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CORRECTED DIFFUSION APPROXIMATIONS FOR 
A MULTISTAGE PRODUCTION-INVENTORY SYSTEM 

PAUL GLASSERMAN AND TAI-WEN LIU 

We analyze a multistage inventory system with limited production capacity facing stochas- 
tic demands. Each node follows a periodic-review base-stock policy for echelon inventory: in 
each period, each node attempts to produce enough material to restore cumulative down- 
stream inventory to a fixed target level. We develop approximations to the key measures of 
interest (average inventories, average backorders, and service levels) by simultaneously letting 
the mean demand approach the system's bottleneck capacity and letting the base-stock level 
for finished goods increase without bound. Using a method of Siegmund, we thus obtain 
diffusion limits with higher-order correction terms. A numerical example suggests that the 
correction terms can substantially improve the accuracy of the approximations. 

1. Introduction and main results. Among the most fundamental models in 
multiechelon inventory theory is the facilities-in-series model of Clark and Scarf 
(1960). In this system, the top node draws raw material from an external source; each 
intermediate node orders material from its predecessor and supplies its successor; 
and the bottom node supplies external demands. Optimal ordering decisions follow 
an echelon base-stockpolicy, in which each node orders just enough in each period to 
restore its cumulative downstream inventory position to a fixed target level. The term 
echelon indicates that ordering decisions are tied to cumulative inventories, and the 
base-stock level is the target to which echelon inventory is to be restored. 

The Clark-Scarf model places no limit on the amount of material that can move 
through a facility in a single period. To model processing or production activity at a 
node explicitly, it is generally necessary to assign a capacity to the node which then 
specifies an upper limit on the inventory that can move through the node in a period. 
If we let d denote the number of nodes; c', i = 1,..., d, their capacities; s', 
i = 1,..., d, the echelon base-stock levels; and Dn the total demand in period n, 
n > 1, then the dynamics of the capacity-constrained system are fully described by the 
following recursions: 

(1) Y, = max{0,Y +D_ - + D - c, + D - 
(si+ 

- 
si)} i= 1,...,d - 1; 

(2) Yd max{0, yn_ , +Dn - d}. 

The shortfall Yi records the difference between the target level s' and the actual 
inventory for echelon i in period n; thus, s' - Yn' is the cumulative net inventory in 
nodes 1,... , i. Under a base-stock policy, each node i attempts to order and process 
sufficient material in each period to drive its shortfall to zero, while not exceeding its 
own production capacity or the available upstream inventory. The second and third 
expressions inside the max in (1) reflect the capacity and inventory constraints, 
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CORRECTED DIFFUSION APPROXIMATIONS 

respectively. The inventory constraint is absent in (2) because node d draws raw 
material from an unlimited external source. For a more detailed derivation of (1)-(2) 
and further discussion of modeling and applications, see Glasserman and Tayur 
(1994, 1996) and references there. 

No optimal policy is known for the capacity-constrained Clark-Scarf model, but the 
base-stock policy reflected in (1)-(2) remains attractive because of its simplicity, 
because it is optimal in the unconstrained case, and because it remains optimal in a 
single-node capacity-constrained system, as shown by Federgruen and Zipkin (1986). 
For recent work on the control of multistage capacity-constrained systems and 
base-stock policies in particular, see Schraner (1995) and Speck and van der Wal 
(1991a, b); for a survey of work on multistage systems generally, see van Houtman, 
Inderfurth, and Zijm (1995). Even if we restrict attention to base-stock policies, 
evaluating performance under a particular set of policy parameters is difficult; our 
objective is to present accurate approximations to the key measures of performance. 

If the demands {D,, n > 1} are i.i.d. and have mean less than 

c* = mintc1,..., cd}, 

then the shortfalls defined in (1)-(2) converge to a finite stationary distribution from 
all initial values. Let (y1,..., yd) have this stationary distribution. The quantities we 
consider are the mean shortfalls E[Yi], i = 1,..., d; the stockout probability P(Y1 > 
s'); the average backlog E(Y1 - s')+; and the unfilled demand u(sl) = E(min{Y1 + 
D - s', D})+. When linear costs are charged on inventories and backorders, the mean 
shortfalls and the average backlog can be combined to give the average cost per 
period; hence, approximations for these quantities provide approximations to average 
linear costs as well. It follows from (1)-(2) that approximating E[Y1] for i > 1 is a 
special case of approximating E[Y1], so we consider only the latter explicitly. The 
unfilled demand is primarily of interest in defining the fill rate 

