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We consider the problem of allocating production capacity among multiple items, assuming that a fixed proportion of overall 
capacity can be dedicated exclusively to the production of each item. Given a capacity allocation, production of each item follows a 
base-stock policy, i.e., each demand triggers a replenishment order to restore safety stocks to target levels. We present procedures for 
choosing base-stock levels and capacity allocations that are asymptotically optimal. Our objective is to minimize holding and 
backorder costs, or to minimize holding costs subject to a service-level constraint. Asymptotic optimality refers to large backorder 
penalties or stringent service-level constraints. Numerical results indicate that our rules perform very well even far from the 
asymptotic regime. A further approximation step results in allocation rules based on heavy-traffic limits; these, too, perform well. 

W e consider a manufacturer producing several items 
and keeping safety stocks of each item to supply 

variable external demands. An overall production capacity 
is to be allocated among the various items to minimize 
inventory costs; these costs may be holding and shortage 
costs, or holding costs to meet a target service level. We 
develop efficiently computable allocation rules that are as- 
ymptotically optimal as backorder penalties become very 
large or target service levels become very high. 

The setting we consider is illustrated in Figure 1. The 
manufacturer receives orders for the items it produces; an 
order may be for a single item or for multiple units of 
multiple items. Production is make-to-stock, with each de- 
mand for an item triggering a replenishment order for that 
item. 

This general model is sufficiently flexible to accommo- 
date the following specific interpretations: 

1. The items are distinct components assembled into a 
single product, or kit, at a single facility. In this case, an 
order is represented by a vector (x1, ..., Xd) in which xi 
records the number of type-i components required for the 
assembly, and d is the total number of items. More gener- 
ally, if the items are assembled into k products the demand 
vector takes k possible values; the probability of the jth 
value is the proportion of orders for the jth product, j = 

1, . .. I k. 
2. The items are distinct products produced at a single 

facility and supplying distinct demands. In this case, the 
demand distribution factors into the product of its margin- 
als, and there is no dependence across items. 

3. The items all represent the same product manufac- 
tured at and distributed from different locations. 

4. The items all represent the same product, but differ- 
ent inventories are kept for high-priority and low-priority 
customers. 

Other variants are possible as well. Throughout, our 
analysis is motivated primarily by the first two cases above. 

Overall capacity is measured by a maximum production 
rate r, and this rate is to be allocated among the various 
items. A premise of our analysis is that item i may be 
allocated a rate ri, with Ii ri = r, which is then always 
available for the production of that item and only of that 
item. This is a close representation of reality if the items 
are produced by distinct facilities; it is a somewhat cruder 
approximation of reality if, instead, there is just one facil- 
ity. For in that case the full capacity would typically be 
devoted to a single item at a time and an allocation 
achieved through the time devoted to each item. We view 
our model as a sensible approximation at an aggregate 
level of the single-facility setting, in much the same way 
that the processor-sharing model of queueing theory is 
commonly taken as an approximation of a round-robin 
discipline. The allocated rates ri, or more precisely the 
proportions ri!r, may be viewed as surrogates for the pro- 
portion of time spent on each item over a base period, e.g., 
one week. This approximation may be too crude for job 
sequencing, but is reasonable for planning the overall ef- 
fort to be dedicated to each item. 

Taking our model a step further allows us to incorporate 
set-up times. Suppose, for example, that items are pro- 
duced in a simple cyclic schedule, with the time slot dedi- 
cated to item i a fraction r,/r of the time to complete a full 
cycle. Once the job sequence is fixed, so is the sequence of 
set-ups, and presumably so too is the total set-up time in a 
cycle. This time may be subtracted from the capacity r, and 
the allocation problem solved for the remaining effective 
capacity. This variant does not change our analysis so we 
do not pursue it further. 

Our static allocation problem contrasts with the dynamic 
scheduling problems addressed in Wein (1992) and Zheng 
and Zipkin (1990) and the priority scheme in Carr et al. 
(1993). Our problem is closer to those solved by Kleinrock 
(1976, Chapter 5) and Wein (1989), but differs in one 
important respect: we cannot base our allocation on an 
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Figure 1. A facility producing multiple items. Orders ar- 
rive at rate A and have the distribution of the 
vector D. Orders for item i arrive at rate Al and 
have the distribution of D'. Item i is produced at 
rate r1 to restore inventory to the target level si. 

explicit objective function (as they do) because no closed- 
form objective is available in our setting. To make the 
problem tractable, we consider a limiting regime in which 
backorder penalties become very large or service-level 
constraints become very stringent. Passing to the limit 
yields allocation rules that are asymptotically optimal for 
the original problem. Our use of asymptotics is similar in 
spirit to Anantharam (1989), though that work uses closed- 
form expressions for Jackson networks. Anantharam allo- 
cates buffers among queues to (asymptotically) maximize 
the time to overflow; one interpretation of our simplest 
allocation rule is that it asymptotically maximizes the time 
between stockouts. 

We formulate our allocation rules and state our main 
asymptotic optimality results in Section 1, following the 
introduction of model details and necessary notation. In 
Section 2, we analyze a simplified problem that treats all 
items equally. The objective in this case is to allocate over- 
all levels of safety stock and production capacity to mini- 
mize the frequency of stockouts; we give an asymptotically 
optimal solution. Building on this simplified model, in 
Section 3 we prove our main results-asymptotic optimal- 
ity of allocation rules that take account of costs and service 
levels. In Section 4 we show that a further simplification of 
our allocation problem results in allocation rules based on 
heavy-traffic limits. Section 5 presents numerical results; 
these indicate that our asymptotically optimal allocations 
perform very well, even far from the asymptotic regime. 

1. THE MODEL AND MAIN RESULTS 

As suggested by Figure 1, we think of demands as arriving 
in a single stream, then splitting into demands for specific 
items. The times between arrivals of demands form an 
i.i.d. sequence having mean A-'. With d the number of 
items, a demand is characterized by a d-dimensional vector 
whose ith component is the quantity ordered of item i. The 
demand vectors form an i.i.d. sequence with d-dimensional 
joint distribution Fb. Demands are independent of interar- 
rival times. 

