the sequence of new clocks for each event. We take as given a stochastic process
X = {(X,(n),..., Xa (n)), n = 1, 2,...} with law 9; the nth time a clock is set for a,
it is set to X,(n). Under 4, every X,(n) has support in (0, oo]. We allow essentially
arbitrary dependence among the elements of X, but do not allow them otherwise to
depend on the evolution of the GSMP. An important special case is where the X,'s
are independent processes and each {X,(n)} is an i.i.d. sequence. Finally, r = {rs,,
s E S, a E A} is the set of clock speeds: the clock for a runs at the (finite) rate rsa in
state s, if a e 6'(s). Without 9, dc= (S, A, 6, p, r) is called a generalized semi-
Markov scheme (GSMS).

A simple algorithm maps a realization of X to a sample path of a GSMP. Let Tn
denote the epoch of the nth transition; sn the state entered at the nth transition; and

n = (Cn(a), ... , c(am)) the vector of clock readings just after the nth transition.
Initially, so is fixed, r0 = 0, and the clock readings are initialized by letting Co(a) be
X,(1) if a E 6((s0) and zero otherwise. In words, clocks are set for events in 6(s0).
Suppose (rn, n,, cn) have been determined. Then

Tn+1 =
Tn + min{cn(a)/rsna: a E 6(Sn)},

taking division by zero to yield infinity. The event a*+1 that achieves the minimum on
the right triggers the n + 1st transition and is said to occur at n+l . (If more than
one a achieves the minimum, break ties by, say, taking the one with the smallest
index in {a, ..., am}.) The next state Sn+1 is sampled from p(; s, , a*+1). After the
transition, clocks are updated as follows: Let na be the number of times a clock
has previously been set for a. If a E 6(s,,+1) \ (6(s,) - {a*+1}), then Cn+,(O) =
Xa(na + 1), and we say that the activation of a is triggered by an+. If a E

(Sn+,) n) ("6(S,)- {a*+1}) then Cn,+(a) = c(a) -
rsna(n+1,

- Tn); and if a 0

6'(sn+) then cn+ (a) = 0. The state of the GSMP is now defined to be sn at time t if
?n < t < Tn+1

Our results focus on the sequence of event epochs T = {T,
T,m), where, for i = 1,..., m, Ta, = {T(n), n = 1, 2,... }, and Tai(n) is the epoch of
the nth occurrence of ai. If ai fails to occur n times, T,a(n)= oo. We restrict
attention to Y's under which the GSMP is nonexplosive-i.e., for all initial condi-
tions,

(1) P(sup Ta(n) =oo)=1, i= ,...,m.
n>O

This holds, for example, if under 9, almost surely
00

X,(n) =00, i = ,...,m.
n=l

For each event a e A, the throughput of a is liminfn_,, n/T,(n). Comparisons of
T-sequences for different GSMPs translate immediately into comparisons of through-
puts.

3

PAUL GLASSERMAN & DAVID D. YAO

Our main conditions are most easily expressed in terms of strings of events, which
are just finite sequences of elements of A. A string oa = ,0o -' fk is called feasible in

so if p0 e ~6(s0), and if there is a sequence sl,..., sk of states for which J3i E (si),
i= 1,...,k and

p(sl; so, P)p(s2; s, 1) ** P (sk;Sk-1, k-1) > 0.

For any string a, let NA(r) be the number of occurrences of a in a, and let

MN() = (N-),..., N(-)).
The conditions we propose restrict us to GSMPs based on noninterruptive schemes

(Schassberger [13]), meaning that they satisfy

(2) a E &(s), p(s';s,a) > 0 4(s) - {} c(s').

In a noninterruptive GSMP, at every transition all events active in the old state
continue to be active in the new state, except possibly the event that triggers the
transition.

Throughout this paper, all words of comparison are used in their weak sense; thus,
"increasing" means "nondecreasing", "faster" means "no slower", "earlier" means
"no later", etc.

3. Deterministic schemes. By a deterministic generalized semi-Markov scheme
we mean one in which for all s and all a e (s) there is just one s' for which
p(s'; s, a) > 0-necessarily, with p(s'; s, a) = 1. We refer to this as deterministic
routing. The alternative phrase "deterministic transitions" might incorrectly suggest
that the sequence of state transitions is fixed; but the clock times introduce random-
ness in the order of events, hence also in the sequence of transitions. (There is often
a close connection between the probabilities, p, and the routing probabilities in a
queueing network; and a network with deterministic routing would typically be
modeled by a deterministic scheme. But routing probabilities refer to transitions
between queues, and p to transitions between states, so the two should not be
confused.)

For a deterministic GSMS, if a E &(s) define 0(s, a) by p(4(s, a); s, a)= 1.
Extend k(s,') to a function of strings by the following recursion: if the string era is
feasible in s, let 0(s, era) = 4(((s, o(), a), and let f(s, ?) applied to the empty string
be s. This definition makes sense because aa feasible implies ar feasible and
a E 9(4(s, u)).

Say that a scheme has unit speeds if, for all s and a, rsa = l{a E S(s)}. We now
state several variants of our main condition for monotonicity in GSMPs with deter-
ministic routing and unit speeds.

(M). Monotonicity Condition. If ro- and 02 are feasible in s, and N(U1) < N(o2)
(componentwise), then

6(0(s, aj)) \AO,12 c e(4(, S2)),

where A,2 = {(a: N,(oA1) < Na(o2)}.
REMARK. Think of o- and 0r2 as representing possible event sequences followed

by a GSMP starting in state s. If N(rl) < N(a2), then (M) implies that for any a such
that a1,a is feasible in s-i.e., a e (4'((s, orl))-either a E (f(s, a2)) and N(ala)
< N(or2a), or N(a1a) < N(02). In this sense, under (M), if the ordering N(Mo) <
N(-2) holds initially, it is preserved under the future evolution of the strings.

4

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

The following equivalent condition is sometimes easier to establish directly (ei
denotes the ith m-dimensional unit vector):

(M'). Alternative Statement of (M). If a, and a2 are feasible in s, then

N(o1) = N(J-2) => '((s, or)) = &(4(s, o2)) and

N(o-1) + ei = N(or2) => &(K(s, o1)) \ {(ai} C 9((S, 0o2)).

The first part of (M') is a permutability condition: changing the order of events
does not change the event list of the state reached. Given this condition, the second
part of (M') reduces to noninterruption.

An important special case of (M) is the following condition, proposed for a
different purpose in Glasserman [3,4]:

(C). Commuting Condition. If {a, /3) c 6(s) then 0(s, Ofp) = 0(s, /3a).
Part of the requirement in (C) is that both sides be defined-i.e., that P3

G(0(s, a)) and a E (((s, 3)), which is the noninterruptive condition (2). An
equivalent statement of (C) is given by

(C'). Alternative Statement of (C). The scheme is noninterruptive, and if o- is
feasible in s, then ((s, ro) depends on oa only through N(o-); i.e., for feasible ro and
or', N(r) = N(Mr') 4 0(s, o) = 4(s, o').

Conditions (C) and (C') require that the state reached through a sequence of
events be independent of their order. The first part of condition (M') weakens this to
require only that the event list reached be independent of the order of events.
Conditions (M) and (M') ensure, roughly, that the occurrence of more events in the
short run is never penalized in the long run. We summarize connections among these
conditions in

PROPOSITION 3.1. (C) * (C) =* (M) * (M) = (2).

To prove this we use the following lemma on permissible manipulations of strings,
which will also be useful later:

LEMMA 3.2. (i) In a scheme that satisfies (M), if the string roaf3 is feasible in s and
f1 E 6'(((s, o)), then Barft is feasible in s. (ii) In a scheme that satisfies (C), let or and
o' be feasible in s. Then if o-' is a permutation of o, it can be obtained from ar through
a sequence of transpositions of consecutive events, always preserving feasibility.

