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Shortfall Risk in Long-Term Hedging with Short-Term
Futures Contracts

Paul Glasserman

1 Introduction

Constder a firm with a commitment to deliver a fixed quantity of oil at a specified
date 7" in the future. The commitment exposes the firm to the price of oil at time
T'. Suppose the firm buys futures contracts for an equal quantity of oil and for
settlement at the same date 7. In so doing, it has eliminated its exposure to the
price of oil at T', but has it entirely climinated its risk? If the futures contracts are
marked-to-market — requiring, in particular, that the firm make payments should
the futures price drop — but the forward commitment is not, then in eliminating
its price exposure at time T the firm has potentially increased the risk of a cash
shortfall before time 7' because of the funding requirements of the hedge. The
possibility of an increased risk is even clearer if the original horizon T is long (say
five years) but the futures contracts have a short maturity (say one month). The firm
may seek 1o hedge the long-dated commitment through a sequence of short-term
contracts, but this exposes the firm to price risk each time one contract is settled
and the next is opened. In particular, should the price of oil decrease, funding the
hedge will require infusions of additional cash.!

The purpose of this chapter is to propose and illustrate a simple measure of the
tisk of a cash shortfall arising from the funding requirements of a futures hedge.
We give particular attention to the probability of a large shortfall anytime up to
4 specified horizon as opposed to merely at that horizon. Rough approximations
to such probabilities are available through the theory of Gaussian extremes (as
in Adler (1990) and Piterbarg (1996)) and the theory of large deviations (as in
Dembo and Zeitouni {1998) and Stroock (1984)); we compare the shortfall risk in
alternative hedging strategies through these approximations.

Our analysis is motivated in part by the recent debate regarding the widely pub-
licized derivatives losses of Metallgesellschaft Refining and Marketing (MGRM);

1
See Appendix A for a brief review of fatures and forward contracts.
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see Benson (1994), Culp and Miller (1995), Edwards and Canter (1995), and Mell
and Parsons (1995a) for accounts of this incident, and see Brennan and Crew .
(1995), Carverhill (1998), Hilliard (1996), Neuberger (1995), and Ross (1995) for:
related analyses. Briefly, MGRM had entered into long-term contracts to supply oil.
at fixed prices and was (ostensibly) hedging these commitments with one-month .
futures contracts. In 1993, as the price of oil dropped and the hedging strateg
required increasingly large infusions of cash, MGRM’s parent company found i
necessary to abandon the strategy, resulting in derivatives losses reported in pres
accounts to exceed $1 billion. In theory, as the price of oil dropped the value of the .
supply contracts increased, but in fact MGRM was forced to unwind its contract
on unfavorable terms.

Because of the complexities of this case and the many aspects that remain undis
closed, we do not attempt a direct application. We focus instead on an admittedl
simple model of a central aspect of MGRM’s strategy: the use of a rolling stac.
of short-dated futures contract to hedge long-term supply commitments. In thi
strategy, futures contracts are rolled into the next maturity as they expire, but th
number of contracts is decreased over time to reflect the decrease in the remainin
commitment in the sﬁp;ﬂ?y contracts.

A primary objective of such a hedging strategy is to protect the firm from th
effects of large price fluctuations. It is therefore reasonable to examine how ef
fectively the rolling stack accomplishes this. In the simple single-factor model Wi
study, the rolling stack eliminates the effect of spot price fluctuations completely -
but only at the end of the hedging horizon. Early in the life of the hedge, the use 0
short-dated contracts increases the risk of a cash shortfall; we quantify this effect.

As a prelude to our analysis, consider the comparison in Figure 1. The solid line;
plot the variance of the cash balance resulting from a long-term supply contrac
with and without hedging, based on a simple model of independent and identically
distributed price changes. (The precise assumptions leading to these graphs are re
viewed in Section 2.) Not surprisingly, the variance in the unhedged case increase
over time. The variance of the hedged cumulative cashflow at the end of the horizor
is zero, but (as noted by Mello and Parsons 1995b) carly in the life of the contrac
the hedged variance is larger. This is certainly suggestive of an increased risk, bu
it is not immediately clear how to make this suggestion precise. At best, the curve
give an indication of the relative probabilities of a cash shortfall at each fixed timg
t — what we will call the spot risk at time ¢ — with and without hedging. They d
not explicitly compare the more relevant probabilities of a cash shortfall any tim
up to time f, which we will call the running risk. We will argue that comparin
spot risks understates the real shortfall risk resulting from the hedge. Indeed, on
of our main conclusions, following from a result on Gaussian extremes, is that th
unhedged variance should be compared with the running maximum of the hedge
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Fig. 1. Variance of unhedged and fully hedged cash balance over the life of the exposure.
The dotted line indicates the running maximum of the hedged variance.

variance, indicated by the dotted line in Figure 1. Clearly, the dotted line assigns
greater risk to the hedging strategy than does the corresponding solid line,

If the objective of a hedge is (at least in part) to reduce the chance of a cash
shortfall, then the running risk is a relevant imeasure. Based on this premise and a
measure of running risk, we make several observations. These will be detailed in
later sections, but we highlight a few here. (a) A full rolling-stack hedge increases
the risk of a cash shortfall for roughly 3/4 of the hedging horizon. (b) Under a full
hedge, a cash shortfall is most likely to occur near 1/3 of the hedging horizon, and
with no hedging it is most likely to occur near the end of the horizon. (c) Even
under conditions that make the minimum-variance hedge ratio 1, a substantially
smaller hedge ratio minimizes the running risk. (d) With a hedge ratio of 1, the
optimal hedging horizon is substantially shorter than the full horizon.

We elaborate these conclusions in a model of spot prices that allows (but does
not require) mean reversion. So, we have four basic cases: mean reverting or
not, hedged or not. We will see that the degree of mean reversion has a major
impact on both the appropriate extent and the effectiveness of hedging with short-
dated futures. For each case, in addition to comparing risks of a cash shortfall, we
identify the most likely path to a shortfall, in a sense to be made precise. Each
such path solves a problem in the calculus of variations suggested by the theory of
large deviations. These “optimal” paths give information about sow risky events
Occur and not just their probability of occurence. They may be thought of as “stress
testing” scenarios of the type commonly formulated in practice on an ad hoc basis,
here arrived at through a precise methodology.
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A shortcoming of our analysis is that it rests on a single-factor model of spot;
futures prices. As a consequence, we cannot fully model an unexpected shift fr
backwardation to contango of the type that seems to have precipitated MGRM
crisis. Indeed, as discussed by Benson (1994) and analyzed by Edwards and Cante
(1995), the shape of the term structure of commodity prices is central to the rollin
stack as a profit-generating strategy, as opposed to merely a hedge. (See Brenna
and Crew (1997), Brennan (1991), Garbade (1993), Gibson and Schwartz (1990
Hilliard (1996), and Neuberger (1999) for some relevant muitifactor models
commeodity prices.) The tools we apply may, however, be extended to multifacto
models.

Although we develop just one application here, it seems likely that the meth
we use are relevant to other problems in risk managément. There is, in particular,
a close formal parallel between the model we consider and the exposﬁre over tim
in an interest rate swap when interest rates follow the Vasicek (1977) model.
approach we follow in identifying price paths leading to shortfalls may be usefi
in constructing stress testing scenarios in other settings, or as a means of approx
imating value-at-risk. The evolution of exposures over time also plays a role i
setting counterparty credit limits for swaps and other transactions. For backgroun
on these ideas, see Frye (1997), Jorion (1997), Picoult (1998), Wakeman (1999
and Wilson (1999).

