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The bottleneck in a production-inventory network is commonly taken to be the facility that
most limits flow through the network and thus the most highly utilized facility. A further

connotation of “bottleneck,” however, is the facility that most constrains system-wide perfor-
mance or the facility at which additional resources would have the greatest impact. Adopting
this broader sense of the term, we look for fill-rate bottlenecks: facilities in a production-
inventory network that most constrain the system-wide fill rate (the proportion of demands
filled within a fixed delivery leadtime) or facilities at which either additional production ca-
pacity or additional inventory would have the greatest impact on the fill rate.

We consider systems in which various components are produced through a series of stages
holding intermediate inventories and are then assembled into finished goods to meet external
demands. With each station in the network we associate precise measures of the station’s
propensity to constrain the fill rate. We call a station with a minimal measure a fill-rate bot-
tleneck and justify this label both theoretically and numerically. Examples show that even the
least utilized facility can be a fill-rate bottleneck. Unlike utilization, our bottleneck criteria
capture information about process variability.
(Multistage Assemble-to-Order System; Response Time; Order Fill Rate; Bottleneck; Leadtime;
Inventory)

1. Introduction and Summary

In the context of production-inventory systems—or
any other setting in which jobs or materials flow
through a network of resources—a bottleneck is gener-
ally taken to be the facility or resource that most con-
strains flow. A focus on bottlenecks influences much
of both the theory and practice of operations manage-
ment, and can be found in the purely practitioner-
oriented literature—as in Goldratt (1990), Goldratt and
Cox (1985), and Umble and Srikanth (1990)—in highly
mathematical models—such as Chen and
Mandelbaum (1991) and Harrison and Wein (1990)—
and many places in between, including most textbooks
on operations. This is hardly surprising, since focusing
on bottlenecks is a way of directing attention to the

root of a problem and a way of simplifying either a
physical process or a mathematical model.

But if the primary notion of “bottleneck” deals nar-
rowly with constraining flow, other connotations are
sometimes implicit in its usage: the bottleneck as the
facility where additional resources would have the
greatest impact, or the bottleneck as the facility that
most determines system-wide performance. The per-
spective associated with Goldratt, for example, focuses
on throughput as the main measure of performance.
In this case, the most highly utilized facility does de-
termine system-wide performance, and adding capac-
ity at this facility is the only way to affect the maximum
sustainable throughput.

But these various senses of “bottleneck” need not
coincide if we consider other measures of performance.
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Figure 1 Circles Denote Production Facilities and Triangles Denote
Inventories. Station 1 Uses the Output from Station 2 and
the Output from Stations 1 and 3 Are Assembled to Become
the Final Product. Orders for the Final Product Trigger Pro-
duction.

Production-inventory networks in which physical ca-
pacity limits and resulting congestion are modeled ex-
plicitly have features in common with queueing sys-
tems. It is well known in the queueing literature that
whereas utilization is determined entirely by mean
rates of arrival and service, measures like customer de-
lay are sensitive to variability in arrival and service
times as well. This can be seen explicitly in, for ex-
ample, formulas for the average waiting time in an M/
G/1 queue or heavy-traffic approximations to the gen-
eral single-server queue. This observation is familiar in
the literature on models of manufacturing systems; in-
deed, “the corrupting influence of variability” (as it is
called by Hopp and Spearman (1996)) may be consid-
ered another central theme of operations management.

Our objective in this article is to put forth measures
of a facility’s propensity to constrain or dominate per-
formance in a production-inventory network when
performance is measured through a service level. More
specifically, we work with the fill rate, which we take
to be the fraction of orders filled within a target deliv-
ery leadtime. We analyze system behavior at high fill
rates and ask, “At which facility would additional re-
sources have the greatest impact on service? Which fa-
cility most constrains or determines the system-wide
fill rate?” The measures we propose capture informa-
tion about both production and demand variability
(though perhaps not in an obvious way); consequently,
our fill-rate bottlenecks need not coincide with the most
highly utilized facilities.

A precise specification of the models with which we
work will be given in the next section. At this point,
we give only a rough description in order to put our
comments in context. The essential features of our gen-
eral setting are illustrated in Figure 1. Circles denote
production facilities and triangles denote inventories.
Station 1 draws material from the store of items com-
pleted at station 2; items completed at stations 1 and 3
are assembled into finished goods. Production and as-
sembly are triggered by the arrival of orders: each or-
der generates a production authorization at every
station. Thus, production follows a one-for-one replen-
ishment or base-stock policy in which each station con-
tinues to produce until its inventory of processed items
reaches a target (base-stock) level. Production and as-
sembly times are variable; each station produces one

unit at a time, but the assembly process is uncapaci-
tated in the sense that there is no upper limit on the
number of finished goods that can be assembled in
parallel.

An order is considered to be filled on time if the time
elapsed from the arrival of the order until it is filled
does not exceed a fixed delivery leadtime x. The fill rate
is the long-run fraction of orders filled within this de-
livery leadtime, and we refer to the complement of the
fill rate as the unfill rate. Clearly, the fill rate should
increase as either the delivery leadtime or the base-
stock levels increase. With each station i, we associate
a number ci measuring that station’s propensity to con-
strain the fill rate as the delivery leadtime increases.
Like the usual utilization measure qi, the new measure
ci is a genuine feature of the station and the order
stream in the sense that it can be evaluated by viewing
the station in isolation from the rest of the network.
We also associate a number ai with station i that mea-
sures its constraining propensity at high levels of in-
ventory. Unlike ci, the second measure ai depends on
the system-wide allocation of inventory in addition to
purely local characteristics of a station. Unlike qi, both
ci and ai capture information about production and de-
mand variability. By comparing values of ci or ai across
stations we identify fill-rate bottlenecks. We state a
precise result in §2 whose intuitive content is

1(min c )xi iunfill rate ' e for large x;
1(min a )si iunfill rate ' e for large s, (1)

where x, as before, is the delivery leadtime, s is a mea-
sure of system-wide inventory, and the minimum in
each exponent is taken over all stations in the network.
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Figure 2 Comparison Between System-Wide and Station-Level Unfill
Rates. The Vertical Axis Is the Logarithm of the Ratio of the
Station-Level Unfill Rate to the System-Wide Unfill Rate.

Table 2 Distributions Used in the Examples, the First Panel for
Example 1, the Second for Examples 2 and 3

Distribution Mean C.V.

