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MONOTONE OPTIMAL CONTROL 
OF PERMUTABLE GSMPs 

PAUL GLASSERMAN AND DAVID D. YAO 

We consider Markovian GSMPs (generalized semi-Markov processes) in which the rates of 
events are subject to control. A control is monotone if the rate of one event is increasing or 
decreasing in the number of occurrences of other events. We give general conditions for the 
existence of monotone optimal controls. The conditions are functional properties for the 

one-step cost functions and, more importantly, structural properties for the GSMP. The main 
conditions on costs are submodularity or supermodularity with respect to pairs of events. The 

key structural condition is strong permutability, requiring that the state at any time be 
determined by the number of events of each type that have occurred, regardless of their 
order. This permits a reformulation of the original control problem into one based only on 
event counting processes. This reformulation leads to a unified treatment of a broad class of 
models and to meaningful generality beyond existing results. 

1. Introduction. Without special structure, computation of optimal controls for 
Markov decision processes is generally infeasible. This motivates investigations into 
the form of optimal policies. Perhaps the simplest form is a threshold policy: below a 
threshold one action is optimal, above it another is. Switching curces characterize a 
less restrictive class of policies: one action is optimal in states lying below the curve, 
another is optimal in states lying above it. When optimal actions take values in a 
continuous set, the natural generalization of a switching-curve policy is a monotone 
optimal control. The monotonicity may be with respect to components of the state or 
the occurrence of other events. Specific problems for which monotone optimal 
controls have been identified include those in Bartroli and Stidham (1987), Ghoneim 
and Stidham (1985), Hajek (1984), Rosberg, Varaiya, and Walrand (1982), Serfozo 
(1981), and Weber and Stidham (1987), among others. In our setting, as in these, the 
rates of events are controllable. A control is monotone if the rate of each event is 
increasing or decreasing in the number of occurrences of other events. 

We show that monotone optimal controls exist in considerable generality and that 
conditions for their existence are easily verified. Three rather simple type of hypothe- 
ses combine to make optimal controls monotone: 

* structural conditions on how the occurrence of events drives the evolution of the 
state; 

* submodularity and supermodularity conditions on the one-step cost function; and, 
* inequalities for the one-step cost function at the boundary of the state space. 
The main contribution of this paper is the development of the link between 

monotone optimal controls and the structural conditions. With these conditions in 
place, we use submodularity much as in Topkis's (1978) theory of ordered optimal 
solutions, though our setting requires some new results of this type. A step in our 
analysis extends cost functions beyond boundaries. We use the inequalities mentioned 

Received January 25, 1992; revised November 25, 1992. 
AMS 1980 subject classification. Primary: 90C39, 90C47, 60K15. 
IAOR 1973 subject classification. Main: Control Processes. Cross references: Programming: Dynamic. 
OR/MS Index 1978 subject classification. Primary: 121 Dynamic Programming/Semi-Markov. 
Key words. Dynamic programming, Markov decision processes, generalized semi-Markov processes, sub- 

modularity, antimatroids, monotone controls, switching-curve policies. 

449 

0364-765X/94/1902/0449/$01.25 
Copyright ? 1994, The Institute of Management Sciences/Operations Research Society of America 



P. GLASSERMAN AND D. D. YAO 

above to ensure that submodularity and supermodularity are preserved by these 
extensions. 

The structural conditions we use are the ones studied in Glasserman and Yao 
(1992a, b) in an investigation of monotoncity and convexity properties of uncontrolled 
generalized semi-Markov processes (GSMPs). Here, we only consider controlled 
(countable-state) Markov processes, but the GSMP framework remains valuable: it is 
precisely the rates of events, in the GSMP sense, that are subject to control. 
Moreover, the GSMP notions of event and event list are central to the conditions we 
give. Briefly, the structure we use consists of two parts: noninterruption, requiring that 
the occurrence of one event never deactivate another; and strong permutability, 
requiring that the system state be determined by the number of occurrences of each 
event, regardless of their order. These conditions have many ramifications, only some 
of which are used here; see Glasserman (1991) and Glasserman and Yao (1992a, b). 

We show that under strong permutability the vector counting process of events in a 
Markovian GSMP is itself a Markov process; in fact, this condition is nearly necessary 
-see Proposition 2.4. Possible values of the vector counting process are called scores, 
and the collection of all such scores is the score space of the GSMP. When strong 
permutability is combined with noninterruption, it becomes possible to reformulate a 
Markov decision process for the GSMP on its state space as an equivalent control 
problem for the counting process on the score space. The modified optimality 
equation can then be analyzed using the types of techniques employed by Ghoneim 
and Stidham (1985), Hajek (1984), Serfozo (1981), Weber and Stidham (1987), among 
others. The transformation to counting processes has several benefits. One is that it 
allows a unified treatment based on standard conditions of submodularity and 
supermodularity. Working with a state-space formulation often requires introducing 
problem-specific functional properties that reduce to submodularity on the score 
space. More generally, since our controls are event rates, it makes sense to look 
directly at event processes. In this view, states serve mainly to support the evolution 
of events. Under strong permutability, the state can still be recovered from the event 
counting processes so there is no loss. 

As shown in Glasserman and Yao (1992b), there is an intimate connection between 
these structural conditions and certain antimatroid properties. This connection is 
valuable in the present setting as well. One important consequence is that the usual 
closure under unions of set-system antimatroids translates to closure of the score 
space under componentwise maximum. In other words, the score space is a join 
semi-lattice; but it is not, in general, a lattice. This distinction separates our work 
from earlier treatments of monotone optimal controls, especially Weber and Stidham 
(1987), where a lattice condition is imposed. This is not merely a mathematical nicety: 
it is easy to give queueing examples that satisfy only the semi-lattice condition and 
thus fall outside the scope of existing results; we do so in ??7.3, 7.4 and 10.2. Of 
course, dropping the assumption of a lattice requires adapting some of Topkis's 
(1978) results; we do this as well. 

We now summarize the organization of the rest of the paper. In ?2, we give some 
background on GSMPs and controlled Markovian GSMPs, then define our structural 
conditions and describe some of their consequences. In ?3, we specify the class of 
optimal control problems we consider and reformulate them as score-space problems. 
Section 4 gives the basic monotonicity result for optimal controls when the score 
space has no boundaries. This rather artificial setting serves as a useful tool in 
subsequent results. Problems with boundaries are handled in ??5 and 6 using 
alternative sets of hypotheses. Section 5 uses a condition of Weber and Stidham 
(1987) that rates be controllable to zero; ?6 exploits the antimatroid property to 
replace this condition with additional restrictions on costs. Section 7 translates 
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score-space results to the original state-space problem and gives examples. In ?8 we 
allow, in addition to rate controls, controls that choose between pairs of events. 
Connections with the models of Hajek (1984) and Chen, Yang, and Yao (1991) are 
developed in ?9. Finally, in ?10, we discuss some weaker structural conditions and 
give an application to a loss system. 

2. A generalized semi-Markov process framework. 

2.1. Markovian GSMPs. The structure of a GSMP is determined by a general- 
ized semi-Markov scheme (GSMS) S= (S,A, 6, p, /), where S is a state space, 
A = {a, ..., a,, is a set of events, 6: S -- 2A is an event-list mapping, p = 

{p(x'; x, a), x, x' E S, a E 6(x)) is a collection of transition probabilities, and 
u - {= ((x), a E A, x E S} a collection of speeds. When the GSMP is in state x E S, 
the events in 6(x) c A are active. For each a e c(x), a clock runs at rate 
,, (x) > 0. The initial setting of the clock is random and follows a lifetime distribu- 
tion characteristic of the associated event a. When the clock for a runs out, the event 
a is said to occur. The GSMP then moves to state x' from state x with probability 
p(x'; x, a); each p(.; x, a) is a probability mass function on S. In the new state, clock 
readings are updated, and new clocks are set for newly active events. See Whitt 
(1980), and references therein, for more detailed descriptions and constructions in 
this general setting. 

In a Markovian GSMP, all event lifetimes are exponential with mean one, and this 
allows a straightforward construction. Define an infinitesimal generator Q over S x S 
by 

La EcA/a(x)lf{a Ec (x)}p( y; x, a), if y =x; 

Q(x,y) { Ex', Q( x l-'), otherwise. 

Requiring 

sup max la(x) < 
xES aeA 

makes Q bounded and ensures the existence of a (right-continuous) Markov process 
X = {Xt, t > 0} on S with Q as its generator. Generally, we fix the initial state x) of 
X and include it in the specification of the scheme S. 

In a controlled Markovian GSMP, the control (or policy) is AL, mapping S x A into 

R+. For x E S and a e E(x), Ai(x) is the rate at which event a is controlled in state 
x. If a 6X(x), the value of A/ (x) has no particular meaning and no effect on the 
evolution of the process; but, for convenience, we do not restrict the domain of A .(x) 
to 6(x). We sometimes write X"' for the Markovian GSMP obtained under 
control Lu. 

We consider schemes with deterministic routing-schemes in which for every x E S 
and every a E (x) there is just one y E S with p(y; x, a) > 0. In this case, 
p(y: x, a) = 1, and we define +(x, a) to be the y for which this holds. Thus, f(x, a) 
is the state to which the process moves from x upon the occurrence of a. If 
0(x, a) # x and if there is no other /3 e 6(x) with O(x, ,) = (x, a), then 
Q(x, O(x, a)) = Aa,(X). A Markovian GSMP can always be based on a scheme with 
deterministic routing by, if necessary, introducing new events. But this modification 
can affect the validity of the structural conditions we discuss next, so the distinction 
between deterministic and probabilistic routing is important. 
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2.2. Strings and scores. A scheme S= (S, A, &, , /u, x?) determines a language 
Y of feasible strings over A. A string is just a finite sequence of elements of A. We 
call a string a = aI ... a" feasible if a1 E (x(x) and if there are states x, ..., xn-I 
with ai cE (x'i-), i = 2,..., n, and x' = /(xi- , a'), i 1,..., n - 1. By conven- 
tion, the empty string is always feasible. The collection of all feasible strings is Y. 
Extend b(x", ) recursively to all of i by letting (x", ) applied to the empty 
string be x", and by setting 0(x", o-a) = +(0(x", -), a) for oa E Y. Thus, for any 
a- E , (x?(, o-) is the state reached from x0 through the sequence of events (a. 