Since not all demands need include an order for item i, 
the epochs of arrivals of orders for item i form a subse- 
quence of the epochs of arrivals of all demands; let {eX~, 
nz ? O} be the intervals between orders for item i. Our 

independence assumptions ensure that these interarrival 
times are i.i.d.; let A[1 be their common mean. Denote by 
FD the distribution of (genuine) demands for item i. More 
precisely, if D-(D, .. . , Do) has distribution FD, then 

FD(x) = P(D' xS XiD > 0), X > O., 

and FD(O) = 0. 
To simplify notation, we assume throughout that inven- 

tories and demands are measured in units of work content. 
For example, if producing a type-1 item takes two hours at 
production rate 1 and producing a type-2 item takes three 
hours at that rate, then n units of inventory of each are 
recorded as 2n and 3n, respectively, and similarly for units 
of demands. With this convention, let m = IiE[Dt] be the 
total mean demand per order, D having distribution Fb, 
and let mi = E[D'] be the mean demand per order for item 
i, DX having distribution FDi. We always assume that 

Am < r, (1) 

meaning that there is sufficient capacity to meet demand. 
In allocating capacity ri to item i, i = 1, ..., d, we only 
consider allocations satisfying 

Aims < ri, i =1, . . ., d. (2) 

In other words, we are allocating the excess capacity 

d 

r- Aimi- 
i= I 

among the d items. 
For any allocation (r1, . .. , rd), the operation of the sys- 

tem is determined by a vector (s1,..., Sd) of base-stock 
levels. Item i is produced at rate ri until its inventory 
reaches si, at which point production of the item ceases. 
Each demand for item i triggers an immediate replenish- 
ment order and thus re-initiates production, again at rate 
r1. Demands not met from stock are backordered. For a 
single item in isolation, Federgruen and Zipkin (1986) es- 
tablish the optimality of such a base-stock policy in a 
closely related periodic-review model; see Tayur (1993) for 
computational considerations. Akella and Kumar (1986) 
establish the optimality of an analogous policy in a model 
with deterministic demand and random breakdowns. Inter- 
estingly, the form of our asymptotically optimal base-stock 
level, given in (8), is superficially similar to the optimal 
inventory level of Akella and Kumar. 

Denote by En the net inventory (on-hand minus back- 
orders) of item i just prior to the arrival of the nth order 
for that item. Between orders, items of type i are produced 
at rate r1 until the target si is reached. Thus, 

It+1=min si, It - D' + riX}', (3) 

and this recursion completely specifies the evolution of the 
system under allocation (r,.l.., rd). Let J be the net in- 
ventory of item i at time t; then J; and In coincide at the 
epochs of arrival of orders for item i. Between orders, Jt 

increases linearly at rate rz until it reaches s1. 



726 / GLASSERMAN 

Under condition (2), the processes (I,., Id), n 0 O} 
and {(J1, ... , JI), t - 0} admit unique stationary distribu- 
tions; let (I',.., Id) and (J1, ... j Jd) be random vectors 
with those distributions. Suppose inventory of item i is 
charged a holding cost at rate hi and backorders of that 
item are penalized at rate pi. Then the long-run average 
cost associated with item i at a base-stock level of si is 

vi (si ) = hi E[(Jhi) +] + Pi E[( Ji) -],9 (4) 

and the total long-run average cost for the system is 

v(s)= E Vi(si) 

The long-run average proportion of orders for item i fully 
met from stock is 

~i (si) = P(I' > Di) , (5) 

where D' has distribution FDi and is independent of 1P. Our 
objective is to choose base-stock levels (s5, ..., sd) and a 
capacity allocation (r1,..., rd) to minimize the average 
cost or to minimize holding costs subject to a constraint 
on ~i. 

These problems are intractable in the generality in 
which we have formulated them. We replace them with 
simpler problems and show that these surrogates provide 
asymptotically optimal solutions to the original problems. 
For the asymptotics, we impose some relatively minor as- 
sumptions on the interarrival and demand distributions. 
To simplify our limits, we require that, for each i, either D' 
or xi have a continuous distribution. (Without this condi- 
tion, our limits hold through appropriate subsequences, as 
in the renewal theorem for arithmetic distributions.) Next, 
observe that any allocation satisfying (2) necessarily 
satisfies 

A 
ri sar: i = r -E A~jmj; joi 

we require that 

P(D' - TiX1 > O) > O . (6) 

This says that even at the maximal allocation of capacity to 
item i, there is some chance of a stockout of that item. 
Though not strictly necessary, this condition rules out cer- 
tain trivial cases in which there is simply too much capacity 
for the allocation problem to be interesting. Finally, our 
main requirement is that for all ri in the interval (Aimi, ri) 
there exist a Oi > 0 at which 

1 < 4i(0i) < o, 

where 

hi (0) = E[exp {0 (D1 -riX')I] 

is the moment generating function of D1 - rK. This then 
implies the existence of exactly one yi > 0, for each ri, at 
which 

4i(y1)= 1.(7 

The functions yi(ri) are the key to our approach. 
Consider the following resource allocation problem: 

Pp: minimize log (Pi hi) 

Eri =r, 

ri > Aimi i 

Let * solve problem Pp. For any (r1, . . ., rd), define 

ski = (1 ) log (Pi h') (8) 

Consider a sequence of models, indexed by n, with penal- 
ties pifn), i = 1, . . ., d, all increasing to infinity as n in- 
creases. Let v,(n)(r) be the minimum achievable cost under 
allocation r = (rl, .. , rd) and let v(n)(r) be the cost 
achieved using the base-stock levels (1, ... , 9n) defined by 
(8). The allocations provided by (8) and problem Pp are 
asymptotically optimal in the following sense: 

Theorem 1. (i) For any sequence r(n) of capacity allocations, 
v* () )(rf ) )(rf ()) __> 1. 