Order Stream Erlang 1 1/ 3!
Station 1 Constant 0.95 0
Station 2 Hyperexponential 0.80 2
Station 3 Erlang 0.90 1/ 5!

Order Stream Erlang 1 1/ 3!
Station 1 Hyperexponential 0.60 2
Station 2 Constant 0.90 0
Station 3 Constant 0.15 0

Note. Order stream refers to times between arrival of customer orders.
The distribution associated with each station is the processing time at that
station. “C.V.” is coefficient of variation, the ratio of the standard deviation
to the mean. In Examples 2 and 3, finished goods require a combination of
one unit from station 1 and geometrically many from station 3. The mean of
the geometric distribution is 5.

Table 1 Comparison of New and Traditional Bottleneck Measures.
The Station with the Smallest ci or ai (Not the Largest qi)
Acts as a Bottleneck in Each Example

Station

1 2 3

Example 1
qi

ci

0.95
0.32

0.80
0.10

0.90
0.42

Example 2
qi

ci

0.60
0.23

0.90
0.69

0.75
0.55

Example 3
qi

ai

0.60
0.10

0.90
0.31

0.75
0.04

(We postpone to the next section a discussion of the
precise sense in which these approximate relations
hold.) Thus, the stations with the smallest values of ci

and ai are the ones that most constrain the fill rate and,
in this sense, act as bottlenecks.

To illustrate our notions of fill-rate bottlenecks, we
present three simple examples.

Example 1. This example fits the scheme depicted in
Figure 1, except that at this point we omit the inter-
mediate inventories (all base-stock levels are zero) and
we take the final assembly operation to be instanta-
neous. Orders and processing times are variable; the
first panel of Table 2 summarizes the distributions
used for this example. As indicated in Table 1, the util-
ization levels at stations 1, 2, and 3 are 95%, 80%, and
90%, respectively. In particular, station 1 has the high-
est utilization. In contrast, Table 1 shows that station 2
has the smallest ci so we predict that the system-wide
unfill rate is dominated by station 2. More precisely, if
we apply (1) to each station in isolation we arrive at

1c xiunfill rate for station i in isolation ' e

for large x, i 4 1, 2, 3.

For the system as a whole, (1) predicts an unfill rate
approximated by exp(1c2x), since c1 and c3 are larger
than c2. If these approximations are valid, then the log-
arithm of the unfill rate for station 2 in isolation should
be roughly the same as the logarithm of the system-
wide unfill rate, whereas the logarithms of the unfill
rates at stations 1 and 3 should be much smaller, es-
pecially for large x. By comparing station-level unfill

rates with the system-wide unfill rate we get an indi-
cation of which facility most constrains service.

Figure 2 plots the logarithms of the ratios of the three
station-level unfill rates to the system-wide unfill rate
against increasing values of the delivery leadtime x,
corresponding to higher fill rates. (The graph com-
pares values obtained through simulation, not from
the approximations.) The striking conclusion from the
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Table 4 Comparison of Fill Rate Improvement After Inventory Level
Increase at Each Station. Utilization Levels at the Three
Stations are 60%, 90% and 75%, Respectively

station inventories

1 2 3 fill rate (in %)

initial inventory 25 5 30 90.4
add at 1 35 5 30 90.5
add at 2 25 15 30 90.5
add at 1 and 2 30 10 30 90.5
add at 3 25 5 40 95.4

Table 3 Comparison of Fill Rate Improvement After a 5 Percentage-
Point Decrease in Utilization at Each Station

fill rate (in %) after a utilization
decrease at each station

delivery leadtime initial fill rate station 1 station 2 station 3

11 93.0 95.2 93.8 93.0
17 98.2 99.1 98.5 98.2

Note. Current utilization levels at the three stations are 60%, 90% and
75% respectively.

graph is that, as the fill rate increases, stations 1 and 3
become negligible; the system-wide fill rate is deter-
mined by that of station 2, even though this station has
the lowest utilization.

Example 2. For our next example, we make some
modifications to the basic system. The distributions are
now as in the second panel of Table 2; in addition, each
customer order now requires combining one unit com-
pleted at station 1 with a variable number of units from
station 3. The variability in batch size is represented
by a geometric distribution with mean 5. As a result of
these changes, the utilization levels at stations 1–3 are
now 60%, 90%, and 75%, respectively.

Where would additional production capacity have
the greatest impact on service? To address this ques-
tion we examine the effect of a 0.05 reduction in utili-
zation at each facility, with the coefficients of variation
held fixed. The results are summarized in Table 3.

In the base case, with a delivery leadtime of 11 the
fill rate is 93.0%. A 5 percentage-point reduction in util-
ization at station 3 does not change the fill rate; the
same reduction in utilization at station 2, which has by
far the highest utilization and is thus the throughput
bottleneck, lifts the fill rate only slightly, to a level of
93.8%; however, a 5 percentage-point reduction in util-
ization at station 1, the least utilized, boosts the fill rate
to 95.2%. The same increase in capacity has almost three
times as big an impact on service at the least utilized station
as at the highest utilized station. The same conclusion
holds at a delivery leadtime of 17. These observations
are fully consistent with values in Table 1, showing
that station 1 has the smallest ci and is therefore the
station that most constrains the fill rate.

Example 3. For our last example we introduce in-
ventories and examine increases in fill rate through in-
creases in inventory levels. We use the same distribu-
tions as in the base case of Example 2, but we set the
delivery leadtime to zero to consider the off-the-shelf
fill rate. Each station now keeps inventories of units
that have completed processing at that station but have
not completed any subsequent stage of production;
thus, units in store at station 2 are ready for processing
by station 1, and units at stations 1 and 3 are ready to
be combined to fill customer orders. New demands
trigger production orders just as in the model without
inventories. For the initial allocation, we assign the
same total inventory to station 3 as to the subsystem
consisting of stations 1 and 2, and more inventory at 1
than at 2.