The rest of this paper is organized as follows. Section 2 introduces the mechanic;
of the rolling stack and details our model of spot and futures prices, starting from
discrete-time formulation and then making a continuous-time approximation. Set
tion 3 presents a measure of risk; Sections 4 and 5 develop the consequences of thl
measure with and without mean reversion, respectively. Section 6 presents the mo
likely paths to a cash shortfall. Section 7 compares our analysis (which is base
on the continuous-time model) with simulations in discrete time. Some conchudin,
remarks are collected in Section 8 and some technical issues are deferred to tw

appendices.
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2 A model of exposure and hedging

Our point of departure is a simple model containing the essential features of exam-
ples discussed by Culp and Miller (1995) and Mello and Parsons (1995b) in the
discussions of MGRM’s hedging strategy. Consider a firm that commits to suppl
ing a fixed quantity ¢ of a commodity at a fixed price a atdates n = 1, ..., N. The
market price of the commodity at these dates is described by the sequence

Note, however, that (2)—{4) show th:
identity that does not rely on stocha

Si=c+d X, n=12... (1)

i=1
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Al this point, we do not make any assumptions about the price increments X;. If
the firm’s cost equals the market price, then at time 7 it earns ¢g(a — Sy, and its
cummulative cashflow to time k is

k ko
Ce=qd @-5)y=qlka—a) =D > X} 2)
n=1 a=1 i=1

Let F, ,+ be the time-n futures price for a contract on the underlying commod-
ity maturing at n + 1, and set by i1 = Fyng1 — Sae We use by, ;4| as a surrogate
for an explicit model of the determinants of the cash-futures spread. Consider a
rolling stack hedging strategy that buys g(N - n) of thes¢ short-dated contracts at
time n. Each contract bought at time n generates a proﬁt or loss of Sp41 — Frntd
atn + 1, so the cumulative cashflow to time k from the hedge is given by

Hy = qZ(N—nH){S,, Foial
n=1

k
= g Y (N 1+ D= by (3)
a=1
Interchanging the order of summation in (2) yields

k
Cr=qkla—cy—q Y (k—n+1)X,. 4
n=1
Combining (3) and (4) and taking k = N, we see that the cash balance from the
delivery contract and hedge combined, at the terminal date N, is

N
Oy =Cxn+Hy=gN@—c)—q ) (N =n+Dbpin. )
n=1
In particular, the hedging strategy exactly cancels the price increments X, at time
N, but — comparing the coefficients on X, in (3) and (4) — only at time N.

In the Mello—Parsons example, the b,_; , are all zero and the increments X,
are uncorrelated random variables with mean zero and variance o”. As a result,
gN{a — ¢) is the expected profit from the delivery contract, and l_he rolling stack
locks this in perfectly.? In the Culp-Miller example, the firm hedges to eliminate
spot price risk and “play the basis”, meaning maintaining exposure (o the by—1n
(stochastic or not). Again the rolling stack accomplishes this perfectly — but only
at the termminal date V. Under either interpretation, it is interesting to examine how
far the hedging strategy deviates from its objective (be it locking in expected profits
or isolating the basis) before the terminal date N.

2 . s
_NOtB,_ however, that (2)—(4) show that this perfect-lock property of the rolling stack is the result of an algebraic
identity that does not rely on stochastic assumptions.
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Mello and Parsons (1995b) show that under their assumptions about the pric
increments the variance of the hedged cumulative cashflow is given by :

Var[Cy] = Var[Cy + H] = ¢?cX(N — k)*k;

in particular, it is zero at k = N. The variance of the unhedged position at k is

k
Var[Cy] = %% ) _i%.

i=1

Mello and Parsons (1995b) point out that the hedged variance can therefore be

greater than the unhedged one for small k. (Figure 1 graphis continuous version C — El(

of the two variances with units chosen so that ¢ = 1 and ¢ = 1.) While this i :

certainly suggestive of an increased liquidity risk early in the life of the exposure with V,, satisfying

as a result of the hedge, it is at best a comparison of risks at a fixed time k£ (1f v
1

the distributions can reasonably be compared through their variances) but no
without further justification, a comparison of risks up fo time k. We will argue that:
comparing spot risks as measured by variances at fixed times actually understate:
the running risk of a cash shortfall up to a fixed time. :

The derivation leading to (5) relied solely on algebraic identities. A secon
interpretation of the rolling stack that is useful in more general settings is developed
in Appendix B. We show there that any hedging strategy generating cumulative
cashflows H, satisfying

Hy — E[H] = E[Ci] — E¢[Cy]

locks in terminal value. (Here, E; denotes conditional expectation given the pric
history to time k.) At intermediate dates, the exposure (actual cash balance minu erfect terminal hedge is act
expected) resulting from a hedge satisfying (6) is ; =

Cy — E[C] = Cr — Ex[Cy1l;

see Appendix B for details. Bquation (7) sometimes provides a convenient shortcu

We now give more detailed model assumptions, generalizing the setting consid
ered so far. For simplicity, we fake ¢ = 1 from now on. We include mean reversio;
in the price dynamics to aflow for more interesting behavior; specifically, we sel :

ne-period futures contracts
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Sn+1 = (1 - (I)S,, + we, -+ JZII+1-

Here, 0 < @ = 1 measures the speed of mean reversion, ¢, is the level toward
which the price reverts at time n, and the Z, are uncorrelated with mean O an
variance 1. (When o = 0 there is no mean reversion.) We express the futures price;
as :

Fn,n+1 - En[SnJr]] + Bn,n+ll
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Notice that by ni1 = Bpap1 + E[ 84411 — S, so this change in representation does
pot by itself entail any assumptions. However, we do assume that the B, .1 are
deterministic.> This is a shortcoming of our analysis, but one that can be suitably
addressed only through a model of commodity prices with at least two factors.
Culp and Miller (1995) present evidence that fluctuations in the oil basis are a

small fraction of those in spot prices, S0 our approximation is not without some

validity.
By setting V, = E[S,] — S, we can express the unhedged exposure as
k k
Cp — EICA = Y (EIS;1 = S) =D Vo ©)
n=1 n=1

with V, satisfying

5

Vn+1 = (1 *Q)VM - Jzn+1-

Simple algebra verifies that
n )
L=y (=) Z
i=1

and
k k 1— (1 _ a,)k—n+1

V,=—0 E Zn,
1 (44

so an application of (6) (or a derivation akin to that leading to (5)) shows that a
perfect terminal hedge is achieved by buying

n=

. EPY A b
1—(1—a) (10)

he =
i o

one-period futures contracts at time .5 The resulting cumulative hedge cashflows

3 Assuming By 41 deterministic can be interpreted as assuming a deterministic risk premium; see Section 6.4
of Duffie (1989) or 7.4.2 of Edwards and Ma (§992). Assuming by oty deterministic rather than By p41
would change the number of contracts in a perfect terminal hedge but weould not significantly affect our
analysis.
Various notions of basis are commonly used: Culp and Miller (1995), Duffie (1989), and Stoil and Whaley
{1993), for exampie, all give different Jefinitiops. The ambiguity in terminology is related to that in the use
of the terms “contango” and “hackwardation”. See Appendix A. To equale positive and negative basis with
contango and backwardation, respectively, vsing the latter terms in the sense preferred by Duffie (1989) and
by Stoll and Whaley (1593}, cne should take By 41 rather than by, 441 as the hasis.

When o — 0, this and all similar expressions shouid be interpreted in the lmit as o } 0. Thus, h?, =N—n.
In fact, most discussions and assessments of the Tolling stack equate (he size of the futures position at time #
to the remaining commitment, which correspends to setting B =N-—n in our setting, Our derivation shows
that ihe size of the position should be adjusted to reflect the speed of mean reversion for the rolling stack t©
be most effective in hedging terminal value. Raoss {1995) makes a related observation.