(ii) If r(n) solves Pp with backorder penalties p(f), and if 
r is any other sequence of allocations, then 

(ne (r n)) 
lmsup 2--1. 

nix>o V* 
n (r n)) 

Consider, next, the problem of minimizing holding costs 
subject to a service-level constraint. For each item i, we 
specify a maximum long-run stockout frequency 5i, 0 < 
5i < 1; that is, we require 1 - ai(si) - 5i. (Other standard 
measures of service are easily accommodated as well.) We 
introduce the following problem: 

P a: minimize - i 
log (Bi 

ri=r 

ri _:> Aimi, 

for constants Bi to be specified in Section 2. Let 

Si = 7 (r ) log (i (9) 

Consider a sequence of models, indexed by n, with penal- 
ties 6(n), j = 1, ..., n, all decreasing to zero as n -> 00* 

Since service is constrained, set all backorder penalties to 
zero. Let v*(n)(r) be the minimum achievable cost under 
allocation r, subject to the constraints 1 - c~i(si) S 6i, i = 

1, ..., d, and let -v(n)(r) be the cost achieved using base- 
stock levels (s1, . .. , Yn) defined by (9). Then we have 

Theorem 2. (i) With S~n) as in (8), 1 - oc4n)(s~n)) < 8(n) for 
all n, and for any sequence r(n) of capacity allocations, 

v*()(r ))v( (r~)-> 1. 

(ii) If r(n) solves Pa, and if r~n is any other sequence of 
allocations, then 
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(n) r~) v* (r 
rnm sup - (n) () n '-o (r) 

We prove Theorems 1 and 2 in Section 3. For these to 
be useful, the optimizations they entail-problems PP and 
Pa-must admit efficient solution procedures. In Section 2 
we give a widely applicable sufficient condition for -1Q() to 
be convex, and thus for PP and P, to be separable, convex 
resource allocation problems. These are among the simplest 
nonlinear programming problems and efficient algorithms for 
their solution have been studied extensively; see, in partic- 
ular, Luss and Gupta (1975), Zipkin (1980), and Sections 
2.2-2.3 of Ibaraki and Katoh (1988). Thus, we have re- 
placed the original allocation problems with tractable sur- 
rogates while preserving (asymptotic) optimality. 

2. MINIMIZING THE STOCKOUT FREQUENCY 

Before justifying the rules set forth in the previous section, 
we treat a simplified problem which is of independent in- 
terest and, more importantly, lends insight into the ap- 
proach that follows. We treat the items symmetrically- 
omitting holding costs, penalties, and service levels from 
the discussion-and allocate capacity to minimize the 
overall frequency of stockouts, in an asymptotic sense. 

Our analysis simplifies if instead of the net inventory for 
each item we record the shortfall, which is the difference 
between the base-stock level and the net inventory. Just 
prior to the arrival of the nth order for item i, the shortfall 
in that item is 

Yk = Si - Ii 

It follows from (3) that this quantity satisfies the Lindley 
equation 

Yn' + 1 = max 109 Yn' + D - riX'J. i = 1, ... ., d. (10) 

Thus, {YW} coincides with the waiting-time process in a 
queue with service times {Dn} and interarrival times {riXX}. 
Under condition (2), the shortfall process has a stationary 
distribution; let (Y1, ..., yd) have that distribution. Simi- 
larly, let Vt = Si - J" be the continuous-time shortfall in 
item i and let (V 1, ..., Vd) have the corresponding sta- 
tionary distribution. The distribution of V' is that of the 
steady-state workload (virtual waiting time) in the associ- 
ated queue. 

We can express ai(si), the steady-state probability that 
an order for item i is met from stock, as 

ti (Si) =P(Yl + D' -, Si),(1 

where D' has distribution FD and is independent of Y'. It 
follows from general results on reflected random walks and 
queues that, for each item i, there is a constant Ci such that 

1 - ai (si) - Cie 'lisi, (12) 

where the symbol - means that the ratio of the two sides 
converges to unity as si increases to infinity, and hi~ is as 
defined in (7). See, e.g., Asmussen (1987, p. 269), Feller 

(1971, ?XII.6), or Siegmund (1985, p. 175) for a corre- 
sponding result for P(Y > s'); the extension to (12) merely 
modifies the constant Ci. Furthermore, it follows from 
Kingman (1970) and Ross (1974) that there are positive 
constants Ai, Bi such that 

Ai e -isi 1 - aci(si) BiBe-Yisi, (13) 

for all si > 0. In fact, we can (and do) choose Ai, Bi 
independent of ri; for example, we may take 

A i =(sup E[exp {yi (Di - x)}ID'>X]) -, 

and Bi = 4Di(yiQ(i)), with 4Di the moment generating func- 
tion of D'. This Ai is shown in Ross to provide a lower 
bound for exp (yis')P(Y' > s'). Kingman shows that 
P(Yi > si) < exp (-nyisi); multiplying by our Bi makes the 
bound valid for 1 - ai(si). The precise values of the con- 
stants in (12) and (13) are less important than the exis- 
tence of some constants making these expressions valid. 
We use properties (12) and (13) to identify an asymptoti- 
cally optimal capacity allocation. 

Our approach proceeds in two steps. First, for any fixed 
capacity allocation we identify an asymptotically optimal 
allocation of safety stock to the d items. Then, we pick the 
capacity allocation that optimizes this asymptotic opti- 
mum. We therefore begin by fixing a capacity allocation 
(r1, . . ., rd) and considering a sequence of base-stock vec- 
tors (S1, . . , Sd) with 1i si = s and s increasing to infinity. 
Let a(s) be the steady-state probability that an arriving 
order (possibly for multiple items) is fully met from stock. 
This probability behaves as follows: 

Proposition 1. For each allocation r = (rl, . .. , rd), there 
exist positive constants A, B such that 

A exp (-min {nysi}) S 1 - a(s) 

B exp (-min {ysi}), (14) 

for all s. If there exist qi, i = 1, . .. , d, for which 

lim sils= qi, i = 1, ... ., d, 

then 

lim - s 1log (1 - a (s)) = min {yi q i }; 

i.e., mini{yiqi} is the exponential rate at which the stockout 
probability vanishes as the overall level of safety stock increases. 

