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Abstract 
We investigate the stability of discreteevent systems modeled as 
generalized semi-Markov processes with event times that satisfy 
(max,+) recursions. We show that there exists for each event 
a cycle time, which is the long-run average time between event 
occurrences. We characterize the rate of convergence to this limit, 
bounding the error for finite horizons. The main tools we use 
are (max, +) matrix products, the subadditive ergodic theorem, 
and martingale inequalities. We discuss connections with these 
different fields, with the general theory of randommatrix products, 
and with recent results for discrete-event systems modeled as Petri 
nets. 

1 Introduction 
Two seemingly unrelated areas of research in discrete-event sys- 
tems have expanded to the point where they share some interesting 
overlap. One avenue of work originates in the sample-path analysis 
of stochastic systems, especially through perturbation analysis and 
stochastic monotonicity results; the other originates in the subject 
of deterministic (max, +)-linear systems. In one direction, the type 
of structure used for perturbation analysis in Glasserman [6] and 
for stochastic comparisons in, e.g., Shanthikumar and Yao [16] has 
been further developed in Glasserman and Yao [7, 8,9], and shown 
in (91 to imply (min,max, +)-recursions for stochastic event times. 
In the other direction, randomness has been introduced to the de- 
terministic (max, +)-linear systems of Cohen et al. [3], for example 
in Baccelli [I] and Olsder et al. [12]. What emerges from this inter- 
section of techniques is a class of discrete-event systems covering 
many examples and possessing many interesting properties. 

In this paper, we build on the ( m a ,  +) structure developed for 
generalized semi-Markov procesres (GSMP) in Glasserman and 
Yao [9] and use it to establish stability results. Letting a denote 
a type of event and letting T,(n) denote the time of the n-th oc- 
currence of that event, we give conditions under which the limit of 
n-ITa(n) as n + 00 exists and is a finite constant independent of 
initial conditions. This limit is the long-run average time between 
occurrences of a, ita cycle t ime, and is thus a key measure of per- 
formance, reflecting a type of growth rate. We next examine the 
rate of convergence of % - I T p ( % )  to its limit, bounding the error 
for finite n. 

The (max, +) structure contributes to these results through the 
subadditivity of max, making it possible to invoke Kingman's [lo] 
subadditive ergodic theory. We use this theory together with re- 
sults from the field of random matrix products. These matrix 
products arise from vectorization of (max, +) recursions. 

That connections exist among growth rates, subadditivity, and 
random matrix products is not new. Kingman [IO] includes prod- 
ucts of random matrices as a key application of his subadditive 
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ergodic theorem. Cohen [4] links various generalizations of ma- 
trix multiplication (namely, ( m a ,  +), (min, +), (max, x), and 
(min, x ) )  with examples from operations research, building in part 
on deterministic models of Cunninghameareen [5]. A specific 
(max, +) application in [4] is the existence of a cycle time for in- 
terconnected machines. In a deep further development of these 
techniques, Baccelli (11 uses subadditivity to prove the existence 
of cycle times in a class of stochastic Petri nets. 
Our work differs from earlier results in several important re- 

spects. GSMPs have 
emerged as an important class of models for discreteevent sys- 
tems, and identifying the right structure and conditions to apply 
subadditivity is not altogether straightforward. In analyzing cycle 
times, we derive some extensions of Cohen's [4] results for ran- 
dom matrix products to suit the more general class of matrices 
we encounter; these are of independent interest. Also, we give a 
complete characterization of the limiting matrix for our setting; 
related but different limits are analyzed in BacceLli [l]. Our anal- 
ysis of convergence rate uses a martinagle inequality in a method 
developed for probabilistic analysis of combinatorial problems in 
Rhee and Talegrand [15]; this method has not previously been 
used with discrete-event systems or random matrices. 

The rest of this paper is organized as follows. Section 2 intro- 
duces the GSMP framework, then provides the necessary set-up 
for (max, +) recursions. Section 3 includes a brief review of sub- 
additive ergodic theory, then establishes necessary results on the 
(max, +)-products of random matrices. These results are used to 
establish the existence of cycle times. Section 4 examines the rate 
of convergence, giving error bounds for finite horizons. 

This paper is an overview of a full paper, which contains all 
proofs (omitted here). There we also study the stability of delays, 
i.e., differences between event times, and develop the connection 
with stochastic difference equations. 

Not least of these is the GSMP setting. 

2 Event Time Recursions 
We use the framework of Glasserman and Yao [7, 8 ,  91; further 
references to the GSMP Literature are given there. 