(3) f(s) = 1 u(s1) - 1 _ E(minY + D - sl, D})+ (3) f(s ) ~ 1 E 1 E E[D] E[D] 

usually considered the key measure of service. 
We develop approximations to these quantities as s1 becomes large, AV = s'i+ - si, 

i = 1,..., d - 1, remain fixed, and the mean demand approaches c*, based on the 
method of Siegmund (1979). (See Asmussen 1984, Chang 1992, and Hogan 1986 for 
further development and application of this method.) We assume the common 
distribution of the random variables X A Dn - c*, n > 1, is a member of an 
exponential family {Fo, 0 E O}; i.e., a family of distributions admitting the representa- 
tion 

dF,(x) = exp Ox - f( 0)} dFo(x) 

for some distribution F0 with support in [-c*, oc) and cumulant generating function 
?i(0) = log EO[exp{ (D - c*)}] assumed finite in a neighborhood of the origin. (This 
is equivalent to assuming the demand distribution is from an exponential family, but 
it is more convenient to impose the conditions on the Xn.) We always have q(0) = 0, 
and without loss of generality we adopt the normalization qr'(0) = 0, ?I"(0) = 1. It is 
easy to see that r'(0) = ,u & EO[X1], 6"(0) = Var,[X1], and that E,[X1] and 0 
have the same sign. A Taylor expansion of 0 about 0 = 0 yields 

(i(0) = 12 + o(02), as 0 - 0, 
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and therefore 

(5) 0 = q'(0) = + o(0), as 0-0. 

Furthermore, q is strictly convex wherever it is finite, so for each sufficiently small 
00 < 0 there is just one 01 > 0 for which q(00) = ((01). We set y = 01 - 00 and 
note that the condition y > 0 is equivalent to 00 - 0, /u,0 - 0, and thus to EooD - 
c* 

Our approximations are sharpest when the distribution Fo is strongly nonlattice, 
meaning that the characteristic function g(A)= Eo[exp(iAX)] satisfies inflAl> ll - 
g(A)l > 0 for each 8 > 0. This is equivalent to assuming that the demand distribution 
itself is strongly nonlattice. A strongly nonlattice distribution is indeed nonlattice; all 
spread-out distributions are strongly nonlattice (Asmussen 1984, p. 142). 

We need some additional notation to state our main result. Let S n = E= Xi and 
let 

r+= inf{n > 1: Sn > 0} 

be the first strong ascending ladder epoch for this random walk. Let /3 = 

Eo[S2+]/(2Eo[S+]) and K = E0[S3]/(3Eo[5T ]). Finally, let j* = min{1 < i < d: ci = 

c*} be the index of the lowest bottleneck and define 

m= max (i- 1)c*- Ak 
i>J k=l 

We now have 

THEOREM 1. Suppose that Fo is strongly nonlattice and that 00 O, b -> oo in such a 

way that Oob -> constant. Then 
(i) the mean shortfall at node 1 satisfies Eo Y1 = y-le-( 0-6) + O(y); 

(ii) the stockoutprobability satisfies Po{Y1 > b} = e- (b+-e ) + o(y2); 

(iii) the average backlog satisfies Eo0(Y1 - b)+ = y- 1e- (b+B- ) + o(y); 
(iv) the unfilled demand satisfies u(b) = y- 1e- (b+f- X(e - 1) + 0(y2- ), for all 

> 0. 

If Fo is merely assumed nonlattice, the error terms in (ii), (iii) and (iv) become o(y), 
o(1), and o(yy1 ) respectively; (i) is unchanged. 

REMARKS. (a) Siegmund (1979, p. 716), and Siegmund (1985, p. 225) give an 
integral representation of /3 suitable for numerical evaluation. Asmussen's (1992) 
results suggest a matrix-analytic approach to computation of /3 for phase-type 
demands. Since y is easily computed as the root of an equation, it follows that the 
expressions in the theorem can be evaluated with minimal computational effort. 