Proof. The stockout probability 1 - a(s) satisfies 

1 - a (s) =P (some item i with D' > 0 stocks out) 

E p(Oi > 0 and item i stocks out) 

= E p(jy> O)P(y + D' > silD' > 0) 

= E p(bi > 0)P(Yi + D' > si) 

< a P(D'> 0)B1) exp (-min {-yjsj}) 
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so we may take B = Ii p(Di > O)Bi. For the lower bound, 
fix an arbitrary item i and observe that 

1 - a (s) P(D i> 0 and item i stocks out) 

= p(Di > 0)(1 - ai (Si)) 

P(bi > O)Ai exp (-,yisi) - 

Setting A = mini P(DL > O)Ai, we conclude that 

1 - a (s) A exp (-yisi), i = 1, ... ,d; 

taking the maximum over i concludes the proof of the 
lower bound. The second part of the proposition follows 
by taking logarithims in the upper and lower bounds and 
letting s -> oo. D 

This result suggests the following rule for allocating an 
overall safety stock level s among the d items: choose the 
proportion qi of stock allocated to item i to maximize 
the rate mini {yiqi} at which the stockout probability van- 
ishes. Choosing qi subject to Yiqi = 1 is equivalent to 
choosing si subject to Yi si = s, so we arrive at the follow- 
ing minimax (maximin) allocation problem: 

PS: maximize min { yisi}, 

ESi = 5 , 

Si ? 0. 

The optimal solution evidently sets yisi constant across 
items; i.e., 

Si = ( E y1)lsy1 (15) 

and results in the objective-function value of s times 

E - 1 -1 (16) 

Thus, for a given (r1, . .. , rd), (16) gives the maximal expo- 
nential rate of decrease of the stockout probability as the 
overall safety stock level increases. 

Having identified an asymptotically optimal allocation of 
safety stocks, we now turn to the problem of choosing 
(r1, ... . rd). The rate identified in (16) suggests the follow- 
ing rule: allocate capacity to maximize the maximum rate 
of decrease of the stockout probability. Maximizing (16) is 
equivalent to minimizing its reciprocal; thus, we arrive at 
the following resource allocation problem: 

Pa: minimize E y1 (ri), 

Eri = r, 

ri ? Aimi 

Each yip is continuous and increases to infinity as ri ap- 
proaches Rimi, so problem pa has a solution. Any solution 
to this problem has the following property: 

Theorem 3. Let r* solve problem Pa and let 1 - ar*(s) be 
the stockout probability under capacity allocation r* and 
stock allocation (15). Then 1 - aer*s) is the asymptotically 

smallest stockout probability; indeed, if r fails to solve prob- 
lem Pa and if 1 - ar(s) denotes the stockout probability 
under capacity allocation r and any stock allocation, then 
(1 - ar,.(s))/(l - ar(s)) -> 0 exponentially fast. 

Proof. For any allocation r, let ((r) be the corresponding 
value of the expression in (16). If r fails to solve problem 
Pa, then ((r) - ((r*). Moreover, from Proposition 1, we 
know that 

1 - ar* (s) S B exp (-((r*)s), 

whereas 

1 - ar(s) DA exp (-min {Jyjsi}) -A exp (- (r)s), 

so the ratio is O(exp[-(((r*) - ((r))s]) as s -> oo. D 

Remarks. (i) Minimizing the asymptotic stockout proba- 
bility is roughly equivalent to maximizing the asymptotic 
time between stockouts, and this is in the same spirit as 
Anantharam's buffer allocation rule for Jackson networks: 
allocate buffers to maximize the time to overflow. A key 
step in his approach is identifying the exponential rate at 
which the overflow probability vanishes, based on an anal- 
ysis of product-form distributions. 

(ii) These allocation criteria are also counterparts of 
Kelly gambling criteria in which one maximizes the expo- 
nential growth rate of one's fortune; see, e.g., Breiman 
(1961). 

(iii) While we have detailed only the stockout criterion, 
the same rule applies to the fill rate (proportion of de- 
mands met from stock) and the expected backorders. 
These measures of service have the same exponential de- 
crease as the stockout probability; only the constants out- 
side the exponential term are different (see Glasserman 
1993). 

For problem pa and our other allocation rules to be of 
practical value, they must admit efficient solution proce- 
dures; as discussed in Section 1, they do if every -y[1 is 
convex. We now give a sufficient condition for convexity. 
Define 

xix(0) = log E[e Ox, (17) 

and let fxi be the inverse mapping. The following result is 
proved in an appendix: 

Proposition 2. Suppose the nth derivative of ti is positive 
for odd n and negative for even n. Then the mapping r1 
y-lQ(ri) is convex and consequently problem PO is a separable, 
convex resource allocation problem. 

We have not been able to identify a distribution for 
which the logarithmic moment generating function (also 
called the cumulant generating function) defined in (17) 
fails to satisfy the requirement in Proposition 2. As a sim- 
ple illustration, consider exponentially distributed interar- 
rival times, for which 

ip(O) = log (A-) 
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and therefore 

q (u) = A(1-e - ) 

which does indeed have derivatives of alternating signs. 
The same is easily verified for the normal, Poisson, gamma 
(including Erlang), and inverse Gaussian distributions. 
Moreover, Pi' is always increasing and convex, so qip is 
always increasing and concave, and the requirement in 
Proposition 2 is thus automatic for n = 1, 2. 

Returning to the allocation problem PO,, some insight is 
provided by the case of exponentially distributed interar- 
rival times and order sizes. Suppose, then, that orders for 
item i are exponentially distributed with mean ,gl* In this 
case, yi is defined by the equation 

,k A -1 i 

Airi 1 + 'Yi A 'Y, 

resulting in 

yi = -i - Air71. (18) 

It is not hard to see that for this yE, problem POa is solved by 
setting 

ri + V V~i (19) 

with v chosen to make the rid's sum to r; i.e., 

rEjAilu-t- r 
= 

Ei 

If all tui are equal to one, then this rule sets the capacity 
for item i equal to the mean demand per unit time for item 
i plus a fixed number of standard deviations. Except for 
minor differences in the models, this coincides with the 
capacity assignment in Kleinrock based on minimization of 
an explicit objective function available in the exponential 
case. See Reiman (1990) and Wein (1989) for related re- 
sults based on heavy-traffic objective functions. 

