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Monte Carlo Methods for Security Pricing”
Phelim Boyle, Mark Broadie and Paul Glasserman

1 Introduction

Tn recent years the complexity of numerical computation in financial theory and
practice has increased enormously, putting more demands on computational speed
and efficiency. Numerical methods are used for a variety of purposes of finance.
These include the valuation of securities, the estimation of their sensitivities, risk
analysis, and stress testing of portfolios. The Monte Carlo method is a useful tool
for many of these calculations, evidenced in part by the voluminous literature of
successful applications. For a brief sampling, the reader is referred to the stochastic
volatility applications in Duan (1995), Hull and White (1987), Johnson and Shanno
(1987), and Scott (1987);! the valuation of mortgage-backed securities in Schwartz
and Torous (1989); the valuation of path-dependent options in Kemna and Vorst
(1990); the portfolio optimization in Worzel et al. (1994); and the valuation of
interest-rate derivative claims in Carverhill and Pang (1995). In this paper we focus
on recent methodological developments. We review the Monte Carlo approach and
describe some recent applications in the finance area.

In modern finance, the prices of the basic securitics and the underlying state
variables are often modelled as continuous-time stochastic processes. A derivative
security, such as a call option, is a security whose payoff depends on one o1 more
of the basic securities. Using the assumption of no arbitrage, financial ecopomists
have shown that the price of a genetic derivative security can be expressed as the
expected value of its discounted payouts. This expectation is taken with respect to
a transformation of the original probability measure known as the equivalent mar-
tingale measure or the risk-neutral measure. The book by Dutfie (1996) provides

an excellent account of this material.
The Monte Carlo method lends itself naturally to the evaluation of security prices

tepresented as expectations. Generically, the approach consists of the following

T Reprinted form the Journal of Econonsic Dynamies and Confrol 21 {1977) 12671321,
Wiggins (1987) also studies pricing under stochastic volatility bat does not use Monte Carlo simulatios.
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e Simulate sample paths of the underlying state variables (e.g., underlying ag
prices and interest rates) over the relevant time horizon. Simulate these ace )
ing to the risk-neutral measure. '

e Evaluate the discounted cash flows of a security on each sample path, as dej
mined by the structure of the security in question.

¢ Average the discounted cash flows over sample paths.

In effect, this method computes a multi-dimensional integral — the expected v
of the discounted payouts over the space of sample paths, The increase i
complexity of derivative securities in recent years has led to a need to evahy
high dimensional integrals.
Monte Carlo becomes increasingly attractive compared to other method 0
numerical integration as the dimension of the problem increases. Consider
integral of the function f(x) over the d-dimensional unit hypercube. The sim
(or crude} Monte Carlo estimate of the integral is equal to the average valy
the function f over n points selected at random? from the unit hypercube. E
the strong law of large numbers this estimate converges to the true value of
integrand as n tends to infinity. In addition, the central limit theorem assu :
that the standard error® of the estimate tends to zero as 1 /+/n. Thus the e
convergence rate is independent of the dimension of the problem and this i is
dominant advantage of the method over classical numerical integration approac
The only restriction on the function f is that it should be square integrable, and ik
is a relatively mild restriction. '
Furthermore, the Monte Carlo method is flexible and easy to implement an
modify. In addition, the increased availability of powerful computers has enhanct
the attractiveness of the method. There are some disadvantages of the method
in recent years progress has been made in overcoming them. One drawback i8
that for very complex problems a large number of replications may be require: i . N
obtain precise results. Different variance reduction techniques have been develop bjective of improving t
to increase precision. Two of the classical variance reduction techniques are
control variate approach and the antithetic variate method. More recently, mome
matching, importance sampling, and conditional Monte Carlo methods have b
introduced in finance applications.
Another technique for speeding up the vaivation of multidimensional integra
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2 I standard Monte Carlo application the # points are usuaily not traly random but are generated by a d
ministic algorithm and are described as pseudorandom numbers. ;
¥ We can readily estimate the variance of the Monte Carlo estimate by using the same set of # random numbe
10 estimate the expected value of £2.
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sequences are chosen to be more evenly dispersed throughout the region of inte-
gration than random sequences. If we use these sequences to estimate multidimen-
sional integrals we can often improve the convergence. Deterministic sequences
with this property are known as low-discrepancy sequences or quasi-random se-
quences. Using this approach one can in theory derive deterministic error bounds,
though the practical use of the bounds is problematic. In contrast, standard Monte
Carlo yields simple, useful probabilistic error bounds. Although low-discrepancy
sequences are well known in computational physics they have only recently been
applied in finance problems. There are different procedures for generating such
low-discrepancy sequences and these procedures are generally based on number
theoretic methods. We describe some of the recent developments in this area.
We also discuss applications of this approach to problems in finance and conduct
some rough comparisons between standard Monte Carlo methods and two different
quasi-random approaches.