A GSMP is based on a generalized semi-Markov scheme 
(GSMS), denoted by B = ( S , A , E , p )  and consisting of the fol- 
lowing ingredients: a countable state space S; a finite set A of 
events; a mapping E from elements of S to subsets of A; and 
a collection p = { p ( . ; s , a ) , s  E S , a  E E ( s ) }  of probability mass 
functions on S. The elements of S represent physical states of a 
system and the elements of A are events that potentially change 
the state. The active events in state s E s are the elements of the 
event list E ( s )  E A. We always assume that 

so A contains no extraneous elements. Upon the occurrence of 
event a in state s, a E E ( s ) ,  the system moves to state s' with 
probability p ( s ' ; s , a ) .  In this paper, we treat only schemes with 



deterministic routing; these are schemes in which each mass func- 
tion p ( . ;  s, a) is concentrated on a single point. In this case, we 
replace p with a function 4, where 4(s, a) = s' if p(s'; s, a) = 1. 

A GSMS is made dynamic through the introduction of clock 
times. This is a sequence w = {wa(n) ,  a E A, n = 1 , 2 , .  . .), where 
wa (n)  2 0 represents the n-th lifetime associated with event a. If 
the system starts in state so, then at time zero clocks are set for the 
fist occurrence of the events in &(so), the initially active events. 
If a E &(so) then the clock for a is set to w a ( l ) .  Clocks run at 
unit rate; when a clock runs out, the corresponding event occurs 
triggering a state transition. Just after each state transition, new 
clocks are set for any newly active events: at the n-th activation of 
event p, its clock is initialized to wp(n). Clocks for events active 
in the previous state that are also in the event list of the new state 
continue to run. A previously active event that is no longer active 
(other than the event that triggered the transition) is said to be 
interrupted. 

Through this mechanism, we obtain from w the sequence T = 
{T,(n), a E A, n = 1 , 2 , .  . .} where Ta(n) is the time of the n-th 
occurrence of event a. If a fails to occur n times, Ta(n) = CO. 
We also set Ta(n) = 0 for n 5 0 and Ta(oo) = 00. If we 
put a probability measure on the set of w's, then T becomes 
stochastic. For emphasis, to indicate random clock times we use 
E =. {Ep(n) ,a E A,n = 1 ,2 ,  ...} and to indicate a particular 
reahzation we use w. 

2.1 Structural Conditions 
A string of events is a finite sequence of elements of A. A string 
U = a1 . ..a" is called feasi6le in state so if there are states 
s',. . . , s"-' with ai E &(s'-l), i = 1 , .  . , , n ,  and 

p(s' ; so, a ' ) p ( s 2 ;  s l , a 2 )  . . . p(Sn-1; sn--2, a"-') > 0.  

Thus, a feasible string is just a possible sequence of events. With 
the initial state so fixed, we denote the collection of all feasible 
strings by L and call it the language generated by the GSMS. 
By convention, t contains the empty string. In a scheme with 
deterministic transitions, we extend d(so, e )  from €(ao)  to all of 
L in the obvious way: if U E L is non-empty, then 4(so,u)  is 
the state reached from so through the sequence of events U ,  and 
4( so,  .) applied to the empty string returns so. For any string U 

(feasible or not), we denote by [U] the vector ( [ala,  a E A) where 
PIa records the number of occurrences of a in U .  The vector [U]  

IS called the score of U .  

With this notation, we give the following structural conditions: 

Definition 2.1 A scheme with deterministic transitions is 
(i) non-interruptive, if {a ,p}  E &(s) implies 0 E &(d(s, a)), for 

(ii) permufable, if [U' ]  = [u2] implies & ( d ( s o , u ' ) )  = 

(iii) strongly permutable, if [ U ' ]  = [u2] implies 4 ( s 0 , u ' )  = 

all s E S and all a,P E A; 

E ( ~ ( S ~ , U ~ ) ) ,  for all u',uz E L ;  

d ( s O , u 2 ) ,  forall u l , u z  E t. 

In a non-interruptive scheme the occurrence of one event cannot 
deactivate other events; a clock, once set, always runs out at its 
scheduled time. Permutability requires that changing the order 
of events (while preserving feasibility) not change the event list 
reached. Strong permutability is indeed stronger, requiring that a 
change in the order of events not change the state reached. Taken 
together, properties (i) and (iii) are equivalent to the commuting 
condition of Glasserman [6], and properties (i) and (ii) are equiva- 
lent to condition (M) of Glasserman and Yao [SI. Various alterna- 
tive formulations of these conditions (and their consequences) are 
discussed in [7]. 

For the present analysis, the most important consequence of 
these structural conditions is a set of recursions for the event times. 
To develop these, we need to introduce the acore space associated 
with a GSMS, which is just the set of scores of feasible strings. 