The solution in (19) should be contrasted with the more 
straightforward proportional allocation that makes Ai/(tiri) 
constant across i. Rather than set ri proportional to AJ4yi, 
the rule derived above sets the slack ri - (A1,/i) propor- 
tional to -A1i/. Numerical results in Section 5 indicate 
that proportional allocations perform far less well than our 
asymptotically optimal rules. 

3. COSTS AND CONSTRAINTS 

We now adapt the basic allocation strategy developed in 
the previous section to account for holding costs, back- 
order penalties and service-level constraints. 

3.1. Minimizing Costs 

The basic allocation rule in Section 2 builds on the obser- 
vation that the stockout probability for the ith item van- 
ishes at the exponential rate DYE as the base-stock level s1 
increases. The same principle leads to an allocation rule in 

the presence of holding costs and backorder penalties. To 
make this connection, we need some further properties of 
individual inventories. 

As in Section 1, let ( VA,..., ') have the stationary 
distribution of the continuous-time shortfall process. It fol- 
lows from (2), (7), and general results relating V and Y 
(see, e.g., p. 189 of Asmussen) that there is a constant C1 
such that 

P(V' > x) Cie x, as x -> so. (20) 

The constant Ci featured here is not in general the same as 
the one in (12); however, since the precise values of the 
constants play no role in our analysis we use the same 
symbol for both. As before, there are constants Ai, Bi, not 
depending on ri, such that 

Aie -7ix < P(Vi > x) < Bie -ix, for all x > 0 . (21) 

We may choose these constants and the ones in (13) to 
coincide by taking the smaller of the Ai's and the larger of 
the Be's in each case, but again the precise values are not 
important. 

Now suppose, as in Section 1, that inventories of item 
i are charged a holding cost at rate hi and that backorders 
are penalized at rate pi. Then the long-run average cost 
associated with item i, viewed as a function of the base- 
stock level si, can be expressed as 

vi (si) = hi E[(si - V') +] + pi E[(V' - si)+]. (22) 

Differentiating and setting the derivative equal to zero 
shows that the average cost is minimized at the point si 
satisfying 

P(V1 >sei) = P' (23) 

Properties (20) and (21) imply the following characteriza- 
tion of ski: 

Lemma 1. With B. i 1, for all pi > 0 we have 

yi 1 log(A( i )) < ( < -1 log (Bi (pi + hi) 

and as pi -> 00, 

-1 lg(Ci (pi + hi)) ~ 

A similar result is established in Glasserman for a 
periodic-review model, so we omit the proof. We need 
a related property of the cost function for large backorder 
penalties. Rewriting the ith cost function as 

vi(si) - hi(s - E[Vj]) + (hi +pi)E[(V' - si)+], (24) 

shows that the behavior of the expected backlog 
E[(V' - si)+] is critical to the behavior of the expected 
cost. From (20) and (21), we obtain 

Lemma 2. For all si > 0, 

Aiqyile nsi S E[(V' - si) +] < Bi y71e 7iSi; 



730 / GLASSERMAN 

moreover, 

E[(V' - si) Ciyi-le-7Ysi 

as si > o- . 

This, too, parallels a result for the periodic-review model in 
Glasserman so we again omit the proof. We use the pre- 
ceding lemmas to develop an allocation rule for the capac- 
ity r. As in the basic allocation problem of Section 2, we 
develop the rule in two steps: first, we identify (asymptoti- 
cally) optimal base-stock levels for each allocation (r1, . . .. 
rd); then, we choose the allocation to optimize the asymp- 
totic optimum. For any choice of s, we choose the capacity 
allocation that minimizes the growth of 

A 
H(s) hisi, 

as the pi's become large. This choice of objective is sup- 
ported by our next lemma. As in Section 1, consider a 
sequence of problems indexed by n with pifn) -> o0 as 
n -> oo. Let v(n) be the corresponding cost functions, let 
S*(n) minimize v(n), and let ?(n) be as defined in (8) with pi 
replaced by pifn). 

Lemma 3. For any sequence r(n) of allocations, V(n)(S(n)) 
H(s*(n)) and v(n)(?(n)) - H(s(n)) 

Proof. To lighten notation, we omit the superscript n. It 
suffices to show that vi(s*i) - hisei and v(si) - hsii for 
each i. From Lemma 2 and (24), we get 

vi(?i) hi(gi - E[V']) + (hi +pi)y-1Bi exp [-yii] 

hi Qi - E[V'] + Bi yl1). 

Similarly, we have the lower bound 

vi Qi) D_: hi (si - E[VJ]) . 

Dividing these bounds by hsii and passing to the limit 
proves the result for v(s). 

For the optimal base-stock levels, we use the bounds in 
Lemma 1 to get 

vi (si) h hi(s i - E[1V]) 

+ (hi +pi),y 1Bi exp[-lyis1i] 

hi (si - E[V'] + Bi (A iyi) 1), 

and a corresponding lower bound. The result then follows 
as in the previous case. [D1 

For optimal base-stock levels, it follows from the second 
part of Lemma 1 that 

H(s8) - 
i log ( hi 3 

'yi \hi/ 

and this, together with Lemma 3, suggests that we choose 
(r1, ..., rd) to minimize 

,,h / Ci(pi + hi) 0 

E 
' 

Elogy 
). (25) 

In general, Ci is difficult to evaluate as a function of ri, 
making (25) difficult to minimize. In addition, it is gener- 
ally not possible to determine if this function is convex. We 
circumvent these difficulties by writing 

h 
log (Ci (Pi + hi)) hi' log (Ci) 

+ log (pi +hi) 

and noting that only the second term changes with pi. 
Thus, we arrive at the asymptotic objective function 

hi log C h ) 
h 

appearing in problem Pp. Moreover, under the condition 
in Proposition 2, problem Pp is a separable, convex re- 
source allocation problem because only RyE depends on r1 
and we established in the proposition that y-1 is convex. 