PROOF OF LEMMA. Part (i) is an immediate consequence of (M). For part (ii), let
o - P1 * Pk, ft-' = Pi *'* * P3i Since o' is feasible in s, 3i, E 69(s). Find the first
occurrence of the event ,il in ro; by part (i), we may repeatedly transpose f3, and the
event that precedes it while maintaining feasibility. This permutes cr to something of
the form Pi1l. Since f3i2 E 9(0(s, il))) we may repeat this procedure with 13i2 and J1
to get something of the form 8i1,i2J2. Repeating this for Pi3,..., ik_ we end up
with p1 * ..

ik
without ever violating feasibility. a

PROOF OF PROPOSITION. We show only (C) (C') and (C) (M'); the other
implications are obvious. Suppose (C) holds and let o- and o' be, as in (C'), feasible
permutations of each other. By Lemma 3.2(ii), there is a sequence of (feasible) strings
or = a-, o1i,..., O(n = o', such that ai is obtained from or_ 1, i = 1,..., n, by transpos-
ing a pair of consecutive events. Under (C), a feasible transposition of a pair of
consecutive events does not change the state reached: 4(s, o) = (s, d1)= .* *
0(s, or'), so (C') holds.

For (M'), if N(Mo) = N(a2) then, under (C), 4(s, o-) = k(s, 02), so, in particular,
(k(S, 01)) =

6g((S, 02)). If N(Mo) + ei = N(ar2) and (C) holds, then 0'2 can be
permuted to orai while maintaining feasibility. Thus, ((s, a2) = ((s1, ai), where

5

PAUL GLASSERMAN & DAVID D. YAO

s1 = ((s, cr). Since (C) implies noninterruption, cf(s1)\ {ai)} C 4(4(1, ai)); i.e.,
C((0(s, (o1)) \ {ai} C (0(s, Or2)), which is the other half of (M'). o

Given an initial state s0, we view a GSMS with deterministic routing as a
completely deterministic mechanism driven by the input ct = (al, ..., OWa), where

Wa,
= {(O(n), n = 1,2,... } represents a realization of {Xa(n)}. Denote by fQ the

space of all w's, defined as follows: Let

I= (xE (0, oo]: Ex(n) = oo

and let fl be the product of m copies of I. Restricting attention to I ensures (1). We
obtain the GSMP from the GSMS by endowing fl with a suitable r-algebra and the
measure 9.

For any subset A of A, let C)A = (o,)aeA and TA = (T)a,EA. Let < denote the
componentwise ordering on fl: cw < w' if and only if for all i and n the corresponding
elements wx(n) and < (n) satisfy o(n) < (n). Let < also denote the analogous
ordering for event epoch sequences T = (Ta, ..., Ta). Let <st denote the stochastic
ordering induced by < , applied either to measures or to associated random elements.
In general, if ut, and .t2 are measures on a partially ordered space, then A2 <st iLI
means that ffdi,2 < ffd,l1 for all increasing, real-valued functions f for which the
integrals exist. If Yi is a random element associated with LAti, i = 1, 2, then Y2 <st Y1
if, equivalently, E[f(Y2)] < E[f(Y1)] for every increasing, real-valued f for which the
expectations exist.

THEOREM 3.3. In a GSMS with deterministic routing, with unit speeds, and satisfy-
ing (M), T is stochastically monotone; that is, 2 <st <1 = T2 <t T1 for all initial
states, where T1 is the event epoch sequence under i, i = 1, 2.

Theorem 3.3 follows immediately from the following sample path comparison (see,
e.g., Kamae, Krengel, and O'Brien [10]). In Lemma 3.4 and throughout this paper,
T(o) is the event epoch sequence obtained from the input w E fl described above,
via the construction outlined in ?2.

LEMMA 3.4. Under (M), T is increasing in ov; that is, for any initial state so,
w < to' =r T(w) < T(w').

PROOF. Let V = {V ,..., V, }, where V,j(n) is the epoch of the nth setting of a
clock for ai, with Vi(n) = oo if a clock for ai is not set n times. For noninterruptive
GSMPs, Ta(n) = V(n) + Xa(n), for all a and n; thus, monotonicity of T follows
from that of V. To establish the monotonicity of V, we compare the realizations
v = V(c)) and v' = V(w') when c < oc'. We proceed by induction, showing that at
every transition on the M'-path, any clock that is set has already been set on the
co-path. Let rk(w') be the epoch of the kth transition on the w'-path, and ro(W') = 0.
We show that for all k, and all a and n,

(3) if, on the co'-path, a clock for a is set for the nth time at the kth
transition, then v,(n) < Tk((').

Since the first part of (3) implies that v'(n) = rk(t'), the conclusion is that uv(n) <
v'(n).

At the Oth transition, (3) holds: both paths set clocks for those events in &(so), so
v,(1) = 0 = v'(1) for all a E &(0), and v(1) > 0 if a c 9(so). Take as induction
hypothesis that (3) holds up to k. Let a' be the string of the first k + 1 events to

6

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

occur on the o'-path; let o- be the string of all events to occur on the w-path in the
interval [0, 7Tk+1(')]. (If k + 1 events do not occur in (0,oo) on the o'-path, (3) is
vacuously satisfied.) The clock for any event in -r' was necessarily set before the
k + 1st transition on the c'-path. By the induction hypothesis, its clock was set
earlier (and therefore ran out earlier) on the o-path. Thus, N(r') < N(O).

Now let s' = 0(so, o') and s = 0(so, a). Condition (M) implies that 4(s') \A,,, c
4'(s), with A,,t as defined there. Consider an event, a, for which a clock is set at the
k + 1st transition on the o'-path-i.e., for which a clock is set upon entry to s'. This
is the n'th time a clock is set for a (on the o'-path), where n' = Na(o') + 1. There
are two cases. If NA(o) > Na((r'), then the n'th occurrence of a on the o-path
occurred in [0, Tk+l(f')]; hence, Vn,(a) < Tk+l('t) = v (a). Otherwise, Na(o) =
N,A(o') = n' - 1, and (M) implies that a E 64(s). But if Na(a) = n' - 1 and a E S(s),
then a clock for a must have been set for the n'th time at or before entry to s-that
is, at or before Tk+ (,') = v'(n'). In either case, vi(n') < v'(n'), which is what we
needed to show. o

Condition (M) is necessary for monotonicity of all events with respect to all clocks,
in the following sense:

THEOREM 3.5. For a GSMS violating (M), it is possible to choose 92 <t 91 and
an initial state so for which T2 .st T1 on the resulting GSMPs.

PROOF. Suppose (M) is not satisfied. Let or and r2 be strings feasible in some s0,
N(o-) < N(r2), violating (M). We may choose ii, i = 1,2, to concentrate all
probability on a deterministic sequence of clocks under which the GSMS follows ri,
i = 1,2. For such 9i, the construction of T1 on a probability space is essentially
unique, so we can show that T2 4st T1 by treating only the particular probability
space described above. Thus, we choose 9', i = 1, 2, to concentrate all probability on
an oi that generates the event sequence ai. Since following oi constrains only the
relative magnitudes of (finitely many) elements of Di, we may require that co2 < o1,
which makes ,2 <st 1. We may further require, for any 0 < E < 1, that all events
in ro occur in (1, 1 + e], all events in r2 occur in [1 - E, 1), and for all a

(4) n> N>(Ar2) = ca2(n) > 1 + E.

Since or and -2 violate (M), there is an event a in 6(4(so, a,)) which is in neither
6(O(so, o2)) nor A,I,2. Let na = N,a(o) + 1 = N,(r2) + 1, and suppose, without
loss of generality, that 1t (n) = o(n,,). Since a 0 6'((so, o2)), some event other
than a must follow o02 and trigger the setting of the nath clock for a; hence, (4)
implies that T2(n) > 1 + e + o(n). On the other hand, a E &((s(so, o()) implies
that the nath clock for a must be set at or before the completion of o-, so
Tl(na) < 1 + e + 1o(n,). But then Tl(n) < T2(n), and T2 < T1. o

REMARK. A longer argument shows that, in Theorem 3.5, Sri, i = 1,2, can be
chosen so that the clock samples for each event are i.i.d.

