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We develop bounds and approximations for setting base-stock levels in production-inventory systems with limited production 
capacity. Our approximations become exact as inventories become critical, meaning either that the target service level is very high or 
the backorder penalty is very large. Our bounds apply even without this requirement. We consider both single-stage and multi-stage 
systems. For single-stage systems, we find tight bounds and asymptotically exact approximations for optimal base-stock levels; for 
multistage systems, our results give partial characterizations of the optimal levels. Part of our analysis is a precise connection, in the 
critical regime, between a multistage system and an associated single-stage system consisting solely of the bottleneck facility. 

O ne purpose of inventory is to ensure that certain 
types of events-stockouts, large backorders, lost 

sales-are rare. If, say, backorder penalties are very large 
or the target service level is very high, then such events 
must be very rare. In some cases, rarity facilitates the anal- 
ysis of a model through simplifications that emerge when 
rare events become extremely rare. 

We develop and exploit this principle in an analysis of 
single- and multistage production-inventory systems with 
limited production capacity. The constraint on capacity, 
which could also be interpreted as a limitation on order 
size, complicates the problem of setting safety stocks either 
to ensure a certain level of service or to minimize costs. 
We show that in single-stage systems the required safety 
stocks admit simple approximations that become exact as 
inventories become critical, meaning that a target service 
level becomes high or, equivalently, that a backorder pen- 
alty becomes large. We supplement these approximations 
with bounds that remain valid over a wide range of param- 
eters, not just in the critical regime. For multistage sys- 
tems, we establish analogous asymptotics and bounds; 
however, the step from these results to the required stock 
levels is not as direct as it is for single-stage systems. 

Underlying all our approximations is a result stating that 
tail probabilities associated with shortages decrease expo- 
nentially fast as safety stocks increase. The rate of this 
exponential decrease depends on the distribution of de- 
mands and on the system capacity, but is easily evaluated. 
Inverting exponential approximations to probabilities of 
shortages results in logarithmic approximations to stock 
levels required to meet a service objective or minimize a 
cost function. These inverted approximations are also as- 
ymptotically exact. A simple modification of the approxi- 
mations results in upper and lower bounds, differing only by a 
constant from the exact asymptotics. Examples indicate that 
the gap between these bounds is often small. The bounds 
appear to be most effective when utilization is not too low. 

In more detail, the models we consider have the follow- 
ing features. A single type of item is produced either by a 
single facility or by several facilities in series. Inventories 
are reviewed at intervals of fixed length; demands within 
each period follow a fairly arbitrary distribution but are 
assumed independent from period to period. Demands not 
met from stock are backordered. After the total demand in 
a period is revealed, production is set to try to restore 
inventory to a specified target, called a base-stock level. 
However, production in a single period may not suffice in 
reaching the target, because of a capacity constraint. Addi- 
tionally, in our multistage model each stage draws raw mate- 
rial from upstream stages; the possible depletion of upstream 
inventories further constrains production in each period. 

For the single-stage version of this model, Federgruen 
and Zipkin (1986a, b) show that a base-stock policy is in 
fact optimal; Tayur (1993) discusses computation of the 
optimal base-stock level. Clark and Scarf (1960) establish 
the optimality of base-stock policies in serial, incapacitated 
multistage systems; see Rosling (1989) for more general 
topologies. These results (and ease of implementation) 
make base-stock policies natural candidates for multistage 
capacitated systems. Veatch and Wein (1994) show exper- 
imentally that base-stock policies are often close to opti- 
mal in a class of two-stage capacitated models; see also 
Lee and Zipkin (1992). A simulation-based optimization 
procedure and related stability issues for the model consid- 
ered here are investigated in Glasserman and Tayur (1994, 
1995), which may be consulted for further references. 

The principal tool for the analysis in this paper is a set 
of techniques developed, to some extent in parallel, in risk 
theory, queueing theory and sequential analysis. These 
techniques provide approximations to tail probabilities as- 
sociated with random walks. Key sources include Asmus- 
sen (1987, Chapter XII), Feller (1971, Chapter XII) and 
Siegmund (1985); these texts include references to earlier 
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work in corresponding application areas. In our single- 
stage system, the stationary shortfall-the amount by which 
the base-stock level exceeds net inventory-has the distri- 
bution of the maximum of a random walk with negative 
drift, as does the stationary waiting time in a single-server 
queue. In our multistage system, the shortfall for each 
echelon has the distribution of the maximum over several 
dependent random walks. Through this link we obtain as- 
ymptotically exact approximations to tail probabilities for 
shortfalls, and hence to required base stocks. Related tech- 
niques have recently been used to analyze overflow proba- 
bilities in telecommunications systems; see Chang (1994), 
Whitt (1993), and references there. 

This paper is organized to make the most important 
results as immediate as possible. A reader interested in the 
practical consequences of our analysis will find them in 
the first three sections; theoretical developments and 
longer proofs are postponed to the end. The single-stage 
system is treated in Section 1, beginning with a detailed 
formulation of the model, proceeding with the asymp- 
totics and bounds, and concluding with extensions to 
variable production capacity. Section 2 treats the com- 
putation of bounds in more detail and includes numeri- 
cal examples illustrating their performance. Section 3 
extends the results of Section 1 to multistage systems. 
Background on random walks and proofs of our main 
results appear in Section 4. 

1. THE SINGLE-STAGE SYSTEM 

1.1. Shortfall Formulation 

We consider a storage facility supplying external demands 
and receiving stock from a production facility. Time is 
divided into periods of fixed length. In each period, de- 
mands arrive and are either filled or backordered. The 
system operates under a base-stock policy in which produc- 
tion is set in each period to restore inventory to a target 
level s while not exceeding the per-period capacity c of the 
production facility. Thus, if I, denotes the net inventory 
(on-hand inventory minus backorders) at the start of pe- 
riod n, and if Dn is the demand in period n, then produc- 
tion in period n is minfc, s - In + Dn}. The net inventory 
at the start of the next period is 

In +1 -In - Dn + minfc, s -In + Dn I 
= min{c + In - Dn, s}; 

in particular, on-hand inventory never exceeds the target 
level s. 

Our analysis is simplified if, instead of the net inventory 
In, we work with the shortfall Yn= s - In, the amount by 
which the target inventory exceeds the net inventory. In 
light of (1), Yn is nonnegative and satisfies 

Y +1= s -min{c + In -Dn, s} (2) 
-max{Yn + Dn- C, 0}. 

This is a Lindley recursion and shows that the shortfall 
sequence coincides with the waiting-time sequence in a 

single-server queue with service times {D7, n : O} and 
fixed interarrival time c. This correspondence is used in 
Tayur and is part of the general treatment of queueing and 
inventory models in Prabhu (1965). 

It follows from (2) that if we assume demands are inde- 
pendent and identically distributed with 

E[D1] <c, (3) 

then Yn converges in distribution to a random variable Y 
satisfying 

d 
Y = max{Y + D - c, 0}, (4) 

where - denotes equality in distribution and D is a ran- 
dom variable independent of Y having the distribution of 
demands. Equation (4) thus states that, in stationarity, the 
shortfalls at the start and end of a period have the same 
distribution. 