We asserted in Theorem 1 that a solution to problem Pp 
gives an asymptotically optimal capacity allocation; we now 
justify this assertion. 

Proof of Theorem 1. For part (i), consider an arbitrary 
sequence r(n) of allocations and let v(n) be the correspond- 
ing cost functions. Dropping the superscript n, we find 
from Lemma 3 that 

lim = lim 1(26) 
n-->o v (r, s) nix>o H(?) 

the second equality following from 

lim . =lilog ((pi + hi)/hi) + log (Ci) 
lim s /lsi = lim = 1 

ner>oo n-oo log ((pi + hi)/hi) 

For part (ii), let ?(n) solve problem Pp and let r be any 
other sequence of allocations. Then 

lim sup = lim sup 
V 

= lim sup 
H (r 

1, 
n-x v(r, s*) n-i v(r, s) n-eoo H(r, s) 

the first equality following from (26), the second from 
Lemma 3, and the inequality from the fact that, by defini- 
tion, PP minimizes H(, ?). D 

In Section 5 we report numerical results based on this 
allocation rule showing that its performance in the original 
cost minimization problem is excellent. 

3.2. Meeting a Service-level Constraint 

We now carry out an analysis similar to that of Section 3.1 
to develop a capacity allocation rule subject to service- 
level constraints. For each item i, let axi be as in (11); then 
1 - ai(si) is the long-run average proportion of orders for 
item i that cannot be fully met from stock. The service- 
level constraint we consider sets 

1 -aot(si) S h, i =1, ..., d, (27) 

with each 0 < bi< 1 for each i. Other measures of service 
(in particular the fill rate) can be handled using similar 
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techniques, but we work with the stockout frequency be- 
cause it is the simplest case. 

Whereas in Section 3.1 sk, denoted the cost-minimizing 
base-stock level for item i, we now take si to be the 
smallest si satisfying (27). Much as in Lemma 1, we have 

Lemma 4. With Bi - 1, for all O < i < 1, 

7Yi 
1 log (Ai/6E) -< ski yi-1 log (Bil/i) 

and as 6i -*> 0 

1lyi 1 log (Ci /5j) - s*il O. 

where Ai, Bi, Ci are as in (12) and (13). 

With the stockout probabilities constrained, we set the 
backorder penalties to zero, making the expected cost for 
item i equal to 

vi(si) - hi E[(si - Vi)]+ 

= hi(si - E[V'] + E[(V' - si) 

The properties of E[(V' - si)+] established in Lemma 2 
are thus relevant here as well. If we set 

9i = 7y 
1 log (Bil/i), 

then, via Lemma 2, the conclusions in Lemma 3 of Section 
3.1 continue to hold with s* and s as defined in this sec- 
tion. The steps used in Section 3.1 lead us to approximate 
the true holding cost by 

H(g) = hii = hiy1 log (B/i61), (28) 
i i 

and to take minimization of (28) as the criterion for allo- 
cating capacity. This results precisely in problem Pa intro- 
duced in Section 1. The proof of the asymptotic optimality 
claimed in Theorem 2 proceeds along the same lines as the 
proof of Theorem 1. The fact that the service level con- 
straints are met by s for all 6 follows from the bound in 
Lemma 4: 

1 - aoi (9) S Bi exp (-'yigi) = 5i 

by the definition of 9i. 

4. ALLOCATION IN HEAVY TRAFFIC 

A further simplification of the stock and capacity alloca- 
tion problems is possible at high utilizations. Expanding 
the moment generating function 4i appearing in (7) in a 
Taylor series about the origin yields 

4i(0) = 1 /iO + So102 + (2), 

where 

/xi = -E[D' - riX'] = riAi\1 - m 

and o-7 = Var [D' - riX'] . 

If Xim1/r1 is close to one, then pi is close to zero, so Phi the 
positive solution to i(^Yi) = 1, must be close to zero, 
indicating that 

-Ai'i + 2 O'i 2 o; 

that is, 

,yi -Nqi =2Ailai f 

Thus, we have a two-moment approximation to yi that 
becomes increasingly accurate as the utilization increases 
to one. This suggests replacing yi with hi in our allocation 
rules. A simple calculation shows that 7q-1 is always convex 
in ri, so the resulting minimization problem is separable 
and convex. 

Further justification for replacing yi with rji follows from 
heavy-traffic limits for queues, as in, e.g., ?VIII of Asmus- 
sen. For Aimi/ri close to one, the distribution of Vi is close 
to the exponential distribution with mean 1/iji. If V' had 
exactly this distribution, then the value of si minimizing vi 
would be 

s i =1 1log (Pt h i) . (29) 

Moreover, the optimal capacity allocation would be ob- 
tained by minimizing 

E i log (P hi). (30) 

This is the objective function appearing in problem Pp with 
-yi replaced by hi. Expressions similar to (29) form part of 
the analysis in Wein (1992) of a dynamic scheduling prob- 
lem. Wein (1989) uses a heavy-traffic approximation in 
allocating service rates in a network of queues to minimize 
the average number of jobs in the network. His objective 
function is a queueing-network counterpart of iX 

While it is tempting to conjecture that allocations based 
on the heavy-traffic objective (30) are in some sense as- 
ymptotically optimal, it is unclear how such a result should 
even be formulated. The heavy-traffic asymptotics are fun- 
damentally different from those of Sections 2 and 3 be- 
cause the conditions required for the limiting regime depend 
on the choice of allocation. More specifically, the heavy- 
traffic limit requires Aimi- ri, a condition depending on ri, 
whereas our previous limits required pi large or 6i small, 
regardless of the capacity allocation. Even if the overall 
utilization Am/r is close to 1, it is certainly possible that 
under an optimal allocation some Aim1/ri would be much 
less than 1, making a heavy-traffic approximation question- 
able. Similar comments apply to the problem treated in 
Wein (1989). In spite of this theoretical shortcoming, nu- 
merical results in Section 5 indicate that replacing PYi with 
mi brings some simplification without much deterioration 
in performance. 