We now illustrate the role of conditions (M) and (C) through examples.
EXAMPLE 3.6. Consider M single-server queues in tandem; the ith queue has

room for ki jobs, and k1 = oo. Let p0 denote arrival to the first queue, and let Pi
denote service completion at i, i = 1,..., M. If, upon completing service at i, a
job finds queue i + 1 full, it waits at i, preventing initiation of the next service time,
until space becomes available at i + 1. Denote a typical state by (n,b) =
((n1,..., nM), (bl,..., bM)), where ni is the number of jobs at i, and bi = 1 (0)
indicates that i is blocked (not blocked). The event P0 is in every 6((n, b)), and, for
i > 0, 3i E ?((n,b)) if and only if ni > O and bi = 0. For any i = 0,..., M, if
,Pi E ((n, b)), then b((n, b), Pi) = (n', b') defined as follows: Let kM+ 1= 0?, nM+l =

7

PAUL GLASSERMAN & DAVID D. YAO

0 and bo 0 ; let ei be the ith M-dimensional unit vector, i = 1,..., M, and
eM+1 = eO the vector of all zeros; let empty products be unity, empty sums zero; then

i i-1

n'= n + l{ni+1 < ki+1} E (e+ - ej) bl,
j=O l=j

i-i i-1

b' = b - l{ni+1 < ki+l} E ej bl + l{ni+1 = ki+l}e
j=1 l=j

By considering separately the four cases l{n1+1 < ki,+l} = 0,1, 1{ni2+1 < ki2+1 =

0, 1, one readily checks that 0((n, b), 13ili2) = 0((n, b), 3i2Pi,) whenever {3il, P,i}
4((n,b)). Thus, (C) is satisfied, and Theorem 3.3 implies that speeding up the
interarrival times and the service times accelerates the service completions at each
node, hence also the throughput of the line. In ?8 we drop the condition that k1 = oo
for a weaker conclusion. In ?9 we extend this example to multiple-server queues.

EXAMPLE 3.7. The variant of Example 3.6 in which k1 < oo satisfies (C) if the
arrival mechanism is "shut off" when n1 = kl-i.e., if n, = kI => go 4 ((n, b)). But
if arrivals may be blocked and lost-i.e., n1 = k, => ((n, b), 830) = (n, b)-then even
(M) is violated. We demonstrate this in the case M = 1, a single-server, finite capacity
queue. Take the state to be the number in the system, /o3 to be arrival, ,31 to be
service completion. Let a be the string consisting of /o followed by k P1's, where k
is the total queue capacity. Then o(k, oa) = 0 (the arrival is lost) and '((P(k, a)) =
{30)}. But if o-' is any permutation of or, then o-' is feasible in k, 4(k, o-') = 1 (the
arrival is now admitted) and 6(1) = {,30, 1} +) (O(k,)). Thus, speeding up inter-
arrival times and service times will not necessarily cause every event to occur earlier.
Sonderman [18] reaches the same conclusion for this example.

EXAMPLE 3.8. This example satisfies (M) but not (C). Consider a cyclic network of
M single-server, infinite capacity queues. From node M jobs go back to node 1. So
far, (C) is satisfied; but suppose we "tag" a job and give it nonpreemptive priority
over all others, without changing its service requirements. Thus, Pi denotes service
completion at node i for either the tagged job or any other job. Represent a typical
state by (n, i, k), where n is the vector of queue lengths, i is the location (node) of the
tagged job, and k indicates that the tagged job is in service (k = 0) or at the head
of the queue (k = 1). Since the event list in a state depends only on n, it is easy to
see that (M) is satisfied. On the other hand, if ni+1 > 1, then 0((n,i,0), Pi,i+1) =
(n - ei + ei+2, i + 1,0) + (n - ei + ei+2, i + 1,1) = 4((n, i, 0), Pi+1Pi), so (C) is vio-
lated.

4. Subschemes. Theorems 3.3 and 3.5 consider comparisons between the event
epochs of two GSMPs based on the same scheme but driven by different clock
processes. As the examples illustrate, this type of result is useful in comparing
queueing systems with the same structure but different service and interarrival
processes. To compare, instead, systems with different buffer sizes, number of servers
or number of jobs, we need to compare GSMPs based on different schemes.
Condition (M) holds the key to this kind of comparison as well.

Consider, for the moment, GSMS in full generality-nondeterministic routing,
nontrivial speeds. The following definition captures the idea of one scheme being
contained in another. (The superscripts "S" and "B" suggest "small" and "big".)

8

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

DEFINITION 4.1. Call cs a subscheme of aB (denoted S c _ B) if
(i) Ss c SB;
(ii) ~S(s) C B(s) for all s e SS;
(iii) pS(s'; s, a) = pB(s'; s, a) for all s, s' E SS and all a E 6S(s);
(iv) rSa = rB for all s e Ss and all a cE 6(s).
Under our (sensible) requirement that for any scheme A = U ,6(s), (i) and (ii)

imply that As c AB. Think of a GSMS as a labeled, directed graph: the nodes are
states; for every s, s' and a such that p(s'; s, a) > 0 there is an arc from s to s'; and
the label on that arc is (p(s'; s, a), rsa). Then one GSMS is a subscheme of another if
it is a subgraph. (Embedding one scheme in another may require reinterpretation of
states and events, so it may be more natural to think of a mapping f: 9s _ aB for
which f(Ss) C S5, f(AS) c AB, and (ii)-(iv) hold analogously. This view complicates
the notation so we do not adopt it.)

Define fS and 4B for the two schemes as before; then 4s(s,) = 4B(s,)
whenever or is feasible for As starting in s. Clearly, any such string is also feasi-
ble for 9B starting in s. Let Ts and TB denote the corresponding event epoch
sequences. The following result ties a change in scheme to a change in clock times.
To lighten the notation, we carry out only the case As = AB; this allows us to
construct Ts and TB on the same f.

LEMMA 4.2. Suppose cs and 9B have deterministic routing and unit speeds, and
Cs c CB. Consider TB and Ts starting from a common, fixed state so E SS. If gs is

noninterruptive, then for all to e f there exists o' e f, such that wo) < ' and TB(/')
= TS(o).

PROOF. We construct the required o'. The idea is to choose w' so that when 9B

is driven by w' it "mimics" the evolution of s5. Since clocks are potentially set
earlier on aB (more events are active in corresponding states), this requires
prolonging some clock times.

Let ak be the string consisting of the first k events to occur when cs is driven by
o, provided at least k events actually occur in (0, oo). Let rk(o) be the corresponding
epoch of the kth event. For all a E 4S(so), set ' (1) = TS(1). Suppose Sk = ok-lak.
Suppose, for some k > 1,

(5) a e 2B(B(5o, ak)) \ (B(B(s, a,k_1) - (ak);

i.e., a clock would be set for a in 9B at the kth transition if 9B followed ak. If (5)
holds, set

(6) wOa(N,(Ok) + 1) = Ta(N(ak) + 1)(&o) - k(o).

(This definition is consistent; if (5) also holds for k' > k then NA(ck,) > NA(Ok).) For
any remaining a and n (not covered by (5) and (6)), TS(n)() = oo so set co' (n) = oo.
This construction makes o' > wo. Moreover, the sequence and timing of events
(indeed, even the sequence of states) when 9B is driven by co' are the same as when
cs is driven by co. By construction, every w' (n) is the difference between T,(n) and
the epoch of the nth setting of a clock for a in cB. [

Now consider GSMPs based on cs and aB via gs and aB. Let TB and Ts be
the corresponding event epoch sequences, starting from a common state so E Ss.

THEOREM 4.3. Suppose Ss and cB have deterministic routing and unit speeds,
Ss c aB, and aB = Js. If gS iS noninterruptive and 9B satisfies (M), then
TB <t Ts.