To each string a there corresponds an m-vector (m = IAI), denoted by [a-], whose 
a component [cr] records the number of instances of a in a-. This vector is the score 
of a-. We use this terminology and notation in analogy with that of Shor et al. (1991). 
An element of Z+ is a feasible score if it is the score of some feasible string. The set 

/= {d E Z+' 3-E c , [a-] = d} 

of feasible scores is the score space of S. 
We can now define key structural properties for schemes. It is convenient to 

distinguish the case of state-independent rates, in which ,J(x) = ua(y) for all x, 
y E S, for all a E A. 

DEFINITION 2.1. A scheme is 

(i) noninterruptive if {ac, ,3 c (x) == e c (&(x, a)); 
(ii) permutable if for all acr, c2 E z we have 

[a-1] = [0-2] = 1a cE (x')} = l{C E (x2)} and /a(xI) = Ia(X2) 

for all a c A, where xi = 4(x", a). In the state-independent case, this means 
6(xI) = G(x2); 

(iii) strongly permutable if for all -a, or2 E , [r1] = [0-2] => 0(x0, -c1) 

,(X"?, a2). 
In a noninterruptive scheme, the occurrence of one event never deactivates any 

other event. In a permutable scheme, the event list and clock speeds reached through 
a (feasible) string of events a- depends on a- only through [ac]. Under strong 
permutability, the state reached through a- is determined by [0-]. 

Noninterruption is invoked by various authors in various settings; an early use 
appears in Schassberger (1976). In the terminology of formal languages, (i) makes _f 

locally free; see, e.g., Shor et al. (1991). The combination of properties (i) and (iii) is 
the commuting condition of Glasserman (1991). In the state-independent case, 
noninterruption and permutability are equivalent to condition (M) (for monotonicity) 
of Glasserman and Yao (1992a, b). In the general case, (i) and (ii) are implied by 
condition (SM) (for speeds monotonicity) of Glasserman and Yao (1992a). 

When conditions (ii) or (iii) apply, we make some notational simplifications. With 
the initial state x" fixed, and with d = [c-] for some a- E &Y, we sometimes write 

G'(0) or &(d) for (4(x, a-)). Given strong permutability, we sometimes write 

O(x ", d) for O(x (, a-) and A/(d) for bL/((x1, d)). 

2.3. Antimatroid connections. As discussed in Glasserman and Yao (1992b), the 
language generated by a noninterruptive, permutable scheme is an antimatroid with 
repetition, in the terminology of Shor et al. (1991). A language f is an antimatroid 
(with repetition) if it satisfies the following conditions: 

(Al). If a-a E f then a- E Y; i.e., every prefix of a feasible string is feasible 

(including the empty string). 
(A2). If ar, ora, and o-/3 are in Y, with a = //3, then a-a3 cE . 
(A3). If -c, a-' E , with [a-] = [a-'], and a-a E /, then ar'a E E. 
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Condition (Al) makes the language left-hereditary or, equivalently, prefix-closed. 
Conditions (A2) and (A3) are obvious analogs of noninterruption and permutability 
as applied to schemes. Antimatroids are sometimes called shelling structures, APS- 
greedoids, or interval greedoids without upper bounds; see Dietrich (1989) for a survey. 
The qualification "with repetition" allows a symbol to appear more than once in a 
string. Bj6rner (1985) studies these and related structures. 

Shor et al. (1991, Lemma 1.2) provide an alternative characterization of antima- 
troids through the following strong exchange property: 

(SE) If a'1, a2 e , then there is a a- '- E with [ao-r] = [r-1] V [0-2]. 

Among left-hereditary languages, the antimatroids are precisely those that satisfy 
(SE). The language of feasible strings generated by any scheme is automatically 
left-hereditary, so (SE) distinguishes the languages of noninterruptive, permutable 
schemes. 

The antimatroid property underlies the present analysis through the following 
result: 

PROPOSITION 2.2. Let H be the score space of a noninterruptive, permutable 
scheme. 

(i) X is a join semi-lattice; in other words, if d' and d2 are feasible scores, so is 
d' vd2. 

(ii) Etvery score has a unique maximal feasible subscore: for every d c Z'+, there is a 
d cE X satisfying d < d and dominating all other feasible scores dominated by d. This 
maximal feasible subscore is called the basis of d. 

PROOF. Part (i) is part (v) of Theorem 2.3 in Glasserman and Yao (1992b), and 
also an immediate consequence of the strong exchange condition. For part (ii), 
consider the set of feasible scores dominated by some score d. This set is finite, and it 
is not empty because the zero vector is a feasible score. Now take the maximum over 
this set. The resulting score is feasible, by part (i). This is the basis of d. o 

Though we usually attach the antimatroid property to /', it applies to the score 
space as well. To make the connection transparent, think of d E Z' as encoding a 
multiset containing da copies of a. Then the collection of multisets generated by H7 
contains the empty set and is accessible in the sense of, e.g., Korte and Lovasz (1983). 
Proposition 2.2(i) verifies the remaining antimatroid axiom, closure under unions. 
With this correspondence, our use of "basis" coincides with its usual meaning for 
matroids and antimatroids; see the treatment in Dietrich (1989), for example. 

In the setting of matroids and (set-system) antimatroids, the rank of a set is the 
cardinality of its basis. The analogous definition in the setting of noninterruptive, 
permutable schemes (Glasserman and Yao 1992b) sets the rank p of a score equal to 
the sum of the elements of its basis: p(d) = ada,. Let ea denote the score recording 
one occurrence of a and no occurrence of any other event. Then the rank function of 
an antimatroid has a property called local supermodularity, namely, 

p(d) < p(d + ea), p(d + e)) = p(d) + 1 < p(d + e, + e3), V/ a, 

and this property is easily verified for noninterruptive, permutable schemes in 
Glasserman and Yao (1992b). Ordinary supermodularity, 

(1) p(d' V d2) + p(d' A d2) > p(dl) + p(d2), 

for all d', d2 e A'+, does not hold, in general. 
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2.4. Conditions for a lattice. The failure of p to be supermodular mirrors the 
failure of V to be closed under A; and the gap between IV forming a lattice or 
merely a semi-lattice separates our work from some of the related literature on 
monotone optimal control. In particular, Weber and Stidham (1987) (and subse- 
quently Bartroli and Stidham (1987) and Veatch and Wein (1991)) impose "compati- 
bility" conditions that enforce a lattice structure where only a semi-lattice is needed. 
This unnecessarily narrows the scope of their results, as illustrated in ??7.3, 7.4 and 
10.2. 

In light of the importance of this distinction, we briefly review the additional 
structure that makes X a lattice. The key condition is this: for any -1, a2, o-3 E 3 , 

(2) if [r3] = [a'] A [r(2] then &(al) n (Co2) C ?(Cr3). 

When rates are state-independent, this implies permutability. Noninterruption and 
(2) together are equivalent to condition (CX) (for convexity) of Glasserman and Yao 
(1992b). The following (and some additional characterizations) are proved in 
Glasserman and Yao (1992b): 

PROPOSITION 2.3. (i) 4 is a lattice if a is noninterruptive and satisfies (2). 
(ii) A noninterruptive, permutable scheme satisfies (2) (and thus has a lattice score 

space) if and only if its rank function is supermodular. 

Tandem queues, with finite or infinite buffers, fit this framework. See Example 3.7 
of Glasserman and Yao (1992b) and ?7.2 of this paper. 

2.5. A Markovian implication. We close this section by connecting the foregoing 
structural conditions with a stochastic property. This connection opens the way to our 
analysis of optimal controls. To state it, let D = {Dt, t > 0} with Dt = (Da, )a A be 
the (right-continuous) event-counting process associated with the Markovian GSMP 
X. In other words, D, t is the number of occurrences of the event a in the interval 
[0,t], and D( is the zero vector. The score space / is the natural state space of D: 
D never leaves A, and if the L,(x)'s are strictly positive, then each element of A is 
visited by D with strictly positive probability. We now have 

PROPOSITION 2.4. If S is permutable then D is a Markol, process. If IJ is strictly 
positive and D is Markov, then S is permutable. 

PROOF. For all t > 0, let St be the sigma-algebra generated by {D5, 0 < s < t}. 
Clearly, Xt tE D, since the evolution of events determines the current state. (In 
fact, Xt depends on the string cr of events occurring in [0, t], but not their timing.) 
Thus, for each a E A, D ,t has tD-intensity /L,(Xt)l{a e X(Xt)}. If 4 is per- 
mutable, then this intensity depends on Xt only through Dt, so D is Markov. 

Conversely, if D is Markov, then the tD-intensity must be a function of Dt only. 
In other words, ,O(&(x?,, ao))l{a E &(o(x?, ro-))} depends on 0t only through its 
score Dt. Since P(c, = o-) > 0 for every feasible ar, for any t > 0, we conclude that 

^a,((x?, o-))l{a E E (4(x?, cr))} is a function only of [a-] for all cr E f. Under the 

assumption that ,L is strictly positive, this implies permutability. w 
Proposition 2.4 allows us to formulate control problems for X as (simpler) control 

problems for D. As an aside, we note that it provides an interesting parallel to 
characterizations of when a counting process embeded in a Markov process is 
Poisson; see Melamed (1982) and Serfozo (1989) and references there. 
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3. The optimal control problem. 

3.1. State-space formulation. Consider a controlled Markovian GSMP X", as in 
?2.1. We examine optimal controls under the following objective: when the process is 
in state x, cost accrues at nonnegative rate h(x); exerting the control ,Lu(x) costs 
c,(A,(x)). The functions ca, a E A, are continuous; this ensures that c(,l) + a,u 
attains a minimum on compact sets, for all a E R, a E A. To be precise, we should 
write ca(iuJ(x))l{a e E&(x)} for ca(L,(x)): there is no cost to controlling inactive 
events. To lighten notation, we omit the indicator function. 