.




P Glasserman 13, S

are

Hk’ = Z hg,} {Sﬂ - F‘ij*],ﬂ]

=1

k k
o
= hy_ 02, — E hy_ Bain.
1 1

n=1 =
If we set Cy, o Cy + Hy, then from the expressions above for Cy and Hy or mo terchanging the order of i

directly via (7), we find that the resulting exposure is

(1—a) — (1 — )V !

Ci — E[Ce] = — Vi. _ ,
« his continitous-time set
Thus, we seek to compare the risks in (9) and (11). : nvenient at times to think
We also consider other hedging strategies. A strategy is defined by g turn to real maturities in &
{g1,...,&n), where g; denotes the number of futures contracts to buy at tim

The resulting cumulative hedge cashflows are

k k
Hk(g) = ngzgzu - Zgan—l,rza
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For tractability, we work with continuous-time counterparts of the expressio
above. Specifically, we replace (8) with

dS, = —a(S, —c) dt + o dW, (13

with & > 0, W a standard Wiener process, and ¢, a deterministic function of ti
representing the level towards which the price reverts at time #.% The firm contrac
to deliver the commodity continuously at the rate of 1 unit of the commodity pe
unit of time throughout the interval [0, 7']. The contracted price is 4, at time ?. Thi
cumulative cashflow process is now

lUtures contracts at time i ¢
din so doing locks in th
odification applies in dis
p ithout fundamentally affe
6= [ @-sds '
0

with an exposure of

i !
C, — E[C/] = | (E[S]— S;)ds = f Vs ds,
0

o For. reasons discussed in S

cled cashflows from its ¢

& The continuous-time and discrete-time speeds of ez I R
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dVi=aV,dt —ocdW,, V=0

The terminal unhedged exposure is

T T K
f V,ds = —c f f e~ gW ds.
0 0 G

Interchanging the order of integration and simplifying shows that this equals

™1
—orf —(1 — ef"(T_")) dw,.
o

In this continuous-time setting, we do not model futures explicitly, though it is
convenient at times to think of contracts with maturities d¢ (as in Ross (1995)). We
return to real maturities in Section 7. By analogy with (12),

T
1
o f gls) — =(1 —e ") W,
0 [0

represents the exposure under the strategy of buying g(s) contracts at time s. In
particular, a rolling stack of (1 — exp[—«(7T — s}])/a contracts at time s results in
a terminal exposure of zero. We interpret this expression.as (T' — 5) when o = 0.

We conclude this section with a remark on tailing the hedge — that is, locking
in expected present value. Discounted at a continuously compounded rate r, the
unhedged exposure becomes

T T e _ e——(a+r)(T—u)
f e Vods = —of ( ) dW,.
0 I o+r

A tailed rolling stack holding

T e—(oé+r)(Tmu)

o +r
futures contracts at time « thus cancels the present value of the unhedged exposure
and in so doing locks in the expected present vatue of the contract. An analogous
modification applies in discrete time. Tailing the hedge complicates our analysis
without fundamentally affecting it, so for the most part we exclude it from consid-
eration,

3 Speot risk and running risk

For reasons discussed in Section 1, we presume that the firm seeks to hedge ex-
Pected cashflows from its delivery contract throughout the life of the contract and
ot just at the terminal date. In particular, we suppose that the firm hedges to try
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to prevent the actual cash balance from falling short of the expected cash
by an amount x, which we take to be large. Write A, for the actual cash

the running risk is me
some interval {0, t], on
; er, then the shortfall pr
A; < E[A,] — x. Small shortfalls are unhkeiy to have a significant lmpact . (This is not true wit

firm, so we are primarily interested in large x.
By the spot risk at time 1 we mean

en-better measure of 1
efining v; is at{aine

P{A; — E[A] < —x), itions are satisfied, ther

- . P{min
| the probability of a shortfall at time ¢. If, as in our setting, the cash balan —
~ Gaussian, the spot variance af = Vat[A,;] measures this risk perfectly. But:

relevant measure is ¢ denoting the standa

‘guoting a result of T
point in Section 7.)
evel x in [0, ] is wel
ble lands more than x/
second tool for study
is not resiricted to the
more detailed inforn
Qst likely paths™ iden
ks to which different .
pare hedged and unhed;

P(min (A, — E[A;]} < —x),

the probability of a shortfall any time up to #, which we call the running ris

Calculating the running risk exactly is difficult,” even in our simple model.
compare risks based on an asymptotic measure that applies for large x. It
from the Gaussian property of our model that the shortfall probability (hedg
not) can be written as

P(min (A, ~ E[A,]) < —x) = e ¥ 1o0H),
0=y <t

where

y = - lim —logP(mm(A — E[A]) < —x)

x—o0 x2

depends on the hedging strategy and ¢, and o(x?) denotes a quantity conv 4
to 0 as x — o0, when divided by x2. If one hedging strategy has a larg this section, we specializs
than another, it results in smaller probability of a shortfall of magnitude x. ks in a few hedging s
sufficiently large x. In this sense, a larger ¥ means less risk. ; We Justify the follow

We use two tools for evaluating y in particular and the running cashflow.

general. The first is a remarkable result of Marcus and Shepp (1971)® that, s full hedge‘has greate
-- v 1/3)/2) of the life of

as A, is Gaussian with sample paths that are bounded on bounded interval
continuous) '

1 Ok
y = o he optimal fixed fract
f he optimal fixed horiz
with
vy = 0351;1% g;- fore explaining how wi

7 Adler (1990), p. 3, calls this “an almost impossible problem’ for general Gaussian processes dl‘ld o
(14) is known for very few examples, :

8 See Adier (1990) for a more extensive treatment and numerous references to related resulis. Nce crosses the dotted |
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Thus, the running risk is measured by the running maximum standard deviation. If,
over some interval [0, 7}, one hedging strategy has a larger maximum variance than
another, then the shortfall probabilities are ordered the same way, for all sufficiently
Jarge x. (This is not true without the Gaussian assumption.) In fact, v; is frequently
an even better measure of risk than suggested by (15). If, for example, the supre-
mum defining v, is attained at a unique point and some additional smoothness
conditions are satisfied, then

- P(ming<ssr (As — E[AD) < —%)

D(—x/v)

with @ denoting the standard normal cumulative distribution. (See Adler {1990),
p. 121, quoting a result of Talagrand (1988), and Piterbarg (1996), p. 19; we retarn
to this point in Section 7.) This result states that the probability of a shortfall
below level x in [0, #}1s well approximated by the probability that a normal random
variable lands more than x /v, standard deviations below its mean.

Our second tool for studying the running risk is the theory of large deviations,
which is not restricted to the Gaussian case, and — more importantly in our context
— gives more detailed information about when and how a shortfall is likely fo occur.
The “most likely paths” identified by a large deviations analysis illustrates the types
of risks to which different strategies are exposed. In the next three sections, we
compare hedged and unhedged positions using 1/y as a measure of risk and most
likely paths to —x found via large deviations.

E]

4 Without mean reversion

In this section, we specialize to o = 0 and compare risks in the unhedged position
with risks in a few hedging strategies, including the full hedge that locks in terminal
value. We justify the following conclusions:

(i) A full hedge has greater spot risk than no hedge for approximately 63% (3(1—
J173)/2) of the life of the exposure.
(i) A full hedge has greater running risk than no hedge for approximately 76%
((4/9)}/%) of the life of the exposure.
(ili) The optimal fixed fraction to hedge for the full horizon is approximately 63%.
(iv) The optimal fixed horizon for a full hedge is approximately 73% of the life of
the exposure.