9

PAUL GLASSERMAN & DAVID D. YAO

PROOF. It is enough to show that for all co, TB(w) < T(5o). From Lemma 4.2 we
know there is an o' such that (i) o < ?c' and (ii) TB(co) = TS((o). Then

w < C' = TB(c) < TB(Wo) (by Lemma 3.4)

TB(W) < TS(w) (by(ii)). D

REMARK. Lemma 4.2 and Theorem 4.3 easily extend to the case AS c AB. In the
proof of Lemma 4.2, set s'(n) = oo whenever a E AB \ As. In Theorem 4.3 we then
get

>s~ = s TAS <st Ts.
EXAMPLE 4.4. Consider, again, queues in tandem as in Example 3.6, still requiring

that the first queue have infinite capacity. We may embed such a system into one in
which some ki, i > 1, is increased by unity by identifying the state (n, b) in the
original system with state (n + ei, b) in the enlarged system. This makes the original
GSMS a subscheme of the one with more capacity. Since (M) is satisfied by both, we
conclude immediately that increasing buffer size accelerates the occurrence of all
events. If we apply the construction of Lemma 4.2 to this example, we find that the
enlarged system can "mimic" the original by prolonging some /3,i--clocks: To
produce the same T-sequence, the enlarged system must delay service at i- 1
whenever, in the smaller system, i - 1 would be blocked. Using the device of ?9, we
could, instead, increase the number of servers at node i. In this case, we embed the
original system by mapping states to states that differ only in that the added servers at
i are busy. Similarly, in a closed cyclic network we could add jobs. Either change
accelerates events. Similar conclusions are drawn in Tsoucas and Walrand [22]; our
example is more general in that we make no independence assumptions, but less
general in that we do not, as yet, allow k1 < oo; see ?8.

5. Probabilistic schemes. We drop the assumption that every p(s'; s, a) is zero
or one. Without loss of generality, we may suppose that the state transitions are
governed by transition mappings as follows: For each a E A there are mappings
fi: S - S, i = 1,..., ma (where ma may be infinite) such that if a E 6(s),

m,

Ep(fi'(s);s,a) = 1.
i=l

DEFINITION 5.1. A GSMS has state-independent routing if for each a E A there
are strictly positive constants {pa, i = 1,..., ma} summing to unity, and mappings
{f , i = 1,..., ma}, such that for all s with a E 6(s), p(ffi(s); s, a) = p.

In a GSMS with state-independent routing, if a is in both &(s) and &(s'), the
possible transitions out of s and s' due to a are in one-to-one correspondence; and
corresponding transitions s -f fi(s) and s' -> fi(s') have the same probability, p/.
This property is typical of queueing networks with state-independent routing, where
we can make a correspondence between transitions in different states that reflect the
movement of a job between a particular pair of nodes. Schemes with deterministic
routing automatically have state-independent routing: take ma = 1, fI(s) = k(s, a).

To accommodate probabilistic routing, we enlarge our probability space. Let

II = {1,..., mal X X {1,..., mam},

0

and let fl = n1 x I. Denote a typical element of II by r = (ral,,... am)), where

7ai = {rTTa(n), n = 1, 2,... }. Denote a typical element of Ql by c) = (w, 7r). For each

10

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

a and n, if the nth occurrence of a occurs in state s, it triggers a transition to

fa (n(S). Thus, to induce state-independent routing, we endow II with the product
measure that assigns the probability mass vector (pa,..., p) to each copy of
{1,..., m,} in II, for each a.

Through this augmentation of fl, a GSMP with state-independent routing becomes
a deterministic function of Co = (o, rr). For rr E II and a E c (s), define 0((s, a) =

f (1)(s). Extend 0(s, ?) to (feasible) strings recursively via

r(S, a) = fra(Na(o) + 1)(0 z S, ' 0)).

Then 4,(s, ao) is, indeed, the state reached through the string of events 0r following
the state transitions as determined by r-. With zT held fixed, the evolution of the
GSMP is completely determined by C). The transitions are "deterministic", but have
"memory" in the sense that the transition triggered by a depends on how many times
a has already occurred.

The following is the generalization of (M) to schemes with probabilistic routing:

(PM). Probabilistic Monotonicity Condition. The GSMS has state-independent
routing, and for all 7r e II, (M) holds with 4b replaced by 44.

The analog for (C) is sometimes easier to work with:

(PC). Probabilistic Commuting Condition. The GSMS has state-independent rout-
ing; and for all s, all {a, 3) c &(s), and all i = 1, ..., m, j = 1,..., ma, ffP(fi(s))
= fia(fP(s)).

PROPOSITION 5.2. (PC) (PM).

PROOF. We show that under (PC), for each rr E I, and every oa feasible in s,
0,(s, o) is a function of N(a) only. This means that (C')-hence, also (M)-is
satisfied by every 0,. Let o = iP, P k, and let

7i
= T 3i(N i(.1 i));

then

(s, r) = fk o... ofP(s).

As in Lemma 3.2, any feasible permutation of a can be obtained through a sequence
of transpositions of consecutive events that maintain feasibility. Transposing Pi and
,8i+ maintains feasibility if and only if fi+1 E (0(4,(s, ji,..., ,i_-)). In this case,
(PC) implies that reversing the order of Pi and f3ii+ does not change the state
reached:

fPi+lo fPi(t (RPi *.1 'i-l))
-

fio f+l(tr(s 1 ''' i 1)).

Applying this to each transition, we conclude that 04(s, -) is unchanged if a is
replaced by any feasible permutation. o

THEOREM 5.3. Theorems 3.3 and 4.3 hold with (M) replaced by (PM).

This is established by replacing 4 with 44 in the proofs of the earlier results.
REMARK. For schemes with state-independent routing, (PM) is necessary for T to

be increasing in Co for all rr, under our construction on f = H x I. But we cannot

11

PAUL GLASSERMAN & DAVID D. YAO

from this generalize Theorem 3.5 and conclude that (PM) is necessary for T to be
stochastically increasing in ,. Even for 9's that make the clock times deterministic,
the presence of nontrivial p's makes the choice of probability space fundamentally
nonunique; and we cannot rule out the possibility of an entirely different construc-
tion. The necessity of (PM) under one construction does not imply its necessity for all
constructions.

EXAMPLE 5.4. Consider a generalized Jackson network of single-server queues.
Node i has capacity ki. Routing of class c jobs is governed by a Markovian,
state-independent routing matrix (Pj). A fictitious node 0 is the source of every
arrival to the network, and the destination of every departure from the network; thus,
we consider open, closed and mixed networks simultaneously. Let the state of the
network be the vector of queue lengths, supplemented with information about the
order in queue of jobs of different classes, and about which nodes are blocked by
which other nodes. For each i and c, let pi be completion of service by a class c job
at node i. Let ac be external arrival of a class c job. Service at every node is first
come, first served; jobs of different classes may have different service requirements
and different routing, but there are no priorities. Jobs blocked internally wait where
they completed service.

We impose the following restrictions:

(7) Poi > O for some c ki = oo;

(8) PC>0 and Pi > O, j'j ki = oo;

(9) P,c > O, P > O and c c' =j=j'.

In words, (7) prevents blocking of external arrivals, (8) requires that a finite capacity
queue be fed by a single source, and (9) requires that a queue visited by more than
one class of jobs be fed by a single source. (Implicit in (7) is the assumption that
blocked external arrivals would be lost. If, instead, each queue had its own external
arrival stream which would "shut off" when the queue was full, then (7) would be
unnecessary; see Example 3.7.)

Under conditions (7)-(9), (PC) is satisfied; no weakening of these conditions
ensures even (PM). (To verify (PC), take fia(s) to be the state reached from s when a
job attempts to join queue i upon the occurrence of a, where a is any service
completion or external arrival.) To see why we need (8), for example, suppose that j
and j', j 1 j', both feed i, and ki < oo. Then speeding up service at j might cause j'
to be blocked by i more often, and may therefore delay service at j'.

From Theorem 5.3 we get

PROPOSITION 5.5. For the class of networks described above, T is stochastically
increasing in ., and decreasing in the buffer sizes and in the number of jobs of each
class.

6. Speeds. Suppose, now, that the clock for a runs down at speed rs, in state s.
We adopt the convention that r,a = 0 if a e 4(s). We always require that for all a
and s, rsa < oo.

(SM). Speeds Monotonicity Condition. The GSMS has state-independent routing;
and for all rr, all s, and all o-r, o2 feasible in s, if s1 = 4J(s, (a1), s2 = 4,(S, r2), and

12

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

N(rl) < N(a2) then

a E (51) \A012 =r rsla < rs2a.

This reduces to (PM) when ra = l{a e A(s)}. If, in (SM), N(r1) = N(ro2), then all
events have the same speed in =,(s, oa) and 4,(s, a2). An important special case of
(SM) is

(SC). Speeds Commuting Condition. In addition to (PC), if {a, ,} c 6(s), then
p(s'; s, p) > 0 =r r < ' ra.