Various measures of performance are easily expressed 
in terms of Y. The long-run average proportion of peri- 
ods in which no stockout occurs, the stock availability, is 

a (s) = P(Y - s). (5) 

The fill rate, which is the long-run average proportion of 
demands met from stock, is given by 

:(s) 1 _ E[max{O, min{Y + D - c - s, D}}] (6) 
E[D] 

To see this, observe that when the shortfall is Y and the 
demand is D, the demand not met from stock is all of D 
if Y > s (no on-hand inventory) and is the amount by which 
Y + D - c exceeds s if Y - s. Thus, E[max{O, min{Y + D - 

c - S, D}}] is the expected demand not met from stock in 
each period. 

Writing x+ for max{O, x}, the long-run average expected 
backlog is 

b(s) = E[(Y -s)]. (7) 

Dividing this by the mean demand E[D] gives 

(S) _E[(Y - s) +] (8) 
w~) E[D](8 

interpreted as the average delay per unit demand, under 
the convention that demands filled in the same period they 
arrive have a delay of 0, demands filled in the next period 
have a delay of 1, etc. If backorders are penalized at rate 
p > 0 and holding costs charged at rate h > 0, then the 
long-run average cost per period is 

v(s) hE[(s - Y)+] + pE[(Y- s) +] 
= h(s - E[Y]) + (p + h) E[(Y - s) +]( 

We develop approximations for these performance mea- 
sures and for base-stock levels that achieve specified values 
of these measures. 

Equation (2) and definitions (5)-(9) presuppose that 
production decisions are made after the total demand in a 
period is revealed. To model a system in which production 
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Table I 
The Parameter -y for Some Demand Distributions 

(The third column gives defining equations for y along with the range in which it must lie.) 

Name Density/Mass En. Gamma 

Exponential ( e- )CY= l in (0q4t 

Normal (a \Plr<'exp j2]- y2(c- lo 

r n- 1 
___ =1 n 0q Gamma 17(m)e -'71 n O~x 

HyperexpnI. plile "x + (1 -,p)pv2e-A~x p( + (1 CP 
-Y 1 tin (0, minfpc1, tt4) 

I 'y) P)(I2 - Y)1 
Poisson e Ak/k! A(e7y - It) - -ye = 0,y y> 0 

Neg. Binom. (Au \ )Pm(1 p)k InM m log~l +p-'(eC - 1)1 ?,y = 0, in (0, - log(1 -p)) 

must be set before the demand is known, it suffices to 
introduce a leadtime. See the remark in Section 1.2 and 
the discussion of leadtimes in Section 3.3 for this case. 

1.2. Main Results 

Our approximations rely on some mild assumptions on 
demands. We continue to assume that {Dn, n - 0 } are 
(non-negative and) i.id., and we denote their distribution 
by FD. Demands are assumed to be either continuous or 
else integer-valued. In the discrete case, we assume that c 
and s are also integer-valued and that the demand distri- 
bution has unit span. This last assumption is not essential, 
but it simplifies the discussion. The stability condition (3) 
is in force throughout. In addition, we assume that 

P(D1 > c) > 0; 

otherwise, demands can always be met from the current 
period's production. Our most important assumption in- 
volves the moment generating function of D1 - c, given by 

00 
43(0) _ e0c f e' dFD(x). 

We assume that there exists a 00 > 0 at which 

1 < 4(00) < ax (10) 

This condition, together with the convexity of , and the 
fact that +(0) = I and 4'(0) = E[D - c] < 0, implies 
the existence of just one y > 0 with (y) 1, which then 
has '(Vy) < o; that is, 

E~e 8T(D -,)] = (1 1) 

and E[(D1 - c)e (D1c)} < oox The solution y to (11) is 
called the conjugate point for the distribution of D] - c. It 
plays a central role in our approximations, beginning with 
Theorem 1, below. In the statement of the theorem, the 

notation f(x) - g(x) means that f(x)lg(x) converges to 
unity as x -m o. For functions of integers, the limit is taken 
through integer values of x. 

Theorem 1. There is a constant C, 0 < C - 1, depending on 
the demand distribution and the capacity such that 

(i) the stock availability satisfies 1 -'a(s) - Ce7'; 
(ii) the average backlog satisfies b(s) (C )eCYs; 

(iii) the average delay satisfies w(s) (C/yE[D])e7S; 
(iv) the fill rate satisfies 1 - P(s) (C/yE[D]) 

(1 - e- c)eYS 

The proofs of this theorem and of most of our results 
are given in Section 4. The conjugate point y featured in 
these approximations exists for all commonly used demand 
distributions; Table I gives examples. Generally, y is not 
available explicitly but numerical solution requires little 
effort. Indeed, in all our examples we evaluated y to sev- 
eral decimal places of accuracy using basic commands of 
widely available spreadsheet software and negligible com- 
puting time. (See Neuts 1986 for a closely related compu- 
tation in the matrix-geometric setting; see Whitt for 
approxmations.) 

In practice, the constant C may be difficult to evaluate, 
so further approximation is warranted. (An earlier version 
of this paper discusses numerical evaluation of C.) A sim- 
ple upper bound is obtained by replacing C with 1. Some- 
what better bounds are obtained by adapting a method of 
Ross (1974) (see also Asmussen 1993) as follows. Define 

C _inf (E[exply(D1 r)}ID1 > r]) Ads and (12) 

C =su (E[exply(D -r)}fD 1 > r])<' (13) 

Then we have 
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Theorem 2. For all s > 0, 

(i) C_e-YS 1 - a(s) - Ce-6Ys; 
(ii) (C_1,y)e-'Y S b(s) - 

(C,/y)e-YS; 
(iii) (C_2yE[D])e-Ys - w(s) - (C?/yE[D])e-Ys; 
(iv) (C_1,yE[D])[1 - e-Yc]e-Ys - 1 - 13(s) - (C+/ 

'yE[D])[1 - e-'Yc]e-Ys. 

We give some explicit expressions for C_ and C+ and 
illustrate their use in Section 2. 

As a special case, consider exponentially distributed de- 
mands with mean 14tk. In this setting, as noted by Tayur, 
the stationary shortfall distribution coincides with the sta- 
tionary waiting time in a D/M/1 queue. Moreover, by the 
memoryless property, the conditional expectations in (12) 
and (13) do not depend on r, so C_ = C+ = 1 - y/t and 

P(Y > s) = - e -Yes, (14) 

where -y solves e-YC/(A - y) = 1. Indeed, the equality 
P(Y > s) = Ce-Ys holds for all G/M/1 queues; see Prabhu 
(1965, p. 109) or Asmussen (1987, p. 204). 

As an application of Theorems 1 and 2, we consider the 
problem of setting the base-stock level to ensure that, over 
an infinite horizon, stockouts occur in at most a fraction 
6 > 0 of periods. This is the problem of setting s so that 
a(s) 3 1 - 6, with 6 equal to, say, 0.01. 