Before explaining how we arrive at these observations, we make a few remarks.
The crossover point in (i) corresponds to the point at which the two solid curves
in Figure 1 cross. In contrast, the point identified in (ii) is where the unhedged
variance crosses the dotted line. Tn view of the discussion in Section 3, we arrive
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interval [T /3, T]. For th
the spot variance inc
mes less risky than the

at the rather surprising conclusion that for any ¢ < 0.767, the probability of g
shortfall of magnitude x at some time in [0, 7] is greater for the hedged po;
than the unhedged position, for large x. To put (iii) in perspective, notice that i
single-factor model of commeodity prices, the minimum-variance hedge ratio wo
be 1. (For discussions of minimum-variance hedging with futures see Chapte
Duffie (1989) or Chapter 6 of Edwards and Ma (1992).) But the minimurm-variz
- criterion considers the risk at a fixed date only; our measure, which reflects
throughout the life of the exposure, results in a substantially smaller hedge ra
Finally, (iv) shows that if one does use a hedge ratio of 1 (as in the standard rollin )
stack), then the hedging horizon should be shortened to minimize risk. remaining unhedged it
We now proceed with the verification of (i)-(iv), beginning with some preli
‘nary results. f « = 0, then V; = —o W,. Standard calculations give

— (4/9VT.
. next consider (iv). R

/ 2 g (s
2V, { / d } =Zp

oy = Var Vids | = —t _ _
0 3 : yptimal fixed-horizon }
for the variance of the unhedged exposure. Under a full hedge, the exposure at ¢ interval [0, T']. F
{is : 17). The maximal sp
! T kiest) or at 7 (where t
fu Vods — E; [ /0 Vs ds] =T =nV. : he spot variances at the
Thus, under a full hedge we have a spot variance of f (T — )2 ds +

&% = (T —t)’a™t.

As discussed in Section 2, a deterministic hedging strategy is a function g spol variances at these times
[0, T'], with g(s} interpreted as the number of futures contracts to hold at tim X
In the absence of mean reversion, full hedging corresponds to g(s) = (' — 5)
no hedging corresponds to g(s) = 0. The exposure under any strategy g is
integration by parts for the first integral)

Higure 2 displays the
that for a full hedge — |

i I I3
/ V.ds + o*f g(s)dW, = O'j [s —t+gls)1dW,,
0 0 0
which has variance

t
oi(g) =0’ f [s —t + g(s)* ds. s is evidently a cubic fur
0
We use this repeatedly to compare the risks in different strategies.” __
For (i) we set 0,2 = 5,2 and solve to get t = (37/2)(1 — /1/3). For (i), we i
note that the spot variance of the full hedge is maximized at T'/3, where it take
value 402/27. The running variance of the full hedge thus remains at this lev

ther possible location
7Y *T . The optimal ;
erically, we find that
(1/4)!'3, The resultin

® The problem of minimising (over g) the maximum (over #) of (17) has been given a fascinating soluth
Larcher and Leobacher (2000).
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:{:he interval [T /3, T]. For the unhedged position, the running and spot variance are
equal (the spot variance increases monotonically); hence, the unhedged position
pecomes less risky than the full hedge when

ie,att = (4/9)'°T.

We next consider (iv). Recall that a full hedge makes the spot risk at T zero,
By hedging to a horizon t < T', we mean hedging to make the spot risk at T zero
(and remaining unhedged in [z, T']). This is achieved by holding (t — s) futures
confracts at time s, rather than {T" — 5); i.e., by the strategy

() = (t—s), O=s=1
Erid) = 0, s> T,

The optimal fixed-horizon hedge is the one that minimizes the running risk over

~the entire interval {0, T']. For any 7, we can evaluate the spot variance under g;

“using (17). The maximal spot risk occurs either at 7/3 (where the bedged portion

“is riskiest) or at T (where the unhedged portion is riskiest). Using (17), we find
that the spot variances at these times are 4627%/27 and

‘ T 2 1
02/ (T — 1) ds +02f (T — )% ds = 02(§r3 — T’ + §T3),
0 T

“ respectively. The optimal 7 — the one that minimizes the running risk — makes the
- spot variances at these times equal. This is the oot of a cubic equation which can,
* in principle, be given explicitly; numerically, we find t ~ 0.7337 as indicated in
- (iv). Figure 2 displays the resulting variance over the life of the exposure along
. with that for a full hedge — i.e., with a hedging horizon of T.

. We now turn to (iii). Fully hedging a fixed fraction = throughout [0, T'] corre-
“sponds to the strategy g (s) = 7 (T — s) and therefore results in a spot variance

of

o’ f{(nT + (1 —m)s — )2 ds.
0

This is evidently a cubic funetion of ¢; it achieves a local maximum at

w0 kr =)
7+ +1
The other possible location of the maximal variance is 7', where the spot variance is
(1 - m)262T. The optimal 7 sets the values of the spot variance at r* and 7" equal.
Nurerically, we find that the optimal 7 is 0.62996, which appears to coincide
with (1/4)1/3, The resulting variance over time is graphed in Figure 2. Both the
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Fig. 2. Comparison of variances under different hedging strategies. The full hec
hedge ratio of 1 for the full horizon T'. The optimal fixed-horizon hedge uses a
of 1 until time v = 0.7337 and thus balances the risk from the hedge early in th
with the original risk later in the interval. The optimal fraction hedge uses a hedg
7 ~ 0.63 for the full interval [0, T].

), and Figure 1 of Neul
ous points in time.
he presence of mean re

. . . . , L ty prices are mean
optimal hedge ratio and the optimal fixed horizon result in substantial redu B

in the ranning risk, compared to a full stacked hedge. Hedging the optima
fraction is slightly more effective than hedging fully for the optimal horizon

We conclude this section with some observations on the impact of taili
hedge, as described at the end of Section 2. Table 1 shows the location an
of the maximum variance with a full hedge and with no hedging, for various
of the discount rate r. The results indicate little change over a broad range o
Indeed, although maximum variances decrease with r (as they should), thei
remains essentially unchanged. '

he expected time for
ata in Bessembinds
sured in years.) In
clusions in terms of
Iring time in multiples ¢
oré complicated than tt
quence, our results a
numerical results,

5 With mean reversion

The possibility of mean reversion introduces more varied behavior in the d _
of commodity prices and in the hedged and unhedged exposures. If we take:

. , . The spot risk of the ful
in (13}, then expected future prices satisfy -

he rate of mean revers
Unless o7 is greater
an no hedge for mos
offis a7 & 2.06.

: he optimal fixed fract

EfSiisl=e ™8 +(1 —e™™)e.

A graph of expected future prices is thus upward sloping, flat, or downward sl
depending on whether S, is below, at, or above ¢, and bears some resemblance
graphs in Figure 3 of Brennan and Crew (1997), Figure 8 of Edwards and
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Table 1. The effect of tailing the hedge using a range of discount rates.

Hedged Unhedged
Rate Location Maximmm Location Maximum  Ratio
0. 0.333 0.148 1 0.333 44 4%
0.01 0.333 0.146 1 0.329 44.4%
0.05 0.330 0.139 I 0.313 44 3%
0.10 0.326 0.130 i 0.294 44.1%
0.15 0.322 0.121 1 0.277 43.9%
0.20 0.319 0.114 1 0.260 43.7%

The columns labeled “Location” and “Maximum” give the Gime at
which the maximal variance is attained (as a fraction of T) and the
magnitude of the maximal variance {as a fraction of o 2T%). The last
column gives the ratio of the maximal variances of the hedged and

unhedged positions.

(1995), and Figure 1 of Neuberger (1999) showing the term structure of oil prices
at various points in time.