Each aL, is constrained to lie in an interval [La, -,] with 0 _< /La < o. We allow 
L ,a = L, so uncontrolled events do not require separate treatment. With the rates 

bounded from above, we can subordinate X" to a Poisson process in the usual way. 
Let A = E,, and let Y" = {Yj, n > 0} be a Markov chain on S with initial state x( 
and transition matrix 

PI(x, y)-A =- ALa(x)1( a E ( x)}. 
a: 4(x, a)=y 

Let N be a rate-A Poisson process independent of Y"; then {YN, t > 0} and 

{Xf, t > 0} are equal in law. Without loss of generality, assume A 1. 
The cost functions described above combine with a discount factor r, 0 < r < 1, to 

give the finite-horizon objective 

n-1 

(3) min El rih(Y) + EC,(a(Yi)) , 
A _i=() a 

and the infinite-horizon objective 

(4) minE: E ri'h(Y) + Eca(AL^ (Y))} 
h i=() 0 a _ 

Equation (3) defines V1(x), the minimal n-stage cost-to-go from state x. Since h is 
nonnegative and the c,'s are continuous, the one-step costs are bounded from below. 
It follows from general results in, e.g., Whittle (1983, Chapter 26) that V,, is well 
defined for all n and satisfies the dynamic programming equation I,+V = TV, where 
T is the operator on functions from S to R defined by 

(5) Tf(x) = h(x) + E min {a(AL,) + Af(O(x, a)) + (Fa - /)f(x)}. 

By convention, O(x, a) = x if a X &(x). Standard results from dynamic program- 
ming (e.g., Whittle 1983) imply that V(x) = lim,, IV,(x) equals (4). 

3.2. Score-space formulation. Suppose, now, that the underlying scheme is 
strongly permutable. We know from Proposition 2.4 that this makes {D,, t > 0} a 
Markov process. For any feasible score d, define h(d) = h(4(xt, d)). For i = 1, 2,..., 
let Di be the value of Dt at the ith jump of the dominating Poisson process N. Then 
corresponding to (3) and (4) we have the objectives 

n-1 

(6) min E E r'h(d + D.) + C(A (d + Di)), 
h i(=(0 ea 
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and 

oo 

(7) min E E ri((d + Di) + Ec((d + D))} . 
i i=() 0 a 

We have written ju(d + Di) in place of iJ(W(x?, d + Di)). Under strong permutabil- 
ity, costs and controls can be expressed as functions of scores, rather than states, 
without changing the problem. Indeed, choosing the score d in (6) and (7) so-that 
O(x?, d) = x sets these costs equal to (3) and (4), respectively. 

To define the corresponding dynamic programming operator we use an additional 
definition from Glasserman and Yao (1992b). The characteristic function X of a 
permutable scheme a maps A into H, with a-component 

a(d) = d + la E (d)}. 

Thus, Xa applied to d increments da if and only if a is active when the score is d. 
Various properties of a scheme are reflected in X. For example, a permutable scheme 
is noninterruptive if and only if X is monotone; a noninterruptive, permutable scheme 
satisfies (2) if and only if X is supermodular. For these and related results, see 
Glasserman and Yao (1992b). 

Now let l,(d) be the minimal n-stage cost-to-go from score d; this is (6). Then V, 
satisfies the dynamic programming recursion V,,+, = TI,, where T is the operator on 
functions from i to R defined by 

(8) Tf(d) = h(d) + E min {c,(,) + /Laf(X(d)) + (a - Aa)f(d)}. 
a / 

Inclusion of X, is critical: when a is inactive, no control can trigger the occurrence of 
a. Once again, V(d)= lim,_ I/,(d) gives (7). 

4. Monotone controls. Our objective is to give conditions under which (6) or (7) 
admits a monotone optimal control; that is, an optimal control /L with the property 
that 

(9) Va /3, a(d) is monotone in d0. 

We say that Uta is increasing in di if Aa(d) < Aa(d + e3) whenever d, d + et E 4, 
and decreasing if the inequality is reversed. (Throughout this paper, "increasing" and 
"decreasing" are used in their weak senses.) 

To clarify what role each condition plays, we begin by considering (6) and (7) in the 
simple but artificial case in which the evolution of D is unrestricted. In other words, 
there are no boundaries, so D potentially visits any point in Z+. This allows us to 
omit the function X in (8) and write simply 

(10) ji + (d) = h(d) + E min {c,(,) + ,(d e) + (a( - 
Aa),(d)}. 

a Y 

This, in turn, can be rewritten as 

(11) Vn+,(d) - h(d) + E min{c,(La) + La[VI(d + e) - Vl(d)] + aV(d)}. 
a Lt 

Examining the term in curly braces, we see that the marginal cost of an increase in A,, 
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is increasing in [V,(d + e,) - V,(d)]. An optimal control increases as the marginal 
cost decreases; thus, the optimal A,a is increasing (decreasing) in dg if [?l(d + e,) - 

,,(d)] is decreasing (increasing) in dP. So, monotonicity of the optimal rate follows 
from monotonicity of the increments of V,. 

Through this observation, submodularity of cost function takes a prominent place, 
as it has in previous related studies. A function h on the lattice Z+ is supermodular if 
it has the property featured in (1); it is submodular if the property holds with the 
inequality reversed. Since Z'7 is a finite product of totally ordered sets, it follows from 
Topkis (1978, Theorem 3.1) that h is submodular if and only if it has antitone 
differences, meaning that for all distinct a, /3 E A, 

h(d + e? + e,) 
- h(d + e3) < h(d + ea) - h(d), 

or, equivalently, 

(12) h(d + Ce + e,) + h(d) < h(d + e) + h(d + e). 

Similarly, the functions with isotone differences-those for which (12) holds with the 
opposite inequality-are precisely the supermodular functions on Z+. 

In later sections, cost functions will not necessarily be defined on lattices. We say 
that a function h on a subset F of Z+ is (a, 3)-submodular if (12) holds whenever all 
four points are in S. Define (a, ,)-supermodularity analogously. 

In order to consider submodularity and supermodularity together, we introduce a 
further definition. Let vJ and y+ be sets consisting of distinct pairs of elements of 
A and let J= (G_, X+). Every pair of distinct events is in X u f+, but these sets 
need not be disjoint. 

DEFINITION 4.1. A function h on a subset S of Z'7 is .-modular if it is 
(a, ,B)-submodular for all (a, 3) E E_ and (a, /)-supermodular for all (a, 3) E +. 
Say that h is -modular at d if it is -modular on {d,d + eC, d + e ,,d + ef} 
for all distinct a, 3. 

The path to (9) is now clear. Conditions that make V,,, n = 1,2,..., I-modular 
make an optimal ,La increasing in d, if (a, /) E E and decreasing in d, if 
(a,/3) e +. If (ca, ) is in both sets then AL is constant in d3. To make V/ 
-/modular, we assume that h is and show that T preserves -Jmodularity. For any 
n = 1,2,..., and every a E A, let 

(13) f,(Aa, d) = c(( .L,) + ,La,(d + e,) + ( a - Aa,) V,(d) 

(14) = c,a(,La) + ,,[l V,(d + ej) - (d)] + /a,lK(d). 

Let ga(d) = min,~ f,a(A,, d). Then 

(15) l,,+(d (d) = T(d(d) + Eg(d). 

We show that this transformation preserves --modularity. 
We develop this argument using ideas from Topkis (1978), as do Weber and 

Stidham (1987); but our use brings some modification, primarily because we consider 
sub- and supermodularity simultaneously. This leads to more general monotonicity 
results. Also, since in later sections we do not have a lattice, we use a formulation 
based, instead, on a subset of a product of totally ordered sets. It appears that Weber 
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and Stidham (1987) impose a lattice condition so that Topkis's analysis applies in its 
original form; our modification makes this unnecessary. 

We state our result in the form most convenient for subsequent application, not 
necessarily in its fullest generality. To keep the statement generic, we use indices 
i, j, k rather than a, /3. Thus, v/, , + are now pairs of distinct indices (i, j), 
i,j = 1,...,m,i _j. 

LEMMA 4.2. Let S be a subset of Z+, fk a function on [a, b] x S, a, b E R. Denote 
a typical element of [a, b] x S by (u, d, ..., dm). Define gk( ) = 

infuE[a,b] fk(u, ) 
Suppose that 

(i) for all u E [a, b], fk(u, ) is -modular; 
(ii) if (k,j)E X , then fk is submodular in (u, dj) for all values of its other 

arguments; 
(iii) if (k, j) E X+, then fk is supermodular in (u, dj) for all values of its other 

arguments. 
Then gk is I-modular. 

PROOF. The proof is similar to that of Topkis (1978, Theorem 4.3). Without loss 
of generality, assume j :/ k. We prove only the case (i, j) E / and (k, j) E /, 
the other cases following from essentially the same argument. To see that gk has the 
required property, consider points d, d + ej, d + el, and d + ei + ej in S. Temporar- 
ily assume that there exist ul u2 E [a, b] for which fk(ul, d + ej) = gk(d + e) and 
fk(u2, d + ei) = gk(d + el); i.e., the infima that define the gk values are attained. If 
u' u2, then 

gk(d) + gk(d + ei + e.) 

< fk(u', d) + fk(u, d + ei + e) 

< fk(u, d + ei) + fk(u, d + e) - f(u', d + e + e ) + fk(u2, d + e, + ei) 

< fk(u2, d + e,) + fk(u', d + ej) -fk(u, d + ei + ei) + fk(u', d + ei + ej) 

fk(u2, d + e) + fk(ul, d + e). 

The first inequality follows from the definition of gk, the second from condition (i) 
and the third from condition (ii). We conclude that 

(16) gk(d) + gk(d + ei + ej) < gk(d + ei) + gk(d + ej); 

i.e., gk is (i, j)-submodular. If, instead, u1 > u2, the argument is the same but starts 
from gk(d) + gk(d + ei + ej) < fk(u2, d) + fk(u', d + ei + ej). To drop the assump- 
tion that the infima over [a, b] are attained, fix an e > 0, let uI be any point in [a, b] 
for which fk(u', d + ei) < gk(d + ei) + e and define u2 analogously. The steps above 
lead to (16) with 2e added on the right. Since e can be made arbitrarily small (16) 
follows. [ 

Comparing this result with Topkis (1978, Theorem 4.3), we see that it weakens the 
assumption that the domain of fk is a lattice at the expense of requiring that fk be 
defined on a product space [a, b] x S with [a, b] totally ordered. We now have 

THEOREM 4.3. Suppose h is --modular. Then for the problem (10) without bound- 
aries, under either the finite- or infinite-horizon objective, there exists a monotone 
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optimal control Iu. Specifically, if (a, /3) E J (t+) then Af, is increasing (decreas- 
ing) in dg. 