(b) In a single-node system we have 4 = 0 and directly from Theorem 1 of 
Siegmund (1979) we get the finer approximation 

(6) EY1 - , + [K() 

for nonlattice F0. Part (ii) becomes 

(7) P0o{(Y > b} = e-y(b+1) + o(y2), 

assuming a strongly nonlattice F0, which coincides with Theorem 2 of Siegmund 
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(1979). Parts (iii) and (iv) are new even for single-stage systems, and in this case (iv) 
can be strengthened to 

(8) u(b) = -e (b+)(eYC* -1) + o(y2) 

(c) The fill rate in (3) can be approximated using part (iv) of the theorem and the 
mean demand, which is presumably known. Alternatively, we can use (5) to get 

EoD = EoX + c* =c* + o + o(0), as 00TO, 

and substitute this in (3) to get 

(9) 1 -f(b) = c* 2+ e r(b+ )(eYc - 1) + o(y), 

for strongly nonlattice demands. 
(d) The case of lattice Fo requires care but leads to similar results. A detailed 

analysis is given in Liu (1995); we summarize its conclusions: The approximations in 
(i)-(iii) are unchanged; except that 18 is replaced with f3 + 1/2 in (ii), where l is the 
span of F0. The error terms for (i)-(iii) are O(y), o(y), and o(1), respectively. The 
approximation in (iv) becomes y-1 exp{- y(b + , - 6)}(exp{yl[c*/l]} - 1), where 
[H] denotes the integer part; the corresponding error term becomes o(1). An assump- 
tion in the lattice case is that b - s increases through multiples of 1. 

Table 1 compares the corrected diffusion approximations in parts (i) and (ii) of 
Theorem 1 with ordinary diffusion approximations. These numerical results are for a 
two-node system with c1 = 2 and c2 = c* = 1; three values of A = s2 - s1; and two 
values of p - E[D]/c*. Demands are exponentially distributed, so 13 = c*, and the 
exact distribution of yl can also be found explicitly. The ordinary Brownian approxi- 
mations to EY1 and P(Y1 > x) are o'2/(21 A,I) and exp(-21 A,Ix/oa2), where AL = ED 
- c* and oa2 is the demand variance. These approximations are thus insensitive to 
A. For 0 < A < cl, the corrected approximation is exact in this example. The results 
in the table suggest significant improvements from the correction terms, especially at 
moderate p but even at very high p. Of course, the corrected approximations rely on 
stronger independence assumptions and more detailed distributional information 
than the ordinary Brownian approximations. 

Comparing corrected approximations with Brownian limits, Siegmund (1979) inter- 
prets the approximation in (7) as follows: using y instead of 21 l/cr 2 corrects for 
non-normality of the Xn; adding f3 to the boundary b corrects for discontinuity and 

TABLE 1 

Comparison of Exact Values, Corrected Approximations, and Ordinary Brownian 

Approximations for a Two-node System with Exponentially Distributed Demands 

EY1 P(Y1 > 3) 

A Exact Theorem 1 Brownian Exact Theorem 1 Brownian 

1.5 0.1639 0.1639 0.4500 0.00629 0.00629 0.00127 
p = 0.60 2.25 0.0757 0.0704 0.4500 0.00276 0.00270 0.00127 

2.5 0.0624 0.0532 0.4500 0.00214 0.00204 0.00127 

1.5 23.206 23.206 24.010 0.8332 0.8332 0.8825 
p = 0.98 2.25 22.512 22.510 24.010 0.8083 0.8082 0.8825 

2.5 22.286 22.283 24.010 0.8002 0.8001 0.8825 
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further accounts for the distribution of the Xn. To this interpretation we add that, in 
Theorem 1, the term s corrects for the difference between single- and multi-node 
systems, a distinction that vanishes in the Brownian limit. 

As an application of Theorem 1, we approximate the finished-goods base-stock 
level required to meet a service-level constraint; i.e., for fixed 0 < 8 < 1, we pick sl 
so that either the fraction of periods without a stockout or the fill rate is approxi- 
mately 1 - 8. 

COROLLARY 1. Suppose Fo is strongly nonlattice and fix 0 < 8 < 1. 
(i) If 

1 
s= -log 8 - /3+ , 

then Po(Y1 > s^) = 8 + o(y2). 
(ii) If 

c* 1 C* - -log 6-3 + + 2 + _log E D or 

---log6-3+ + - 2c*' Y 

then 1 - f(s^) = 6 + o(y). 

The subsequent sections of this article are devoted to proving the results above. We 
conclude this introduction with a general description of the analysis. A starting point 
is the representation, derived in Glasserman (1993), 

(10) y= max{Sn + n}, 
n>0 

where 

(11) n = nc* - 
r,, 

rO = 0, and for all n > 1, r, is the length of the shortest n-step path through the 

graph in Figure 1, starting from the lower-left corner. It follows that there is a finite 

cl ,C2 cd 

. . * . Ad 
Y"' ii"' ~~~~V . 