The presence of mean reversion has important implications for hedging. If
commodity prices are mean reverting, an exposure to them has a type of built-in
hedge: unusually large price movements in the short term will be naturally offset
over time. To lock in expected terminal profits, less hedging should be required
with a greater speed @ of mean reversion.

For the most part, our observations in this section depend on the magnitude
of o. Tn thinking about what values of o are plausible, it is convenient to view
/e as the expected time for prices to revert about two-thirds of the way to their
mean. (Data in Bessembinder ez al. (1995) suggests o =z 0.77 for oil prices, with
time measured in years.) In particular, a depends on the unit of time, so we state
our conclusions in terms of the dimensionless quantity o7 . This is equivalent to
measuring time in multiples of the horizon 7', The expressions we obtain for o > 0
are more complicated than those we obtained for & = 0 in the previous section; as
a consequence, our Tesults are somewhat less explicit. Through a combination of
exact and numerical results, we make the following observations:

(') The spot risk of the fully hedged position is maximized at T /3, regardless of
the rate of mean reversion.
(i) Unless aT is greater than about 2.375, a full hedge has greater running risk
than no hedge for most of the life of the exposure. For the spot risk, the cot
off is T == 2.06.
(iii') The optimal fixed fraction to hedge for the full horizon is approximately 63—

75%.
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Fig. 3. Variance of (a) unhedged and (b) hedged cash balance over time for th
the mean-reversion speed o. '

(iv'’) The optimal fixed horizon for a full hedge is approximately 72-78%
life of the exposure.

A useful resuit for the case o > 018
1 .
Cov[V,, Vi = E[V.V/] = er—”"“’(ez‘” -1, s<t
4

see, e.£., p. 358 of Karatzas and Shreve (1991). From this we can calculat
risk of the unhedged exposure to be

t { ps
g? = Var [/ Vi ds} = 2[ f EiV,V.]du ds
0 0 JO
. o

2

1
= &?[ﬂt —+ Z(G_QT _ 1) — _i(e—la{ — 1)

The fully hedged position has an exposure of (see (7))

f T 1
f V.ds — E, [f Vs ds] = —V, (1l — eﬂa(f—r))
0 0 o

and a spot risk of
=2 1 —a(T—1) a’ —T-0\2(] —Jat
o’ = Var EV,(l—e ) :ﬁ(lﬁe (1l —e

Some tedious but straightforward calcuﬂs shows that &7 is maximized at_
indicated in (i'); in particular, the location of the maximum is independe

For the unhedged position, o is, of course, always maximized at 7. Fif
illystrates the dependence on o, With larger o there is less risk and the ful
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Table 2. Crossover points as a fraction of the life T of the exposure.

Spot Running

Reversion .
rate risk risk
. of crogsover  Crossover
0 0.63 0.76
0.10 0.63 0.75
0.5 0.60 071
1 0.57 0.65
2 0.50 0.53
5 0.31 0.31
10 0.16 0.16
100 0.02 0.02
ﬁ

Both properties reflect the natural

is more effective in reducing what risk there 1s.
hedge resalting frorm mean reversion.

To justify (i), we {ocated the points ¢ > 0 at which 02 = &% and maXs< or =

e displayed in Table 2 for arange

maXs<s Er_f, respectively. These crossover points af
of o values. The crossover points occur more than halfway through the life of the
norzon until o7 exceeds 2.06 for the spot risk and 2.375 for the running risk. For
larger values of a, a% Crosses 6? pefore T/3; because c}? increases in [0, T/3),the
two crossover points in Table 2 are the same for larger o.
For an arbitrary hedging stralegy & the spot variance 18
! 1 2
HOELS L [g(s) - (1 e"""‘”)] ds (20)

17y as a | 0. For cach 7 € [0, T, the partial-

which reduces to the expression in
horizon strategy g: given by

0<s =T,

1
2.(s) = P exp(—a(t =N
r<s=T

El

The maximum spot variance under gz occurs at

at these points are

[
\: makes the spot variance O at 7.
% either 7 /3 or T'; the spot yariances

()’2 _Zar 3
i- - (1 e 5 ) @1
(22)

1
[_E(e—u{‘r F_ e—OtT)2 +e#d(T—‘L’) 14 OC(T _ T)},
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Table 3. Optimal fixed hedging horizons (as a fraction of T ) and fixed h
Fatios. :

Reversion Optimal Optimal
m;? hh’%ed fﬁxf'd o we will keep our discus
- e ' calculation of most likely [

0 0733 0.630 % noted in Section 3 that the

0.10 0.732 0.633
0.5 0.727 0.647 i
1 0.724 0.665 "__>n;10
2 0.728 0.697
° 0.790 0.770 ¢ exponential rate of dec
11(?0 ggg}t 83?;; he following property: 1

ability that the Wiener proce
xponential rate nearly equi
oreover, the probability the
“occuring vanishes expone
th high probability it occurs

y path.

ling the most Likely path |
1_uicly continuous function
rie. The most likely path in

respectively. The optimal T — the one that minimizes the maximum spot vari
makes these two expressions equal. Numerical values are summarized in 1
The optimal horizon is rather insensitive to «. This is due, in part, to the fact
it first decreases and then increases as o increases away from zero. This /1
monotonicity arises from the fact that, as « increases, both (21) and (22) de
but neither consistently faster than the other.

Using (20), we can find the optimal fixed-fraction hedge for each «.
hedging a fraction 7 throughout the life of the exposure corresponds to the str

¥ — E _ —a(T—s8)
éﬂ(s) o (1 € ) .

Substituting this strategy in (20) yields a tractable but cumbersome express
which we suppress. We use this expression to find the hedge ratio 7 that ni
imizes the maximum variance over the life of the exposure. The results appedt t
the third column of Table 3. TFor plausible speeds of mean reversion, the hed {¢:0 j
ratio that minimizes the running risk is in the range of 63=75%, even though
minimum-variance hedge ratio in our model is always 1. '

minimi

§ known as Schilder’s Th
84) (especially pp. 667 K
nes a constraint on ¢. Still"

6 Most likely paths

Tn this section, we examine in more detail the scenarios that lead to cash shortfall
Wi[%l and without a stac.ke.d hedge.l We begin by considering th.e case & = 0, :Solutions to (23) in these
which the exposure Vs_ is just a W1eper process. An event A, like “a Shorrfa?ﬂs ol \ are given in Appendix C
magnitnde greater than x occurs in [0, TT” is a set of sample paths of the Wi
process. There is often a path in a set like A, that is the most likely path in
sense that when A, occurs, it occurs with the Wiener process staying close to
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path. This tendency to follow the most likely path becomes most pronounced as
the event becomes rare, which corresponds to x becoming large in our setting.
These statements are made precise by the theory of large deviations; see Dembo
and Zeitouni (1998) and Stroock (1984} for background. This is a highly technical
topic, so we will keep our discussion informal and proceed as directly as possible

to the calculation of most likely paths.

We noted in Section 3 that the limit
i L

r—o0 x2

log P(Ay) = —y

gives the exponential rate of decrease of P(A,) in x?. The most likely path ¢* ¢
A, has the following property: if we define a strip around ¢* of width ¢, then the
probability that the Wiener process stays within this strip throughout [0, T'] decays
at an exponential rate nearly equal to that of P(A,), the difterence vanishing as e |
0. Moreover, the probability that the Wiener process leaves this strip conditional
on A, occuring ﬁjlanishes exponentially as x increases. Thus, given that .4, occurs,
with high probaﬁﬂjty it occurs by the Wiener process staying close to the most
likely path.