PROOF. As argued just after (11), to establish that the optimal /,a increases 
(decreases) in d,, it suffices to show that every V7, n > 0, is (a, 3)-submodular 
(-supermodular). Since V, is identically zero, the result is proved once we verify that 
T preserves X-modularity. 

Take as induction hypothesis that V, is /modular, and let f, be as in (13-14). 
We claim that each ft satisfies conditions (i)-(iii) of Lemma 4.2, with the index a 
replacing the index k. Observe in (13) that ft is a positive linear combination of 

-modular functions and is therefore -modular as well. If (a, /3) E J/, then 
[Vl,(d + e) - V,,(d)] is decreasing in dg, so it follows from (14) that increments of ft 
with respect to t,a are decreasing in d,; they are increasing in d, if (a, p) E ,+. 
This verifies properties (ii) and (iii). 

It now follows from Lemma 4.2 that each gX(.) 
= 

min,, f(a,^ ' ) is -modular. 
Since /-modularity is preserved under summation, we conclude from (15) that V,7+ 
is /-modular. This completes the induction. [ 

REMARK. For simplicity, we have assumed that J contains all pairs of distinct 
events. However, examination of the proofs of Lemma 4.2 and Theorem 4.3 shows 
that a weaker condition would suffice. For any event a with /u, = ,I, the minimiza- 
tion over J,u i the definition of g, is superfluous. Consequently, ft need not satisfy 
conditions (ii) and (iii) of Lemma 4.2, and for any /3, (a, 3) need not be in either XA 
or X+. Thus, it is enough for J to contain all pairs of distinct, genuinely controllable 
events-those for which A,u < AX. To simplify the exposition, we continue to assume 
that / includes all pairs of distinct events. 

5. Penalties at the boundary. We now modify the analysis of the previous 
section to allow for boundaries on the state space of D. In this section and the one 
that follows, we present two methods for incorporating boundaries, leading to two 
sets of hypotheses for monotone controls. Both methods involve extending the 
function h-initially defined only on -A--to all of Z+'. The extension in this section 
assigns infinite penalties to infeasible scores; that of ?6 projects infeasible scores to 
their bases. 

We begin with a condition of Weber and Stidham (1987) that certain rates be 
controllable to zero. Call an event permanent if it is in the event list of every state, 
nonpermanent otherwise. Our assumption, then, on every a E A, is 

(17) if a is nonpermanent, then / = 0. 

Equivalently, we require that if 1A cannot be controlled to zero (i.e., if /, > 0), then 
a must be active in all states. This condition allows us to replace a problem having 
boundaries with one not having boundaries by assigning infinite cost to infeasible 
scores. If d is feasible and a c e(d), then it follows from the strong exchange 
property that d + e, is infeasible. Thus, if infeasible scores get infinite cost, then any 
optimal Au must set p,(d) = 0 whenever a 6&(d). It follows that an optimal control 
for the unconstrained problem never allows D to make an infeasible transition, and 
thus provides an optimal control for the original, constrained problem. 

We need to verify that extending h beyond X in this way preserves A-modularity, 
the property used in Theorem 4.3. Preservation, we will see, follows from the 
semi-lattice structure established in Proposition 2.2(i) together with a boundary 
condition. Let h(d) = h(d) for d E V and set h = o off X. Say that a activates P3 if 
there is an x E S with a E &(x), /3 X (x), and 3E E (O(x, a)); i.e., 38 becomes 
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active just after the occurrence of a in state x. With this terminology, we give the first 
of several boundary conditions we employ: 

(B1) If a activates /3, then h is (a, ,/)-submodular; i.e., (a, /3) E E_. 
We call this a boundary condition because if a activates /3 in score d, then 

d,d + e,, and d + e, + ep are in I, but d + e: is not. We now have 

LEMMA 5.1. Let X be the score space of a noninterruptiue, permutable scheme, 
and let h be a function on /. Suppose that h is -modular and that (B1) holds. Then h 
is -modular at d, for every d E A. In particular, if h is submodular then h is 
submodular at d, for every d E /. 

PROOF. The last statement in the lemma follows from the first part, because if h 
is submodular then it is -modular with all distinct pairs of indices in ./. For the 
general case, pick any d E jX and any a, /3 E A. We need to verify that h has, at d, 
whatever (a, /)-modularity property h has. If d + ea and d + el are in IV, then so is 
d + e, + e:, by the max-closure established for permutable schemes in Proposition 
2.2(i). In this case, h is -,modular at d because h is, and because h = h on ./. 
Suppose, then, that d + e - A-I; i.e., /3 is not in &(d), the event list determined by 
score d. This makes h (a,/3)-submodular at d, since h(d + e) = oc; see (12). There 
are now two cases: 

Case (a). Suppose d + e0 + ea (E A; i.e., there is a or E Y with [o] = d + e + ea. 

By assumption, d E X so there is a or' e/ with [o'] = d. By the antimatroid 
strong exchange property, there is a feasible string cr o-' with score d + et + ea; i.e., 
with [r'] = e0 + ea. Since we have assumed ,/3 (d) = (ao-), we must have 
o' = a/3. In other words, d + e, e JA, /3 E &(d + e ), and a activates /3. In this 
case, h must be (a, j)-submodular, by hypothesis. 

Case (b). If d + e: + ea A X, then h(d + e + ea) = 0c, so h is (a, /)-supermod- 
ular as well as (a, 8)-submodular, so it automatically matches whichever property h 
has. o 

We can now give our first set of conditions for monotone optimal controls in the 
presence of boundaries. We formulate the result in terms of the original GSMP 
control problem. 

THEOREM 5.2. Let X' be a controlled Markovian GSMP based on a noninterrup- 
tive, strongly permutable scheme. Suppose the rates of nonpermanent etents can be 
controlled to zero, in the sense of (17). Suppose also that (B1) holds and that 

h(.) = h(O(x, ? )) is --modular. Then there exists a monotone optimal control kL; L,L 

increases or decreases in dO according as (a, /3) E ./- or (a, /8) E +. 

PROOF. Once we replace h with h, we can work with the unconstrained dynamic 
programming recursion (10), rather than (8). Since h is X-modular at d for every 
d e A", the argument of Theorem 4.3 shows that the restriction of each V, to A is 

-modular. Monotonicity of ,L follows. D 

COROLLARY 5.3. In the setting of Theorem 5.2, if h is submodular then there is an 
optimal control ,p such that A^ increases in do for all distinct a, /3. 

REMARK. It is important to note that our extension of h beyond AY does not 
make h -modular on all of Z"; nor does Theorem 5.2 require this. To illustrate, 
suppose h is submodular on /. Then h is submodular except possibly at infeasible 
scores: if d is infeasible but d + e,, d + e1 E A", then h is supermodular at d. This, 
however, has no bearing on Theorem 5.2 since we only need to verify that submodu- 
larity (more generally, ~-modularity) holds at feasible scores. 

The extension of h to h is indeed submodular on all of Z' in the presence of the 
additional structure that makes the score space a lattice. Since other authors have 
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imposed the (stronger-than-necessary) lattice condition, we record the following 
connection: 

PROPOSITION 5.4. If the scheme S satisfies (CX) (i.e., is noninterruptive and 

satisfies (2)), then h is submodular on Z' if h is submodular on A/. 

PROOF. The only case not covered by Lemma 5.1 is d 0 X, making h(d)= oo. 
But from Proposition 2.3, we know that XV is a lattice. Thus, either d + ea, X or 
d + ek f0 A. It follows that h(d + e,) + h(d + e) = oo, so h is both submodular and 
supermodular at d. o 

In the Lemma of Weber and Stidham (1987, p. 208), the assumption of submodu- 
larity is analogous to requiring h to be /-modular on all of Z+. In the cases 
considered by Weber and Stidham, the lattice property follows from a "compatibility" 
condition. Their examples, as well as those in Bartroli and Stidham (1987) and 
Veatch and Wein (1992), satisfy the lattice condition (CX) of Glasserman and Yao 
(1992b); that is, they are noninterruptive and satisfy (2). This is discussed further 
in ?7. 

6. Projection to the boundary. Extending h beyond X via infinite penalties 
(and replacing a constrained problem with an unconstrained one) is only effective if 
rates for inactive events can be controlled to zero; otherwise, all controls yield infinite 
costs. Thus, to relax (17) we need a different way to handle the boundary. We now 
extend h beyond X by projecting infeasible scores to their bases. This motivates 

DEFINITION 6.1. For any h: I'- R, the basis extension of h is the function h: 
Z+ -3 R defined by h(d) = h(d), where d is the basis of d. 

We use this definition in conjunction with a boundary condition. Say that a 
activates 3 in d if a E &(d) and f8 c &(d + e,) \ &(d). The condition we need is 
this: 

(B2) If a activates /3 in d then h(d + ea + e3) < h(d + e,). 
This condition serves as an alternative to the assumption that rates are controllable to 
zero. It states that if /3 is nonpermanent, then the occurrence of /3 following its 
activation lowers costs. Paralleling Lemma 5.1, we have 

LEMMA 6.2. Let 4 be the score space of a noninterruptice, permutable scheme and 
let h be a function on A. (i) If h is .-modular and satisfies (B1)-(B2), then its basis 
extension h is -,modular at d, for all d E A. (ii) If (B1) holds and if h: Z' -> R is 
J-modular at d for all d E A, then the restriction of h to -/ is -modular and 

satisfies (B2). 

PROOF. We only prove part (i), the argument for part (ii) being similar. Pick any 
d cE and any a, 3 E A. Just as in Lemma 5.1, if d, d + ea, d + eP, and d + e, + e3 
are all in A, then h inherits --modularity directly from h. Suppose, then that 
,/3 _ (d). As argued in Lemma 5.1, if d + ea + e13 is feasible, then so is d + e,. This 
leaves three cases: of the two points d + e, and d + e, + ep, neither, both, or just 
d + e, may be in A. 