FIGURE 1. Each vertical arc in column i has length ci, each diagonal arc from column i to column 
i + 1 has length NA. 



CORRECTED DIFFUSION APPROXIMATIONS 

n* such that 

(12) n = for all n >n* 

and our results apply in any setting of the type in (10) if (12) holds. Indeed, we prove 
an essential preliminary result in ?2 under the weaker assumption that n, -> e. Using 
(10), we relate performance measures involving y1 to boundary crossings of the 
process Zn = Sn + n,. (In Gut's (1992) terminology, Zn is a perturbed random walk.) 
We approximate expectations under 00 by first expressing them as expectations 
under 01 using Wald's identity and a likelihood ratio. The exponential form of the 
likelihood ratio suggests the approximations in the theorem. The likelihood ratio is a 
function of S rather than Z, but because of (12) we are able to locate the random 
walk at boundary crossings of the perturbed process and thus carry out the approxi- 
mation. 

2. Preliminaries. Let {Xn, n > 1} be as in ?1. Set Sn = E-Xi and Zn = Sn + en, 
n > 0, for as yet unspecified { n, n > 0}. For all b > 0 define stopping times 

(13) T= inf{n 1: Zn > b, 

and 

(14) r' =inf{n 2 1: Sn > b}. 

For t > 0 and -oo < ' < oo, let G(t; ,, 1) denote the probability that a Brownian 
motion process with drift ; and unit variance reaches 1 before time t, starting from 
the origin. It is well known (see, e.g., Siegmund 1979, p. 706) that if b -> o, 
u = EX1 -> 0 and ub -o ' e (-0,oo,), then 

(15) P r'< b2t} - G(t; , 1), for each 0 < t < oo. 

This result extends to the perturbed process Z, in the sense that 

(16) P,{T < b2t} -G(t; , 1) 

as b - oo, / -O 0 and ,ub -> , provided that the (possibly random) sequence { (n 
satisfies 

~[ns] 
sup 

e 
=> 0, as n -oo, 

O<s<t /n 

where = denotes convergence in distribution. This follows from the converging- 
together theorem, as in Theorem 4.4.6 of Chung (1974). In particular, then, (16) holds 
for deterministic {(n} that converge to a finite limit. 

Let Rb = S,, - b denote the excess over level b for the random walk, and suppose 
that {Xn, n > 1) have distribution F.. It follows from the renewal theorem that for 
0 > 0 the Rb have a limit in distribution as b -> oo (through multiples of the span of 
X1 in the lattice case), and for 0= 0 the limit random variable Rc has the 
distribution 

H(x)-PR <x} = E f {S+>y]dy. H(x) Po{R < x = 
E0S 

{ 
+> y} y. 

0,, U,S> JY 
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Lemma 3 in Siegmund (1979) shows that r'/b2 and S, - b are asymptotically 
independent in the sense that (for nonlattice FO), 

(17) Po{r' < b2t, ST, - b < x} -- G(t; s, 1)H(x) 

as b -> oo, 0 t 0, and Ob -o ~ E [0, oo). We will need a similar result when T replaces 
T': 

LEMMA 1. Suppose Fo is nonlattice and { (n} is a sequence of numbers satisfying 

(18) n a- , asn -> o. 

Then for t > 0 and x > 0, 

(19) P,{T < b2t, ST 
- b < x) -o G(t; ', 1)H(x + 0), 

and for m > 0, 

(20) E(ST- b)m Eo(Ro 
- 

)m 

as b -- o, 06 0, and 0b - e [0, co). 

PROOF. Observe that Ob - ' implies obb - 
' via (5) and define 

(21) r= inf{n > 1: Sn > b - ~}. 

For e> Ochoose nE so that 6 - E ( n < + e for all n > n. If 0 0, b - ooand 
0 b -o , then 

(22) p,{r < n,} = o(l) 

and 

(23) P(T < ne} = o(l), 

by (15) and (16). Now observe that 

(24) PO(T T}r < PO{T + r, T A r > n,} + P{T < nE} + P{r < n}. 

On the event {n < T < T}, we have ST + 6 = Z < b and 6 - <E , so S < b- 

6 + E, implying Rb_e < E. Similarly, on the event {n, < T < r}, we have Rb--e < E. 