Finding the most likely path is a problem in the calculus of variations. For any
absolutely continuous function ¢ on [0, T'], denote by ¢ its derivative with respect
to time. The most likely path in A, solves

T
minimizege 4, % fo [$(1)]? dt. (23)

This is known as Schilder’s Theorem; see Dembo and Zeitouni (1998) or Stroock
(1984) (especially pp. 66-7 for the mean-reverting case). Membership in A,
defines a constraint on ¢. Still with & = 0, for the unhedged exposure

. f
A, ={d: aj ¢(s)ds > x, forsome ¢ € {0, T1},
0

since this defines a cash shortfall in this setting. (In this and afl subsequent cases,
the requirement ¢(0) = 0 is implicit.) Tn the fully hedged case, a shortfall occurs
when (T — 1)V, > x, so (recalling that V; = —o W,)

Ay =1{¢:0¢(t) < —x/(T — 1) for some t € [0, T']}.

The solutions to (23) in these two cases are displayed in Figure 4a, b; the deriva-
tions are given in Appendix C. In each case, if ¢* is the minimizing path, then

7.,
y=» f B OF dr,
0
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e now let A, be the set of
an x, then substituting (24) in

MHNIMiZe ¢ 4
(a) ()
etermine the most likely pat

hereas in the hedged case it i3
A, = [ s o (t) < —oax

n each of these problems,
arbitrary x is just x times tl
lution for x = 1. The volati
refore be set to 1 as well. W
¢ problems above:

© {d)

0, unhedged:
Fig. 4. Most likely paths of S, — E[Ss] to a cash shortfall. (a) and (b) are with o =
and (d) with « = 2. (a) and (c) are for unhedged exposures, (b) and (d) are for fully hedg
exposures.

0, hedged:

with y as defined in (15). In other words, the exponential rate of decrease of Pt) =
shortfall probability is the also the “cost” of the minimum-cost path to a shor
We now consider the case @ > 0. In light of the relation > (), unhedged:
, Y
V, = —cr]o e~ W, here a = a/((3 — 2aT)e
d e =—(a+b).
any event defined in terms of V can be expressed through conditions on W. M > 0, hedged:
specifically, to each path ¢ of V there corresponds a path ¢ of W via
: v =

ith c) = aexp(—aT/3)(]

W) = —0o f e 29 (s) ds;
0
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Y () = —ayr(t) — od(s)
| and therefore
. 1 .

¢ =—~l®+ o (D1 (24)

If we now let A be the set of ¥ paths resulting in a shortfall of magnitude greater
. than x, then substituting (24) in (23) we arrive at the objective

1 7.
minimizeyes, 53 fo (1) + (02 dt 25)

to determine the most likely path. In the unhedged case the constraint is

f
A, = {ur : f ¥ (s)ds > x, for some t € [0, T]},
0

whereas in the hedged case it is (see (19))
A= oy(t) < —ax /(1 — exp[—a (T —t)]) for some { € [0, T}

In each of these problems, x merely serves to scale the solution: the solufion
for arbitrary x is just x times the solution for x == 1; hence, it suffices to give the
solution for x = 1. The volatility parameter ¢ is also a scale parameter and may
therefore be set to 1 as well. With these simplifications, we present the sofutions to

the problems above:

¢ o =0, unhedged:

Mﬂﬂ3t 1
Trr a7

+ @ = {, hedged:
b0y = —(9/2T*, 0=t =<T/3
“\ -3/27, T/3<t=<T.

* « > (), unhedged:
() = ae”’ + bhe™™ +c,
where @ = a/((3 — 2aT)exp(al) + exp(—al) —4), b = 2exp(aT) — Da
andc = —(a + b).
* a > 0, hedged:
[ -2eisinh() 0 <t <T/3;
v = { et T3<t =T,

with ¢ = a exp(—aT/3)(1 — exp(—2o,r1”/3))*2 and ¢; = (exp(2aT/3) — D)c1.
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These paths are graphed in Figure 4(a)}—(d), the last two with @ = 2. The gt
are all on the same (dimensionless) scale, but with the origin in the upper-left
of (b) and (d) and the lower-left corner of (a) and (c). In each case, the curve
the most likely path by which the commodity price S, deviates from the exps
price £[S5;] in generating a cash shortfall. Appropriately, in the unhedged cas
and (c) the shortfall results from an unexpected price increase and in the hc
cases (b) and (d) it results from an unexpected decrease: the rolling stack ¢n
a large long position in the commodity early in the life of the exposure
the price increases throughout the life the exposure, leveling off at the end,’y
the optimal path has derivative zero. With mean reversion, (¢) shows that the
likely scenario has the price deviation reaching a maximum before 7'; the cury
of the path increases with «. The graphs in (b) and (d) show the rather di
risks to which the firm is most exposed under a full hedge. In both cases, th:
sharp drop in price until 7'/3 where the shortfall occurs. In (b), the price thé
flat, whereas in (d) it reverts towards its mean. Indeed, after 7/3, the path_é
and (d) are unconstrained by the corresponding event A, so the paths follos

Full Hedge

(ptimal Fraction

10 20 30 4«
@

Cumulative probability
and the horizon is 6(

edged case ¥ In the hed;

mean behavior; the most likely paths are interesting only up to T/3 in these Ce —
Figure (d) is reminiscent of the sharp drop followed by a gradual recovery i
price of oil around the time of MGRM’s crisis. : rem D.4 of Piterbarg (1

®(—x/v,) < P{min {C
O<s<t

not the analog of (26). T
erestimate the risk of the

ssess the reliability
nce, we conducted sim
ﬂy for the discrete-time
er of experiments with
_estimated cumulative
Il'hedge, and the optim

7 Assessing the approximations

The analysis in Sections 3—6 relied on two approximations to the model in
developed in Section 2: we replaced the discrete-time model with a contin
time one, and we replaced the exact (unknown) risk of a cash shortfall with
running maximum variance, which is valid when the magnitude x of the sho;
is large. In this section, we examine the validity of these approximations.

We begin with a closer look at approximations based on (15) and the surrou
discussion, still in continuous time. It follows from Theorem D.3 of Pit

(1996} that for the unhedged exposure o
month contracts) and o

onitude of the shortfall v
“The overall appearanc
> Tunning maximum v
t that Figure 1 even u
;'ents following (27).
ther simulation results

i
Cr — E[C,] = [ Vi ds,
G

the shortfall probability satisfies
T i POt (G — BIGY < -x)
100 D(—x/v;)

rbarg formulates his result in
tval over which the maximum |
Lmurn is attained at the bounda

for each ¢ € (0, T, indicating that the running maximum standard deviatio
an even better measure of the running risk than suggested by (15) and (16}, 'il__l
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g. 5, Cumulative probability over time of a cash shortfall, estimated by simulation. In
o = O and the horizon is 60 periods; in (b}, T = 2 and the horizon is 30 periods.

nhedged case.'? In the hedged case, with an exposure of

- - 1
C, — E[Cl=—-=V( - eI,
o

eorem D.4 of Piterbarg (1996) gives

®(—x/v) < P(Orgigr{c_'s — E[C,]} < —x) < constant- x®(—x/ve), (27
‘but not the analog of (26). This suggests that the running maximum variance may
nderestimate the risk of the hedge, relative to no hedge, when x is not too farge.
“To assess the reliability of risk comparisons based on the running maximum
ariance, we conducted simulation experiments 1O estimate shortfall probabilities
lirectly for the discrete-time model. The graphs in Figure 5 are indicative of a large
- number of experiments with different parameter values. The curves in the graphs
how estimated cumulative probabilitics of a shortfall over time with no hedge,
-2 full hedge, and the optimal hedge ratio from Sections 4 and 5. The graphs in
(a) are based on 60 periods (intended to suggest a five-year eXxposure hedged with
one-month contracts) and o = 0, those in (b) use 30 periods and aT = 2. The
magnitude of the shortfall was chosen to get a cumulative probability of roughly
10%. The overall appearance of the graphs is strikingly simnilar to the comparison
of the running maximum variances in Figure 1. Indeed, the simulation results
suggest that Figure 1 even understates the risk of a full hedge, consistent with the
comments following (27). The general pattern we have observed based on these
* and other simulation results is that the riskiness of the full hedge (relative to no
10 Piterbarg formulates his result in the case {hat the point of maximai variance is in the interior of the time

lnler_val aver which the maximnm is computed, but then notes that the result extends to the case iz which the
maximum is attained at the boundary, as in our setting.
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Fig. 6. Cumulative expected cash shortfall with no hedge, a full hedge, and the optimal-
fraction hedge. (a) and (b) are based on the same parameters as in Figure 5. As bef
the curves are ordered with the optimal-fraction hedge having smallest cumulative risk;
full hedge in the middle, and no hedge having the largest cumulative risk.

hedge) decreases with the magnitude of the shortfall and with the speed of med
reversion.