PROPOSITION 6.1. (SC) (SM).

PROOF. Similar to Propositions 3.1 and 5.2. o
The following further generalizes Theorem 3.3:

THEOREM 6.2. Consider two GSMPs with clock laws F1, p2, and based on the
same scheme, c. Let Ti, i = 1,2 be the corresponding event epoch sequences. If 9

satisfies (SM), then qa2 <st 91 T2 <st T1 for all initial states.

PROOF. Let II be as before. It is enough to show that for every r e nI, when
transitions are determined by 4=, the event epoch sequence T for v is increasing in
Co. Let o' > co. As in the proof of Lemma 3.4, let Tk(o') be the epoch of the kth
transition on the w'-path; let ok be the string of the first k events to occur on the
o'-path; let ak be the string of all events to occur in [0, Tk(O')] on the o-path; let

Sk = /y(s0, tk) and sk = 4y(so, r'k), where so is the initial state. We first show by
induction that, for all k, N(crj) < N(ok). (It is enough to consider those k for which
k events actually occur on the o/-path-i.e., for which rk(a') < oo.) This holds for
k = 0; suppose it holds up to k. If ok+ = orka, we need only show that n'
Na(ok +l) < Na(Ok+l). On the c'-path, the n'th clock for a was set upon entry to s,,
I < k. By hypothesis, N(ao) < N(ao), and (SM) implies that either a A e A ,o or

Na(a;o) = Na((l) and a E 6(sl). In the first case, Ta(n')(o) < rl(cO') so Na(rk+l) > n'
and we are done. In the second case, for every j = 1,..., k, N(o') < N(o) so (SM)
implies that r,.a < rsja for every j = l,..., k. Thus, the n'th clock for a is set no later
on the o-path than on the w'-path, and is always run faster; hence, it can run out no
later. In other words, Na(Ok+l) > n' = Na(ok+).

We may now conclude that T(o) < T(o): if, for some a and n, Ta(nXo) were
greater than T,(n)(w'), then there would be a k for which Nja(c) > Na(ak). In
particular, we could choose k so that Tk(co') = Ta(n)('/). O

We can also compare GSMPs with different speeds:

THEOREM 6.3. Consider two GSMPs based on schemes cl and c92 differing only
in their speeds. Suppose the two GSMPs have the same clock law ,, and 9 and -,2
both satisfy (SM). Then r2 > r1 = T2 <,t T1 for all initial states. Conversely, if for all
.? and all initial states T2 <st T1, then r2 > rl, even if (SM) is not satisfied.

PROOF. Arguing just as in the proof of Theorem 6.2, we find that when both c91
and _.2 are driven by the same input o, every clock is set earlier and runs faster
under -!1 than 92, so Tl()) < T2(w). For the converse, suppose there are s and a
such that rl > r2, and take this s as initial state. Let 9 make all clocks for a
identically x. To simplify the argument, let 4a make all clocks for all other events
infinite-any sufficiently large value would do. Clearly, T'(1) = x/rsa, i = 1, 2, where
division by zero yields infinity. Now x can be chosen so that T2(1) > TJ(1). o

THEOREM 6.4. Suppose cs and 9B satisfy ,
s c B, with As = AB and (iv) of

Definition 4.1 relaxed to rS < rsB. Suppose B = gas. If f.S is noninterruptive and
9B satisfies (SM), then TB <st Ts for every common initial state in S5.

13

PAUL GLASSERMAN & DAVID D. YAO

PROOF. We need to check that Lemma 4.2 still holds-the rest of the proof is the
same as in Theorem 4.3. Fix an initial state so E Ss. Since As = AB, we may let
fns = fB = Qf and fIs = IB = . Fix a T E H and let transitions be determined by
rr for both ,B and As, via 4B and 4s. We want to find, for every w E H, an
(o' E H such that w < w' and TB(w') = TS(w). Let ok be the string consisting of the
first k events when ,s is driven by w, provided k events actually occur. Let Tk(w)
be the epoch of the kth event. Let Sk = S(So, Ck), and k = k- aC. Suppose, for
some k > 1,

a E eB(B(SO(ok))\ (B(OB((, ok- 1))
-

{al),

or simply a E &B(s0) for the case k = 0. If TS(Na,(ok) + 1) = o, set w)(N,(rk) + 1)
= oo; otherwise, choose the smallest j for which Tj(w) = Ta(N,(rk) + 1) and set

a(Na(o) + 1) = a[rkl()
- k(W)I + ..) +r , iC[ai(W)

- T-1(i)]

Set any remaining w' (n) to infinity. Since, in the situation described,

wa(Na,(k) + 1) = rSk[7k+ 1(0) - k(W)] + .. +rs_a[Tj() - 7)]

this definition makes w' > w. Moreover, under this definition, a clock set to
J' (NJ(rk) + 1) at rk(W) and run down at speed rsa during the interval

[Tr(w), ri+l(W)), i = k,..., j - 1, runs out at ri(w) = Ta(NA(jk) + 1), which is what
we needed. o

REMARK. Theorem 6.4 easily extends to the case As c AB; see the remark follow-
ing Theorem 4.3.

EXAMPLE 6.5. Consider a simplification of Example 5.4. The network is closed;
there is only one class of jobs; every ki = ?o; but we allow the servers to work at
load-dependent rates. Represent the state of the network by a vector n of queue
lengths. Let fi be service completion at node i, and let there be i, = (iti) such that

rn3i
= ,i(ni). In other words, the speed of service at node i is a function of the queue

length at i. Condition (SC) is satisfied if every /ui is an increasing function. Thus, if L
is increasing, adding a job to the network increases throughput. This generalizes a
similar result in Shanthikumar and Yao [16]. If p1 and gi2 are both increasing, and
i1 < |2, then all service completions occur earlier when the service speeds are UL2
than when they are !1.

7. Relevance. This section and the three that follow treat modifications of our
previous results, in some cases obtaining weaker conclusions under weaker assump-
tions. To simplify the exposition, in what remains we take all schemes to have unit
speeds. We begin, in this section, by giving a condition for comparing GSMPs based
on the same scheme and having different clock processes for only a subset of the
events. We then make precise the idea that, in some cases, there are subsets A and B
of A such that TB = (Tt)tEB', the event epochs of B, depend on D only through

= (a,), E A, the clocks of A. To facilitate comparisons based on marginals of 9,
we will assume that D= t, x ... x "m; in other words, the clock processes for
different events are independent. When this is the case, we say that ? factors over A.
If ,i, i = 1,2, factor, then ,2 st 1 if and only if <2 <st 4al for all a E A.

Our results depend on the idea of relevance introduced in Glasserman [4]. It
identifies when the epochs of one event depend on those of another event:

14

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

DEFINITION 7.1. For any a E A, the set R(a) of a-relevant events is as follows: (i)
a E R(a); and (ii) if a' E R(a), p(s'; s, a) > 0 and a" E 4(s') \ (s) then a" E R(a).
For A c A, the set of A-relevant events is R(A) = U a AR(a).

Thus, a' E R(A) if a' E A or if a clock for a' is ever set by the occurrence of an
event in R(A). Informally, R(A) is the closure of A under triggering. Let R-'(a) =
{,3: a e R(P8)}, and let R-(A) = U aAR-l(a). Write Afor A\A. Simple proper-
ties of R and R-1 are summarized in

LEMMA 7.2. (i) R and R-1 are idempotent and increasing: R(R(A)) = R(A),
A c B > R(A) c R(B), R-1(R-1(A)) = R- (A), A c B = R- (A) c R-1(B);

(ii) A c R(A) c R-1(R(A)), A c R-1(A) c R(R-1(A));
(iii) R-(R(A)) \(R(A)) c A, R(R'-(A)) \ (R -(A)) c A.

For any A c A we have the following relaxed version of (PC):

(RA). Relevance Condition. Condition (PC) holds whenever a or P is in R(A).

THEOREM 7.3. Fix A c A and suppose S satisfies (R). Let Ti, i = 1,2 be induced
by .', i = 1,2, each i factoring over A. If KA2 st A and aF = 9j, then
T2 2st T1.