Thus, 

P,{T r T, T A r > nE} < Po{R- < E + P0Rb-E < E} 

= 2H(E) + o(1), as b - oo, 0, bO - , 

in light of (17). Since E > 0 is arbitrary and H(O+) = 0, we conclude that P,{T - r, 
T A T > n,} -* 0, and thus by (22)-(23) that 

(25) P{T r}) = o(l), as 0 -> , b o and b - . 
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Finally, 

IP{T < b2t, ST - b < x} - G(t; , 1)H(x + ) | 

<IP0,(T< b2t,ST - b <x} -Po{T< b2t, S-b <x}I 

+ Po{T b2t, S- b <x} - Pf{T (b - 5)2t,S,- (b - s) <x + l 

+ }P0{< (b - )2t, Ss - (b - ) <<x + - G(t;c, l)H(x + |)1 

< Pe,{T } + P,{(b - )2t < T b2t} + o(l) = o(l), 

by (25), (15) and (17). 
We now prove (20). Wald's identity gives 

E,(ST - b)m = EO[(ST 
- b)m exp{0ST - T(0)T}] 

= E (ST- b) exp b + O(S, 
- b) - w2 2 

Hence, we get 

(26) 

limE,(ST 
- b)m = limE0 (ST 

- 
b) exp Ob + 0(ST 

- 
b) 2/2 2) ( 2 

Assuming for the moment that the expression (ST - b)m exp{0(ST - b)} is uniformly 
integrable under F0, we can pass the limit on the right-hand side of (26) inside the 
expectation. Let TB(1) denote the first time a standard Brownian motion process hits 
1. Under P0, (16) implies b-2T = TB(1). In addition, we have Ob -> ~; 0(ST - b) = 0 
because 0 -> 0 and ST - b has a finite weak limit; and 2?1(0)/02 -> 1 by (4). These 
facts, plus (19), yield 

limE,(S- b)m = Eo(R. - )m E exp(- B 0(1)) 

=Eo(R - )m, 

where the second equality follows from Wald's identity for Brownian motion (as in 
Siegmund 1985, Proposition 3.2). 

The uniform integrability of (ST - b)m exp{0(ST - b)) used above is verified as 
follows. We let 5+ = sup,, n, _- = infn, n, and define the stopping time T_ = inf{n > 
1: S, > b - s_ . Observe that ST < ST . Now we bound (ST - b)m exp{0(ST - b)} by 

(27) C exp{(0 + E)(ST - b)}l{ST>b + ()+)ml{S<b}, 

for some C > 0 and some e > 0. On the event {ST > b) the bound is clear; on the 
event {ST < b} we use the fact that IST - bI < s+. Now (27) is bounded by 

C exp{(0 + e)(Rb-_ - 5-)} + ( +)m, 
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where Rb- = ST -(b - 5_) is the excess for an ordinary random walk over level 
b - 6_. This bounding sequence is uniformly integrable by Lemma XII.6.4 of As- 
mussen (1987). The uniform integrability required above now follows by the domi- 
nated convergence theorem. o 

3. The random walk at perturbed crossings. From now on, the perturbing terms 
{ (} are numbers satisfying (12), as they do in (11). The stopping times T and T are as 
in (13) and (21). In this section, we prove two lemmas on ST, the location of the 
random walk when the perturbed walk crosses a boundary. 

LEMMA 2. If Fo is nonlattice, then for all sufficiently small 0* > 0 there exists a > 0 
such that 

sup IE8[ST - ST] I= O(e-0b) 
01E[0, 0*] 

as b -> oo. 

PROOF. We start from the inequality 

(28) IEo,[ST - ST]I =IEo1[(S - 
S);T rT] 

< /Po{T A r < n*} /Eo,(ST- S,)2 

and bound each of the factors on the right. 
We claim that each of the probabilities P,F9r < n*} and P,{T < n*} is O(e-alb), as 

b - oo, for some al > 0, uniformly in all sufficiently small 01. To see this, choose 
0* > 0 and a1 > 0 so that 4,(0* + a1) < oo. Then for all 06 E [0, 0*], 

(29) {P6{<n*}~ ?P0{lmaxS S<n >b-<} 

< E P0{Sn > b - 
n=l 

n* 

< e-a(b- ) EO ealsn 
n=l 

n* 

e-al(b-) E 
en[i(Ol+a)-(6O,)] 

n=1 

n* 

< e-al(b- E enq(0*+a1) A Ce-alb 
n=1 

The argument for P,{T < n*} is similar. 
Now set T' = infin > 1: Sn > b - ,*}, with , == minan n, and observe that 