Figure 5 also indicates that substantial risk reduction can be achieved by
the optimal fixed-fraction hedge rather than a hedge ratio of 1. Tt should be possibl
to get further risk reduction for any number of periods N by solving numerically:
the strategy (g1, ..., gx) that minimizes the maximum variance over the hedgin
horizon. This is an easily solved optimization problem; we have found tha
resulting strategy is surprisingly erratic and does not appear to lend itself to sim
specification. Of course, even this strategy is at best the optimal determinis
strategy; in practice, a firm is likely to adjust its hedge in light of new pri
information.

The shortfall probability is open to criticism as a measure of risk because it ire
all shortfalls of magﬁ'itude greater than x equally. A simple aliernative welg
shortfalls in proportion to the amount by which their magnitudes exceed x.
€, denote the exposure at the end of period n, hedged or not. By the expec
cumuylative shortfall to time £ we mean

o 20 30 4
(¢

2.7, Simulated paths on whi
erage over all simulated paths
DPath shows the interquartile ran;

¢ exactly as in Figure 5.
imilar to that in Figure 1.
Notivation in Section 3 focu
sults sugpest that the runnir
Of rigk.
‘We next turn to the most 1
ased on continuous time and
are Televant to the original se
odel, with and without meay
e simulated roughly 20 000
I magnitudes of the requin
he probability of a shortfall
“conditional law of the e:

k
> Efmax(0, —x — &,)].

=1
Artzner et al. (1996) have developed an axiomatic approach to risk measure
which the only “coherent” measures of risk are generalizations of this express
with x = 0, |
Figure 6 shows cumulative expected shortfalls estimated through simulatt
with a full hedge, no hedge, and the optimal fixed-fraction hedge. The parame
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Fig. 7. Simulated paths on which a shortfall occurs. In each case, the center path is the
average over all simulated paths on which a shortfall occurs, and the band around the center
path shows the interquartile range. (a) and (b) are for @ = 0, (c) and (d) fora =12

are exactly as in Figure 5. Again, the overall behavior of the risks is strikingly
similar to that in Figure 1. The similarity is even more notable given that the
motivation in Section 3 focused exclusively on the shortfall probability. These
results suggest that the running maximum variance is a reasonably robust measure
of risk. L

We next turn to the most likely paths found in Section 6. That analysis was also
based on continuous time and large x. To determine whether the paths found there
are relevant to the original setting, we again simulated the original discrete-time
model, with and without mean reversion, with and without hedging. For each case,
we simulated roughly 20 000 paths, and saved those on which a shortfall occured.
The magnitudes of the required shortfalls were varied for different cases to keep
the probability of a shortfall in the range of 2-5%. The saved paths approximate
the conditional law of the exposure process given a shortfall. In Figure 7 we
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have graphed the mean and the 25th and 75th percentiles (computed separafs for example, Duffie (I

for cach time period) of the paths. These show good qualitative agreement wi
the theoretical paths in Figare 4. As explained in Section 6, the paths in (b) a
(d) are constrained only up until a shortfall occurs (near one-third of the horizo
so only this portion of the path is interesting. After the first third of the horizi
the spread in (b) relects the ordinary +/n diffusion associated with a random walk
Indeed, the contrast in (b) before and after the first third shows the exient to whie
the occurence of a shortfall alters the usual evolution of the path. .
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=_f1xéd price and date in th
antity of, ¢.g., & Commo
;ji'venf price. The forwar
tract zero. If a forward
he agreemient as the de
ercement with no exchar
ange whereas the contr:
forward contract — wo
g party and negative v
ps, the value of the fo
egative for the long part)

' \ futures contract is sir
nd date in the future; the
ures contract costless.
sarties involved, futu
has many implicatio

8 Conciuding remarks

We have proposed a measure of liquidity risk that approximates the probability
a cash shortfall any time in the life of an exposure, and used it to compar the
risks in various strategies for a firm hedging long-term commodity contracts with
short-dated futures. The implications of our analysis include an assessment of the
cashflow risks produced by a seemingly petfect terminal hedge of the type used.
Metallgesellschaft. We have also identified the particular price patterns {0 whi
a hedged or unhedged firm is most exposed, and examined the impact of me
reversion in the spot price. :
‘Although we focused on a rather specific context, our analysis 1s relevant.
other settings in which the variance of a position may fail to be monotone over WL
Swaps, for example, typically have this propetty, and, like the fully hedged posi
in our context, have zero terminal variance. Indeed, our basic setup applies 10|
cumulative payments on a floating-for-fixed interest rate swap with the float
rate described by the Vasicek (1977) model. Hedging strategies based on disch
rebalancing can also be expected to have nonmonotone variance. The cuLl
and growing emphasis — in the finance industry, among regulators, and evel
corpororate finance — on measuring value-at-risk over multiple horizons SUgge
broader potential application for the perspective developed here.
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Appendix A: Futures and forwards

This section gives a brief summary of some concepis and terminology pertinent

futures and forward contracts, More thorough treatments of these topics are g
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in, for example, Duffie (1989), Edwards and Ma (1992), and Stoll and Whaley
(1993).

A forward contract is an agreement between two parties to make a transaction at
a fixed price and date in the future, The long party commits to buying a specified
quantity of, e.g., a commodity or financial asset from the short party ata specified
delivery price. The forward price is the delivery price that makes the value of the
contract zero. 1f a forward contract specifies the current forward price at the time
of the agreement as the delivery price (the typical case), then the parties enter the
agreement with no exchange of payments. At later dates, the forward price may
change whereas the contractual delivery price will not. If the forward price rises,
the forward contract — worth zero at inception — will take on positive value for the
long party and negative value for the short party. Conversely, if the forward price
drops, the value of the forward contract becomes positive for the short party and
negative for the long party.

A futures contract is similarly a commitment to execute a sale ata specified price
and date in the future; the futures price is the delivery price that makes entry into a
futures contract costless. Whereas forward contracts are arranged directly between
the parties involved, futures contracts are traded through exchanges. This distinc-
tion has many implications for the design of the contracts and hence for hedging
strategics that use them. Forward contracts can be highly customized, specifying
the precise quantity, grade, delivery date and delivery location that su its the parties
involved. In contrast, futures contracts must be standardized for exchange trading
and yet meet the needs of many market participants; they thus admit a relatively
small number of maturities, fixed quantities, flexibility in the timing of delivery
and the precise underlying grade or asset to be delivered.

The most important distinction for the purposes of this article is that futures
contracts are marked-to-market and forward contracts are not. With a forward
contract, no payments are made at the inception of a contract and no payments are
made subsequently until the contract matures, at which titne the two parties execute
the agroed-upon transaction. A party entering into a futures contract neither makes
nor receives a payment upon entry, but on each subsequent day the exchange will
credit the party for any profits and charge the party for any losses on its position.
These transactions are made through a margin account, the precise mechanics of
which can be somewhat involved. A simple example should nevertheless serve to
illustrate the key point.