With the initial allocations for stations 1, 2, and 3 set
at 25, 5 and 30, respectively, the fill rate is 90.4%. Sup-
pose we can keep 10 additional units of inventory at
any one facility. Where should they be added to
achieve the greatest improvement in the fill rate? (In
comparing inventories at different stations we may be
comparing apples and oranges; later we address the
issue of making the comparison in common units.) Ta-
ble 4 compares fill rates under different allocations. As
shown there, the fill rate is almost unchanged if the
increase is made at station 2 (the one with the highest
utilization) or station 1 (the fill-rate bottleneck in Ex-
ample 2), or shared between them. But the fill rate
jumps to 95.4% if the additional inventory is kept at
station 3. In this sense, station 3 is a fill-rate bottleneck
with respect to increases in inventory levels. This is
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consistent with (1) and the last row of Table 1, which
shows that station 3 has the smallest value of ai. The
station at which additional inventory has the greatest impact
on service need not coincide with the most highly utilized
station or even with the station at which additional produc-
tion capacity would have the greatest impact.

The examples above consider three different ways
the fill rate in the simple system of Figure 1 can become
large: through an increase in the delivery leadtime,
through an increase in production capacity, and
through an increase in inventory. In each case, a facility
other than the most highly utilized one displayed bot-
tleneck behavior. We have suggested that these phe-
nomena could have been anticipated from the values
of our bottleneck measures in Table 1. A more precise
theoretical justification will be developed in the re-
mainder of the paper.

The rest of this paper is organized as follows. Section
2 gives a precise specification of the models we con-
sider and states our central result. As explained there,
calculation of ci and ai requires complete distributional
information; as a simplification we introduce two-
moment approximations to these quantities. These ap-
proximations have greater potential for use in practice
and also make explicit the role of variability. Section 3
gives additional numerical examples supporting both
our basic measures and their approximations. Section
4 records some concluding remarks; the proof of our
main result is in an appendix.

2. Main Results

2.1. Model Details and Notation
Figure 3 illustrates the general class of production-
inventory networks we consider. Multiple components
are produced through series of stages. Each stage has
a dedicated facility (the circle) and a store of WIP in-
ventory (the triangle). Each production facility pro-
cesses one unit at a time and operates under an echelon
base-stock (or one-for-one replenishment) policy, mean-
ing that each demand triggers a production order at
every station. (To keep the figure from becoming too
complicated we have omitted the path of production
authorizations included in Figure 1; they work the
same way in this general case.) Initially, a product con-
sists of one unit of each component; we discuss the

extension to batch demands in Remark (d), below, after
stating our main result. Throughout we assume that
the final assembly operation is uncapacitated in the
sense that there is no limit (beyond the availability of
components) on the number of finished goods that can
be assembled in parallel. Assembly times for different
orders are i.i.d. and assumed bounded by the delivery
leadtime. The response time of an order is the time
elapsed from the moment it arrives until the moment
it is filled.

We use the following notation, often modified by
subscripts and superscripts:

A 4 order interarrival time;
B 4 unit production interval;
U 4 assembly time;
R 4 response time;
s 4 base-stock level;
x 4 delivery leadtime.

A double subscript i, j refers to stage j of component i;
a single subscript j refers to component j, or stage j if
there is only one component in the systems; a super-
script n refers to the nth order. For example, is thenBi,j

nth production interval at stage j of component i; isnRi

the time taken to fill the nth order’s demand for com-
ponent i, and Rn is the time taken to fill the nth order
completely. An A or B without a superscript refers to
a generic version of the random variable. An R without
a superscript refers to a steady-state response time.
Production intervals and interarrival times are all in-
dependent of each other.

For any random variable Y, the symbol wY denotes
the function

hYw (h) 4 log E[e ], (2)Y

called the cumulant generating function (c.g.f.) (also
called the logarithmic moment generating function) of Y.
The function wY is convex, and it is differentiable in
the interior of its domain (the set of h at which it is
finite). The c.g.f.s of all our input random variables will
be finite for some h . 0, and this implies (0) 4 E[Y]w8Y
and (0) 4 Var[Y]. See Chapter 3 of Kendall (1987)w9Y
for relevant background; see Glasserman (1997) for
several examples of c.g.f.s for distributions commonly
used in inventory models.
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Figure 3 Multiple Components Assembled to Product After Serial Production. The Interarrival Times for Product Demand Are
{An}. At Stage j, Component i Has a Generic Production Interval Bi,j and a Local Base Stock Level si,j. Finished Goods
Base-Stock Level Is s0. Assembly Operation Is Modeled as a Random Delay U. The Arrows Indicate the Direction
of Material Flow. The Production Authorization Paths Are Not Shown Explicitly But Would Be Just as in Figure 1.

Figure 4 Graph of w and c. Due to Convexity, w(h) $ 0 Has Two
Roots, One Is 0, the Other Is c . 0.

2.2. The Fill Rate and Bottleneck Characterizations
Let s 4 s0 ` (i,j si,j be the total inventory level in the
system. Let s̄i,j 4 s0 ` si,k be the echelon inventoryj(k41

level at station (i, j), and pi,j 4 s̄i,j/s be the proportion
of echelon (i, j) base-stock level to the total inventory
level. In comparing systems with different total levels
of inventory, we keep the fractions pi,j fixed. This as-
sumes that the proportion of total inventory held in
each facility remains constant, though we could just as
easily assume that the proportions of inventory dollars
(or any similar measure) remain constant, as explained
in Remark (c), below. For stability, we assume that
E[Bi,j] , E[A] for all i, j.

Suppose ci,j . 0 solves

w (c ) 4 0 (3)(B 1A) i,ji,j

and set bi,j 4 (ci,j), ai,j 4 pi,jbi,j. The convexity ofwBi,j

c.g.f.s implies that a positive solution to (3) is unique
if it exists (see Figure 4), and existence holds under
virtually all commonly used distributions. Note that
the assumption of independence between A and Bi,j

implies

w (c ) 4 w (c ) ` w (1c ),(B 1A) i,j B i,j A i,ji,j i,j

which is often used to solve Equation (3).
The fill rate is P(R # x), the probability that an order

is filled within the delivery leadtime. To emphasize its
dependence on inventory levels, we frequently write
R as R(s). The next result captures the dominant effects

of individual stations on the rate of decrease of P(R(s)
. x), the unfill rate.

Theorem 1. Suppose the solutions ci,j all exist. Then

1
lim 1 log P(R(s) . x) 4 c, (4)

xx→`

where c 4 mini,j ci,j; and

1
lim 1 log P(R(s) . x) 4 a, (5)

ss→`

given that all pi,j . 0, where a 4 mini,j ai,j.