Case (a): Neither. In this case, all four points d, d + e,, d + e, d + e, + eo, have 
basis d, so h is constant on the four points, and is therefore both (a, 3)-submodular 
and -supermodular. 

Case (b): Just d + e,. In this case, d + ea + e3 has basis d + e, (while d + ep has 
basis d), so 

h(d) + h(d + e, + e) = h(d + e,) + h(d + e), 

and, once again, h is both (a, 3)-submodular and -supermodular. 
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Case (c): Both. Since, in this case, a activates /3, (B1) requires (a, 3) E _. 
Consequently, using (B2) for the inequality, we have 

h(d + ea + e) - h(d + e) = h(d + ea + e) - h(d + e) 

<0 

=h(d) - h(d) 

= h(d + e.) - h(d); 

i.e., h is (a, /3)-submodular. n 
Once we can extend h beyond X while preserving -modularity, monotonicity of 

an optimal control follows: 

THEOREM 6.3. Let XI be a controlled Markovian GSMP based on a noninterrup- 
tive, strongly permutable scheme. Suppose that h(') = h(4(x?, )) is --modular on -/ 
and satisfies (B1)-(B2). Then there exists a monotone optimal control 1I; PC, increases or 
decreases in dp according as (a, ,3) E _ or (a, pf) E X+. 

PROOF. It is enough to show that ,, is /-modular for all n. Since Vi) is 
identically zero, this is the case if T preserves -modularity and (B2), where T is the 
dynamic programming operator in (8). Let T be T without boundary constraints; i.e., 
T is the operator in (11) with h replaced by h. We make the following observations: 

(a) for any real-valued function f on IA, Tf is the restriction of Tf to IV, where f 
is the basis extension of f; 

(b) if f is /-modular at all d E -I, then so is Tf; 
(c) if Tf is Xmodular at all d E A, then Tf is -modular and satisfies (B2). 
If (a)-(c) hold and JV, is -modular and satisfies (B2), then V, is /-modular at all 

d E X (by Lemma 6.2(i)), and so is TV,, (by (b)). From (a) and (c), it follows that 

Vn+l, the restriction of V,,+, = 7l, satisfies /-modularity and (B2). Thus, every ;,, 
is J-modular, if (a)-(c) hold. 

Observation (b) is a consequence of Lemma 4.2, and (c) follows from Lemma 6.2(ii) 
and (a). To verify (a), let d be a feasible score; then 

Tf(d) = h(d) + E min{c,(p,) + ,[f(d + e) - (d)] + ~.f(d)}. 
a ^ 

' 

But if d is feasible then f(d) = f(d), and h(d) = h(d). Also, the basis of d + e, is 
d + e, itself if a EE (d) and d otherwise. Thus, f(d + e) =f(d + eal{a c 

&(d)}) = f(,(d)). With these substitutions, we see from (8) that Tf= Tf on feasible 
scores. o 

The following formulation, based on stronger hypotheses, is sometimes convenient. 

COROLLARY 6.4. Let X" be a controlled Markovian GSMP based on a noninterrup- 
tiue, strongly permutable scheme. Suppose that h is submodular on A, and that h is a 
decreasing function of dn for every nonpermanent event /3. Then there exists a 
monotone optimal control IA; i^a increases in d8L for all distinct a, 38 E A. 

REMARKS. (i) As was the case with h, the basis extension h need not be 
/-modular on all of Z+. The case in which d - X is not considered in Lemma 6.2. 

(ii) Hajek (1984) establishes the structure of the optimal control for two inter- 
acting queues, using steps analogous to (a)-(c) in the proof of Theorem 6.3. In his 
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setting, the state space is Z2, the set of possible queue-length vectors. As a step in 
his analysis, Hajek extends functions on the state space to all of Z2 by setting 
f(x,, x2) = f(xt, x2+), with x+= max(x, 0). For a simplified version of his model, this 
coincides with the basis extension when interpreted via scores. To see this, let ai and 

6i, i = 1, 2, denote arrival events at queue i, /3, i = 1,2, departure events at queue i. 
(Hajek also allows routing between the two stations.) Then 

= {d E Z+:d3i < d. + d, i = 1,2}. 

Projecting an infeasible score d onto its basis decrements d,, i = 1, 2, sufficiently to 
meet the constraints in the definition of H. This has the effect of replacing a 
negative queue length at i with a queue length of zero, which is Hajek's projection. 
We discuss Hajek's general model and further connections with our results in ??9.1 
and 10.1. 

To simplify arguments, we have presented the extension h of ?5 and h of this 
section separately. Theorems 5.2 and 6.3 require that the corresponding conditions of 
controllability to zero and (B2) hold in all cases. However, these results are easily 
interwoven to allow some events to satisfy one condition while others satisfy the 
other. 

Let 

~= (a E A: a is nonpermanent and i, = 0}. 

Extend h to all of Z+ by setting 

jh(d) J{h(d), 
ifd =da forall a c ; 

o , if d, > da for some a E . 

The function h is /-modular at every d E X if all events /3 ? Q satisfy (B2). Thus, 
adapting the proof of Theorem 6.3, we obtain 

THEOREM 6.5. Let X' be a controlled Markovian GSMP based on a noninterrup- 
tiLe, strongly permutable scheme. Suppose that h is -modular on I/ and that (B1) 
holds. Suppose further that, for all ecents /3, if 3B then (B2) holds. Then there 
exists a monotone optimal control JL in the sense of Theorem 6.3. 

7. Back to the state space. In this section, through a combination of general 
observations and specific examples, we examine the state-space implications of the 
score-space conditions of ??5 and 6. We begin by considering state spaces that are 
subsets of Z for some /. 

7.1. The linear case. In many permutable queueing systems, the states have a 
natural encoding as integer vectors and the mapping from scores to states is affine: 
for d E -V, x(x,, d) = Ad + x?. Suppose S is a subset of Z', so A is I x m. There is 
a direct connection between the columns of A and the event set A. Writing 

A= [alla2l . 
ain], 

we find that, if ai E &(x), then 

(18) 
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In other words, each event corresponds to a translation in some feasible direction of 
the state space. 

This type of model is the starting point of Weber and Stidham (1987). While many 
queueing systems fit this framework, not all do. In particular, (18) entails strong 
permutability because vector addition is commutative. But (18) is more restrictive 
than strong permutability because it presupposes that the same translation x > x + ai 
applies throughout the state space. Also, an approach starting from the assumption 
that S c Z' and (18) holds, rather than from a GSMP, fails to reveal the structural 
conditions on the system that make the monotonicity results go through. 

When the framework above does apply, through a translation of the state space we 
may assume that x" is the zero vector. In this case, h(d) = h(Ad) for feasible d. 
Assuming h extends to a function on R' that is twice continuously differentiable and 
writing V2h(x) for its matrix of second derivatives evaluated at x, we obtain 

ah (d) = aTV 
9ada a aT V2h(Ad)aj. 

ali aji 

If h is convex, then V2h(Ad) is positive semi-definite; so, if ai and aj are both 
directions of increase or both directions of decrease, then the second derivative 
displayed above is nonnegative and h is (ai, aj)-supermodular. If ai is a direction of 
increase but aj a direction of decrease (or vice versa), then h is (a,, a1)-submodular. 

These and related observations further simplify when costs are separable. Suppose 
that h(xl,..., x1) = h,(xl) +... +h,(x,). If xi is a queue length, then we often 
have xi = d - 

dp, for some pair of events ai, ti. Suppose no other xj depends on 
both ai and /(; i.e., only the ith row of A has nonzero entires in both the ai and Pi 
columns. Then 

ad(d) h (d d), 
ada,i ad ia 3) 

so if hi is convex, h is (a, P)-submodular, which if hi is concave, h is (a, 3)-super- 
modular. When x, = d- d , ,3i is typically a nonpermanent event (a service 
completion) activated by a, (an arrival from upstream or from an external source). In 
this case, if (B1) holds, then x--modularity follows from convexity of hi. Condition 
(B2) holds under the reasonable additional hypothesis that service completions always 
lower holding costs. Thus, all the conditions used in ??5 and 6 have natural 
counterparts when interpreted on the state space. We illustrate them in more detail 
through specific models. 

7.2. Tandem queues. This is the example studied in Weber and Stidham (1987). 
Let 1 be the number of queues, xi the queue length at queue i, i = 1,..., . An 
external arrival to the first queue is event /(; service completion at the ith queue is 
event ji, i = 1,..., 1. Take x? to be the zero vector and map scores to states via the 
/ x (l + 1) matrix 

'1 1 0 ... 0 0 0 
0 1 1 0 
0 0 1 ... 0 0 0 

A . 
. . . . . . . 

0 0 0 ... 1 -1 0 
,0 0 0 ... 0 1 -1I 
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This model is noninterruptive and permutable; indeed, it even satisfies (2) and thus 
condition (CX) of Glasserman and Yao (1992b). Its score space 

A/= (d c Z++': d - di, > O, i = 1,... l} 

is closed under v and A. 

Let all pairs of distinct events be in , so that ,-modularity reduces to 
submodularity. As noted by Bartroli and Stidham (1987), the functions h for which 
h(Ad) is submodular in d are precisely the ones Hajek (1985) calls multimodular; in 
light of Hajek's (1985) Proposition 2.2, this characterization can be taken as the 
definition of multimodularity. Condition (B2) holds if h is increasing in the partial-sum 
order on Z'; that is, if 

i 

i 

Exit< Ej, = 1,... ,l h(x)<h(y). 
j=1 j=l 

Under this condition, holding costs decrease as jobs move downstream. With these 
properties, we summarize some of the consequences of Theorems 5.2 and 6.3 in 

PROPOSITION 7.1. Consider queues in tandem, as above. For both the finite- and 
infinite-horizon discounted problems, there is an optimal control A. for which Lui, 
increases in d(j, for all distinct i, j, under any of the following conditions: 

(i) P1, = 0, i = 1,..., , and h is multimodular; 
(ii) ,0 , =0, i = 1,...,1, and h is separable with each hi, i = 1,...,l, convex; 
(iii) h is multimodular and increasing in the partial-sum order. 

Part (ii) is the theorem of Weber and Stidham (1987, p. 206), and part (iii) is 
suggested in a weaker form in the discussion at the end of their paper. The 
monotonicity with respect to scores asserted in the proposition immediately implies 
that the optimal service rate at queue i increases in the queue lengths xl,..., xi and 
decreases in xi+ ,..., x. 