It is less clear how to use heavy-traffic limits to minimize 
costs subject to service-level constraints, if these con- 
straints are firm. In particular, if hi > yA, then no base- 
stock level of the form si = nij' log (bbi/6), with bi a 
constant, will ensure a stockout frequency less than 6i, as 
ai > 0. 
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5. EVALUATION OF THE ALLOCATION RULES 

In order to compare our (asymptotically optimal) alloca- 
tion rules with optimal allocations, we restrict attention to 
a tractable case: demands for item i arrive in a Poisson 
stream and order-sizes for item i are exponentially distrib- 
uted. In this case, through the correspondence with work- 
loads in queues, we know that the distribution of Vt is 
given by 

P(V' - x) = 1 - pi exp (-yix), (31) 

with pi = Aimi/ri and yi = m-1 - Airil; see, e.g., Prabhu 
(1980, p. 33). It follows that vi is minimized at 

Si = E1i- log (Pi (p+ hi)) , (32) 

resulting in the average cost 

Vi(Si) = 7? log (Pi( + hi) + (1 - Pi)j 

The allocation (r1, ..., rd) minimizing >j vi(si) has the 
square-root form 

Aimi + E k_ ( - Amj 

where 

ki= hi [log pi(Pi+ hi) + (1 - Pi)j 

The solution to our surrogate problem P, has the same 
form but with ki replaced by 

ki = hi log (Pi hi) 

Notice that ki/ki -> 1 as either pi -> 1 or pi -. 00. 

We evaluated the performance of several allocation rules 
for a variety of cost structures and utilizations. The tracta- 
bility of the exponential case allows us to compare our 
approximations with optimal costs. In addition to the as- 
ymptotic optimum derived in Section 3, we test the heavy- 
traffic approximation. In the exponential case, we have 

Thir=2 (rr+ -) 2 

We also evaluated a proportional allocation in which the 
rid's are selected to make all \imi/ri equal. For the asymp- 
totic optimum and the heavy-traffic approximation we con- 
sidered two cases: one using the approximately optimal 
base-stock levels (8) and (9), respectively, and one using 
the optimal levels (32). The first case tests the combination 
of the stock and capacity allocation rules, the second case 
tests the capacity allocation only. In total, we compared six 
allocation rules, given the following labels in the tables of 
results: 

* Optimal: optimal ri and si; 
* Asy-Opt: asymptotically optimal ri with optimal si; 
* Asy-Asy: asymptotically optimal ri and s.; 
* Hvy-Opt: heavy-traffic ri with optimal si; 
* Hvy-Hvy: heavy-traffic ri and si; 
* Proport: proportional ri with optimal si. 

All numerical results are based on three items, with 
corresponding arrival rates 0.8, 0.15, and 0.05. These val- 
ues are representative of A-B-C classifications of products, 
A-products accounting for 80% of demand, B- and 
C-products for 15% and 5%, respectively; see, e.g., Carr et 
al. With this interpretation, our items become groups of 
products, and the problem becomes allocating stock and 
capacity among the groups. In all cases, we take the mean 
order-size per demand to be 1 and the holding-cost rate 
for each item to be 1 as well. We expect the qualitative 
effect of varying these parameters to be captured by the 
range of backorder penalties and utilizations we consider. 
Our experiments are divided into two cases: 

Symmetric costs. In these experiments, backorder penal- 
ties are equal for all three products. With p 
1/r, we consider the overall utilization levels p = 0.5, 0.7, 
and 0.9. Within each level, we take the (common) back- 
order penalty to bep = 1, 2, 5, 10, or 100. 

Asymmetric costs. In these experiments we once again 
take p to be 0.5, 0.7, or 0.9. At each utilization level we 
consider six values of the penalty vector (PI, P2, P3). The 
specific values appear along with the numerical results. In 
the first four cases, penalties either increase or decrease 
with the arrival rate; the last two cases are nonmonotone. 

The results appear in Tables I and II. Overall, they show 
excellent performance for our allocation rules. Since the 
proportional allocation uses optimal base-stock levels, it 
should only be compared with Asy-Opt and Hvy-Opt. With 
this understanding, we summarize the results as follows: 

* In all but four cases, Asy-Opt is less than 1% above 
Optimal; in all but one case it is less than 3% higher; in 
more than half the experiments, the two are virtually 
indistinguishable. 

* Asy-Opt consistently outperforms Hvy-Opt and Asy-Asy 
consistently outperforms Hvy-Hvy. 

* The Asy allocations depend less on the use of optimal 
base-stock levels than the Hvy allocations: in all but one 
case, the deterioration in performance in passing from 
Asy-Opt to Asy-Asy is less than that in passing from 
Hvy-Opt to Hvy-Hvy. 

* The Asy allocations are less sensitive to conditions 
needed for the underlying approximation (large p) than 
the Hvy allocations (large p). This is best seen by com- 
paring their performance (versus the optimum) at p = 

05p= 100, and p = O.9,p = 1 in rows five and eleven 
of Table I. 

* Proportional allocations are not competitive. 
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Table I 
Symmetric Costs 

p p Optimal Asy-Opt Asy-Asy Hvy-Opt Hvy-Hvy Proport 

0.5 1 1.75 1.92 3.65 2.57 4.61 3.00 
2 3.94 4.06 5.79 4.84 7.36 5.43 
5 7.63 7.71 9.44 8.72 12.13 9.59 

10 10.84 10.90 12.63 12.12 16.35 13.23 
100 22.55 22.58 24.30 24.54 32.12 26.53 

0.7 1 4.79 4.83 5.74 4.96 6.12 6.36 
2 8.17 8.19 9.10 8.35 9.71 10.42 
5 13.92 13.94 14.85 14.14 15.89 17.35 

10 18.95 18.96 19.87 19.20 21.32 23.41 
100 37.33 37.34 38.25 37.72 41.35 45.58 

0.9 1 15.93 15.94 16.22 15.94 16.26 20.63 
2 25.42 25.42 25.70 25.43 25.77 32.80 
5 41.64 41.64 41.92 41.64 42.03 53.59 

10 55.82 55.82 56.10 55.82 56.26 71.78 
100 107.69 107.69 107.97 107.70 108.30 138.29 

It seems reasonable to expect that the performance of 
the asymptotically optimal allocations would be even bet- 
ter if we replaced the objective function in problem PP 
with the one in (25), which incorporates Ci. In any case, 
this would not affect the asymptotic optimality and seems 
likely to improve performance at lower utilizations; notice 
that Ci p Pi in (31). Using the exact value of Ci is possible 
if either interarrival times or demands are exponentially 
distributed. In the first case, we have 

C. 
1 - Pi 

-z A i (Di(-Yi)- 

(combine Theorems IX.2.3(a) and XII.5.3 of Asmussen), 
and in the second case we have Ci = pi (Asmussen, 
Theorem IX.1.3(c)). 