Corollary 1. Let se be the minimal base-stock level for 
which a stock availability of at least 1 - 8 is guaranteed; 
i.e., the minimal s satisfying a(s) - 1 - 6. Then 

y log(C 2) S s8 

S y 1 log(C,/6) for all sufficiently small 8 > 0, (15) 

and s3 s - y-1 log 6 for all 6 > 0. If the demand distribu- 
tion is continuous, 

IS 8 -Y-1 log(C/)I-> 0 as ->0. (16) 

Let s' be the smallest s for which 3(s) - 1 - 6. Then 

'y-1 log(CJ1 - e-'Yc]/y6E[Di]) 

~sas'8 S y1 log(C+[1 - e cl/y6E[DiI), (17) 

for all sufficiently small 6 > 0. If demands are continuous, 
then 

Is, - y-1 log(C[1 - e -1c]/y6E[Di])j ->O as ->O. 

(18) 

Proof. The bounds on sa follow from Theorem 2(i) by 
inverting the bounds on a and the fact that C - 1. The 
bounds in Theorem 2 are valid only for s > 0, so to invert 
them we need 6 < Car in (15) and 6 < C4[1 - epicI/ 
('yE[D1]) in (17), which is not a restriction since we are 
primarily interested in small 6. 

For (16), notice from (15) that s5 -> oc as 6 ->0, so from 
Theorem 1(i), Cl1ees6P(Y > s8) ->1; i.e., C-leys8 - 1, 
implying that 

log C-1 + Ys + log 5 ->0, 

which is equivalent to (16). The assertions regarding s. are 
proved in the same way. El 

With a discrete demand distribution, we may have 
P(Y > s3) < 6 for arbitrary 6, but we still have P(Y > s,,) 
= 6,n through a subsequence {6.}, so 

lim inf Is - _-1 log(C/6) = 0; (19) 

moreover, the difference never exceeds 1. 
A variant of Corollary 1 holds for the base-stock level 

minimizing the long-run average cost v(s) defined in (9). 
We examine the optimal base-stock level as the backorder 
penalty p becomes large. 

Corollary 2. Suppose FD is continuous; then v is convex. 
Suppose sp minimizes v; then 

'y4 log((p + h)C-/h) s 5p S y1 log((p + h)C,/h) 
for all sufficiently large p, (20) 

and sp - y-1 log((p + h)/h) for all p > 0. Moreover, 

Isp - 'y-1 log((p + h)C/h)I -> as p -? ?o (21) 

Proof. Differentiation of (9) yields v'(s) = h - (p + 
h)P(Y > s), an increasing function of s, making v convex. 
The minimum of v is achieved at the point sp satisfying 
V'(sp) = 0; i.e., satisfying P(Y > sp) = h/(p + h). The 
bounds and limiting behavior of sp thus follow from 
the bounds and asymptotics of the tail distribution of Y, 
just as in Corollary 1. E] 

Remarks. (i) The conclusions in (16), (18), and (21) are 
very strong. It is clear, for example, that sp must increase 
as the penalty p increases. A result of the form sp - y-1 
log((p + h)C/h) would imply that sp increases at the same 
rate as the approximating logarithm. But (21) shows not 
only that the two expressions increase at the same rate, but 
that the difference between them vanishes as p increases. 

(ii) The limits in (16) and (21) are taken as 6 -> 0 and 
p -> oo, respectively. One cannot also let c -> oo without 
further justification; thus, our asymptotics do not necessar- 
ily recover results for uncapacitated systems as the capacity 
becomes large. (This should be kept in mind in later sec- 
tions as well.) In general, the effectiveness of our bounds 
and approximations tends to increase with the ratio p = 

E[D]/c. 
As already noted, in the case of exponentially distrib- 

uted demands the approximation P(Y > s) - C exp(- ys) 
becomes exact. Accordingly, the optimal sp becomes ex- 
actly y41 log((p + h)C/h) for all p > 0. This is Tayur's 
result, except for the fact that he penalizes backorders 
after demands arrive, before the current period's produc- 
tion. In other words, he solves P(Y + D > s) = h/(p + h), 
rather than P(Y > s) = h/(p + h). This can also be viewed 
as introducing a leadtime of 1 between production and 
availability of finished goods. Our approximations are eas- 
ily adapted to this case; in particular, for s > c 
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P(Y+D >s) =P(max{Y+D -Cc, O} >s -c) 

= P(Y > s - c) Ce -Y(s - c), 

so the effect on the asymptotic behavior is to change the 
constant C to Ceyc. It follows that in (15) and (20), c 
should be added to both the lower and upper bounds (with 
the lower bound now valid for s > c, rather than s > 0), 
and in (16) and (21), c should be added to the limiting 
approximations. 

We give further exact expressions for the exponential 
case in the following result. These are direct consequences 
of (14). 

Proposition 1. Suppose the demand distribution is FD(X) 
1 - exp[-px]. Then, for all s > 0, 

(i) 1 - a(s) (1 - y/pt)e7YS; 
(ii) b(s) = (1 - y/)fi ey ; 

(iii) 1 - ,8(s) e-=(s"). 

1.3. Imperfect Production 

The approximations of the previous section can be modi- 
fied to account for variability in production resulting from 
yield losses, variability in capacity, or shortages of raw 
material. A simple model of imperfect production replaces 
the fixed capacity c with an i.i.d. sequence {Zn, n - 1} in 
which Zn represents the maximum nondefective produc- 
tion in period n. With this modification, the shortfall evo- 
lution becomes 

Ynlj = max{O, Yn + Dn - Zn1, 

keeping us within the general framework of the previous 
section. Suppose E[D1] < E[Z1] and P(Dj > Z1) > 0, and 
suppose the moment generating function of D1 - Z1 sat- 
isfies (10). Then there is a y > 0 solving 

E[exp{y(Dj1 -Zj1 ) 1, (22) 

and the argument that proves Theorem 1 shows that there 
is a constant C (depending on the distributions of D1 and 
Z1) such that 

P(Y > x) - Ce Al, 

which is equivalent to part (i) of Theorem 1. The other 
results of Section 1.2 follow accordingly. 

This extension can be used to assess the impact of pro- 
duction variability on required base-stock levels, In the 
simplest case, the production facility is down with proba- 
bility q and up with probability 1 - q. To keep the average 
capacity fixed at c, we thus set 

P(Z1 = 0) = q, P(Z1=c/(1 q)) = 1 -q. (23) 

With Yq the corresponding solution to (22), we examine 
the dependence of yq on q since this, then, determines the 
dependence of base-stock levels on the failure probability. 
An exact analysis is possible in the case of exponentially 
distributed demands: 

Lemma 1. Suppose the demand distribution is FD(x) = 1 - 

exp[-pvxj. Then y, = (1 - q)y, where y - ryo is the param- 
eter in the case of perfect production. 

Proof. Under (23) and exponential demands, Equation 
(22) becomes 

1 = E[exp(,yqD,)](q + (1 - q) exp[-yqc/(l - q)]) 

= (,/(, - yq))(q + (1 - q) exp[-yqc/(l - q)]). (24) 

At q = 0, this simplifies to 

1 - e-'Y- '=0. (25) 

Since (24) has at most one nonzero solution in (0, g), it 
suffices to show that setting yq = (1 - q)y solves (24). 
Making this substitution and collecting terms involving q 
yields 

- et/C - 1 ) - e 7c- 7, 

which holds, in light of (25). 