Noninterruption and strong permutability continue to hold if the model is modified 
to allow blocking; manufacturing, communication and kanban blocking, for example, 
meet the conditions of Glasserman and Yao (1992b, Example 3.7), particularly (CX). 
Proposition 7.1 holds in that setting as well. Examples of this type appear in Veatch 
and Wein (1992). 

7.3. Joins and merges. Consider, now, the system illustrated in Figure 1. There 
are three queues; ai denotes arrival to queue i, i = 1,2, and y denotes service 
completion at queue 3. Between the first two queues and the third, we consider 
alternative mechanisms. Under the join mechanism, a job at queue 1 is joined to a 
job at queue 2 when a job is present at both. This "subassembly" then moves to 
queue 3. In this case, /, - 82 = 3. Under the merge mechanism, jobs move from 
queue i, i= 1,2, to queue 3 as they are completed, and are served individually 
at queue 3 in their order of arrival. In this case, /3 and 132 are distinct events. 

3 7 

2 IP2 

FIGURE 1. When 31 = /2 =/3, jobs are joined before they enter queue 3. When 31,B /2 are 
distinct events, the two streams are simply superimposed. 
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These two mechanisms provide a perfect illustration of the distinction between the 
lattice and semi-lattice structure. Both systems are noninterruptive and strongly 
permutable. Under the join mechanism, the score space is 

join = {d e Z4 +: d / < d , A d;d, <d}, 

and this is closed under min as well as max. Building on the compatibility condition of 
Weber and Stidham (1987), Veatch and Wein (1992) are thus able to describe 
monotonicity properties of the optimal control for a system much like this one (under 
the additional assumption that service rates are controllable to zero). 

However, when the join becomes a merge, the score space becomes 

/merge = (d Z : di < d, i = 1,2; dy < d3 + d). 

This is closed under max but not min. For example, (d, ,dpl,d,,d:,,d ) = 
(1, 1,0, 0, 1) and (0, 0, 1, 1, 1) are feasible scores, but their min (0, 0, 0, 0, 1) is not. In 
fact, min-closure typically fails whenever there is more than one way to activate some 
event-in this case y. See the discussion of minimal elements and unique minimal 
elements in ??2 and 3 of Glasserman and Yao (1992b). 

For simplicity, we consider separable holding costs. Then with the join mechanism, 
h(d)= hl(d, - d,3) + h2(d,2 

- d3) + h3(do 
- d), and with the merge mechanism 

h(d) h (d,, - dl) + h2(da - dr,) + h d(d, + d,3 - dy). Let _ = 

{(al, ^), (a2,/32),(al,y),(a2, ),(1l,y), (382,y)} and let X+ consist of all other 

pairs of distinct events. From Theorems 5.2 and 6.3, we obtain 

PROPOSITION 7.2. In the model above, suppose h(x) = hl(x) + h2(x2) + h3(x3) 
with each hi convex. Under the join mechanism, if either 

(i) tUp = , = 0, or 
(ii) h3 is increasing and h(xl, x2, x3 + 1) < h(x1 + 1, x2 + 1, x3) for all x, x2, x3, 

then there is an optimal control ,t such that /L,, i = 1, 2, decrease in x, Ai3 increases in 
x1 and x2 and decreases in x3, and ,L, increases in x. Under the merge mechanism, if 
either 

(i') jLp = B =: y= 0, or 
(ii') h(, x2, * ) and h(x, , ) are increasing in the partial-sum order, for all x, x2, 

then there is an optimal control pt such that L^i, i = 1, 2, decrease in x, Lp., i = 1,2, 
increase in x1 and X2 and decrease in x , and ty increases in x. 

Since the proofs of Weber and Stidham (1987) and Veatch and Wein (1992) make 
explicit use of closure under min, it is not clear if their method is extensible to the 
merge mechanism and similar models, where only the semi-lattice condition applies. 
Indeed, the weaker conditions developed here appear to be necessary in virtually any 
model with superimposed arrival streams. Our Proposition 7.2 generalizes in the 
obvious way to tree networks connecting subsystems like the one in Figure 1. 
Variations based on Theorem 6.5 are also possible. 

7.4. A re-entrant system. To further highlight the practical implications of the 
distinction between the lattice and semi-lattice condition, we consider the control of a 
simple re-entrant system. In a re-entrant line, jobs of different classes pass through a 
series of work centers following deterministic routes; the routes are class-dependent 
and typically include multiple visits to the same center. Jobs at different stages of 
their routes waiting for service at a single work center are kept in separate buffers. 
Thus, each work center provides service to several different buffers. For further 
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discussion of this type of model and its application in semiconductor manufacturing, 
see Kumar (1993). 

For ease of exposition, we consider a single work center with three buffers; the 
result extends readily to a series of such nodes. Type-1 jobs enter at the first buffer, 
proceed to the second buffer after their first service completion, then to the third 
buffer after completion of the second stage of service for a third and final stage. 
Type-2 jobs enter at the second buffer and subsequently follow the same route as the 
first class. Type-3 jobs enter at the third buffer and leave upon completing service. At 
each buffer, service is first come, first served. The service provided to a job depends 
on the buffer from which it is drawn, but not its class. 

Denote the three arrival events by a,, a2, a3 and denote completion of service for 
a buffer-i job by Pi, i = 1,2,3. The state of the system is (x , x, x3) where xi records 
the number of jobs in buffer i. This system is noninterruptive and strongly permutable 
but its score space fails to be closed under min. To see this, suppose the system starts 
empty and consider the feasible strings a /,3132 and a20,2. The minimum of their 
scores corresponds to the string 32, which is infeasible: no service completion can 
occur before the first arrival. 

As an illustration of the type of conclusion that can still be drawn, consider a 
separable cost function h(x) = h (x ) + h2(x2) + h3(x3). Let X/ consist of all pairs 
(3,, /3j), i = j, and all pairs (ai, /3), i < j. Let + contain all other pairs of distinct 
events. Then we have 

PROPOSITION 7.3. Suppose each hi, i = 1, 2, 3, is convlex and suppose all rates are 
controllable to zero. Then there is an optimal control !x such that Aa, decreases in xi, 
j > i, while 3,i increases in x/, j < i and decreases in xi for j > i. 

This follows from Theorem 5.2. Conclusions based on Theorem 6.3 are also 
possible. 

8. Switch controls. 

8.1. Pure switching. We now consider systems in which the control ,za functions 
as a switch between a pair of events a1 and a?. Potential occurrences of either of 
these events occur at rate ~; they become potential occurrences of a1 with 
probability jL,/~j and of a0 with the complementary probability. A potential 
occurrence is an actual occurrence if the corresponding event is active. With this 
mechanism, IL, could control the routing of an arrival stream (in which case a1, a? 
are arrival events) or it could control the proportion of service given by a single server 
to two different queues (in which case they are departure events). Every event is now 
one of a switch-controlled pair (a, a0), (131, 0),...; we still write, e.g., 13 to refer to 
a generic event. This model subsumes our previous formulation if we allow a?, 30, ... 
to be null events that are always active but never change the state. 

The state-space dynamic programming recursion for this type of system is 

(19) 

V,,(x) 
= h(x) + E min{ca(a) + a[IVJ(,( x, a)) 

- 
Vl(k(X,ao1))] 

oa t 
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When translated to the score space, the recursion becomes 

(20) Vj,,,(d) =hi(d) + E min (c( L) + Ha[I (Xa (d)) - VI(Xa(d))] 
a 

iJUa1(Xa(d))}. 

Omitting restrictions at the boundary of A, this is 

(21) Vi+,(d) = h(d) + E min{ca(ia) + t a[L,i(d + eal) - V,(d + e,)] 
a 

+ a e(d + 0>)}. 

Thus, conditions for monotone optimal controls now require that differences 
V(d + ea,) - V(d + e,o) be monotone in components df, 8/3 a, a0. 

To examine this type of property, let /= (/_, 4+) be as before, except that now 
pairs of switch-controlled events (al, a?) need not be included in either ./ or /+. 
Also, for any other event /3, 

(22) of the pairs (a?, /), (al, /3), one is in X, the other in X+. 

In other words, the occurrence of /3 can increase (decrease) the rate for a1 only by 
decreasing (increasing) that for a?. Consider functions h: Z' -> R with the following 
property: 

(23) h(d + ea,,) + h(d + e + e, ) < (>)i(d + e,) + h(d + e + e,a)), 

if (a',/8) E = (/+). 

This reduces to -modularity when a? is a null event. Mimicking the proof of 
Lemma 4.2, one verifies 

LEMMA 8.1. Let S be a subset of Z+, fk a function on [a, b] x S, and gk() = 

inf, E [b]fk(u, * ). Suppose that fk satisfies property (23) with i , i", j replacing ac, a?, 3. 
Suppose also that fk satisfies properties (ii) and (iii) of Lemma 4.2. Then gk satisfies 
(23). 

As a consequence, the property in (23) is preserved by value iteration in the 
absence of boundaries. Thus, Theorem 4.2 continues to hold if ./modularity of h is 
replaced with (23). In particular, for (21), there is an optimal tL under which ,a 
increases in d, if (a'l, /) E _ and decreases in d3 otherwise. 

To incorporate boundaries, we use the methods of ??5 and 6. The notions of event 
permanence and activation are just as in ?5. We combine the boundary condition (B2) 
with the following: 

(B3) 
(i) if a?, /8 E F(d) and 8/ activates a' in d then 

h(d + e3 + ea,) - h(d + e + ea^) < h(d) - h(d + ea,,) 

(ii) if al, /3 E (d) and /3 activates a? in d then 

h(d + e + e,,) - h(d + et3 + e,,,) < h(d + e,i) 
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We now have 

THEOREM 8.2. Let XM be a switch-controlled Markovian GSMP based on a 
noninterruptive, permutable scheme. Suppose that h( ) = h(((x0, , )) satisfies (23) and 
(B1) holds. Then there exists an optimal control ,L with tL, increasing in d3 when 
(al, p3) cE and decreasing in d3 when (ae, ,3) E J+ if, for every pair (a', a0) and 
every other event ,3 any one of the following sets of conditions holds: 

(i) L = 0 and a? is permanent; 
(ii) ' is permanent; 
(iii) (B2) and (B3) hold. 