ST < ST, and ST < ST,. Applying (29) to (28) and twice using the inequality (x + y)2 
< 2(x2 + y2), we find that 

sup IE[ST - Sj |< VCe-"'b sup /2(E0,1S + E1S,2) 
01 [O, 0*] 01E[0, O*] 

?< /Ce- b sup V4E oS2 
81 E 10? T*] 01e[o, 0*1 

< O(e-alb/2) sup 8/[(b 
- 

, *)2 + EoRB . 
01, [0, 0*] 
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From Theorem 3 of Lorden (1970), we get 

E01R2 < ES , for all 01 > 0. 
01 T+ 

From Siegmund (1979, p. 706), we know that the moments of S+ are continuous in 
01 E [0, 0*] for sufficiently small 0*, and Eo1ST is bounded away from 0. Thus, 

sup sup ER_ < o, 
1 E [0, 0*] b>O 

and we conclude that supo,0[0,0*llE0[S T - S,]I is O(e-"lb/2) */O(b2) + 0(1), 
which is O(e -b) for a = a,/2. o 

LEMMA 3. If Fo is strongly nonlattice and if 01 i 0, b - oo and 0 b - constant, then 

(30) Eoj[ST - b] = 3 - ? + 01(K - P2)+ o( 0). 

PROOF. Starting from the representation EoR,o = E oS2+/(2E 1S+) and expanding 
both numerator and denominator according to Lemma 2 of Siegmund (1979), we 
arrive at 

(31) ElR,o = 3 + 01(K - 32) + o(01). 

Corollary 2.3 of Chang (1992) shows that for strongly nonlattice F0, 

sup IEo,Rb - Ex1RlI = O(e- b), 
01E[0, 0*] 

for some a > 0. But then (31) holds with Rx replaced by Rb_6; more precisely, 

(32) E,[ST - (b - )] = 3 + 01(K - 32) + o(0), 

as 01 0, b -> oo and 01b - constant. Equation (30) now follows from Lemma 2. m 

4. Analysis of the approximations. We first prove part (ii) of Theorem 1, then 
parts (i), (iii), and (iv) and the corollary. 

4.1. Stockout probability. For Theorem l(ii), we write 

Po{Y 1> b} = Peo{T < ?}) = Eo[e-YST], 

where the first equality follows from (13), and the second is Wald's identity. By Taylor 
expansion, 

(33) P^,{Y' > b} = e-ybEo 1 - y(ST- b) + 2 (ST-b) + O(Y3) 

- e-b(l - YE0[ST - b] + -2-E1(ST - b)2 + 0(3)}. 

That the term EF1[0(y3)] is 0(y3) follows from the inequalities 1 - x + (x2/2) - 
(x3/6) < e-x < 1 - x + x2/2 and the convergence of E1(ST - b)3 to a finite limit, as 
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ensured by (20). If Fo is strongly nonlattice, substitute (30) and (20) with m = 2 into 
(33), recalling that P = EoR., K = EOR2, to get 

Po{yl' >b} -= e (l-(1 
- y (3 + Y(K 

- 
2) + o()) 

+ -(K - 2 + 2 + 2 +o()) + O(y3) 

= e -(b+3--) + o(y2). 

For merely nonlattice F0, (30) need not hold, but we still have 

E0[ST - b] =/3 - + + o(l), 

according to (20). The approximation therefore becomes 

Poo{1 > b) = e-b{1 - y( /3 - + o(l)) + o(y)} 

=e- (b+P-f) + (y). 

4.2. Mean shortfall. We prove Theorem l(i) by establishing the equivalent fact 
that 

Eo0Y1 = -l - + + O(y). 

Suppose the maximum of the random walk Sn is attained at r* and that of the 
perturbed random walk Zn at T*. Let W = maxn 0 Sn = ST*. As a consequence of 
(12), the maxima are attained simultaneously if both are attained after n* - 1. 
Therefore, we have 

(34) Eo[Y1 - W- ] = E0[ST* + T* - ST* ] 

< E0o[(ST* + T* ST* - );T <n*] 

+ E0O[(ST*+ * + - S,* -);T* < n*] 

< ( max - )(Po{r* < n*} + P{T* < n*}). 

d 
The equality uses yl = ST* + T*, and the second inequality uses ST* < ST*. 