Thus, in the case of exponential demands, the bounds 
sa s _y1 log 8 and sp -- _-1 log[h/(p + h)] (which also 
serve as rough approximations) become 

s3 -((1 - q)y) 'log b, and 

SP ((1 - q),y) log[h/(p + h)] 

to account for the failure probability q. Taking this a step 
further, we obtain exact results: 

Proposition 2. Suppose the demand distribution is FD(x) = 

1 - exp [ -x]. Then 

S= -((1 - q)fy) log(8/Cq) and 

s= -((1 - q) y) log( (h h ,)) where 

Cq 1 -_q = 1 -q)y 

and y =o is the conjugate point for the case of perfect 
production. 

For more general demand distributions, it does not 
seem possible to give an explicit expression for the depen- 
dence of yd on q. But it is a simple matter to examine this 
dependence numerically. Figure 1 illustrates this depen- 
dence for various Erlang and hyperexponential distribu- 
tions with fixed mean. (The graphs are piecewise linear 
interpolations of points calculated at the q-values labeled 
on the horizontal axis.) Decreasing the coefficient of vari- 
ation below 1 appears to make yq more convex in q; in- 
creasing it above 1 appears to make the dependence more 
concave. In addition, the impact of demand variability is 
most pronounced at low failure probabilities. 

Expli it results on the effect of production variability are 
also possible if we postulate normal distributions for both 
demand and production. Any normal distribution assigns 
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Failure Probability q 

Figure 1. The dependence of yq on the failure probability 
q for five demand distributions. In each case, 
c = 1 and the mean demand is 0.7. From top to 
bottom, the curves correspond to the following 
demand distributions: 3-stage Erlang, 2-stage 
Erlang, exponential, and hyperexponentials with 
cv = 2 and cv = 3. 

positive probability to negative values, but this probability 
is made negligible by a sufficiently small variance. Let us 
suppose, then, that demands are normal with mean t and 
variance a.2, and that maximum production is normal with 
mean c and variance o-2. Denote by yer the conjugate 
point when the variance of capacity is o2Q. A simple manip- 
ulation of moment generating functions (see Table I) 
proves the following: 

Proposition 3. For normally distributed demands and ca- 
pacity, the effect of variability in capacity is to set yc = 
(o.2/(o.2 + o2))y where C2 is the demand variance and y 
Yo is the conjugate point for constant capacity. 

Thus, in the normal case, y is a decreasing, convex func- 
tion of production variability-the same qualitative depen- 
dence as observed on q in Figure 1 for Erlang demand 
(but not for hyperexponential demand which appears con- 
cave). The normal case lends itself to accurate numerical 
approximation of the constant C, making it attractive for 
calculation; specifically, adapting page 175 of Siegmund, 
one obtains the approximation 

C exp[ -2(0.583)( 12 + Or2+ 

Combining this with Proposition 3 and (21), we arrive at 
the approximation 

s (~ 
or-+ 

''') log( 
+ h - _o0.583 Vof2 

+ OQ2 (26) 
t2 (c-te g h /c 

suggesting that the optimal base-stock level is convex in oC 

2. COMPUTING BOUNDS 

In this section, we evaluate the bounds in Theorem 2 for a 
variety of demand distributions, including the Erlang and 
hyperexponential families. These families provide two- 
moment approximations to all distributions and can thus 
model a wide range of demand patterns. We show through 
examples that the bounds for the Erlang and hyperexpo- 
nential families are effective. 

In referring to demand distributions, we use some ab- 
breviations. We say that demand is Em(y) if 

m 1 ( iX 
FD(X) 1 - i, C eX, 

i=o l! 

and demand is H2(1, I2, P) if 

FD(X) = 1 - pe -Alx - p)e 2X 

with ,uL - /12 and 0 s- p < 1. Demands follow an NBU 
distribution (new better than used) if 

1 - FD(X +Y) S (1 - FD(x))(1 - FD(y)), 

for all x, y > O0 

and NWU (new worse than used) if the reverse inequality 
holds; see Chapter 6 of Barlow and Proschan (1975) for 
background. This terminology arises in reliability theory; 
the terms new and used have no interpretation for demand 
random variables, but the classes of distributions NBU and 
NWU are still useful in modeling. 

We summarize bounds on C in 

Proposition 4. The following bounds hold: 

(i) For all demand distributions, C S 1. 
(ii) If demands are NBU then C - e-Yc - C, and if 

demands are NWU then C < epYc - C+. 
(iii) If demands are Em(pg), then 

C =e-Yc<C<e-Yclm = C+ 

The same is true for the negative binomial distribution in 
Table I. 

(iv) If demands are H2(tl, A2, P), then 

C_ = 1 - - S C -, e -'Yc = C +. 

(v) If demands are bounded above by b, then e-yb S C. 

Figures 2-4 illustrate the performance of these bounds 
in a range of settings. Figure 2 plots the upper and lower 
bounds on ski given in (15) as the stock availability 1 - 8 
ranges from 90% to nearly 100%. The bounds plotted are 
for two-stage Erlang demand with a mean of 0.9. In all our 
examples we take c = 1, meaning that s is measured in 
units of capacity. Thus, the ratio E[Dl]/c, which we call p, 
is just the mean demand. The graph shows that the bounds 
are quite close together. Indeed, it follows from (15) and 
Proposition 4 that the vertical distance between the two 
curves is f1 log(C?/C_) - 1/2 for all &. With in-stage 
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BOUNDS ON MINIMAL BASE STOCK 
Erlang(2) Demand at Rho=O.9 
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Stock Availability 

Figure 2. Upper and lower bounds on the minimal base- 
stock level required to meet a specified stock 
availability. Demand in each period has a 2-stage 
Erlang distribution. The ratio p of mean demand 
to capacity is 0.9. 

BOUNDS ON OPTIMAL BASE STOCK 
Erlang(2) Demand at Rho=0.7 and 0.9 
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Figure 3. Upper and lower bounds on optimal base-stock 
levels for various ratios of backorder penalty to 
holding cost. Demand in each period has a 
2-stage Erlang distribution. The ratio p of mean 
demand to capacity is 0.9 in the higher pair of 
curves and 0.7 in the lower pair. 

BOUNDS ON OPTIMAL BASE STOCK 
Hyperexponential Demand at Rho=0.7 
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Figure 4. Upper and lower bounds on optimal base-stock 
levels at p = 0.7 and three different coefficients 
of variation (cv). Demand in each period has a 
hyperexponential distribution. The highest pair of 
curves are bounds for cv = 3; the middle pair are 
bounds for cv = 2; and the lowest curve is the 
exact value for cv = 1 (exponential demands). 

Erlang demands, the vertical gap is 1 - 1/m, so the gap 
increases with m. 