Remarks. (a) We can write the limiting results in
Theorem 1 as the following approximations:

1cx`o(x)P(R(s) . x) 4 e as x → `; (6)
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1as`o(s)P(R(s) . x) 4 e as s → `, (7)

where o(x) denotes a quantity for which o(x)/x → 0 as
x increases and o(s) is defined similarly. Equation (6)
suggests that when the fill rate is high due to slack in
the delivery leadtime, it is most constrained by the sta-
tion with the smallest c, which we call the leadtime (or
capacity) bottleneck. Equation (7) suggests that when
the fill rate is high due to abundant inventories, it is
most constrained by the station with the smallest a,
which we call the inventory bottleneck. (Notice that
each ai,j is the product of a term bi,j depending solely
on the operation of the station (i, j) in isolation, and pi,j,
depending solely on the allocation of inventory.) The
distinction between these two types of bottlenecks ech-
oes a distinction made by Umble and Srikanth (1990,
p. 83) between two types of resource constraints at a
facility.

(b) Theorem 1 is related to results in Glasserman
(1997) and Glasserman and Wang (1998), but there are
important differences. Glasserman (1997) considers
periodic-review serial systems with constant capacities
at each stage; as a consequence, the stage with the
smallest c is always the stage with the smallest capac-
ity, so the main issue investigated here is absent in that
setting. Glasserman and Wang (1998) consider
assemble-to-order systems in which each component
undergoes just one stage of production. In that simpler
setting, Theorem 1 can be strengthened to give sharper
exponential approximations to the unfill rate. For ex-
ample, in a system with just one component and one
production stage, Glasserman and Wang (1998) show
that

cx`bslim e P(R . x) 4 C. (8)
x`s→`

In the substantially more complex setting considered
here, combining stochastic production times, multiple
components, and multiple stages per component, it
does not seem possible to replace the weaker logarith-
mic limit of Theorem 1 with this type of exponential
asymptotic. For related approximations see Buzacott,
Price, and Shanthikumar (1992) and Roundy and
Muckstadt (1996).

(c) Through pi,j in the definition of ai,j, Theorem 1 is
formulated in terms of the proportion of inventory
units held at each station. Since different components

at various stages of production may not be directly
comparable, it may be more natural to consider, say,
the fraction of inventory dollars at each station. This
requires only minor modification of the result. Let ci,j

be the unit inventory cost at station (i, j) and c0 the unit
cost for finished goods inventory, so the total dollar
value of inventory is s 4 c0s0 ` (i,j ci,j si,j. Redefine pi,j

to be ci,jsi,j/s, p0 4 c0s0/s, and assume these fractions
remain fixed as s increases. The only modification
needed for Theorem 1 is to set 4 (p0/c0) ` jp̃ (i,j l41

(pi,l/ci,l). The bottleneck with respect to increases in in-
ventory dollars is the station with the smallest 4ãi,j

p̃ b .i,j i,j

(d) Theorem 1 is formulated with the assumption
that each finished product requires exactly one unit of
each component. At the expense of further complicat-
ing the proof, the result could be generalized to allow
random batch sizes for components requiring only a
single stage of production. More specifically, we could
allow the nth order to require units of componentnDi

i which must then have just one production stage. The
are independent and identically distributed acrossnDi

orders but may be correlated across components for a
fixed order. To account for batch demand, we need to
modify the definition of c in (3) to

w (w (c )) ` w (1c ) 4 0.D B i A ii i

We do not treat batch demand explicitly in this paper
except in numerical examples. Glasserman and Wang
(1998) show that (8) holds with batch demands, and
given this result it becomes possible to extend the
proof in the appendix for multiple component systems
to accommodate this generalization.

(e) Theorem 1 states two limiting results (4) and (5)
for the tail probability of the product response time,
one on x and one on s. While it is sometimes possible
to determine which regime applies, in other cases, the
dominating effect of the stations with the smallest c or
a may not be evident, since x and s are always finite
in practice. In that case, we need to take both leadtime
and inventory into account and compare cx ` as. Sta-
tions with the smallest cx ` as are the bottlenecks.

2.3. Two-Moment Approximation
Calculating the parameters c and b requires knowledge
of the distributions of A and B, which may not always
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be available. If we have only partial knowledge of the
distributions—specifically, the means and variances—
we can approximate c . 0 through a second-order
Taylor series approximation to the wA and wB in (3);
i.e., we set

1 2w (h) ` w (1h) ' E[B]h ` Var[B]h 1 E[A]hB A 2
1 2` Var[A]h 4 0
2

and solve to get

2(E[A] 1 E[B])
c ' . (9)

Var[A] ` Var[B]

Similarly we get the two-moment approximation for b,

1 2b 4 w (c) ' E[B]c ` Var[B]c , (10)B 2

which determines, in turn, an approximation for a. The
expression in (9) also arises in heavy-traffic approxi-
mations (1/c would be the mean response time in a
Brownian approximation for a single-station system),
but (10) does not appear to have an obvious counter-
part or even an interpretation in the heavy-traffic
setting.

The expressions in (9) and (10) show that these quan-
tities reflect variability information, though not in an
obvious way. In contrast, utilization depends only on
means. Without a two-moment approximation, c and
b capture even more distributional information like
skewness. But we also see from (9) that c (and hence
b) is small when E [A] 1 E[B] is close to zero, which is
to say utilization is close to 1. Thus, fill-rate bottlenecks
will often coincide with the throughput bottleneck,
though the examples in §§ 1 and 3 show that this is by
no means always the case.

3. Numerical Results
In this section, we use additional numerical examples
to illustrate the effectiveness of the proposed new no-
tions of leadtime and inventory bottlenecks, in compar-
ison with the traditional throughput bottleneck. In par-
ticular, we give examples where all three types of

bottlenecks exist at different stations in the same net-
work. We also discuss the related issue of resource al-
location when the fill rate is the main concern. All nu-
merical results were obtained by simulation using a
special variance reduction technique (related to the one
detailed in Glasserman and Liu 1996) to obtain a high
degree of precision in fill rate estimates.