Below we argue that Po0{* < n*} and Poo{T* < n*} are 0(y). Once this is 

established, (6) applied to EooW proves part (i) via (34). It suffices to verify that 
Poo{T* < n*} is O(y), because the claim for Po{r* < n*} is a special case (n =- 0). 

Define strong ascending ladder epochs {Tk0, k > 0}, (T?) 0) for Zn just as they 
are defined for Sn (e.g., Asmussen 1987, p. 167). Then the perturbed walk attains its 
maximum at 

T* = sup{T?k): T(k < c, k > 0}. 

Let m* = maxn n and f, = minn fn. If we define 

t(1) = inf{n > 1: S,n + * > 0} 
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then t(l) > Tl), a.s., and therefore 

(35) Poo{Tl) < 0} > Poo{t() < C} = El[e- St(')] 

= El[1 - YS,t(l + o(y)] = 1 + 0(), 

because limol - EolSt(l) = EoSt() < oo. For k 2, set 

t(k) = inf{n > Tk 1): Sn + * > STk-1) + 4*). 

Observe that t(k) > Tk), a.s., and 

d tA t(k) t inf{n > 0: Sn > * , 

for all k > 2. Obviously, 

(36) Poo{Tk) < o}j Po{t(k) < o?} = Poot' < ?} = 1 + 0(y). 

Finally, by defining N = sup{k > 0: Tk) < oo} we conclude that 

P^ooT* < n*} < Poo{N < n*} 

n* -1 

= Poo{N=k} 
k=O 

n*- 1 
= P0{Tr) < } ... PoO{T?k) < o}PO{0T(k+l) 0} 

k=0 

= (y), 

the last equality following from (35)-(36). c 

4.3. Average backlog. Suppose Fo is strongly nonlattice. In a single-node system 
we have n 0, so yl W= max no S,n and the approximation for the average 
backlog becomes 

(37) Eo0(W- b)+ e-y(b++) + 1 (37) E60( W-b) = -e-Y(b+3) + o(7), 

where, as before, W = maxn> o S.n We first prove (37), then use this approximation to 
prove part (iii) of Theorem 1. 

PROOF OF (37). Using T' defined in (14) and the strong Markov property, we write 
the average backlog as 

Eo0(W- b)+ = P4O{W> b}EWo[W- blW > b] 

= 
Po{W> b}(EOoW + E,o[S,- brI' < oo]). 
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The probability P,o{W > b} can be approximated by (7) and EooW by (6), whereas 

(38) Po{ W > b} Eo [ S, - bIT' < oo] 

= Eoo[ST - b] 

= E,[(S, - b)e-YS'] 

= 
e-'b{Eo[S, 

- b] - yEo,(ST - b)2 + o(y)} 

= e 
-b( 3 + (K - p32) + 

0(7)) 
- (K + o(1)) + 

o()} 

= e Ybf - (K+ 2) +O ) 

Combining the approximation gives (37). 
We now prove the general case of Theorem l(iii). Suppose that the following hold 

as b - oo, 00 T 0 and bOo -> constant: 
(a) EoO([W + 4* - b]1)2 = 0((-2), 
(b) E0o([W + 4 - b]+)2 = O(y-2), 
(c) Poo{r < n*} = O(e-"lb), a1 > 0, and 
(d) Poo{T < n*} = O(e-ab), a1 > 0. 
With T* the time Z, achieves its maximum, write EoO(Y1 - b)+ as Eoo(ZT* - b)+ 

and decompose the latter as 

(39) E,o[(ZT* -b)+;TA < n*]+ E,o[(ZT - b)+; T n*,r2 n*]. 

For the first term in (39) we have 

(40) Eo[(ZT* - b)+;T A < n*] 

< EOo[(W + * - b)+;T T < n*] 

< /Eoo([W+ bl+ -b ) Po{9T A T < n*} = O(e -b), 

by (a), (c) and (d). For the second term, we have 

(41) Eoo[(ZT 
- b)+; T n*T > n*] 

= E,o[(W - b + );T > n*, n*] 

= Eo(W -b + )+ - EO0[(W- b + ')+;T r ̂ < n*]. 