Based on (20), Figure 3 presents similar results for the 
optimal base-stock level as a function of the ratio p/h of 
backorder penalty to holding cost. The lower two curves 
give bounds for p = 0.7, the upper two curves are for p = 

0.9. The graph illustrates that the bounds are quite close 
compared to the change in sp when p is increased from 0.7 
to 0.9. Not surprisingly, the optimal base-stock level in- 
creases with p. As in Figure 2, the vertical distance be- 
tween each pair of bounds is 1/2, and would be 1 - 1/m 

with mr-stage Erlang demands. It can be shown using The- 
orem 2 and (20) that the additional cost incurred by 
setting s at either the upper or lower bound (instead of 
the optimum) is bounded in p, and thus the relative loss 
of optimality vanishes as p increases. For the cases in Fig- 
ure 3, we found through simulation that the cost gap using 
the lower bound ranges from about 10% to less than 1%, 
whereas the cost at the upper bound is virtually indistin- 
guishable from the optimum. 

Figure 4 shows results for hyperexponential demand. 
We fix p at 0.7 and examine the impact of demand variabil- 
ity, as measured by the coefficient of variation (cv). A cv of 
1 corresponds to an exponential distribution for which we 
have exact results; hence, there is only one curve for that 
case. The other cases (cv = 2, cv = 3) show the dramatic 
increase in base stock necessitated by increased variability. 
For each cv, the vertical distance between the upper and 
lower bounds is constant; that vertical distance increases 
with the cv because y decreases to zero as the cv in- 
creases. The impact on cost is again bounded independent 
of p. For the cases in Figure 4, we found through simula- 
tion that the cost gap using the upper bound ranges from 
about 3% to 8%, whereas the cost at the lower bound is 
virtually indistinguishable from the optimum. 

It is possible, in principle, to supplement Figures 2 and 3 
with numerical approximations to the exact values of s3 
and sp using a result in Prabhu (1965, p. 217) for DIEm/1 
queues. More generally, Ramaswami and Lucantoni 
(1985) give a procedure for computing tail probabilities of 
the stationary waiting time in G/PH/1 queues and this 
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could be used for phase-type demand in our setting. How- 
ever, these methods require substantially more work than 
our bounds and approximations. 

3. MULTISTAGE SYSTEMS 

We now consider multistage systems consisting of d nodes 
in series. Node 1 supplies external demands, node i draws 
material from node i + 1, i = 1,... , d - 1, and node d 
draws from an unlimited supply of raw material. Node i 
has capacity ci, i = 1, . . ., d. 

3.1. Shortfall Formulation 

Each node of the multi-stage system follows a base-stock 
policy for echelon inventory, operating as follows. Let In be 
the net inventory (stock on hand minus backorders) at 
stage 1, and let IP be the inventory available at stage i, i = 

2,..., d, all in period n. The echelon-i inventory at the 
start of period n is In + ... + In, i = 1, ... , d; this drops 
by Dn upon the arrival of demands in that period. Subse- 
quently, stage i sets production to restore the echelon-i 
inventory to a base-stock level si, while not exceeding its 
capacity ci or the available supply I'+1 of predecessor in- 
ventory. Thus, production at node i in period n is given by 

r i 
mints' + Dn - E I (27) 

j=1 I 

with Id+1 = 00 since node d is not constrained by upstream 
supply. Because the sits are target levels for cumulative 
stock, we always assume that sl * Sd. 

As shown in Glasserman and Tayur (1994), the dynam- 
ics of this system are conveniently represented through 
echelon shortfalls. The shortfall for echelon i at the start of 
period n is 

Yni = si In, 
j=1 

the difference between the target and actual echelon in- 
ventories. Using the expression in (27) for the production 
at stage i, Glasserman and Tayur (1994) show that the 
shortfalls satisfy 

Y+ 1=max{O, Yn++ D cd}; (28) 

Yn += max{O, Yn + Dn -Ci Ynl+l + Dn (29) 

_ (si + _si)} i = 1, . ,d - 1. 

We show how these recursions lead to approximations. 

3.2. Main Results 

We continue to assume that demands are i.i d. with distri- 
bution FD. With Yn = (Y1,..., Yd), Glasserman and 
Tayur (1994) show that the process {Yn, n : 1} admits a 
finite stationary distribution to which it converges from all 
initial distributions, provided 

E[D1] < c* minjc', ... , ccd}, (30) 

For our approximations, we require that P(D1 > c*) > 0 
and that there exists a 00 > 0 at which 

1 < E[e'o(DI -c*)] < W. 

We denote by y the unique nonzero solution to 

E[e y(Di - c*)]1. 

Our results are easiest to formulate under the additional 
assumption that there is just one stage i* with capacity c* 
and thus that all other stages have strictly greater capacity. 
Later, we remove this condition. With i* as just defined, 
let 

PT = min{(s' - - (I - 1)cl}. (31) 

This quantity provides the link between the analysis of 
single-stage and multistage systems. In the important spe- 
cial case that it = d (meaning that the bottleneck stage is 
highest in the hierarchy), we have simply 

n = (sd - s 1) - (d - 1)c*. (32) 

We now have the following multistage version of Theorem 
1(i): 

Theorem 3. Let Y = (Y1,..., Yd) have the stationary dis- 
tribution of the shortfall process. Then 

P(Y' > x) Ce -7Y(x ' 'I) as x -> o, (33) 

where C is the constant for a single-stage system with capacity 
c* and the same demand distribution as the multistage 
system. 

Thus, the tail distribution of stock to serve external de- 
mands in a multistage system corresponds to that in a 
single-stage system with the minimal capacity, except that 
the constant C is replaced by C exp(-'y-q). In particular, 
when i* = d, tail probabilities ultimately depend only on 
cd and Sd - s5. Since Theorem 3 then suggests that the 
probability of a stockout admits the approximation P(Y1 > 

s1) C exp[- y(sd - (d - 1)c*)], it further suggests that 
the dominant features determining the ability to meet de- 
mands are the minimal capacity and the system-wide base- 
stock level Sd. 

For any s = (sl, ...., sd), the stock availability, the fill 
rate and the average backorders are defined for the multi- 
stage system just as for the single stage system but replac- 
ing Y with Y1 in (5), (6) and (7). From Theorem 3 we get 

Corollary 3. Parts (i)-(iv) of Theorem 1 hold for multi- 
stage systems, with C replaced by C exp(- yq) and c re- 
placed by c*. 

These approximations can also be formulated with re- 
spect to a single-stage system. For example, if a*(s) is the 
stock availability for a single-stage system with capacity c*, 
then 

1 - a (s) e (1 - (s)). 

The interpretation of these results is in some cases 
clearer if we express the approximations in terms of the 
incremental base-stock levels A7 = si - sin i = 2, ..*., d. 
With this notation, we have 
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Ti=min( Ai) _ (- 1)c*}, 
j-in i=2 

an expression not depending explicitly on s1. Now fix 
A2 ***, Ad and let s' be the corresponding minimal 
stage-1 base-stock level required to guarantee a stock 
availability of at least 1 - 8 for any 0 < 8 < 1. Then we 
have 

Corollary 4. For any A2,..., Ad and any 0 < 8 < 1, s' 
_- 1 log 8 - -q. If the demand distribution is continuous, 
then 

s- [y1 log(C/8) - rIJq >0, as 8 -> 0. 