In light of Theorem 1, our bottleneck characteriza-
tions are guaranteed to apply at sufficiently high fill
rates. The main reason for examining numerical ex-
amples is to see if this theoretical property is evident
at reasonable parameter values. The examples in this
section were chosen to illustrate various effects, in-
cluding changes in the delivery leadtime, changes in
capacities, changes in inventory levels, and changes in
the order of stations. They were designed specifically
to distinguish between utilization bottlenecks and fill-
rate bottlenecks. As discussed in §2.3, the various no-
tions of bottlenecks will often apply to a single station;
for purposes of illustration we have generally chosen
examples in which this is not the case.

3.1. Leadtime Bottlenecks
To isolate the leadtime effect, in this subsection we con-
sider examples without inventory. We use two ap-
proaches to illustrate bottleneck phenomena, parallel-
ing the observation in Examples 1 and 2 of §1. The first
approach studies the effect of changes in the delivery
leadtime x on the fill rate, and the second approach
examines the effect of capacity increases. For the first
approach, let Ri be the response time for station i op-
erating in isolation. As x increases, we compare the rate
of decrease of the system unfill rate p P(R . x) andn

4

the station-level unfill rate pi P (Ri . x). We willn
4

show that for a leadtime bottleneck station i, pi decays
at the same rate as p while for other stations pi decays
much faster than p. In the second approach we will
change c values through changes in mean production
times. We will show that a marginal increase of capac-
ity at the leadtime bottleneck has the greatest effect on
the system fill rate.

Consider, again, the three-station serial system in
Figure 1. The interarrival time between orders has an
Erlang distribution with mean 1 and standard devia-
tion 1/ . The three stations have the following mean3!
production intervals: E[B1] 4 0.80, E[B2] 4 0.90 and
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Table 6 Comparison of Fill Rate Improvement After a 5 Percentage-
Point Decrease in Utilization at Each Station in a System
Depicted in Figure 1. For the Upper Panel, Initial
Utilization Levels at the Three Stations are q1 $ 60%, q2

$ 90% and q3 $ 80%; the Measures of Propensity to
Constrain the Fill Rate are c2 $ 0.69, c3 $ 0.67, and c1 $

0.23 when $ 2, c1 $ 0.10 when $ 3. For thec cB B1 1

Lower Panel, Initial Utilization Levels at the Three Stations
are q1 $ 80%, q2 $ 95% and q3 $ 90%; the Measures of
Propensity to Constrain the Fill Rate are c2 $ 0.32, c3 $

0.42, and c1 $ 0.10 when $ 2, c1 $ 0.05cB1

when c $ 3B1

fill rate (in %) after a utilization
decrease at each station

cB1

delivery
leadtime

initial
fill rate

station
1

station
2

station
3

2
15
20

91.3
97.3

93.9
98.5

92.5
97.6

91.4
97.3

3
18
40

91.0
99.1

94.0
99.6

91.6
99.1

91.0
99.1

2
25
40

91.2
97.9

95.4
99.3

92.5
98.3

91.2
97.9

3
50
80

91.5
97.7

95.6
99.2

92.0
97.9

91.5
97.7

Table 5 Comparison of Fill Rate Improvement After a 5 Percentage-
Point Decrease in Utilization at Each Station in the System
of Figure 1. Initial Utilization Levels at the Three Stations
are q1 $ 80%, q2 $ 90% and q3 $ 95%; the Measures of
Propensity to Constrain the Fill Rate are c1 $ 0.10, c2 $

0.42, and c3 $ 0.32

fill rate (in %) after a utilization
decrease at each station

delivery leadtime initial fill rate station 1 station 2 station 3

25 89.2 93.6 89.4 90.2
34 95.4 98.0 95.7 96.0
40 97.5 99.1 97.6 97.8

Figure 5 Comparison Between System-Wide and Station-Level Unfill
Rates of the System in Figure 1. The Vertical Axis Is the
Logarithm of the Ratio of the Station-Level Unfill Rate to the
System-Wide Unfill Rate.

E[B3] 4 0.95. Obviously, station 3 is the throughput
bottleneck. The production intervals have the follow-
ing distribution: B1 is hyperexponential with coeffi-
cient of variation 4 2; B2 is Erlang with 4 1/c cB B1 2

; B3 is deterministic. Through equation (3) we can5!
easily calculate c1 4 0.10, c2 4 0.42 and c3 4 0.32.
These values predict that station 1, though it has the
lowest utilization level, is the leadtime bottleneck. Fig-
ure 5 plots the ratio pi/p, i 4 1, 2, 3. As x increases,
both p2/p and p3/p decrease exponentially fast while
p1/p remains nearly constant. It is therefore indeed sta-
tion 1 that most constrains the system unfill rate p.

For a second perspective (based on changing c val-
ues at each station) we present two classes of examples.
The first class refers to the same system as above, and
the results are in Table 5. In each row of the table, we
first list the current fill rate at the corresponding deliv-
ery lead time x. We then calculate the new fill rate after
a decrease of 0.05 in each of the E[Bi] (hence a decrease
of 5 percentage points in each qi) with the coefficients
of variation held fixed. As shown there, a decrease in
utilization at station 1, which has the lowest utilization
yet smallest c, improves service much more than the
same decrease at stations 2 or 3.

The second class refers again to a version of the sys-
tem depicted in Figure 1 for which the results are listed
in Tables 6–7. In Table 6, the interarrival time has an
Erlang distribution with mean E[A] 4 1 and standard

deviation 1/ ; the unit production times have the fol-3!
lowing distributions, hyperexponential for B1, deter-
ministic for B2, and Erlang for B3 with 4 1/ ; eachc 5!B3

order requires the combination of one unit from station
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Table 8 Comparison of fill rate improvement after inventory level
increase at each station. Utilization levels at the three
stations are 80%, 95% and 83%, respectively; the a

values are a1 $ 0.05, a2 $ 0.14, and a3 $ 0.015.

station inventories

1 2 3 fill rate (in %)

initial inventory 70 5 75 90.6
add at 1 90 5 75 90.7
add at 2 70 25 75 90.7
add at 1 and 2 80 15 75 90.7
add at 3 70 5 95 95.0

Table 7 Comparison of Fill Rate Improvement After a 5 Percentage-
Point Decrease in Utilization at Each Station in the Same
Systems as in Table 6, Except that the Distributions of B1

and B2 are Exchanged

fill rate (in %) after a utilization
decrease at each station

cB2

delivery
leadtime

initial
fill rate

station
1

station
2

station
3

2
15
20

89.8
96.5

93.3
97.8

94.0
98.4

89.8
96.5

3
30
50

89.6
98.6

92.8
99.1

93.9
99.5

89.6
98.6

2
37
50

89.5
96.9

94.3
98.4

95.3
99.6

90.4
96.9

3 100 96.3 97.8 98.9 96.3

1 and geometrically many from station 3 with mean 5.
In each row of the tables, we first list the current fill
rate at the corresponding and x. We then calculatecB1

the new fill rate after a decrease of 0.05 in each of the
E[Bi] (hence a decrease of 5 percentage points in each
qi) with the coefficients of variation held fixed. As
shown there, a decrease in utilization at station 1,
which has the lowest utilization yet smallest c, im-
proves service much more than the same decrease at
stations 2 or 3. This is true for both panels in the table;
the overall system utilization is higher in the lower
panel.