PROOF. Let T(W) be the event epoch sequence when a is driven by w for any
fixed rr E II, as in ?5. It is enough to show that if)A < o4 and wt- = wt- then
T(o) < T(o'). An event in R - R(A) never triggers the setting of a clock for an
event in R (since R(R(A)) = R(A)), so a simple inductive argument shows that if
oR = o4 and (RA) holds, then TRo(w) = T(W)'). Also, w- = a 4- oR = (t4 because
A c R(A) > R(A) c A. Thus, changing o to w' does not change the order or timing
of events in R. The rest of the proof is the same as that of Lemma 3.4. If, as in
Lemma 3.4, or' is the string of the first k events on the o'-path and a is the string of
events on the o-path that occur in the same time interval, then the order of events in
R is the same in a and r'. Thus, in comparing ar and ar', condition (RA) is no weaker
than (PC). o

Since B CA = R(B) c R(A), (RA) = (RB), and in Theorem 7.3 we may, of
course, take ,B <st ,2 and equality on B. Since, also, R(A) = R(R(A)), we may
instead take AR(A) st 'R(A) and equality on R(A).

EXAMPLE 7.4. Consider a single-server queue fed by n arrival streams a1,..., an
of jobs of different classes. Let 381,..., n be the corresponding service completion
events. Let the state be the order of jobs in the system. Service is first come, first
served. This system violates (PM). (For example, 4(N(0, aia1)) = {f3i} {/3}) =

(40(0, aJai)).) Condition (RA) is violated if A contains any arrivals. But if A is any
nonempty subset of {13',..., "n}), then R(A) = {f31,..., 3"n and (RA) holds: a change
in the order of a service completion and an arrival will not change the resulting state.
Thus, speeding up some or all of the service times while holding the interarrival times
fixed never delays any events.

The notion of relevance is useful even when (PM) is satisfied, in which case it
indicates which clock times need to be ordered to ensure that the epochs of a subset
of events are similarly ordered. In the following sense, TA depends on 9 only
through R- '(A):

THEOREM 7.5. Suppose 6 satisfies (PM), and \i, i = 1,2, factor over A. If
' -A) <st R-'(A) then TA st TA

PROOF. Let B = R-l(A). We show that if wB < 'B then TA()) < TA(o'). Let
NB(o-) = (N,(a))a,B. We first show that if a1 and ar2 are feasible in s and

15

PAUL GLASSERMAN & DAVID D. YAO

NB(ol) < NB(tr2) then

(10) [6(07r(s, ,)) \A010j2] n B c 6(? (s, ,2)) n B,

for all 7r. Since R-'(B) = B, B and R-1(B) are disjoint-no event in B ever triggers
the setting of a clock for an event in B. Hence, there is a feasible permutation of ri
into o,i = iBoiB, i = 1, 2, where all events in iB (riB) are in B (B) (use Lemma 3.2(i)
repeatedly). Permuting oa (feasibly) leaves (,(s,(S, o)) unchanged. Moreover, if
events in B never activate events in B,

(11) &(4,(s, o)) n B = (= (s, r aiB)) n B = (Bo,(s, 7 n)) n B,

i= 1,2.

By hypothesis, N(r1B) < N(cr), so (PM) and A,2B = A 0 n B imply that

(12) 6'(7r(s, B)) \A 2 C ((s, o)).

Together, (11) and (12) yield (10).
Given (10), the result follows exactly as in the proof of Lemma 3.4: In the initial

state, clocks for events in B are set no later under co than o'. If B < B and (10)
holds, then this is preserved at every transition. Since A c B, this means that
OB < WB =TA(W) T) A(o').

Now let A and B be generic subsets of A for a GSMS satisfying (PM). Consider
the validity of the implication 2

st - aB = 2 TA t , with either A or B specified.
From Theorem 7.5 and its proof, we have

COROLLARY 7.6. Suppose 9 satisfies (PM), and i, i = 1, 2, factor over A. If B
contains R-1(A) or, equivalently, A c R(B) \ R(B), then St , TA 2 st T1A

The equivalence of the two conditions follows from Lemma 7.2(ii) and (iii).

8. Extractions. Theorems 4.3 and 6.4 provide a means of comparing GSMPs
based on different schemes when one is a subscheme of another. While the sub-
scheme relation is convenient and quite broadly applicable, it demands more than is
really needed. We now introduce a more general relation which leads to further
comparisons, and also provides another way of looking at our previous results. For
convenience, we continue to restrict attention to unit speeds. Also, we only spell out
the case of deterministic routing; the extension to probabilistic (state-independent)
routing is immediate.

For motivation, let ck be the GSMS of the single-server, k-capacity queue in
which blocked arrivals are lost. If k < k' < oo, then -k c _k (map state n to state
n + k' - k); but Theorem 4.3 does not apply, because 'k' violates (M). On the other

hand, co, satisfies (M), but ?k X <C (state k cannot be identified with any state of
the infinite-capacity queue). Thus, we do not yet have any basis for comparing the
finite- and infinite-capacity systems. But even though ck g <, any event epoch
sequence T generated by k can also be generated by aOO (much as in Lemma 4.2),
and this is most of what we need to make a comparison (as in Theorem 4.3). To carry
this out, we "extract" ck from -oo:

DEFINITION 8.1. Let 9 and c9* be schemes sharing an event set A. Let T and
T* be corresponding event epoch sequences defined on a common fl. Call
g: f --> an extraction of 6 from 6'* if T*(g(o)) = T(o) for all o) E fl.

16

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

Suppose that g extracts a' from c9* and that T* is increasing in o. From the
diagram

(s > g(w)

T(o) = T*(g(wo))

it is clear that if g and T* are increasing then so is T. For the monotonicity of g, we
consider more general orderings.

Let <a, <b be any partial orderings of C's, and <t , <bt the corresponding
stochastic orderings. Let < continue to denote the componentwise ordering. In
general, say that a function f is (<i, <'i -increasing if x <i y = f(x) <J f(y). The
following simple result generalizes much of ?3 and ?4:

THEOREM 8.2. Let c9* be a scheme for which T* can be constructed so that
Cw <b tw' = T*(t) < T*(tw'). (i) Let g be an extraction of af from c*. If g is
(<a, <b)-increasing, then ? <as

' = T <st T'. (ii) Let g' extract ', i = 1, 2, from
9'*, and let T, T' be induced from v9 by 4, .'. If the extractions can be chosen so

that gl <b g2, then T1 <st T2 whenever a? = 92.

REMARK. If W* satisfies (M), T* is (, <)-increasing. If W2 c 91 = 9*, then
i', i = 1, 2, can be extracted from W* and g(c)) = co. In the proof of Lemma 4.2

we essentially construct the required g2 (take g2(co) = o' in the notation used there)
and show that g2(W) > (c. Hence gl < g2, and part (ii) includes Theorem 4.3 as a
special case.

What makes Theorem 8.2 significant is that any noninterruptive v can be
extracted from some W* for which T* is (<, <)-increasing and which satisfies
(PM). For fixed A, define the shuffle scheme AA* by S* = {0}, A* = A, 42*(0) = A,
and p*(0; , *) - 1. (Recall that we are considering only unit speeds.) W9 is extrac-
ted from WA* by defining [g(o)](1) = T,(Xco) and [g(co)](n)= T,(n)(co)-
T,(n - 1)(X), for all a E A and all n = 1,2,.... A shuffle scheme trivially satisfies
(PM). (The motivation for this terminology is the following: Any sequence of events
in A is feasible for cA*, so in the sense of Ramadge and Wonham [12], the "language
generated by A*" (the set of feasible strings) is just the "shuffle" of the languages
generated by the individual elements of A.)

While any c can be extracted from a W* with a monotonic T*, it is not always the
case that the extraction, g, is monotonic, particularly in the componentwise ordering.
The critical ordering for comparing event sequences via extractions is the cumulative
ordering on fl:

n n

o v to' if andonlyif Ec(i)Z Ecv'(i) VaAVn = 1,2,....
i-l i=l

Clearly, , < t' =o c< o', but not vice-versa. If T = T* o g where T* is a shuffle
event sequence, then in order that T be (< , <)-increasing it is necessary and
sufficient that g be (< , -)-increasing. This is a trivial consequence of the fact that
T*(n)(x,) = Eint, (i). If W satisfies (M), it can be extracted from its shuffle by a g
which is (<, s-)-increasing. In this sense, part (i) of Theorem 8.2 generalizes
Theorem 3.3.