Corollary 4 can be supplemented with bounds, much as 
in Section 1.2, using C-e-7Y'+ and C~e-7Y'- in place of C_, 
C+, with r-q, -q+ defined in (48). Approximating the base- 
stock level s] that minimizes system cost is more difficult, 
because holding costs are typically charged on inventory at 
all stages, not just the lowest stage. Hence, the optimal s1 
is no longer characterized by a simple condition on the tail 
distribution of YV. One might, however, choose to set base- 
stock levels by ensuring a certain stock availability at upper 
echelons and minimizing holding and penalty costs at stage 
1 subject to that constraint on S2, .., Sd. For that ap- 
proach, tail probabilities for y2,..., yd are relevant; we 
approximate these next. 

For k = 1, ..., d, let i* be the index of the stage with 
the smallest capacity among those in {k, k + 1,..., d}, 
which we assume is unique. (This holds if, e.g., no two 
capacities are equal.) Let c% be the capacity of stage ik* 

Define 

'qk = mint E Ai - (j - k)c k J 
Joc i=k+l1 

and notice that -qk coincides with the 7) in (31) for 
the subsystem consisting of stages k, k + 1, . . ., d. Since the 
evolution of Ynk is unaffected by that of Y', i = 1, .. ., k - 1, 
a consequence of Theorem 3 is this: 

Theorem 4. For all k = 1, . . ., d, 

p(yk >X) - Ck exp[- Yk(X + 7)k)], 

where yk solves E[exp{yk(Dl - c%)}] = 1 and Ck is the 
constant C for a single-stage system with capacity ck. 

We can remove the requirement that there be just one 
stage with the minimal capacity c* (or c ) by making a 
simple modification. If, say, stages il,..., in all have ca- 
pacity c*, then -q is determined by the lowest stage; that is, 
we have 

7 = min{(sJ - S1) - (j - 1)c*}. (34) 

The definition of 7)k is modified analogously. 
Because the distribution of each yk potentially depends 

on all of A\k? 1,**. A\d, Theorem 4 does not provide a 
direct solution to the problem of setting base-stock levels. 

However, it does provide a basis for approximating the 
distribution of shortfalls, and thus also for approximating 
costs. The simplest approximation sets 

P(Y1 > x) ; Ce -Y(x + A), E[Y1] ; Ce -'Y/y, 

E[(Y' - s 1) +] Ce -(s l+)/y, (35) 
and similarly for y2. .., yd. If echelon-i inventory is 
charged a holding cost at rate hi and if backorders are 
penalized at rate p, the long-run average cost per period 
becomes 

d 

Ehi (s' - E[Yi]) + (p + hi + ***+ hd) 
i~ 1 

E[ (Y' - s1) +] 

which generalizes (9). Substituting for the expectations ac- 
cording to (35) results in a cost approximation. Corre- 
sponding upper and lower bounds follow from replacing C 
with C~e-7Y'- and C-e-7Y'+, with C_, C+ as in Section 1.2 
and -q-, 7)+ as in (48). 

The performance of these bounds and approximations is 
illustrated for a two-stage system in Table II; the approxi- 
mation above is labeled "Approxl." A shortcoming of this 
simple approximation is that it is insensitive to all capaci- 
ties except the smallest. A modification developed in 
Glasserman and Tayur (1996) uses 

P(Y1 > x) - (1 - exp( -'y[(s 2 - S 1) - C C'e - y'x 

+ Ce -7(x + ") 

where C', y' are the constants for stage 1 viewed as a 
single-stage system in isolation. This approximation is con- 
sistent with Theorem 3. Its performance is illustrated in 
the table under "Approx2"; it generally has smaller error 
than the straightforward approximation. A numerical study 
of this approximation, generalized to five-node systems, is 
presented in Glasserman and Tayur (1996). As with our 
earlier results, the quality of these approximations appears 
to increase with p. 

3.3. Systems with Leadtimes 

Thus far, we have assumed that period-n production at 
stage i + 1 becomes available input to stage i in period 
n + 1, for all n and all i = 1,..., d - 1. We now 
consider a modification in which there are fixed, exoge- 
nous leadtimes for each stage; these could model trans- 
portation times between stages, for example. Cumulative 
leadtimes are specified by positive integers 11 < 12 <... 
< Id as follows. Stage-1 production becomes available to 
meet external demands after 11 periods; stage-(i + 1) pro- 
duction becomes available input to stage-i after li+1 - 1i 

periods, i = 1,..., d - 1. Thus, 1i is the total leadtime 
from stage i to external demands. Our previous model had 
i = i, i = 1, . . ., d. The natural counterpart to (34) is 

n = min{(sf - s - - (lJ - 1)c*}. (36) 

With this definition, we have 
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Table II 
Performance of Bounds and Approximations in a Two-Stage System 

s2 S 1 Simulation Lower Upper Approxl Approx2 
cl = 1 1 8.17 (0.169) 8.16 8.16 8.16 8.16 

1.3 8.47 (0.169) 7.54 8.71 7.79 8.46 
1.8 8.97 (0.169) 6.91 9.52 7.47 8.96 
2.5 9.67 (0.169) 6.60 10.5 7.43 9.66 

C= = 1.5 1 8.17 (0.169) 8.16 8.16 8.16 8.16 
1.3 7.80 (0.147) 7.54 8.71 7.79 7.79 
1.8 7.49 (0.115) 6.91 9.52 7.47 7.52 
2.5 7.49 (0.080) 6.60 10.5 7.43 7.57 

cl = 2 1 8.17 (0.361) 8.16 8.16 8.16 8.16 
1.3 7.80 (0.147) 7.54 8.71 7.79 7.79 
1.8 7.48 (0.114) 6.91 9.52 7.47 7.47 
2.5 7.44 (0.080) 6.60 10.5 7.43 7.45 

Demands are exponential with mean 0.7; c2 - 1 and s1 = 1.5. Cost parameters are h1 = 2, h2 1, and p = 20. Numbers in parentheses are 
95%-confidence-interval halfwidths. 

Theorem 5. In a multistage system with cumulative lead- 
times 11, . . ., 1", the stage-I shortfall satisfies (33) with y the 
solution to E[exp{y(Dl - c*)}] = 1, C the constant for a 
single-stage system with capacity c*, and -q as in (36). In 
particular, if the capacity at stage d is strictly less than that at 
any other stage, then 

p(Yl >x) - C exp[-y{(sd - Sl) - (d - l)cd}]e-Yx. 

Proof. It is shown in Glasserman and Tayur (1994) that 
the evolution of Yn in a system with fixed leadtimes is 
identical to that of Yn1 in a system with 11?1 - 1 - 1 dummy 
nodes between production facilities i + 1 and i and unit 
leadtimes throughout. The dummy nodes between facili- 
ties i + 1 and i all have capacity ci"1 and (echelon) base- 
stock level si'. Their effect is to advance stage-(i + 1) 
production by one node each period, thereby mimicking 
the effect of the leadtimes. Since the system with dummy 
nodes has unit leadtimes, Theorem 3 applies to it. For 
this modified system, the Xq in (34) is given by the X in 
(36). 0Z 

We can apply the reduction of a system with leadtimes 
to one with dummy nodes to the case of a single-stage 
system with leadtime l > 1. The shortfall process Y in such 
a model coincides with the shortfall process Y1 in an 
1-stage system with c1 c and s' s, i 1 . . ., 1. It follows 
that P(Y > x) -, C exp[-y(x - (I - 1)c)], and in partic- 
ular that the stock availability satisfies 

1 - a(s) - CeY(-1)ce-Ys. 