To investigate the role of a station’s location in de-
termining whether it is a fill-rate bottleneck, we ex-
change the distributions and parameters of B1 and B2

from our last example. Table 7 shows that the location
plays little role since a utilization decrease in station 2
now most improves the service level, as predicted by
its c value.

In all the examples of Tables 5–7, a marginal increase
of production capacity at the station with the smallest
c value always improves the fill rate significantly,
while the same amount of capacity increase at any
other station yields far less, if any, improvement in the
fill rate. This is true regardless of the structure of the
system, or the overall utilization level, or the relative
location of the stations. Interestingly, the leadtime bot-
tlenecks in these examples all have the lowest utiliza-
tion level in the system.

3.2. Inventory Bottlenecks
In this subsection, we investigate which facility con-
strains the fill rate when the inventory levels are high.
We study the system depicted in Figure 1. Let the in-
terarrivel time A have Erlang distribution with mean
E[A] 4 1 and cA 4 1/ ; let B1 have hyperexponential3!
distribution with E[B1] 4 0.8 and 4 2; let B2 4 0.95cB1

and B3 4 0.1 be constants. A product demand requires
one unit of component 1 and D3 units of component 3,
where D3 has geometric distribution with mean E[D3]
4 8.33. For the initial allocation, we assign the same
total inventory to station 3 as to the subsystem con-
sisting of stations 1 and 2, and more inventory at 1 than
at 2.

With the initial allocation for stations 1, 2, and 3 set
at 70, 5, and 75, respectively, the fill rate is 90.6%. Sup-
pose we can keep 20 additional units of inventory at

any one facility. Where should they be added to
achieve the greatest improvement in the fill rate? Table
8 compares fill rates under different allocations. As
shown there, the fill rate is almost unchanged if the
increase is made at station 1 or 2, or shared between
them. But the fill rate jumps to 95.0% if the additional
inventory is kept at station 3. In this sense, station 3 is
a fill-rate bottleneck with respect to increases in inven-
tory levels.

As a comparison, Table 9 shows the impact on the
fill rate of the marginal increase in production capacity
at each station when stations carry no inventory. As
shown there, the service improvement is much greater
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Table 9 Comparison of fill rate improvement after a 5 percentage-
point decrease in utilization at each station. Initial
utilization levels at the three stations are q1 $ 80%, q2 $

95% and q3 $ 83%; the c values are c1 $ 0.10, c2 $

0.32, and c3 $ 0.32.

fill rate (in %) after a utilization
decrease at each station

delivery leadtime initial fill rate station 1 station 2 station 3

25 90.6 95.1 92.4 90.8
40 97.9 99.3 98.3 97.9

if more capacity is added to station 1, which has the
smallest c, than to station 2 (which has the highest util-
ization) or station 3 (which is the inventory bottleneck).
Again, we see three different types of bottleneck.

4. Conclusions
We have introduced two measures of a station’s pro-
pensity to constrain the fill rate in a production-
inventory network. One measure captures a restrain-
ing effect as either the production capacity or the
delivery leadtime promised to customers increases; the
other captures a similar effect as inventories increase.
The smaller the measure, the greater the restraining
effect, so a station with the smallest value of either
measure is a fill-rate bottleneck—the station that most
limits improvements in the fill rate. We have shown
both analytically and through numerical examples that
the notion of a fill-rate bottleneck can be useful in iden-
tifying stations where additional resources would have
the greatest impact. Unlike the traditional throughput-
oriented, utilization-based bottleneck measure, the
new service-oriented measures proposed here are sen-
sitive to process variability.1

1The authors thank the referees and editors for helpful comments
and suggestions. Comments from Michael Harrison helped improve
the exposition. This research is supported by NSF grant DMI-
9457189.

Appendix: Analysis and Proofs
The main purpose of this appendix is to prove Theorem 1. To that
end, we first characterize the steady state response time for a system
with only one component but multiple stages, state and prove the

results for that system in Proposition 1; then we generalize the re-
sults to the multiple component case.

Consider a single component serial system of d stages with unlim-
ited raw material supplying stage d and demands arriving at stage
1. Let {tn; n $ 1} be the demand arrival epochs, let { , n $ 1} be thenTj

completion time of the nth production at stage j, with 4 0. Since0Tj

the system operates under a base-stock policy with local base-stock
level sj and echelon base-stock level s̄j 4 sk, we have for stagej(k41

d, 4 3 tn ` , and for stage j,n n11 nT T Bd d d

n11 n nT 3 t ` B , for 1 # n # s ,j j j`1nT 4 (11)j n11 n1s n n5 j`1T 3 T 3 t ` B , for n . s ,j j`1 j j`1

j 4 1, 2, . . . , d 1 1. (We use x 3 y to denote max (x, y).) Define

0, for n # s ,jnY 4 (12)j n1s n5 jT 1 t , for n . s .j j

The response time of the nth order Rn 4 ( )` max( , 0).n nnY Y1 14

A key step in analyzing the response time and proving our results
is a characterization of the steady state response time, R, in this serial
system. Due to the relation between Rn and , it suffices to find thenY1

steady-state representation Y1 of { , n $ 1}. To that end, we startnY1

with Yd at stage d and work recursively backward to Y1. For the first
production stage (stage d), we have the following easily verified
sample-path result:

n n1s ndY 4 T 1 td d

n1s n1s n n1sd d d4 T 1 t 1 (t 1 t )d

n11 n1s 11d
n1s k l ld4 B 1 A ` max (B 1 A ). (13)d o o d

1#k#n1sdk4n1s l4kd

For j , d and n $ s̄d, the release rule (11) and the definition (12)
yield

n n n`11sjY ` (t 1 t )j

n1s n n n`11sj j4 T 1 t ` t 1 tj

n111s n1s 1s n1s n1s n`11sj j j`1 j j j4 T 3 T 3 t ` B 1 tj j`1 j

n111s n11 n11 n1s n1s 1s n1sj j j j`1 j4(T 1 t ` t 1 t ) 3 (T 1 t ) 30j j`1

n1s n`11s n1sj j j` B 1 t ` tj

n11 n11 n1s n1s n1s n1sj j j j4 (Y ` (t 1 t )) 3 (Y ) 3 0 ` B 1 A .j j`1 j

From this recursion, we can express { } in terms of { },n nY Yj j`1

n11
n n1s kjY 4 B 1 Aj j o

k4n1sj

n1s 11j
l l` max (B 1 A )o j

1#k#n1sj l4k

n1s 11j
l l k3 max (B 1 A ) ` Y , (14)o j j`11 2

1#k#n1s l4kj

with the convention ( 1 Al) 4 0.k11 l( Bl4k j
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Starting with Equation (13) for stage d, we repeatedly use (14) and
obtain

n11 n1s 111
n n1s l l l1Y 4 B 1 A ` max (B 1 A )1 1 o o 1

1#k #n1s1 1n1s l4k1 1

n1s 111
l l k 1s2 23 max (B 1 A ) ` Bo 1 21

1#k #n1s l4k1 1 1

k 11 k 1s 111 1 2
l l l1 A ` max (B 1 A )o o 2

1#k #k 1s2 1 2l4k 1s l4k1 2 2

k 1s 111 2
l l k 1sd11 d3 max (B 1 A ) ` • • • ` Bo 2 d1

1#k #k 1s l4k2 1 2 2

k 11 k 111s 11d11 d d
l l l1 A ` max (B 1 A ) • • •o o d 22

1#k #k 1sd d11 dl4k 1s l4kd11 d d

n n11 1 n11 1 n11 14 f (A , . . ., A ; B , . . ., B ; . . . ; B , . . . , B ). (15)n 1 1 d d

Due to our independence assumptions, we can reverse the order
of the sequences {A1, . . . , An11} and { , . . . , } in function fn of1 n11B Bj j

(15) without changing the distribution of , i.e.,nY1

$n 1 n11 1 n11 1 n11Y 4 f (A , . . . , A ; B , . . . , B ; . . . ; B , . . . , B )1 n 1 1 d d

s k1 1
s l l l14 B 1 A ` max (B 1 A )1 o o 1

l41 l4s `1s #k #n11 11 1

k k `s1 1 2
l l k `s l1 23 max (B 1 A ) ` B 1 Ao 1 2 o1

l4s `1 l4k `1s #k #n11 1 11 1

k2
l l` max (B 1 A )o 2

l4k `s `1k `s #k #n11 1 21 2 2

k2
l l3 max (B 1 A ) ` • • • `o 21

l4k `s `1k `s #k #n11 1 21 2 2

k `sd11 d
k `s ld11 dB 1 A ` maxd o

k `s #kl4k `1 d11 d d#n11d11

kd
l l n˜(B 1 A ) • • • [ Y , (16)o d 122

l4k `s `1d11 d

where denotes equal in distribution. Figure 6 gives a graphical
$
4

representation of as the maximum weight of all the possible pathsnỸ1

in the graph, with the weights on the arcs as indicated. A path starts
from the lower-left corner, follows the direction of the arcs and may
stop anywhere. Note that the maximum length of a path is n 1 1.
The values of the kj in Equation (16) determine on which row the
path either stops in column j, or switches from column j to column
j ` 1. Note that { } is an increasing function of n so it has a limitingnỸ1

distribution. Denote 4 1 Al and let n → `, we havel lX Bj j

n 1 2 1 2 1 2Ỹ ⇒ f (A , A , . . . , B , B , . . . ; . . . ; B , B , . . .)1 ` 1 1 d d

s k1 1
s l l14 B 1 A ` max X1 o o 1

l41 l4s `1k $s 11 1

k1
l k `s1 23 max X ` Bo 1 21

l4s `1k $s 11 1

k `s k1 2 2
l l1 A ` max Xo o 2

l4k `1 l4k `s `1k $k `s1 1 22 1 2

k2
l k `sd11 d3 max X ` • • • ` Bo 2 d1

l4k `s `1k $k `s 1 22 1 2

s kd d
k `l ld111 A ` max X • • • [ Y , (17)o o d 122

l4k `s `1k $k `s d11 dl41 d d11 d

where ⇒ denotes convergence in distribution. Y1 has a similar
graphical representation as in Figure 6, but the paths may have in-

finite length. Since , we have ⇒ Y1 and the steady state
$n n n˜Y Y Y41 1 1

response time R 4 (Y1)`.

Proposition 1. Suppose that in a d-stage serial system c1, c2, . . . , cd

all exist. Then

1
lim 1 log P(Y . x) 4 min c ; (18)1 jxxr` 1#j#d

and if in addition all aj . 0 then

1
lim 1 log P(Y . x) 4 min a . (19)1 jssr` 1#j#d

Proof. For single stage systems, Glasserman and Wang (1998)
showed that

cx`bslim e P(Y . x)
x`sr`

s k
cx`bs s l l4 lim e P B 1 A ` max X . xo o1 2

x`sr` k$sl41 l4s`1

4 C

for some constant C . 0. Applying this result to station d in isolation
gives

1
lim 1 log P(Y . x)dxxr`

s kd d1 s l ld4 lim 1 log P B 1 A ` max X . xd o o d1 2
l41 l4s `1k $sxxr` dd d

4 c , (20)d

and

1
lim 1 log P(Y . x)dss r` dd

s kd d1 s l ld4 lim 1 log P B 1 A ` max X . xd o o d1 2
l41 l4s `1k $sss r` dd ddd

4 b . (21)d

For any 1 # j # d, we have the following lower bound on Y1 (by
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Figure 6 Graphical Representation of in a Three-Stage Example with s1 $ 2, s2 $ 2, and s3 $ 3. Each Stage Corresponds˜ nY
to a Column, Each Row to a Time Index. The Weight of a Vertical Arc at Column j, Row i is ! An!i; The Weightn!iBj

of a Diagonal Arc from Column j, Row i to Column j ~ 1 is ! An!i ! . . . ! . Takes the˜n!j~s !1 n!i~s !1 nj~1 j~1B A Y1j~1