Consider a futures or forward contract maturing in three days and suppose the
current futures or forward price is 100. Suppose that over the pext three days the
futures or forward price fluctuates to 98, 101, and then 103. At the end of the third
day, the contract matares and thus reduaces to a commitment to buy immediately
rather than at some point in the futare. Accordingly, 103 must be the spot price
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Sr] > F; and E,[Sr] -
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“definition, the oil mar
ackwardation than con

{the price for immediate purchase) at the end of the third day. Consider the
of a forward contract: the contract specifies a delivery price of 100 though the
price is 103, so the long party can buy at 100 and then sell at 103 for a profit o
the end of the third day. In the case of a futures contract, at the end of the firs|
the exchange would require a payment of 2 from the long party, reflecting the
in the futures price to 98. At the end of the next day, the exchange would credit
long party 3, reflecting the increase to 101, and on the next day the exchange wo
make a further payment of 2. The long party could close its position without Eakm
physical delivery of the underlying, earning a profit of —2--3 +2 = 3. Thus,
example, the final profit resulting from the two contracts is the same, but the fu
contract entails intermediate cashflows whercas the forward contract does n
is precisely this distinction that gives rise to the possibility of a cash shortfall
offsetting a short forward position with a Jong futures position. It should be no
that this distinction in the timing of cashflows also leads to the conclusion
futures prices and forward prices will not generally be equal (as they are i
example) if interest rates are correlated with the underlying asset, though w
not address that issue here. :

We briefly consider the relation between futures prices and the price -of

Appendix B: Th

his appendix, we argu
: ct terminal hedging ¢
“onsider, again, the set
0 and the b,_) , are all
onditional expectation of
“history to time k:

underlying asset or commodity. Fix a date T and let F; denote the time-¢ fufl EdCyl = E
price for a contract maturing at T'. Let S; denote the price of the underlying at :
¢. Under simplifying assumptions (including costless transactions and unlimi — z
short-selling) the futures and spoi price are related via F; = 877", wh -
is the cost of carry. The cost of carry could be positive or negative and refle

both costs and benefits associated with holding the underlying, such as finane = N
and storage costs and any dividends paid by the underlying. In a world Wi

deterministic cost of carry, changes in the futures price are perfectly correl - N

with changes in the spot price, so the risk in one can be eliminated through trad
in the other. L :

The term basis refers broadly to differences between futures and spot prices
relevant spot price may not be precisely the one underlying the futures o

on heating oil is said to entail basis risk due to imperfect correlation betwee
futures price of heating oil and the spot price of jet fuel. The simplest definitl
of basis take it to be S, — F, or F, — S, (consistent with b, ;1.1 In Section
other definitions are used as well. Duffie (1989), for example, defines the basi

: generally (i.e., droj
Héyer we can find a h

E
be Fy — Sy even at time f < T, This difference would generally be nonzero.
unknown) if, e.g., S; is the price of jet fuel and F; is the futures price for hea et (using (29) with &
oil. _
Cy = Cy

A related ambiguity concerns the terms backwardation and contango- Bro:
speaking, these describe conditions in which futures prices are, respectively, 10




13. Shortfall Risk in Long-Term Hedging 505

{han or higher than spot prices. According to the interesting discussion in Sec-

ion 4.3 of Duffie (1989), modern usage associates these terms with the conditions
CE[Sp] = Frand E.[Sr] < F; respectively. An advantage of defining these terms
hrough the older conditions S, > F, and S; < F, is that it becomes possible to
* observe whether in fact a futures market is in backwardation or contango. With
‘- his definition, the oil market and many other commodity markets are more often
"in backwardation than contango.

Appendix B: The rolling stack and conditional expectations

In this appendix, we argue that (6) and (7) are the key properties underlying the
perfect terminal hedging property of the rolling stack.

Consider, again, the setting leading to (3) and (4). Suppose the X,, have mean
~ yero and the by, 1, are all zero, as in the Mello—Parsons setting, and compute the
- conditional expectation of the terminal value of the unhedged position, given the
- price history to time k:

N
Ek [Z(a - Sn)}
=1

k
S@— S+~ SN -k

n=1

k k
Nec—a)y+ 3 (=i + DX+ NV =k )X
i=1

i=l1

k
N(c—a)+ Y (N —i+DX;.

i=1

Comparing the last two terms with (4) and (3) (at k = N) we conclude that under
the rolling stack hedge

Ei[Cny1 = E[C] + Hy. (28)

Moie generally (i.e., dropping the assumption that E[X,] = 0and b,y = 0),
whenever we can find a hedging strategy with cumulative cashflows Hj satisfying

_ H; — E[H] = E[C;] — Ex[Cnl, (29)
we get (using (29) with k = N for the third equality)

Cy=Cy+Hy = En[Cyl+ Hy
E[Cy]+ E[Hn] = E[Cy].
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P

showing that the hedged cash balance Cy is riskless at the terminal date N. Equ
tion (28) is a special case of (29) with E[H,] = 0 because we took all by, ,4(
be zero. At intermediate dates, the exposure (actual cash balance minus expected
resulting from a hedge satisfying (29) is
Cp— E[C] = Ci+ He — FICy] — E[H,] " the time at which the :

= Cp — E[Ci] + E[Ci] — E¢[Cy]

= Cp — ElCnl, ith the general solution

. . . s insversality condition
as claimed in (7). Thus, under any hedging strategy satisfying (29), the resulti

exposure at intermediate times is given directly by (7). The same argument appli
if the discrete time index is replaced with a continuous one. We used this shorfc

in (10), (11) and (19). ome algebra shows that

the minimum-cost path sh
‘already been met. A

Appendix C: Derivation of optimal paths (1) exp(—a( — 7)), 80

The derivations of the optimal paths use standard techniques from the calculus o
variations, especially Sections 2.12 and 3.14 from Gelfand and Fomin (1963) fo
the unhedged and hedged cases, respectively. We detail the cases with o > 0; ¢
calculations for & = 0 are similar but slightly simpler.

When there is no hedge, it is easy to see that we can replace the inequalily
constraint defining .4, with an equality, since the integral of the optimal path w.
not be any larger than required by the constraint. We thus need to find an extrem:
for
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From (31) we get b = (2exp(aT) — 1)a, and by eliminating b we can solve ford - 211-64.
using (32). dwards, EA., and C.W. M

1 77 .
- f [0 + aw (OF + Al () — x)dt,
v

with A-a Lagrange multiplier. As already noted, we may take x = 1 since x merely
scales the path. The Euler equations give

‘ o’y — 1 = constant, Y (0) =0
V() +ay(T) = 0

f:uf = L

From (30) we obtain the general solution

Y() = ae™ +be ™ — (a+b).
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. Finding the optimal path in the hedged case is a free-endpoint problem because
e do not know in advance the time 7 at which

Yz} =hiz) =~ (33)

I —exp(T — r);
., (he time at which the shortfall occurs. The Euler equations give
af — =0, YO =0

:f with the general solution ¥ (£) = 2¢ sinh(7). To find ¢; and t we use (33) and the
transversality condition

%w(r) +h(T) - %wm =0.

“Some algebra shows that ¢; is as given in Section 6 and T = /3. On (z, T}
! the minimum-cost path should contribute no cost at all since the constraint for A,
“has already been met. A zero cost path must have 1,If +oa = 0 te, @) =
Sp(r)exp(—a(t — 1)), so that ¢ = Yr(r)exp(at).
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