Thus, the base-stock level ss required for a stockout prob- 
ability not exceeding 6 satisfies 

is 8 - [ y -1 
log(5/C) + (l - 1)c] | O . (37) 

A comparison with (16) reveals that, asymptotically, the 
effect of the leadtime l is to increase the required base- 
stock level by (l - 1)c. 

This result can be understood intuitively as follows. 
When s is large, stockouts occur only following several 
periods of large demand. In each period in which demand 

is large (at least as large as the capacity), the amount 
produced (and thus added to pipeline inventory) is c. Fol- 
lowing several periods of large demand, the total inventory 
in transit is therefore (I - 1)c. So, asymptotically, (1 - 1)c 
is the amount by which the inventory immediately avail- 
able to meet demands is less than the total inventory on 
hand or in transit. Increasing s by (1 - 1)c compensates for 
this deficit to maintain the stockout probability at &. Equa- 
tion (37) holds for fixed c with 8 -* 0; like our other 
results, it cannot be applied for fixed 8 with c -* oo. 

4. THEORETICAL DEVELOPMENTS 

In this section, we first review some necessary background 
on random walks, then give proofs of our main results. 

4.1. A Random Walk and Its Conjugate 

Let X, = Do - c and S, = X1 + * * * + X, for all n : 1 
with SO = 0. Reflecting this random walk at the origin 
yields the shortfall process; moreover, if we let M, = 
max1-i-n Si, then a classical result states that Y, and M, 
have the same distribution (see, e.g., Prabhu 1980, ?1.5). 
Since E[X1] = E[D1] - c < 0, the maximum over all time 
M maXn Sn is finite with probability one and has the 
same distribution as Y. Thus, tail probabilities for Y can be 
analyzed as tail probabilities for M. 

From the demand distribution FD define a new distribu- 
tion F on (-c, oo) by 

x+c 

F(x) J eY('-c) dFD(t), x> -c- (38) 

Condition (11) ensures that F is indeed a probability dis- 
tribution. Let fkn, n 0 0} be i.i.d. with distribution F and 
set 

S3l X1 ?l+ * Xn n : 1; SO = 0. (39) 

This is the conjugate random walk associated with {Sn, n ? 
0}. A simple calculation shows that 

E[X1 ] = +' (7 > 0, (40) 
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so Sn has positive drift, whereas Sn has drift E[D1 - c] < 

0. 

We now analyze P(Y > x), paralleling the treatment in 
Asmussen (1987, ?XII.5) for ruin probabilities. For x > 0, 
let 

Tx = inf{n - 1:Sn >x}, 

and define Tx from So analogously. Since Sn has negative 
drift, Tx may be infinite, but Tx is finite with probability 
one, for all x > 0. Using the equality in distribution of Y 
and M, the definition of Tx and then Wald's likelihood 
ratio identity (see ?XII.4 of Asmussen 1987 or page 13 of 
Siegmund) we have 

P(Y > X) =P(M > X) 

=P(TX <ccs) 

= E[exp(-yS~f,)] 

e -YxE[exp{-y(Sf -x)}]. (41) 

An application of the renewal theorem shows that 

C= lim E[exp{-y(ST -x)}], (42) 

exists, the limit taken through integer x for discrete FD. 
Thus, P(Y > x) - C exp(- yx) as x -m oo. The expression 
given for C shows that C - 1. 

We now give 

Proof of Theorem 1. Part (i) follows from the analysis just 
given of P(Y > x) and the definition of a(s). For part (ii), 
observe that (i) implies that for any E > 0 there is an se 
such that for all s - se 

IP(Y > s) - Ce -X eCe XS 

Consequently, 

{8P(Y > x) dx - Ce -Yx dx e Ce -lx dx; 

i.e., 

b (s) - (C/y)ee 7s E(C/y)e Ys, 

showing that the ratio of b(s) to (C/y)es differs from 1 by 
at most e for all sufficiently large s. Part (iii) follows in the 
same way. 

For part (iv), we use (6) to express the expected de- 
mands not filled in a period, as 

E[D](1 - f(s)) = E[(Y + D - c - s) i; Y - c + s] 

+ E[D; Y> c + s] 

=(E[(Y+D -c-s)+] 
- E[(Y+D -c -s)+; Y>c +s]) 

+ E[D; Y> c + s] 

= E[(Y-s)+] - E[(Y-C -s)+] 

rs+c 

-J 
P(Y>x) dx, (43) 

the third equality using (4). Much as in part (ii), we have 
Js+c 

P(Y > x) dx (C/y) (1 - e -Yc)Ye 5, 

from which the result follows. 

4.2. Analysis of the Bounds 
We now turn to the bounds C_ and C, beginning with 

Proof of Theorem 2. It follows from (41) that, for all x > 0, 

inf E[exp{-y(Sf - r)}] 

e eYxP(Y>x) -s, sup E[exp{-y(S3f, -r) 

As argued in Ross, since the increments of {Sf, n : 0} 
have the distribution of X1, a lower bound on the left-most 
term in (44) is given by 

inf E[exp{-'y(X1 - r)}jX1 > r]. (45) 
r-_0 

For each r, an application of Wald's likelihood ratio iden- 
tity shows that 

E[exp{-y(Xl - r)}1X1 > r] 
= E[exp{-y(Xl - r)}; Xi > r]/P(Xl > r) 
= P(X1 > r)/E[exp{y(Xl - r)}; XI > r] 

-(E[exp{- y(X1 - r)}jXi > r]) '1. 

Writing D1 - c for X1 and taking the infimum over r, we 
find that (45) equals 

inf(E[exp{-y(D1 - c - r)}jD1 - c > r]) ', 

which is the same as C_ in (12). The analysis of C? works 
the same way. Thus, from (44) we get 

C_e-'Yx S P(Y>x)-, C+e-'Yx, forallx>O. 

Parts (i)-(iv) of Theorem 2 now follow, just as in Theo- 
rem 1. D 

We turn next to the bounds in Section 2. 

Proof of Proposition 4. Part (i) follows from the expres- 
sion for C given in (42). For part (ii), argue as in Ross to 
conclude that for NBU demands the infimum in (12) is 
attained at r = c to get C_ = e-7C. For NWU demands, 
C, = e-yc in much the same way. Since Erlang distribu- 
tions are NBU, the lower bound in part (iii) follows from 
(ii). For the upper bound, we have from Ross that 

C = (lim E[exp(y(D 1 - r)) ID1 > r]) -1, (46) 
r--oo 

because Erlang distributions have increasing failure rate 
(Barlow and Proschan, p. 75). A straightforward calcula- 
tion shows that if FD is the Em(4t) distribution, then 

FD (X+ r) -Fu(r)~l~ asr*o 
1-FED (r) 
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Figure 5. Each vertical arc in column i has length c'; each 
diagonal arc from column i to column i + 1 has 
length s +1 - si 

for all x 3 0, indicating that the distribution D1 - r con- 
ditional on D1 > r converges to an exponential. Moreover, 
the convergence is monotone, so 

lim E[exp( y(D 1 - r)) ID > r] 

= Fe 4t -I" dx= riot 

By definition, y satisfies 

(I~ )me = 1, 

A - 7 ' 

so the limit in (46) equals exp(yc/m), yielding the desired 
expression for C+. A similar argument holds for the nega- 
tive binomial, except that the convergence is to a geomet- 
ric distribution rather than an exponential. 