Consider, again, the k-capacity queue, .k, with which we began this section. While
it is not a subscheme of co, it can be extracted from 4. Imagine starting both

17

PAUL GLASSERMAN & DAVID D. YAO

systems in the same state, and prolonging service times in cOO whenever the
k-capacity queue is idle but the infinite-capacity queue is not. ck could be extracted
from the shuffle scheme -** } (a = arrival, ,3 = departure) in essentially the same
way. We know that in either case the extraction gk cannot be (< , <)-increasing; see
Example 3.7. Write wo <? w' if wo < o3 and w, = w . Then gk is not (< ,)-
increasing but it is (?< , -)-increasing, which allows us to conclude that speeding up
service times (02 St <1 -) while fixing arrivals (9, 2 = 91) never delays any events
(T2 <st T1). Furthermore, if k' > k then gk' < gk (though in general gk' - gk) so
just adding capacity never delays events either. (Whitt [24, Theorem 12(c)] is similar,
but relaxes f2 = 9a1 through an ordering not considered here.) In much the same
fashion, we may extract a network of queues in tandem in which the first queue is
finite from one in which the first queue is infinite to extend the comparison of
Example 3.6. But detailed verification that the gk's (and the analogs for queues in
tandem) have the stated monotonicity properties is quite involved and may be just as
complicated as establishing monotonicity of event sequences directly, as in [18, 19,22].
For this reason, Theorem 8.2 is not as immediately applicable as condition (M) and
its generalizations.

9. Clock multiplicity. The GSMP framework has the shortcoming that its notion
of event does not always coincide with the physically interesting "events." In some
cases, the GSMP events are too narrow, differentiating between classes of transitions
that have similar meaning; in other cases, they can be too broad, failing to distinguish
between different ways in which the same event can occur. An example of the first
type of problem is the departure of jobs from a multiple-server queue. In the GSMP
framework, departures from different servers are ordinarily associated with different
events; but this distinction is artificial if the servers are identical. We are likely to be
more interested in the total departure process than in departures from specific
servers. An example of the second type of problem is the arrival of jobs to a
finite-capacity queue with loss blocking. Typically, we would like to distinguish
between admitted and blocked arrivals, though these represent the same GSMP
event. In this section, we address a special case of the first of these issues; the second
will be touched on in ?10.

The usual GSMP framework can be modified to allow several clocks to run
simultaneously for the same event. When any one of these clocks runs out, the event
occurs and triggers a transition. After the transition, the other clocks associated with
the event may continue to run (eventually leading to another occurrence of the
event), and yet more clocks may be set for that same event.

Let f(s) be an m-dimensional vector (m = IAI), the ith component of which is the
number of clocks for ai in state s. Also let &_(s) be the number of a-clocks, and
suppose that this is always finite. The nth time a clock is set for event a, it is set
to Xj(n), as before, except that now clocks set to X((n) and Xa(n'), n' - n, may
run simultaneously. Clocks, events and transition probabilities determine the state
transitions just as before. The generalization of noninterruption is p(s'; s, a) >
0 => ((s) - ei

< (s'). The generalization of (M) is

(MX). Monotonicity Condition with Clock Multiplicity. If o1 and a-2 are feasible in
s and N(Mr1) < N(o-2), then

(4(s, or-)) - [N(o2) - N(rl)] < 6'(4(s, r2)).

The analogous extension (PMX) of (PM) is obtained by requiring that the routing be
state-independent and that (MX) hold for every r. For GSMS with clock multiplic-

18

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

ity, change (ii) of Definition 4.1 (the definition of subscheme) to require 6S(s) <
SB(s)

THEOREM 9.1. (i) For a GSMS with clock multiplicity satisfying (PMX), 2 <st
l => T2 St T1. (ii) Suppose cs c 9B and AS = AB, where 9B satisfies (PMX)

and 4s is noninterruptive. If I.B = 5s, then TB <t Ts.

The proofs of the two parts of Theorem 9.1 are essentially the same as those of
Theorems 3.3 and 4.3, and are therefore omitted. (In the proof of Lemma 3.4, it is no
longer true that TJ(n) = Va(n) + Xa(n), where V,(n) is the epoch of the nth setting
of a clock for a, but T is still an increasing function of V and X.)

Consider, again, multiple servers sharing a single infinite capacity queue. Suppose
there is a single stream of arrivals, a, and that service completions at the various
servers all constitute the same event, ,f. Thus, all servers draw service times from the
same stream (X,(n), n = 1,2,...). Setting up the system this way appropriately
forces the servers to be indistinguishable while making no assumption that the service
times are independent or identically distributed. In this approach, X,(n) is more
accurately called the service requirement of the nth job than the nth service time.

With this set-up, the multiple-server queue satisfies (Mx); without clock multiplic-
ity, it would violate (M): Let a be arrival and /3 service completion at the ith server.
Denote a typical state by (n, (il,..., i}) where n is the number of jobs present and
the ij's are the indices of the r < n busy servers. Suppose that jobs arriving to find
more than one available server go to the one with the smallest index (other policies
run into similar difficulties). Then '(((1, {1}), aJ')) = (a, P2)} (a, 1} =

'(4((1,{1)), /la)). But if, instead, we use r clocks for a single event /3 when r
servers are busy, we may take the state to be just the number of jobs present. Then,
for example, _(()(n, a/3)) = _((n, 13a)) and (MX) is, indeed, satisfied. We may
therefore conclude that decreasing service requirements or interarrival times, or
adding servers speeds up departures. (Whitt [24, Theorem 12(b)] is similar; it permits
a slightly weaker ordering of interarrival times-our , essentially-but assumes a
fixed number of servers.) If we used different events for different servers, we would
not be able to draw these conclusions. In fact, it is generally not true that the
departures from individual servers are monotonic in the service times or in the
number of servers.

Using clock multiplicity, Examples 3.6 and 5.4 generalize to networks of multiple-
server queues. If li is the number of servers at i, then under conditions (7)-(9) and
the additional condition

Pi > 0 and PFi > 0 for some c' # c and any j, j' li= 1,

adding servers and decreasing service requirements and interarrival times speeds up
all service completions. This additional condition says that any queue visited by more
than one class of jobs has only one server. For the special case of queues in tandem,
to have multiple-server queues we can only allow a single class of jobs. If, to satisfy
(7), the first queue has infinite capacity, then adding servers increases the throughput
of the line. Tsoucas and Walrand [22] show this directly, with no restrictions on the
first queue, but under the assumption of independent service requirements. (Their
proof uses the independence assumption. It does not require k1 = oo because they do
not allow changes in interarrival times.)

10. Induced events. We now briefly address the second shortcoming of GSMP
events described at the beginning of the last section. Consider, first, the epochs of
admitted arrivals to a single-server, k-capacity queue. If a is the arrival event, then

19

PAUL GLASSERMAN & DAVID D. YAO

Ta(n) is the epoch of the nth arrival, regardless of whether that arrival is blocked (and
lost) or actually admitted. But in comparing the performance of two systems, we are
likely to be more interested in ensuring that the epochs of admitted arrivals occur
earlier, not that all arrivals occur earlier.

Denote service completion by 3, and let Tf(n) be the epoch of the nth admitted
arrival. Suppose that when an arrival and a departure occur simultaneously the
arrival is admitted, and that the server is included in the capacity k. Then (taking
T,(n) = 0 for n < 0)

Taf(n) = inf{T(i), i= 1,2,...,: T(i) > T(n - k)}.

Thus, for fixed Ta, T; is increasing in T3 and decreasing in k. Since we know from ?8
that, with fixed wT, T3 is increasing in o) and decreasing in k, we may conclude that
the same is true of. Ta. In general, whenever the epochs of such "induced events" are
increasing functions of the epochs of ordinary GSMP events, they inherit monotonic-
ity from T.