Let m = IAI. By ordering the elements of A, we can identify any 
score [U] with an element of Z';. The score space is then 

N = {x E Z? : 30 E L ,  [U] = x). 
The elements of N are called feasible scores. 

For any a E A and any n = 1,2,. . ., consider the set of strings 
leading to the n-th occurrence of a; these are the strings U for 
which [.la = n - 1 and a E &(4(so,u)) .  This set may be empty 
(if a cannot occur n times) and may consist only of the empty 
string (if n = 1 and a E &(so)). Denote by N,,, the set of 
scores of these strings. We say that an element x of Na,,, is 
minimal if there does not exist y E Na," with y # x and y 5 x, 
where denotes the usual componentwise partial order. Each 
non-empty Na,n contains a finite number of minimial elements 
~ ' ( a , n ) ,  i = l , . .  .,.la,". If Na,,, is empty, set .la," = 1 and 
xb(a, n )  = 00 for all p E A. From [9], we have 

Theorem 2.2 In a non-interruptive, permutable scheme, for all 
w the event times satisfy 

The indices on the right do not depend on w. 

This seemingly complicated expression has a simple interpreta- 
tion. Each ~ ' ( a ,  n )  represents an alternative set of precedents for 
the n-th occurrence of a, in the sense that once every event P has 
occurred x $ ( a , n )  times, a is activated for the n-th time. This 
happens at the maximum of Tp(x$(a,n)), p E A. However, a 
is activated for the n-th time as soon as the first complete set of 
precedents is met; hence, we take the minimum over the alterna- 
tive sets indexed by i = 1,. . . , Ja,". Finally, in a non-interruptive 
scheme, event a occum w,(n) time units after the n-th activation 
of a. 

We obtain some simplification through the following: 

Definition 2.3 A deterministic scheme is irreducible if for every 
pair of states s and a' there exists a string U with d(s ,u )  = s'. 
The scheme is event-ineducible if for every state s and event a 
there exists a string U with a E € ( & ( s , a ) ) .  

It is easy to see that under our standing assumption ( I ) ,  ir- 
reducibility implies event-irreducibility. Moreover, under event- 
irreducibility, every Ma,, is non-empty. Therefore, In an event- 
irreducible scheme, all indices in (2) are finite, for all a and n. 

We turn, now, to a class of systems for which the (min,max,+) 
recursions in (2) simplify to (ma,+)  recursions. Clearly, this sim- 
plification occurs when Ma,,, contains just one minimal element, 
in which m e  the min becomes superfluous. As shown in [9], the 
score space n/ and its subsets Na,n are automatically closed under 
componentwise maximum (denoted by v) if the scheme is non- 
interruptive and permutable; this is but one manifestation of the 
antimatroid property that comes from these structural conditions. 
If each Na,, were closed under componentwise minimum (denoted 
by A), it would have a unique minimal element. So, the key addi- 
tional property we need is closure under A. For that we have the 
following condition from [9], 

From [9] we also have 

Theorem 2.4 In a scheme satisfying (CX), N and every N,,,,, 
are closed under A. Consequently, the event times satisfy 

where ~ ( a ,  n )  is the (unique) minimal element of N,,,. 

(3) 
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Later, we will need what might be conaidered an explicit solu- 
tion to the mrrSion (3). This dtanative mpmsentsticm of the 
the event times depends on a notion of longed path to a pair 
(a,t), a E A, n = 1 ,2  ,.... A path to (a,n) is a sequence 
{(Pil,kil),...,(P;,.,k;,)) with ki1 = 1, Pi1 E &(ao)v Pi, = a 
a d  ki, = S, in WW the k;i-th occurrence of Pi.  activata event 
Pi,+l for the kiitl-th time, j = 1,. . . ,T - 1. Mia fornully, the 
activation codt ion is 

A path corresponds to a triggering reqrence in [6]. 
Let II(u,n) denote the collection of all path to (o ,n ) .  In an 

irreduable acheme, every n(a, n) is non-empty. It follows from (3) 
by a simple inductive cuymmt that we have 

Proposition 2.8 In an irreducible sdwme satisfying (CX), the 
event timea satisfy 

(4) 

I fweth inkofwa(k)~ths l~hofs tep(P ,k)  inspath+, then 
(4) stat- that Ta(n) is the length of the longest path to (a,n). 
FW8l1yp&(&k),pEA, k =  1,2 ,  ..., d&np,k(u,n) ={T '=  
(pi,,ki,)...(Pi,.ki,) : E n ( a , n ) f o r -  II E n@,k)). 
Thru, the der"ts of np,k (u ,n )  are the t a h  of patha to (u,n) 
that pass throu& ( 0 , k ) .  Thb set is empty if and only if k > 
Xp(a , t ) .  If& Ixp(a,n),thenromepathto(a,t)psuathrough 
(P, k), 