Until recently, the valuation of American style options was widely considered
outside the scope of Monte Carlo. However Tilley (1993), Barraquand and Mar-
tineau (1995), and Broadie and Glasserman {1997), and have proposed approaches
to this problem, and there has been other related work as well. We provide a brief
survey of the recent research progress in this area.

The layout of the paper is as follows. Variance reduction techniques are de-
scribed in the next section. The ideas behind the use of low-discrepancy sequences
and brief numerical comparisons with standard Monte Carlo methods are given in
Section 3. Price sensitivity estimation using simulation is discussed in Section 4.
Various approaches to pricing American options using simulation are briefly de-
scribed in Section 5. Other issues are touched on briefly in Section 6.

2 Variance reduction techniques

In this section, we first discuss the role of variance reduction in meeting the broader
objective of improving the computational efficiency of Monte Carlo simulations.
We then discuss specific variance reduction techniques and illustrate their applica-
tion to pricing problems.

2.1 Variance reduction and efficiency improvement

The reduction of variance seems so obviously desirable that the precise argument
for its benefit is sometimes overlooked. We briefly review the underlying jus-
tification for variance reduction and examine it from the perspective improving
computational efficiency.
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By the central limit theorem, for large n this sample mean is approximately nor.
mally distributed with mean 8 and variance o? /n. Probabilistic error bounds in th
form of confidence intervals follow readily from the normal approximation, a
indicate that the error in the estimator is proportional to o //n. Thus, decreasins
the variance o by a factor of 10, say, while leaving everything else unchanged
does as much for error reduction as increasing the number of samples by a fact
of 100.
Suppose, now, that we have a choice between two types of Monte Carlo es
mates which we denote by {é:l},i =1,2,...} and {@;2),5 =1,2,...% Supp()se
that both are unbiased, so that E[d\ ] = E[@7] = 8, but 01 < oa, whe
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To compare estimators with different computational requirements as well as

different variances, we argue as follows. Suppose the work required to generate

one replication of 9 1<; acomstant b;, j = 1, 2. (In some problems, the work pe
replication is stochastic; assurning it is constant simplifics the discussion.) Wit G
computing time #, the number of replications of v that can be generated is |£/b;] 51
for simplicity, we drop the | -] and treat the ratios £ /b; as though they were integer

The two estimators available with computing time ¢ are therefore
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Thus, for large ¢, the first estimator should be preferred over the second if
a%bl < O‘%bg. (n

Fquation (1) provides a sound basis for trading-off estimator variance and com-
putational requirements. In light of the discussion leading to (1), it is reasonable
to take the product of variance and work per run as a measure of efficiency. Using
efficiency as a basis for comparison, the lower-variance estimator should be pre-
ferred only if the variance ratio 63 /03 is smaller than the work ratio b /b,. By the
same argument, a higher-variance estimator may actually be preferable if it takes
much less time to generate,

In its simplest form, the principle expressed in (1) dates at least to Hammersley
and Handscomb (1964, p.22). More recently, the idea has been substantially ex-
tended by Glynn and Whitt (1992). They allow the work per run to be random (in
which case each b; is the expected work per run) and also consider efficiency in
the presence of bias.