It follows from (b)-(d) that E.o[(W - b + s)+; T A T < n*] is O(e-b). Theorem 
l(iii) now follows from (39)-(41) and (37). 
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It remains to verify (a)-(d) above. Define T" = inf{n > 1: Sn > b - s*}. By the 
strong Markov property, 

(42) EOO([W+ * - b]' )2 = Eo[(W+ * - b)2; W> b - *] 

=E00[(W' + Rb, )2; T"<00, 

where W' has the same distribution as W and is independent of (T", Rb_ *). The 
expectation in (42) is no larger than 

2EW2 Poo{ T" < o w + 2E0o[R2 _ ;T < . 

Now E, W2 is indeed O(y-2) according to equation (10) in Siegmund (1979); 
Poo{T" < oo} is e -Y(b- *+f) + o(y2) according to (7); and 

E,[R2_*; T" < oo] = e (b-)E[R2 e-Rb] 

= e-(b-*)E ,[R2, - y,R3_ + o(y)] 

e- y(b-6*)[ K + O(1)] 

Combining these approximations proves claim (a). Claim (b) follows automatically 
from (a). An argument similar to that leading to (29) proves (c) and (d). 

If we assume merely that F0 is nonlattice, then the approximation for the average 
backlog in a single-stage system becomes 

Eoo(W-b) = e- (b+) + o(). 

The lower-order error is a consequence of the fact that, in the argument used for 
(37), Po{W > b} is now replaced with e-7(b+?) + o(y), and (38) with e-yb[ 8 + o(1)]. 
Appropriate modification of the proof above leads to an error of o(1) in the 
multistage approximation as well. 

4.4. Unfilled demand. The unfilled demand defined in ?1 can alternatively be 
written as 

(43) u(b) = E,o(Y1 + D - b)+ -(Y- b) ] 

=E0 DPoo(Yl > b -y)dy. 

The fact that E,O[exp(yD)] = exp(yc*) implies that 

(44) 1e -(b+p- )(eYc - 1) = Eo De y(b-y+ 6i )dy. 

We therefore need to show that 

E rD B= Eo P0(Y > b -y) -e- -y -dy 

is o(y2-e) for strongly nonlattice F0, and o(y1l-) for nonlattice F0. 
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For any 0 < e < 1, define 

B1 = Eo JP,(Yl > b -y) - e- (b-Y+- )dy; D > be 

and 

B2 =l b P(Y1 > b -y) 
- 
e-(b-Y+i- ) dy; 

then B < B1 + B2. Since yb -> constant, B1 is bounded by a constant times 

E0[De'D; D > be] = Eo[D; D > b'] + yEJo[D2; D > bE] 

+ -2 
Eo[03; D > be] + 

o(2). 

For each k = 1, 2,3, and sufficiently small a > 0, 

Eoo[Dk; D > bE] = e-? c*:Eo[DkeeoD- (0?); D > bE] 

e- o* Eo[Dk;D > bE] 

< e-abVe- oC*Eo[DkeaD] = O(e-ab), 

which is O(e-' /7) for some a' > 0, and, in particular, is o(y2). 
For the other term we have 

(45) B2 < b sup Poo(Y > y) - e-Y(y+"-f) . 
y E [b -b,b] 

For any sequence {Yb} with Yb E [b - bE, b] we have lim Yb 0o = lim bOo, so Theorem 
l(ii) implies Po(Y1 > Yb) = exp(- y(Yb + /3 - s)) + o(y2). But then the supremum 
in (45) is also o(y2), from which it follows that B2 (hence also B) is o(y2- ). Exactly 
the same argument establishes an error of o(y1l-) in the nonlattice case. 

d 
In a single-node system, [Y' + D - c* ]+= y1, so (43) can be rewritten as 

u(b) = P(Y > b - y) dy. 

The argument applied to (45) shows that the convergence of the integrand to 
exp(- y(b - y + /3)) is uniform over [0, c* ], and thus that the error in the approxi- 
mation to u(b) is o(y2). o 

4.5. Safety stock. We now prove Corollary 1. 
From Theorem l(ii), we have 

pVo{y > s1} = e-Y(S46+6-) + o(y2) 

= 8 + o(y2). 
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The claim for 1 - f(s^) with the first expressio ivn given for s follows the same way 
using (3) and Theorem l(iv). With the second expression given for sl use (9) to get 

1 -f(s) = ( 1 + y(s^ 13- C* + (yc* +O(3)) + (y) 2 C*2 2 0c*)2 

= (l + Y )e-(s^+-f(e yc*/2 + 0(y2)) + O(y) 
+( 2c 

e-y(s1+ - 
)(eyC*+ O 

= (1 + 2c* )e- y/2C* + (y) 

= a + o(7). o 
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