We do not have equality because the longest path to (a, n) may 
not paas through (P ,k ) .  However, if we can identify a set of 
paira (pt, k;), . . . , (P$, k$) such that every path in n ( a , n )  passem 
through at leust one d the (Pi.,&,'), i = 1,. . . ,m, then in partic- 
ular the longcat path must pasn through one of them points and 
we obtain equality: 

Corollary 2.6 Suppose {(P*,kf),j = 1,. . . ,m} have the prop 
erty that for every r E 111a.n) there is some ( p ; , ~ )  E z, 
i =  1, ..., m. Then 

with a max over an empty act taken to be -00. 

The minimal score %(U, n) provides a set of pain through which 
e ~ e y  path to (a,n) must pcrth: take the act {(p,xp(u,n)) ,p E 
A}. For thb choice, (5) aimplik to (3). 

2.2 Homogeneous Minimal Elements 
The availability of recumions l i i  (3) is a powerful tod in andyaing 
the c~nvergence of  Ta(n)/n,  but (3) by itself is not quite mough. 
h a  stochastic Ktting, the dock times {&,(n),a E A,n = 1,2.. . .} 
ahodd stabilize (we will assume stationarity), and the minimal el- 
ements x(a ,  n) should also, in some se", stabilize as n increases. 
To see what can happen with arbitrary indexing, consider the fol- 
lowing scheme: 

2L22LS2AZ.LL2L2, . . . 
The lengtb of runa of csch event are powers of two. This scheme 
trividly M t i h  (CX) and ita event times uy1 be reprwentcd an 
 sun^ of clock times. Connecting this with (3), we have xa(a,  n) = 
n - l m d  

Xp(u,2n) = - e .  = Xp(a,2"+l - 1) = 2" - 1. 

Suppose all clock times arc identically equal to 1. Then Ta(2") = 
2 " t I - l  andTa(2"t1-1) = 2nt1+2n-2,roomsupTa(n)/n = 2 
whacsr liminfTa(n)/n = 1.1. This discrepancy is a consequence 
of the inmasingly long runs of U'S and p's. To rule out this type 
of behavior, we mtroduce a condition on the minimal elements 
which, in any cane, appearr to be satisfied in most applications: 

Definition 2.7 A GSMS satisfying (CX) has homogeneour min- 
imal elements if for all a,P EA and dl n = 1 , 2  ,..., 

xp(u,n) = max{xp(a,n + 1) - 1,O). (6) 

A more straightforward condition would be xp(a ,n  + 1) = 
Xb(a,n) + 1, but this d o n  does not accouut for the possibility 
that xp(a,n + 1) = 0. Most queueing modela that satisfy (CX) 
have homogeneous minimal elements. n o m  a practical standpoint, 
the only potentially intereating models ruled out by (6) are those 
that require, aay, exactly two occurrencea of p between occwrcncca 
of U. Such a model could be incorporated by replacing the -1 on 
the right side ob (6) with -2 or, more generally, -k. That option 
complicates the exposition so we do not pursue it further. 

It follows from (6) that, for all U and 0, either xp(a,n) = 0 
for dl t ,  or elre there exists .n integer uap such that xg(a, n) = 
n - uap for all sufficiently large n. To unify these two cases, we 
set 

uap = mP{n - xp(a ,n ) ) .  
rill 

Redling our convention that Ta(n) = 0 for n 
it to n = -00, &om (3) we get 

Corollary 2.8 In a scheme satisfying (CX) with homogeneous 
minimal elements, the event t i "  Mtisfy 

0 and extending 

Ta(n) = wa(n) + max{Tg(n - U,@)} (7) B 

We next obtain a compact representation of the above recursion 
using (mu,+) dgebra, as in the work of [l, 3, 4, 5 ,  111. For real 
numbers m, b define a @ b = "(a, b) and a 8 b = a + 6. Extend R 
to include --oo with me -00 = a for all a. Clearly, a@O = a for dl 
a. If w is a (row) vector over a U (-00) and A is a matrix, define 
w 8 A by replacing +, x in ordinary vector-matrix multiplication 
with $, @; mom specifically, 

(V @ A); = @ ( ~ j  Q Aji) = mF(vj  + Aji). 

j 

Extend this to matrix multiplication in the usud way. 