PROOF. Extend h to h as in Theorem 6.5. If either a' or a( is permanent and 
(al, ) eE , then 

h(d + e3 + e.,) + h(d + e.,) < h(d + e, + eal) + h(d + ea,), 

by essentially the argument of Lemma 5.1. If (a', ,) cE /+, the inequality reverses; 
thus h shares property (23). For condition (iii), use the argument of Lemma 6.2 to 
show that (23) extends to h. The result now follows much as in Theorem 6.3. c 

Condition (B3) simplifies substantially if we strengthen (23) using 

LEMMA 8.3. Suppose that h is A-modular with ./= (yf, +) satisfying (22). Then 
h satisfies (23). 

PROOF. Suppose (a', P) E ./, the other case being entirely analogous. Then, if 
a], a(, e E (d), 

h(d + e + ea) - h(d + e: + ea) 

= [/(d + e + e ,) - h(d + e3)] + [h(d + e,) - h(d + et3 + e,o)] 

< [h(d + ea,) - h(d)] + [h(d) - h(d + eao)] 

h(d + e,) - h(d + e,), 

where the inequality follows from -modularity of h and the fact that (a?, 3) E +. 

We now obtain the following consequence of Theorem 8.2(iii): 

COROLLARY 8.4. The conclusion of Theorem 8.2 holds if conditions (i)-(iii) are 
replaced by the requirement that h be -modular and satisfy (B1)-(B2). 

PROOF. It suffices to show that (B3) is satisfied. There are several cases; we detail 
a typical one. Suppose (a', ,3) E X, a1 e (d + e,) \ &(d) and a0 e E (d). Using 
first (B2) then the (a"?, )-supermodularity of h, we obtain 

h(d ep + e,) 
- h(d + e, + ea) < h(d + et) - h(d + ep + e,) 

< h(d) - h(d + e,t + e,,), 

exactly as required by (B3). o 
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8.2. Combined switch and rate controls. In the previous subsection, we controlled 
the allocation of effort between pairs of events (al, a?), but not the overall level of 
effort. We now modify the model to include both types of controls. For each pair 
(a', a0), paELa is the rate allocated to a1, 0 < p, < 1, and (1 - Pa)La that allocated 
to a?. The state-space dynamic programming recursion becomes 

(24) V+,(x) = h(x) + E min min {cJa(Ia) + ia[p PaVn(J(x, al)) 
C a < A,a < a, O<Pa < 1 

+(1 - Pa) V,((x, ao))] + (iUa - a)Vn(x)}. 

Translating this to the score space, rearranging terms and omitting the boundary 
restrictions, we obtain 

(25) J1+,(d) = h(d) + E min {ca(i ) + I{a(Pa[li(d + ea) 
- 

,(d)] 
a -t a, pa 

+(1 -Pa)[In(d + e0o) - (d)]) + n(h)}. 

For simplicity, throughout this section we assume /ua = 0 whenever either of aI, a? 
is nonpermanent; this is essentially the controllability-to-zero condition (17). We 
continue to assume that 9= (J?, X+) satisfies (22); thus, if Vn is --modular and 

(a, /3) E /, then 

AaiVn(d) -Vn(d + ea') -Vn(d) 

decreases in d. and 

AaoVn(d) A V(d + eao) - V(d) 

increases. Consequently, the combined coefficient on p, in (25) decreases in d: and 
the optimal p, increases. This, and the behavior of the optimal Iua, are summarized 
in 

THEOREM 8.5. For the optimal control problem (24), if h is -modular with v 

satisfying (Bl) and (22), then there is an optimal (ix, p) such that 
(i) Pa increases in dp if (al, 8) E J_ and decreases in d3 if (al, 3) E ,+; 
(ii) if (a1, 13) E , then I/L is first increasing then decreasing in d3, while if 

(a 1, 8) E /+, then /I a is first decreasing then increasing in dg. 

PROOF. For part (i), let V, be the extension of VI obtained when h is extended to 

h; Vn is infinite on infeasible scores. By the argument of Lemma 5.1, together with the 
fact that i-modularity is preserved by convex combinations, we conclude that Vn is 

-modular, so the argument of Theorem 5.2 concludes the proof of part (i). For part 
(ii), there are three regimes: A,Xo0i(d) < min(0, Aa,li(d)); 0 < min(AalVi(d), 
Aaozn(d)); and A,ilYV(d)< min(0, AL,oVn(d)). In the first, aL, decreases in d,; in the 

second, ALa = 0, and in the third, xLa increases in d3. By X-modularity, the incre- 
ments Al,Vn and A,ol1 are monotone in opposite directions as functions of dg3. Thus, 
they cross at most once. The order in which they may cross is determined by which of 
Y and /+ contains (a1, 3) and gives the change of direction indicated in (ii). D 

REMARKS. (i) Since we have assigned no cost to exercising the p,'s, an optimal 
allocation need only use the extreme values 0 and 1. As a function of do (with all 
other dy's held fixed), an optimal p, switches from 0 to 1 where A iV,(d) crosses 
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A,,iV,(d). If these increments never cross, then p, is either identically 0 or identically 
1. If we drop the cost ca, then Au may be restricted to its extremes, 0 and ay, and 
the following rule is optimal: 

A,C,LJ ,(d) < min(0, Aa,i,,(d)) 
= a = ?L pa = 0; 

0 < min(AJ,,(d), A,lj,(d)) Aa = 0; 

AiJ,,(d) < min(0, AZ,ol,(d)) A, - p, a= 1. 

Ties can be broken arbitrarily. Depending on the values of d,'s, y /3, all three 
regimes or any subset may be present. However, if (a, /) E _/ they can only appear 
in the order listed, as do increases, because of the monotonicity of Aa,ll, and AaJl,V. 
If (a, p) E (J+, the cases listed can only appear in the reverse order. Thus, in either 
instance there are potentially two switch points. If any one of the regimes never 
prevails, there is at most one switch point and Aa, is monotone. 

(ii) Since the theorem requires that (B1) hold for both a1 and a0, and since (22) 
requires that either (al, /3) or (a?, /3) belong to J+, we cannot allow an event /3 to 
activate both a' and a?. Different boundary conditions could accomodate that case. 

9. Examples with switch controls. 

9.1. Two interacting service stations. We now apply the foregoing results to a pair 
of queues sharing a server and an arrival stream; see Figure 2. This is a simplification 
of Hajek's (1984) model. We return to the general model in ?10. 

The events are illustrated in Figure 2. (We use superscripts in (/3(, /3l) and (a?, a') 
to indicate a switch-controlled pair, subscripts in 6,, 62 to indicate unpaired events.) 
This system is noninterruptive and strongly permutable. For the most natural mono- 
tonicity results, and to be consistent with (B1), we specify that (a', 3), (,, /31), 
(a, 62), (2,/ ) are in J/ and (', /"), (6, (),(, 6(a , 82) are in . Under 
(22), this completely determines J, except for the pair (6,, 62). Let us initially take 
(61, 62) E X+. 

Letting xi be the number of jobs at queue i, i = 1, 2, the state space becomes Z2. 
The mapping from scores to states sets x, = d + d, + dl,, and x2 = d^, + d, - 

d,,. As in Hajek (1984), consider the functions h on Z2 satisfying the following 
properties: 

(a) h is increasing; 
(b) h is convex in each argument and supermodular; 
(cl) h(x,, x + 1) - h(x, + 1, x2) is decreasing in xl, 
(c2) h(x,, x2 + 1) - h(x, + 1, x2) is increasing in x2. 
We claim that if h satisfies (a)-(c2), then h meets the conditions of Theorem 

8.2(iii): it satisfies (23), (B2) and (B3). There are many cases; we examine some 

representative ones. Condition (B2) applied to (a', /3') or (5,, /') requires h(0, x2) < 

FIGURE 2. The model of ?9.1. 
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h(l, x2) and applied to (a?, 30) or (82, J3) requires h(x,, 0) < h(x, 1). These re- 
quirements are satisfied by an increasing h. Condition (23) applied to (8,,/ 1) (with 
81 = 8, and 81 a null event) requires 

2h(x,, x2) < h(x, + 1, 2) + h(x - 1, x2), 

which is convexity in x,. The same condition applied to (82, /3() is satisfied when h is 
convex in x2. Supermodularity of h implies 

h(x, + 1, x2 + 1) + h(x , x2) > h(x, + 1, x2) + h(x,, x2 + 1), 

which is (23) applied to (8l, 82) E 4+. Condition (B3)(i) applied to (al, p/) or (8,, 3') 
requires 

h(0, x2) - h(, x2 - 1) < h(0, x) - h(O, x2 - 1), 

which follows from (a) and (cl). Also, (a) and (c2) imply that (B3)(ii) holds for both 
(a", 3o) and (82, P0). Though (23) and (B2)-(B3) hold, condition (a)-(c2) do not, in 

general, make h /Xmodular. 
Interpreting the score monotonicity provided by Theorem 8.2(iii) in terms of states, 

we draw the following conclusions about an optimal ,i: tuL and t,, increase in x2 and 
decrease in xl, while L,3 and ,uaL increase in x, and decrease in x2. When there is no 
cost to control (every c, is identically zero) and when z, = Jai, i = 1, 2, these are 
Hajek's (1984) results applied to our simplified model. Our conditions on h are 
weaker than conditions (a)-(c2) used in Hajek (1984). 

If we move (8,, 2) from .+ to ._ we obtain results outside the scope of 
Hajek's analysis. In this setting, it is natural to take a, - = f, i = 1, 2; otherwise, 
arrivals to one queue accelerate arrivals to the other. Suppose h satisfies (a)-(c2) but 
with supermodularity in (b) replaced by submodularity. Then h is --modular and 
satisfies (B2), so Corollary 8.4 applies. The monotonicity conclusions drawn above for 
/za and /,z continue to hold. An example of an increasing, submodular cost function, 
convex in each coordinate, is h(x,, x2) = max(x,, X2). 