In a separate numerical investigation we have observed 
that our asymptotically optimal capacity allocation rule 
gives excellent results when applied to the problem of min- 
imizing costs subject to service-level constraints. However, 

this comparison is somewhat less interesting than that re- 
ported in Tables 1 and 2, because, as explained at the end 
of Section 4, heavy-traffic limits cannot in general be used 
to meet the constraints. The same is true of proportional 
allocations. 

Interestingly, in the case of (31), problem Phi yields an 
optimal capacity allocation when 5i 8 for all i, for some 
6. For in this case we may take Bi- 1 in (9); and the 
resulting surrogate objective function 

E hi log (1/6), 
'i y(ri) 

is minimized at the same point as the true cost 

Ehi [log (1/6) + Pi(5 - 1)], 

ui ts(ra) 

though the two functions are clearly not the same. 

Table II 
Asymmetric Costs 

p (Pi, P2, P3) Optimal Asy-Opt Asy-Asy Hvy-Opt Hvy-Hvy Proport 
0.5 1 2 4 3.46 3.56 5.46 4.82 7.56 5.64 

1 10 100 8.90 8.94 11.04 12.17 17.50 14.25 
4 2 1 4.70 4.83 6.38 5.26 7.67 5.64 
100 10 1 13.61 13.67 15.04 13.91 17.87 14.25 
1 10 1 4.23 4.35 6.13 5.48 8.46 6.41 
10 1 10 7.98 8.06 9.71 9.11 12.48 9.82 

0.7 1 2 4 7.15 7.17 8.20 7.50 9.21 10.77 
1 10 100 14.29 14.30 15.48 15.40 19.36 25.12 
4 2 1 9.54 9.56 10.36 9.62 10.75 10.77 
100 10 1 24.12 24.13 24.81 24.15 25.55 25.12 
1 10 1 8.28 8.31 9.25 8.49 10.25 12.05 
10 1 10 14.44 14.46 15.33 14.74 16.53 17.73 

0.9 1 2 4 21.59 21.59 21.92 21.60 22.06 33.85 
1 10 100 37.28 37.29 37.67 37.33 38.39 76.90 
4 2 1 30.00 30.00 30.24 30.00 30.28 33.85 
100 10 1 73.48 73.48 73.68 73.48 73.74 76.90 
1 10 1 24.58 24.58 24.87 24.58 24.98 37.68 
10 1 10 43.18 43.18 43.45 43.19 43.60 54.73 
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APPENDIX 
CONVEXITY OF e-1 

In this appendix, we prove Proposition 2. We treat a ge- 
neric yj and drop the subscript i. 

Let AIx and AID be logarithmic moment generating func- 
tions for X and D, as in (17). Equation (7), defining y, can 
be rewritten as 

IJD (Y) + +jx(-ry) = 0. (33) 

Regardless of the distribution of X, 4'x(0) is zero at the 
origin, decreases strictly to -a as 0 -a> - and increases 
strictly as 0 increases to the radius of convergence of Usx. 
Thus, there exists an inverse 4A x7 whose domain includes 
the point - qPD(y) < 0, and we may rearrange (33) to get 

g (Y) A J +x (J D(Y) r = -= 
'y 'y 

Since y is a function of r, the function 0 g(0)/0 is the 
inverse of r - y(r). Moreover, since y(r) is increasing (this 
follows from its definition), g(O)/O is increasing as well. If 
we can show that g(0)/0 is convex, it will follow that y(r) is 
concave and hence that 1/7y(r) is convex. Thus, the rest of 
the proof is devoted to showing that g(0)/0 is convex. We 
proceed with the following result: 

Lemma 5. Suppose that, on its domain, a function g is equal 
to its Taylor series about the origin and that g(n)(0) - 0, for 
all n = 0, 1, 2, .... Then g(x)/x is convex. 

The proof amounts to differentiating g(x)/x twice and 
showing that the nonnegativity of the derivatives of g 
makes the second derivative of the ratio nonnegative. The 
details are straightforward so we omit them. 

In light of Lemma 5, it suffices to show that all deriva- 
tives of - 4, 7 (- AD(0)) at 0 = 0 are nonnegative, as the 
analyticity condition is automatically satisfied by logarith- 
mic moment generating functions. This, in turn, is equiva- 
lent to showing that the derivatives of +x' (-4wD(0)) are all 
less than or equal to zero. For this step we use the follow- 
ing lemma: 

Lemma 6. Suppose f and g are infinitely many times differ- 
entiable at the origin with f(O) = g(O) = 0, g(n)(0) O for 
all n = 1, 2, . .. , and f')(0) S O for odd n and gln)(o) > 0 

for even n. Then (f 0 g)(')(0) - 0 for all n. 

This result is easily established by induction; we omit the 
details. To apply it to the problem at hand, notice that 
qf(n)(o) > 0 for all n; these derivatives are the cumulant 
moments of D and cannot be negative. Thus, - jf4D)(O) S 0 

for all n. Under the hypothesis that the derivatives of 
qAx alternate signs, we conclude from Lemma 6 that the 
derivatives of - 7 (-/(6)) are all nonnegative at 0 
0, and hence that g(6)/6 is convex. 
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