Proposition 2.9 In a scheme satisfying (CX) with homogeneous 
minimal dements, the sequence (P(n) ,n  _> 0 )  satisfies 

P(n) = i'(n - 1) @ A(n - 1) (8) 
for a sequence of matrices (A(n) ,n  2 0 )  that have the following 
property: if w' denotes the shifted sequence defined by wh(n) = 
wa(n + I), then A(n + 1,w) = A(n,w') 

Note that since for all a and k we have T,(k) 2 Ta(k - 1) + 
wa(k) ,  the matricca {A(n) ,n 2 0 )  may be modified so that every 
diagonal entry is equal to some clock time and therefore greater 
than -00. 

As an exumple, consider m queues in tandem with finite inter- 
mediate buffers. Node 1 drawr new jobs from an infinite supply; 
jobs completed at node m lave the system immediately. The 
bufler between nodes i and i +1, i = 1,. . . ,m - 1, has room for k; 
jobs, including one in iavice at node i + 1. If upon completion of 
service at node i a job finds the downstream buffer full, it r ~ m a i ~  
at node i which then becoma blocked. This and more general 
blocking mcchanhms arc consistent with (CX), as discussed in [7J. 

The dynamics of this system arc conveniently summarized 
through the matrix U, where 

1 + ki+l + * + kj,  i < r;  
* = 3; 
i > j. 



For i < j, uij bounds the number of jobs that may be completed 
by node i but not yet by node j; server i becomes blocked when 
the limit uij is reached for some j = i + 1,. . . , m. 

Let P, denote service completion at node i, i = 1,. . . , m.  Then, 
taking so = (0,. .. ,o) ,  we have xpj(o, ,n) = n - U,,, and 

Since the n-th service completion at node j precedes the n-th 
service completion at node i whenever j < i, and since uij = 0 for 
j < i ,  we may rewrite the above as 

which has precisely the form of (7) with up,pj = uiJ. Using the 
fact that upstream service completions always precede downstream 
service completions, we obtain 

3 Subadditivity and Stability 
We now use the framework of GSMPs satisfying (CX) with home 
geneous minimal elements to establish the existence of cycle times, 
i.e., of limn,, T,(a)/n. We use the linear recursion (8 )  together 
with subadditivity in a stochastic setting. 

3.1 The Subadditive Ergodic Theorem 
For background, we include in this section a statement of King- 
man's subadditive ergodic theorem. Before doing so, we state 
an elementary result. A sequence {a1,a2, .. .} of real numbers is 
called subadditive if 

am+,, 5 a,,, + a,, m , n  = 1,2,. . . . 
If {an ,n  2 1) is subadditive, then {an/n,n 2 1) has a limit as 
n + CO, possibly equal to --M. Cohen [4] includes a proof, citing 
an exercise in P6lya and Szegii [13]. 

Kingman's [IO] result is formulated in terms of subadditive 
processes. These are processes X = {Xmn,m = 0,1, ..., n = 
m + 1, m + 2,. . .) satisfying the following conditions: 
(SI) If i < j < k, then X i k  5 Xij + X j k ,  a.s. 
(S2) The joint distributions of the process {Xm+l,n+l ,n > m} 
are the same 84 those of {Xmnrn > m}. 
(S3) The expectation 9, = E[Xo,] exists and satisfies gn 2 -cn 
for some finite constant c and all n = 1,2 , .  . .. 

A consequence of (Sl),  (S3) and the elementary result given 
above is that 'y = limn-= g,/n exists and is finite. We can now 
state Kingman's subadditive ergodic theorem: 

Theorem (Kingman [lo]). If X is a subadditive process, then the 
finite limit 

( =  lim Xon/n 
n-oo 

exists almost surely, and E[(] = y 

Condition (S2), on the shift {Xmn} y {Xm+l,,,+I}, is a sta- 
tionarity condition. If all events defined in terms of X that are 
invariant under this shift have probability zero or one, then X is 
ergodic. In this case, as discussed by Kingman [lo, p.8851, the 
limiting random variable ( is almost surely constant and equal to 
7. It is this version of the result that we will use. Notice that the 
limit provided by Kingman's theorem holds in expectation, as well 
as h o s t  surely: limn-= n-l E[.&,] = E[(]. 

3.2 Products of Random Matrices 
Cohen [4] gives an excellent account of connections between sub- 
additive ergodic theory and products of random matrices, and con- 
siders, among other settings, the case of (max, +) matrix multipli- 
cation. For purposes of reference and comparison, we paraphrase 
his Theorem 4: 

Theorem (Cohen [4]). Let {A(n) ,n  = 1,2,. . .} be a stationary 
and ergodic sequence of random d x d real matrices and let 

P(m,n) = A(m + 1) 8 @ A(n),  m + 1 < n. (9) 

If -00 < E[Aii(n)] < 00 for all 1 i ,  j 5 d, then the finite limit 

lim n-l P(o,  n),, = y 
n-oo 

exists almost surely, is a constant, and is independent of i and j. 