The upper bound in (iv) follows from (ii) since hyperex- 
ponential distributions are NWU; in fact, they have de- 
creasing failure rates (Barlow and Proschan, p. 103), from 
which it follows (again from Ross) that 

C = (lim E[exp(,y(D 1 - r)) ID 1 > r]) - 

A straightforward calculation shows that the distribution 
of D1 - r conditional on D1 > r converges to an exponen- 
tial with mean 1/htl, under our convention that wu A2 

The convergence is once again monotone, yielding 

C_= ( ) ) 
Part (v) follows from Kingman (1970). D 

4.3. Proofs for Multistage Systems 

We begin by giving an expression for the distribution of Yn 
for all n and thus for the limit YV. We detail the case in 
which Cd < minisd ci (i.e., the uppermost node is the 
unique bottleneck) then discuss the general case. 

Consider the graph in Figure 5. As indicated, the verti- 
cal arcs in column i all have length ci, i = 1, ..., d, and 
diagonal transitions from column i to column i + 1 have 

length si+1 - s'. Let rn be the length of the shortest n-step 
path through this graph, starting from the lowest node in 
column 1; specifically, r, = min(cl, s2 - s1), r2 = min(2c1, 
cl + S2 _ 

S1,S2 
_ s + c , S3 - s1), and for general n, 

rn = min(k1 c' + 6k2 (s 2 - S1) + k2c 2 

+ + 5kd (S - 1) + kdCd), 

where 5k iE {?, 1}, 6k2 k3 3 kd, 5ki 0 0 k 0, 
and the minimum is over all nonnegative integers (k1,..., 
kd) with 

k, + k2 + k2 + * + kd + kd = n. 

Since Cd is the smallest of the capacities, there exists an n,* 
such that for all n 3 n* , the minimum is attained by 
setting kZ = O for i < d, 6k. = 1 for i = 2, .., d, and kd = 
n - (d - 1); that is, the shortest path eventually corre- 
sponds to moving diagonally (d - 1) steps to the last 
column and then moving vertically up that column for 
(n - d + 1) steps. This means that rn = (Sd - sl) + (n - 
d - 1)Cd for all n 3 n. and hence that 

n 3n* => rn -ncd = (47) 

The constant r1 is thus the limit of the sequence rn - nc 
Upper and lower bounds on this sequence are given by 

+ = mnaxjrn - nc*} and r = minjrn - nc8}. (48) 

We now have 

Lemma 2. Suppose YO = 0, for all i = 1, ..., d. Then 

Yn- max Di - rjg 1 -j -n -~ 

consequently, 

1d max[ D 
- + 

Proof. From the recursions (28)-(29), it follows that 

Y1 = max{O, D1 - c1, D1 - (S2 _ s1)} 

= max{0, D1 -r, 

Y1 = max{O, D2 - c1, D2 + D1 - 2c1, D2 + D1 - c 

- (S2- s), D2 + D1 - C2 (S2 -1)D2 

- (s2 - s1), D1 + D2 - (s3- s1)} 

= max{O, D2 -r1, D1 + D2 -r2; 

proceeding by induction shows that 

Yn' = max{O, Dn -r1, Dn + Dn - 1 -r2, Dn 

+ + D,- rn I 

Since the demands are i.i.d., this has the same distribution 
as 

max{, D1-r1, D1 + D2 -r2, .*, 
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which is the first assertion of the lemma. Letting n increase 
yields the second assertion. D 

With this we have 

Proof of Theorem 3. Let ro = 0 and let empty sums be 
zero so that in Lemma 2 we may omit the positive-part 
operator by taking the maximum over j - 0. Writing Xi for 
Di - cd, we then have, for any x > 0, 

P(Y' > x)= P max{ Di- rn} >x) 

P (max { 2 Xi + [nc d- rn] >x) 

=P(T<oo), where 

T inf{n - 1: E Xi >x - [ncd - rn]}. 

From the distribution of X1 define a conjugate random 
walk {SIL n : 0} with increment distribution defined from 'y 
just as in (38). Define T from Xi just as T is defined from Xi. 
Then, by Wald's likelihood ratio identity, 

P(T < oo) - E[exp(-ySf)] = eJE[exp(-y{Sf -X})]. 

It remains to evaluate the limit of the expectation on the 
right as x increases. 

Define another stopping time 

T' = inf{n D 1: Sn > x + T1}, 

and notice that it follows from (47) that T = T' on the 
event {T '> n *, T' -' n*}. Hence, we may write 

E[exp(-y{Sf - x})] 

= E[exp( -y {ST - x}); min{T, T' } > n*] 

+ E[exp( -y 3{Sf - x)}; min{T, T'} <n*]. (49) 

We analyze the two terms on the right separately. For the 
first term, we have 

E[exp(-y{S g - x}); min{T, T'} a n*1 

= e -E[exp(-y{Sf - [x + a]}); min{T, T'} > n *. 

As x -o >o, both Y' and T' increase to infinity with proba- 
bility one; so (applying Theorem 4.4.6 of Chung 1974) 

lim E[exp( -y{ST - [x + -qI]}); min{T, T'} J n*] 

= lim E[exp(-y{STf - [x + ifl})] - C, 

where C is as defined in (42) for a single-stage system with 
capacity Cd. We have therefore shown that the first term on 
the right in (49) converges to C; it remains to show that the 
second term vanishes as x increases. Observe that 

E[exp(-y{Sj - x}); min{T, T' } < n * ] 

S max exp[-y(r- ic d)]P(min{T, T'} < n). 
i<n* 

As x increases, min{T, T'} -soc, a.s., so P(min{T, T'} < 
n*) -*0. 

Dropping the assumption that stage d is the unique bot- 
tleneck requires minor modification of the argument. Sup- 
pose that an arbitrary node i* has capacity strictly less than 
all other nodes. For sufficiently large n, the shortest n-step 
path through the graph in Figure 6 consists of (i* - 1) 
diagonal steps to column il, followed by nearly n verti- 
cal steps, and possibly followed by up to (d - i*) diago- 
nal steps. Whether or not these additional diagonal steps 
are included depends on the relative values of the diagonal 
arc lengths Si'*+ - Si*, d - sd- and the vertical arc 
length c*. In any case, for sufficiently large n, we have rn - 
nc* = -q, just as in (47), but now with Xq as in (31). If there 
are multiple nodes with capacity c*, then eventually rn - 
nc* = -rq with -q as in (34). The rest of the argument is the 
same as before. L 

Corollaries 3 and 4 are proved in exactly the same way 
as their counterparts for single-stage systems give in Sec- 
tion 1.2. Theorem 4 follows from Theorem 3 because stage 
k evolves in the same way as the lowest stage in a system 
consisting solely of stages k, k + 1, . . , d. 
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