Another example is the network of M queues in tandem in which the ith queue has
ii servers, buffer size ki, i = 1,..., M, and ki = oo. (The buffer size ki does not
include the li service positions.) Let ,8 be arrival to the system, and let 13i be service
completion at any of the servers of queue i. As in [22], consider the epochs of arrivals
to the various queues. The GSMP event 8i-_ does not distinguish between jobs that
are blocked after completing service at i - 1, and jobs that actually move on to i. An
arrival to i = 2,..., M may be triggered by 13i-1, or by 3i+j if queues i - 1,..., i + j
- 1 are blocked. Let Ti(n), i = 2,..., M, be the epochs of actual departures from i,
and for convenience let Tf(n) = 0 for n < 0. Then, for all n = 1, 2,. ..,

TM(n) = T,M(n),

T,(n) =
max(Tp(n), T3i+,(n - k l - i+))

Hence, T{ ...PM} is increasing in T{7 3... and inherits monotonicity in 9,
(k2,..., kM) and (1, ,... lM)

11. Concluding remarks. We have developed a general approach to studying
monotonicity in a GSMP through properties of its scheme. When applied to queueing
systems, this approach unifies many existing results previously obtained by ad hoc
methods, and in some cases leads to new results.

To extend this approach to other areas-e.g., second-order properties, such as
convexity and submodularity-it is necessary to look more deeply into the algebraic
structure of schemes. Proceeding in this direction, it is helpful to view the set of
feasible strings as a formal language that characterizes the "legal behavior" of a
system. With each string in the language one can associate a vector, each component
counting the number of occurrences of an event (the score). Through this association,
the language gives rise to a score space, the set of vectors of feasible scores. A
condition such as (M) can then be phrased as a statement about the structural
properties of the language and the associated score space.

In subsequent work [5,6], we investigate the algebraic structure of the language
and the geometry of the score space, which lead to second-order properties of a
GSMP. In [6], we also pursue a variety of applications in such areas as simulation
variance reduction, derivative estimation, optimal control, and stochastic Petri nets.

20

MONOTONICITY IN GENERALIZED SEMI-MARKOV PROCESSES

Acknowledgements. This research was undertaken while Paul Glasserman was
with, and David Yao was visiting, the Operations Research Department of AT & T
Bell Laboratories. David Yao's work was also partially supported by NSF grants
ECS-88-03183 and ECS-89-96201.

References
[1] Burman, D. Y. (1981). Insensitivity in Queueing Systems. Adv. Appl. Probab. 13 846-859.
[2] Daley, D. J. (1968). Stochastically Monotone Markov Chains. Z. Wahrsch. Verw. Gebiete. 10 305-317.
[3] Glasserman, P. (1988). Equivalence Methods in the Perturbation Analysis of Queueing Networks.

Ph.D. Thesis, Division of Applied Sciences, Harvard University.
[4] (1991). Structural Conditions for Perturbation Analysis Derivative Estimation: Finite-Time

Performance Indices. Oper. Res. 39 724-738.
[5] and Yao, D. D. (1992). Generalized Semi-Markov Processes: Antimatroid Structure and

Second-Order Properties. Math. Oper. Res. (to appear).
[6] and (1991). Algebraic Structure of Some Stochastic Discrete-Event Systems, with

Applications. J. Discrete Event Dynamic Systems: Theory and Appl. 1 7-36.
[7] Glynn, P. W. (1989). A GSMP Formalism for Discrete Event Systems. Proc. IEEE 77 14-23.
[8] Haas, P. J. and Shedler, G. S. (1987). Regenerative Generalized Semi-Markov Processes. Stochastic

Models 3 409-438.
[9] Helm, W. E. and Schassberger, R. (1982). Insensitive Generalized Semi-Markov Schemes with Point

Process Input. Math. Oper. Res. 7 129-138.
[10] Kamae, T., Krengel, U. and O'Brien, G. L. (1977). Stochastic Inequalities on Partially Ordered

Spaces. Ann. Probab. 5 899-912.
[11] Massey, W. A. (1987). Stochastic Orderings for Markov Processes. Math. Oper. Res. 12 350-367.
[12] Ramadge, P. J. and Wonham, W. M. (1987). Supervisory Control of a Class of Discrete-Event

Processes. SIAM J. Control Optim. 25 206-230.
[13] Schassberger, R. (1976). On the Equilibrium Distribution of a Class of Finite-State Generalized

Semi-Markov Processes. Math. Oper. Res. 1 395-406.
[14] (1978). Insensitivity of Steady-State Distributions of Generalized Semi-Markov Processes.

Part I. Ann. Probab. 5 87-99.
[15] (1978). Insensitivity of Steady-State Distributions of Generalized Semi-Markov Processes

with Speeds. Adv. Appl. Probab. 10 836-851.
[16] Shanthikumar, J. G. and Yao, D. D. (1987). Stochastic Monotonicity of the Queue Lengths in Closed

Queueing Networks. Oper. Res. 35 583-588.
[17] and (1989). Stochastic Monotonicity in General Queueing Networks. J. Appl.

Probab. 26 413-417.
[18] Sonderman, D. (1979). Comparing Multi-Server Queues with Finite Waiting Rooms. I. Same Number

of Servers. Adv. Appl. Probab. 11 439-447.
[19] (1979). Comparing Multi-Server Queues with Finite Waiting Rooms. II. Different Number of

Servers. Adv. Appl. Probab. 11 448-455.
[20] (1980). Comparing Semi-Markov Processes. Math. Oper. Res. 5 110-119.
[21] Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models. D. J. Daley (Ed.),

Wiley, New York.
[22] Tsoucas, P. and Walrand, J. (1989). Monotonicity of Throughput in Non-Markovian Networks.

J. Appl. Probab. 26 134-141.
[23] Whitt, W. (1980). Continuity of Generalized Semi-Markov Processes. Math. Oper. Res. 5 494-501.
[24] (1981). Comparing Point Processes and Queues. Adv. Appl. Probab. 13 207-220.
[25] (1986). Stochastic Comparisons for Non-Markov Processes. Math. Oper. Res. 11 608-618.

GLASSERMAN: GRADUATE SCHOOL OF BUSINESS, COLUMBIA UNIVERSITY, 403 URIS
HALL, NEW YORK, NEW YORK 10027

YAO: IE / OR DEPARTMENT, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027

21

	Article Contents
	p. 1
	p. 2
	p. 3
	p. 4
	p. 5
	p. 6
	p. 7
	p. 8
	p. 9
	p. 10
	p. 11
	p. 12
	p. 13
	p. 14
	p. 15
	p. 16
	p. 17
	p. 18
	p. 19
	p. 20
	p. 21

	Issue Table of Contents
	Mathematics of Operations Research, Vol. 17, No. 1 (Feb., 1992), pp. 1-253
	Front Matter
	Monotonicity in Generalized Semi-Markov Processes [pp. 1 - 21]
	Jackson's Rule for Single-Machine Scheduling: Making a Good Heuristic Better [pp. 22 - 35]
	Approximation Schemes for the Restricted Shortest Path Problem [pp. 36 - 42]
	New Partitioning Method for a Class of Nonconvex Optimization Problems [pp. 43 - 60]
	Sensitivity Analysis for Variational Inequalities [pp. 61 - 76]
	On Solution Stability of the Linear Complementarity Problem [pp. 77 - 83]
	Queueing Simulation in Heavy Traffic [pp. 84 - 111]
	On the Convergence of Algorithms with Implications for Stochastic and Nondifferentiable Optimization [pp. 112 - 131]
	Bounds on the Sensitivity of Generalised Semi-Markov Processes with a Single Generally Distributed Lifetime [pp. 132 - 147]
	On Existence of an Arrow-Radner Equilibrium in the Case of Complete Markets. A Remark [pp. 148 - 163]
	The Nucleolus of a Matrix Game and Other Nucleoli [pp. 164 - 174]
	Correlated Equilibria in Two-Player Repeated Games with Nonobservable Actions [pp. 175 - 199]
	Two-Player Repeated Games with Nonobservable Actions and Observable Payoffs [pp. 200 - 224]
	On the Continuous Trajectories for a Potential Reduction Algorithm for Linear Programming [pp. 225 - 253]
	Back Matter