If the matrices in the recursion ( 8 )  satisfied the hypotheses of 
Cohen's theorem, we would immediately be able to conclude that 

lim n-"f(n)  = lim n"'0 @ (A(0)  8.. @ A(n - 1)) = ['y], 

where 0 is the zero vector and [y] is a vector with all entries equal 
to 7. Unfortunately, even if the matrices in (8) are stationary and 
ergodic, we have seen that they typically include entries equal to 
--M required to effect a permutation of certain entries of T(n) .  
Permutations were required to obtain a first-order recursion. So, 
we need a generalization of Cohen's result for the types of matrices 
arising in our setting. 

To carry out this generalization, we need some properties of 
ordinary (non-random) matrices in (max, +) algebra. All of these 
are straightforward analogs of results for non-negative matrices 
under standard matrix multiplication (as in Chapter 2 of Pullman 
[14]) with -CO playing the role usually played by 0. We write A@" 
for the n-fold @-product of A with itself. 

Definition 3.1 The d x d matrix A is reducible if d 2 2 and if 
there exists a permutation of the rows and columns of A under 
which it has the block form 

n-co n-ca 

(-: : ) ?  

where B and D are square matrices. Otherwise, A is irreducible. 
In particular, every 1 x 1 matrix is irreducible. 

Lemma 3.2 The d x d matrix A, d 2 2, is irreducible if and only 
if for all i and j there exists an n such that At" > -CO. 

Definition 3.3 The d x d matrix A ,  d 2 2 is periodic if its  OWE 

and columns can be permuted to give it the block form 

-CO B1 -00 ... 
-- -00 B2 ... 

e . .  1.). 
-- -m ... -00 Bk-1 L Bk -m ... .*. -00 -00 

Otherwise, A is called aperiodic. Every 1 x 1 matrix is aperiodic. 

Lemma 3.4 If A is irreducible and aperiodic, and A is not the 
1 x 1 matrix (--M), then for some n, A!." > -00 for all i , j .  

Lemma 3.5 Through a permutation of its rows and columns, any 
matrix A can be put in the block form 

where A', . . . ,AK are irreducible, the entries below the block di- 
agonal are -00, and the entries above the block diagonal are m- 
bitrary. 
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It is not hard to see that in multiplying matrices with (max, +) 
algebra, the location of -00's in the product depends only on the 
location of -00's in the matrices multiplied. (The same is true of 
0's when we multiply non-negative matrices in standard algebra.) 

(Al)  The matrix sequence (A (n ) ,n  2 0 )  is stationary and er- 

(A2) For each i ,  j ,  the entry A,,(O) is integrable on the event that 
it exceeds -00; i.e., E[IA,,(O)l;A,,(O) > -001 < 00. 
(A3) For each i, j the probability that A,,(O) = -00 is zero or 
one. 

Condition (A3) ensuns that the location of -00's is the same 
among all {A(n ) ,n  2 0); msults for powers of a single matrix, 
concerning the location of -00'8, therefore extend to products of 
the {A(n ) ,n  2 0) .  Given (A3), condition (A2) simply s t a b  that 
each entry not identically equal to -00 is integrable. 

We can now prove a preliminary generalization of Cohen's [4] 
Theorem 4. Let P(m, n)  be aa in (9). 

Lemma 3.6 Assume (Al)-(A3). Suppose the matrix A(0) is ir- 
reducible and aperiodic. Then 

lim n"P(O,n),J = y 

exists h o s t  nurely and is independent of i and j .  The limit is 
finite d e s a  A(0)  is the 1 x 1 matrix (-00). 

We now impose some stochastic conditions: 

godic. 

n-oo 

Lemma 3.6 allows matrix entries equal to -00, but it is not yet 
adequate for the types of matrices arising in (8); the irreducibility 
condition is too strong. To obtain a d c i e n t l y  general result, we 
need to look more clwely at the matrix decomposition (10). 