Hajek's general model includes two features not present in Figure 2: uncontrolled 
departures from each queue, and controlled routing between the two queues. The 
first feature poses no problem. If uncontrolled departures from queue i occur at rate 
v, i = 1,2, then we increase -J3Z by vI + v2 and constrain t,3 so that ,L3, > vI and 
(Jp - 8p3) >V 2. This incorporates minimal departure rates at the two stations 
without introducing additional events. 

To include routing between the stations, it appears to be necessary to introduce 
new events-events that violate noninterruption. Let y, and Y2 denote, respectively, 
transition from queue 1 to queue 2 and from queue 2 to queue 1. Then y, and j31 
interrupt each other when x, 1, as do y2 and p( when x2 = 1. The score space for 
this model is 

(26) .= {d E Z8 : d, + dy, < d, + d,i + dY2dl + d, < d + d,, + d}. 

This score space is not max-closed and does not satisfy the strong exchange property. 
It does, however, satisfy a weaker condition discussed in ?10. 
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1P? 

FIGURE 3. The model of ?9.2. 

9.2. A scheduling model. Chen, Yang, and Yao (1991) study the model in Figure 
3. There are two classes of arrivals, represented by events a( and al. Corresponding 
to these two classes of jobs there are two service-completion events, 3 ( and /3 . Upon 
moving from station 1 to station 2, a class 1 job becomes a class 2 job. Service 
completions at station 2 are represented by p2. A system state is a vector (x0, x,, x2) 
E Z-, with each xi recording the number of class i jobs present. This system is 
easily seen to be noninterruptive and strongly permutable. 

The server at station 1 provides an overall service rate ,, to be allocated between 
classes 0 and 1. Let this service rate and also tl2 be controllable to zero. Depending 
on whether or not ,u,l and z,L are controllable, we obtain different conditions and 
results. Let us take these arrival rates to be fixed, as in Chen, Yang, and Yao (1991, 
?4). Following the remark at the end of ?4, we may restrict modularity conditions on 
h to pairs of controlled events /30, 13, and 32. Since /3 activates 32, we require 
(3, P32)-submodularity. This entails (3, /32)-supermodularity, via (22) restricted to 
{P()0, P1 2). A function h(d) = h(da - d,, dal 

- di, d i - d 2) satisfies these con- 
ditions if h is convex in x2, supermodular in (xo, x2) and submodular in (x,, x2). 
These are the conditions of Remark (iii) in Chen, Yang, and Yao (1991, ?4). They put 
us in the setting of Theorem 8.5. From part (i) of that result it follows that the 
optimal fraction of service allocated to class 1 increases in xl and decreases in x0 
and x2, as noted by Chen, Yang, and Yao (1991). Moreover, since no cost is imposed 
on the allocation, the entire service effort at station 1 can be devoted to a single class 
in each state without loss of optimality. Thus, in each state, either class 0 or class 1 is 
given strict priority over the other. 

In the case of (increasing) linear holding costs, Chen, Yang, and Yao (1991, 
Theorem 4.1) show that A,,,o1(d) < 0 for all feasible d. If there is no cost to providing 
service, it follows (see Remark (i) of ?8.2, above) that ,t, the optimal overall service 
effort at station 1 is always ii/ if there is a job present at station 1. However, if x2 is 
sufficiently large, even if x( = 0 all effort at station 1 may be allocated to class 0. In 
other words, for sufficiently large x2, the optimal policy idles the server at station 1 if 
no class 0 jobs are present. These conclusions are summarized in Theorem 4.4 of 
Chen, Yang, and Yao (1991). 

10. Monotone control under mutual interruption. Given permutability, max- 
closure of the score space is equivalent to noninterruption; hence, relaxing the 
requirement of noninterruption while preserving monotonicity of optimal controls 
means relaxing max-closure. Relaxing noninterruption is useful in modeling; for 
example, in ?9.1 we noted that introducing switching between stations in the general 
model of Hajek (1984) violates noninterruption. 

In this section, we extend some of our earlier results to systems satisfying mutual 
interruption. We say that a and 38 interrupt each other in state x if a, 3 E (x) 
while 8 ( '(4(x, a)) and a X &(O(x, 3)). A scheme satisfies mutual interruption if, 
for every pair of distinct events a, , and every state x, either a and 13 interrupt each 
other in state x or else neither interrupts the other. Thus, a noninterruptive scheme 
is a special case of a mutually interruptive one. If we enhance the model of Figure 2 
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by including a switching event y, from queue 1 to queue 2, then /31 and yI interrupt 
each other when there is just one job at queue 1. Similarly, adding a switching event 

72 from queue 2 to queue 1 violates noninterruption but satisfies mutual interruption. 

10.1. Weak exchange and its consequences. Recall from ?2.3 that, taken together, 
permutability and noninterruption are equivalent to the antimatroid strong exchange 
condition (SE). To accomodate mutual interruption, we relax (SE) to get the follow- 
ing weak exchange property: 

(WE) If o-1, o2 E X, and [-1] < [0o2], then there exists o-'o- E X with [o-'] = 
[a2]. 

Under (WE), we can still extend a feasible string by appending to it the extra 
events in another feasible string with a larger score. However, (WE) does not 
guarantee that the score space is max-closed. 

The following consequence of (WE) is easily verified: 

PROPOSITION 10.1. If a scheme satisfies (WE), then it satisfies permutability and 
mutual interruption. 

To complement (WE), we need the following modification of an earlier boundary 
condition: 

(B')(i) If a activates /3, then (a, /3) E _; 
(ii) If a and /3 interrupt each other, then (a, /3) E /+. 
We now have 

LEMMA 10.2. Lemma 5.1 holds for schemes that satisfy (WE) with condition (B1) 
replaced by (B1'). 

PROOF. Modification of the previous proof is required only to take account of the 
fact that the score space is no longer max-closed. This makes it possible for d + e, 
and d + e, to be feasible even if d + ea + e3 is not. In this case, a and /3 interrupt 
each other. Hence h is (a, 3)-supermodular, according to (B1')(ii). The infinite cost 
penalty at d + e, + e3 ensures that h is also (a, /)-supermodular at d. 

Case (a) of the proof of Lemma 5.1 remains valid. Specifically, since d and 
d + ea + e3, are feasible scores, (WE) guarantes that o-' (with score d) can be 
extended to either u'aI3 or oa'3a. Since arl3a is infeasible (/3 C ((d)), a'aft must 
be feasible, implying that a is in &(d) and hence that a activates /3. Case (b) remains 
intact. c 

In previous sections, monotonicity of optimal controls followed from two basic 
steps: moving from a state-space formulation to a score-space formulation and 
showing that /-modularity is preserved when costs are extended beyond boundaries. 
The first step followed from strong permutability and the fact that, under (SE), if d 
and d + e, are feasible then a E 6(d). This property continues to hold if strong 
permutability is combined with (WE), so the transformation to scores remains valid. 
Lemma 10.2 verifies preservation of -modularity. Thus, the monotonicity results 
that follow from Lemma 5.1 generalize accordingly based on Lemma 10.2: 

THEOREM 10.3. Theorems 5.2, 8.2(i-ii), and 8.5 hold for schemes satisfying strong 
permutability and (WE), with condition (B1) replaced by (B1'). 

All of the earlier results referred to in Theorem 10.3 are based on extending costs 
beyond boundaries by using infinite penalties. Lemma 10.2 allows us to do the same 
under (WE) by strengthening (B1). 

In principle, the projection method of ?6 can also be used with (WE) and 
strengthened boundary conditions. A difficulty arises in selecting the appropriate 
projection. Under (WE), the score space need not be max-closed so an infeasible 

474 



MONOTONE OPTIMAL CONTROL OF PERMUTABLE GSMPS 

score may have several maximal feasible subscores; that is, it may have several bases 
rather than just one. Any rule for choosing among bases defines a basis extension. If 
it can be shown (as in Lemma 6.2) that the extended function is _-modular, then the 
monotonicity established in Theorem 6.3 continues to hold. We have not, however, 
identified a general way of selecting a basis that ensures preservation of A-modular- 
ity. 

Hajek's (1984) model satisfies (WE) and strong permutability, even if switching 
between queues is incorporated. Hajek's state-space projection (x1, x2) -> (X , x2+) 
(also discussed in ?6) implicitly defines a basis extension for functions on the score 
space that preserves -modularity. This model thus provides an instance in which the 
approach of ?6 extends to a model satisfying weak exchange but not strong exchange. 

10.2. A loss system. We conclude with a further example requiring the general- 
ization from noninterruption to mutual interruption. We consider a loss system 
consisting of N identical serves but no room for waiting jobs. Jobs of K different 
classes arrive to use any available server. Such a system has been used to model a 
shared memory (Foschini and Gopinath 1983) and a link in a circuit-switched network 
(Kelly 1991), among other things. The required structural conditions extend to 
networks of such nodes as well. 

Let a,..., aK denote the arrival events for the K classes of jobs and let 

/3p...,/ denote the corresponding service-completion events. Since we consider 
only the Markov case, we may assume that the arrival events are inactive whenever 
the system is full. Similarly, we may assume that a total service effort [L,i is devoted 
to class i jobs without specifying how it is allocated among those jobs. 

The state of the system is x = (xl,..., XK), where xi is the number of type i jobs 
in service, i = 1,..., K. Strong permutability is clearly satisfied: xi = da - di,, for 
all i. A straightforward but somewhat tedious argument shows that (WE) is also 
satisfied. The score space, 

K 

(d 
E 

Z2c: d2i > d, i = 1, .., K; E (d, 
- 

di) < N 

is neither max-closed nor min-closed. 
The relations among the events are as follows: 
(1) for i = 1,..., K, ai activates fi when xi = 0; 
(2) for i, j = 1,..., K, f3, activates aj in any state x with xl + +xK = N; 
(3) for distinct i, j = 1,..., K, a and ai, i + j, are mutually interruptive in any 

state x with x! + .. +XK = N - 1. 
For simplicity, consider a separable cost function h(x) = h,(x ) + ? ? +hK(xK). If 

each hi is convex, then (B1') holds. We thus have 

PROPOSITION 10.4. Suppose hi, i = 1,..., K, are convex and all rates are control- 
lable to zero. Then there exists an optimal control Au such that each /Lai increases in 

every d,t and decreases in every d k, k + i, and each Ipi increases in every da, 
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