Maximum Weight of All the Possible Paths in the Graph. Thick Lines Illustrate One Possible Path.
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selecting a special class of paths which take diagonal arcs from the
start all the way up to column j and then stay on column j)

s̄ s̄1 2
s̄ l s̄ l s̄1 2 jY $ B 1 A ` B 1 A ` • • • ` B1 1 o 2 o j

l41 l4s̄ `11

s̄ kj
l l1 A ` max X ,o o j

k$s̄l4s̄ `1 l4s̄ `1jj11 j

which immediately yields

s̄ kj
s̄ s̄ l l1 jP(Y . x) $ P B ` • • • ` B 1 A ` max X . x1 1 j o o j1 2

l41 k$s̄j l4s̄ `1j

s̄ kj
s̄ l lj. P B 1 A ` max X . x .j o o j1 2

l41 k$s̄j l4s̄ `1j

By the second inequality of (20) we have

1
lim sup 1 log P(Y . x) # c , ∀1 # j # d,1 jxxr`

1
lim sup 1 log P(Y . x) # min c ;1 jxxr` 1#j#d

and by the second inequality of (21) we have

1
lim sup 1 log P(Y . x) # b , ∀1 # j # d1 js̄s̄ r` jj

i.e.,

1
lim sup 1 log P(Y . x) # p b [ a , ∀1 # j # d,1 j j jssr`

1
lim sup 1 log P(Y . x) # min a .1 jssr` 1#j#d

So the upper bounds of (18) and (19) have been established.
For the lower bounds, through a crude bound on P(Y1 . x) we

get

s k1 1
s l l1P(Y . x) # P B 1 A ` X . x1 o 1 o o 11 2

l41 l4s `11k $s1 1

s k1 1
s l l1` P B 1 A ` Xo o 1 o o 11

l41 l4s `11k $s k $k `s1 1 2 1 2

k `s k1 2 2
k `s l l1 2` B 1 A ` X . x2 o o 2 2

l4k `1 l4k `s `11 1 2

s1
s l1` • • • ` • • • P B 1 Ao o 1 o1

l41k $s k $ `s1 1 d d11 d

k k `s1 d11 d
l k `s ld11 d` X ` • • • ` B 1 Ao 1 d o

l4s `1 l4k `11 d11

kd
nl` X . x 4 D ` D ` • • • ` D ,1 2 do d 2

l4k `s `1d11 d

where each Dj is the sum over k1, . . . , kj of the probability that the
path determined by k1, . . . , kj and ending on column j crosses x (cf.
Figure 6). It suffices to show that each of the Dj satisfies

1
lim inf 1 log D $ min c andj kxxr` 1#k#d

1
lim inf1 log D $ min a .j kssr` 1#k#d

By Chebychev’s Inequality, for h , min1#k#j ck

1hx h(B ` `B ) 1hA s̄• • •1 j jD # • • • e •E[e ] • (E[e ])j o o
k $s k $k `s1 1 j j11 j

(k 1s )wX (h)` `(k 1k 1s )wX (h)• • •1 1 1 j j11 j j• e

1hx`s̄ w (1h) w (h)` `w (h) w (h) l w (h) l• • •j A B B X 1 X j1 j 1 j4 e e (e ) • • • (e )o o1 2
l $0 l $01 j

n 1hx`s̄ w (1h)j A4 e •M(h).

where M(h) 4 is finitew (h)` `w (h) w l w (h) l•••B B X (h) 1 X j1 j 1 j(e ( (e ) • • • ( (e ) )l $0 l $01 j

for all h , min1#k#j ck since , 1 for 1 # k # j. SowX (h)ke

1 1
lim inf 1 log D $ h and lim inf 1 log D $ 1w (1h),j j Ax s̄xr` s̄ r` jj

for all h , min1#k#j ck. Take the supremum over h, we have

1
lim inf 1 log D $ min c $ min c ,j k kxxr` 1#k#j 1#k#d

and

1
lim inf 1 log D $ 1p w 1 min cj j A k1 2ssr` 1#k#j

4 p min bj k1 2
1#k#j

$ min a (since p # p # • • • # p )k 1 2 j
1#k#j

$ min a . ▫k
1#k#d

It follows directly from Proposition 1 and P(R . x) 4 P((Y1)` .

x) 4 P(Y1 . x) that the response time in a serial system satisfies

1
lim 1 log P(R . x) 4 min c , (22)kxxr` 1#k#d

1
lim 1 log P(R . x) 4 min a . (23)kssr` 1#k#d

We now give

Proof of Theorem 1. Let Tn be the completion time of the nth
assembly operation; let be the finishing time of the nth productionnTi

of component i. Then

n n1s ni,1T 4 max T ` U .i
i

The response time of nth order of the product is
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n n1s n `0R 4 (T 1 t )

`
n1s 1s n n1si,1 0 04 max T 1 t ` Ui1 2

i

`
n n1s04 max Y ` Ui1 2

i

`

⇒ max Y ` U 4 R,i1 2
i

where ( )` is the nth response time of a serial system composed ofnYi

the stages for component i, but with station (i, 1) carrying si,1 ` s0

base stock inventory (cf. definition (12)), and (Yi)` [ Ri its steady
state version. Equations (22) and (23) specialize to

1
lim 1 log P(R . x) 4 min c ,i i,jxxr` j

and

1
lim 1 log P(R . x) 4 min a .i i,jssr` j

For x with P(U , x) 4 1, we have

P(R . x) 4 P max Y . x 1 U 4 P max R . x 1 U ,i i1 2 1 2
i i

which immediately yields the simple bounds

max P(R . x 1 U) # P(R . x) # P(R . x 1 U).i o i
i i

From the lower bound, we have

1
lim sup 1 log P(R . x)

xxr`

1
# min lim 1 log P(R . x 1 U) 4 min c ;i i,j1 2xi xr` i,j

from the upper bound, we have

1
lim inf 1 log P(R . x)

xxr`

1
$ min lim 1 log P(R . x 1 U) 4 min c ;i i,j1 2xi xr` i,j

By combining the two limits we get (4); (5) follows from a similar
argument.
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