This decomposition of a d x d matrix A partitiom the in- 
dices (1 , .  . . , d) into K clauses corresponding to the K irreducible 
submatrices on the block diagonal. Denote thwe class- by 
SI,. .. , SK. For fixed A, let uo aay that there is a path from i 
to j if for some n, A V  > -00. Thus, for d 2 2 an irreducible 
matrix is one in which there is a path between every pair of in- 
dices. The condition A:" > -00 corresponds to the existence of a 
sequence k l , .  . , , kn+l with kl = i ,  kn+l = j ,  and Akk,krtl > -00 

for r = 1 , .  . . , n. Let us say that there is a path from i to J through 
St if, for some k E St, A T '  > -00 and A!;' > -00, for some 
n l ,  n2. We now have 

Lemma 3.7 Suppose that in the decomposition (10) of A the sub- 
matrices A',  . . . , AK are aperiodic (as well as irreducible). Then 
A has the following property: there exiats an nr such that 

A?* > -00 j A$" > -00 for all n 2 n.; 

To extend this to products of random matrices, observe that 
if {A(n ) ,n  2 1) satisfy conditions ( A l )  and (A3), and if A(0) 
satisfies the condition in the lemma, then the conclusion of the 
lemmaapplies to all P(m,m+n) ,  n 2 n+,  for some (deterministic) 
n.. This, again, follows from OUT remark on the location of -00's. 
For each i ,  j ,  let p ( i ,  j) consirt of those c1awes.Sg for which some 
(hence all) k E St satisfies P(O,nr)ik > -00 and P(O,n.)k, > 
-00. Thus, St E p ( i , j )  means that there are arbitrarily long 
paths from i to j pasring through St .  We can now establish 

Theorem 3.8 Suppose (Al)-(A3) hold and that in the decompo- 
sition (10) of A(0) the submatrices A1(0), . . . , A K ( 0 )  are aperiodic 
(as well M irreducible). Then the matrix limit 

lim n-'P(O,n) = r 
n-oo 

exists, h o s t  surely. The entries of r satisfy 

where yt ia the constmt attached to {At (n ) ,n  2 1) by Lemma 
3.6. 

Note then are three c- covered by (11). If i and j belong to 
the same class, then p( i ,  j )  consists of at moat that claw and the 
result reduces to Lemma 3.6. If the clSM containing i has a higher 
index than that containing j, then there is no path kom i to j 
and the limit is -m. If j 's dar has a higher index than i 's, then 
for large n the longest path from i to j e&, most of its time 
cyding through the class St, L E p(i, j )  with the Lwgest average 
cycle length yt. 

As discussed in the related setting of Baccelli [l] and Cohen 
[4], the constants vt appearing in (11) are analogs of L y a p u n o v  
etponenir in ordinary productr of random matrices. In [l] and 
[4), a corresponding connection is " d e  with Oielcdec'r  m u l t i -  
plicative ergodic iheorem. Oseledec's theorem (and its analog in 
[l]) is concerned with the action of random matrix products on 
individual vectors. It includes a partial characterization of cer- 
tain random subpaces for the limiting product associated with 
the Lyapunov exponents. In our (mom specialized) setting, we 
give, instead, a complete characterization d the limiting matrix r 
itself, and show that the corresponding subspaces (corresponding 
to the block structure of r) are non-random. 

3.3 Cycle Times 
We now combine the representations of Section 2.2 with the con- 
vergence results of Section 3.2 to establish the existence of cycle 
times. To apply Theorem 3.8, we need to verify the aperioclio 
ity condition. In general, a sufficient condition for an irreducible 
matrix to be aperiodic is that it have at least one diagonal entry 
greater than -00. h m  this we get 

Lemma 3.9 The matrices in Proposition 2.9 may be selected to 
have upper-triangular representations with aperiodic, irreducible 
submatrices on the diagond. 

To apply Theorem 3.8, we awume that the clock times e = 
( (a (n ) ,a  E A , n =  1,2 ,  ...) arestationary,meaningthat (&(n+ 
l), a E A, n = 1 , 2 , .  . .) has the same joint distributions as e, and 
ergodic, meaning that any shift-invariant events have probability 
zero or one. This gives 

Theorem 3.10 Consider an irreducible GSMP whose scheme 
sati&es (CX) with homongeneous minimal elements. Suppose the 
clock times are integrable, stationary and ergodic. Then the finite 
limit 

ya = lim n-'Ta(n) 

exists almost surely for eaQ a E A and is independent of the 
initial state 8. 

n-oo 

It is a simple consequence of this result that cycle times ex- 
ist in the tandem-queues example of Section 2.2. More precisely, 
suppose the service times lyre integrable, stationary and ergodic. 
Then the finite limits 

lim n-'TOi(n) = y,, i = I , .  . . ,m, 
n-oo 

exist & a t  surely and are independent of the initial state. More- 
over, if i < j then yi < yj; if uij < 00, meaning that node i may 
be blocked by node j ,  then y, = 7,. 

4 Rate of Convergence 
The subdditive ergodic theorem guarantees the existence of a 
limit for a (normdid)  sulpdditive process, but says nothing 
about the rate of convergence. All ergodic theorems may be viewed 
M generalizations of the stroag law of large numbem; convergence 
rat- and error b o d  for strong laws are provided by central limit 
theorems. In this section, we develop bauds to complement the 
convergence of sequences {n"Ta(n),n 2 0). These bounds are 
formally similar to Gaussiaa approximaticas but are not based 
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on central limit theorems (which are not generally available for 
subadditive sequences). Instead, they follow from a martingale 
inequality. The main additional assumptions we need are that the 
clock times are i.i.d. and bounded. Our use of this method fol- 
lows the application in Rhee and Talagrand [IS] to bin-padcing 
and traveling-salesman problems. 

Throughout this section, we consider the event times of an ir- 
reducible scheme satisfying (CX) with homogeneous minimal ele- 
ments. Our first step bounds the difference Ta(n) - E[Ta(n)] for 
MY CY and n. Write [ ( j )  for the vector of clocks ( < a ( j ) , a  E A). 
Define 

Fi = a-algebra generated by { ( ( j ) ) ,  j = 1,. , . ,i}, 
and let FO be the trivial o-algebra. Clearly, {Fn,n 2 0 )  is an 
increasing family. For fixed CY and n, define 

Di = E[Ta(n)lFii] - E[Ta(n)(F,-1], i = I , .  . .,n. (12) 

We always have E[Ta(n 1701 = E[Ta(n)]; if, in addition, Ta(n) 
is F,-measurable, then i[Ta(n)lFn] = T, (n) and, by telescoping 
the sum we get 

n 

(13) 
i= l  

This expresses the total errur Ta(n) - E[Ta(n)] as the s u m  of 
individual errors Di . 

For this decomposition to be useful, the Di’s must have some 
structure. The relevant property is this: 

Definition 4.1 Random variables {Yn,n 2 1) form a martin- 
gale diflerence scqarence (MDS) with respect to an increasing fam- 
ily {T,,n 2 0 )  of o-algebras, if each Yn is Fn-measurable and 
E[Yn1~,_1] = 0. 

By its very definition, each Di in (12) is Fi-measurable. More- 
over, from (1 2), 

E[DiIFi-l] = E[Ta(n)lFi-~] - E[Ta(n)IFi-1] = 0, 
80 { D ; , i  = 1,. . . , n} is an MDS. The MDS representation becomes 
useful through the following result: 

Lemma 4.2 Let {Di,i = 1 ,..., n) be an MDS. Then for each 

t 2 0, 
n / n \ 

where IlDill.. is the essential supremum of Di. 

This result is stated in Rhee and Talagrand (151, where a refer- 
ences to a proof also appears. With this lemma we have a way to 
bound T,(n) - E[T,(~)] using (13) if we can bound the Di’s. 

(B l )  The vectors {<(n),n 2 1) an i.i.d. and integrable. 
(B2) There exists a constant c such that P([a(l) 5 c) = 1 for all 
CY E A. 
(B3) For all a,@ E A, ua,j 2 0. 

Condition (B l )  strengthens our earlier assumption of stationar- 
ity and ergodicity of the dock times, but still allows dependence 
among the components of [(n) for each n. Condition (B2) re- 
quires that the dock times be bounded. Condition (B3) ensures 
that T,(n) is completely determined by {E(;) , ;  5 n), i.e., that 
T,(n) is F,-measurable. Under (B3), (13) holds. We now have 

Theorem 4.3 If (Bl)-(B3) hold, then for any t 2 0, 

We impose the following assumptions: 

P(ITa(n) - E[~a(n)]l > t )  5 ~ e ~ p ( - t ~ / ( ~ n ~ A ~ ~ c ~ ) ) ,  

where c is the constant in (B2). 

The main result of this section is the following: 

Theorem 4.4 Suppose in addition to the conditions of Theorem 
3.10 that (Bl)-(B3) hold. Then for all c > 0 there exists an no < CO 
such that for all n 2 no, 

P(Jn-lT,(n) - -yal > c) 5 2exp(-nc2/(21A12c2)). (15) 

The bound in (15) is useful in estimating 7, through simulation. 
It can be used to construct a confidence interval for 7, that is 
valid for all sufficiently large n, not just asymptotically. Moreover, 
using (15) obviates the sometimes difficult task of estimating an 
asymptotic variance: the (known) constant lAJZc2 replaces the 
variance. Of course, when {fi(n-’T,(n) - ya),n 2 0 )  satisfies 
a central limit theorem, we would expect lAIZcZ to be an upper 
bound on its variance constant. Confidence invterval halfwidths 
provided by (15) are O(n-’l2) just as with a central limit theorem. 
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