2.2 Antithetic variates

Equipped with a basis for evaluating potential efficiency improvements, we can
now consider specific variance reduction techniques. One of the simplest and most
widely used techniques in financial pricing problems is the method of antithetic
variates. We introduce it with a simple example, then generalize.

Consider the problem of computing the Black—Scholes price of a Buropean call
option on a no-dividend stock. Of course, there is no need to evaluate this price by
simulation, but the example serves as a useful introduction. In the Black—Scholes
model, the stock price follows a lognormal diffusion. Independent replications of
the terminal stock price under the risk-neutral measure can be generated from the
fornmuia

; | . .
SO — Soe™ 2o HeNTZ p g, (2)

where S is the current stock price, r is the riskless interest rate, o is the stock’s
volatility, T is the option’s maturity, and the {Z;} are independent samples from the
standard normal distribution. See, e.g., Hull (2000) for background on this model,
and see Devroye (1986) for methods of sampling from the normal distribution.
Based on n replications, a moment-matched estimator of the price of an option
with strike K is given by

¢ = iz c=1 i:e“"’f max{0, $& — K} (3)

n ‘= " on — T ‘
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is an unbiased estimator of the option price, as is therefore

a I +C i
Cay = ; o
A heuristic argument for preferring Cav notes that the random inputs obtaine;
from the collection of antithetic pairs {(Z;, —Z;)} are more regularly distribu
than a coliection of 2n independent samples. In particular, the sample mean o
the antithetic pairs always equals the population mean of 0, whereas the mean ove
finitely many independent samples is almost surely different from 0. If the inp
are made more regular, it may be hoped that the outputs are more regular as well
Indeed, a large value of Sj(f) resulting from a large Z; will be paired with a small*
value of 33@ obtained from —Z;.
A more precise argument compares efficiencies. Because C; and C; have th
same variance,

Ci‘l‘éf

Var
2

= %(Var[Ci] + Cov[C;, C:1).

Thus, we have Var[éAv] < Var[é} if Cov[(;, C‘,- | = Var[C;]. However, C’AV use;
twice as many replications as C, so we must account for differences in computa
tional requirements. If generating the Z; takes a negligible fraction of the work pe;
replication (which would typically be the case in the pricing of a more elaborat
option), then the work to generate Cay is roughly double the work to generate ¢
Thus, for antithetics to increase efficiency, we require

2 Var[Cay] < Var[C],

which, in light of (4), simplifies to the requirement that Cov[C;, C;] < 0.

That this condition is met is easily demonstrated. Define ¢ so that C; = ¢(Z;)
¢ is the composition of the mappings from Z; to the stock price and from the:
stock price to the discounted option payoff. As the composition of two increasing
functions, ¢ is monotone, so by a standard inequality (e.g., Section 2.2 of Barlow:

_fnethod of control

, and effective of the
erlying this techniqu
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4 This method was introduced to option pricing in Boyle (1977}, where its use was illustrated in the pricing of

a European call on a dividend-paying stock. The earliest application of thi
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-and Proschan 1975)

E[¢p(Z)¢(—Zi)] = E[¢(ZDIETP(=Z)], (5)

ie., CoviCi, Ci1 = El¢(Z)p(—Z)] — Elp(ZDIE[P(—Z;)] < 0, and we may
conclude that antithetics help.

This argument can be adapted to show that the method of antithetic variates
increases efficiency in pricing a European put and other options that depend mono-
tonically on inputs (e.g., Asian options). The notable departure from monotonicity
in some barrier options {(e:g., a down-and-in call) suggests that the use of antithetics
in pricing these options may sometimes be less effective.

In computing confidence intervals with antithetic variates, it is essential that the
standard error be estimated using the sample standard deviation of the n averaged
pairs (C; + i) /2 and not the 2» individual observations C,, Cy,...,Cu C,. The
averaged pairs are independent but the individual observations are not. This is a
case (we will see others shortly) in which the use of a variance reduction tech-
nique affects the estimation of the standard error and, in particular, requires some
“batching” of observations to deal with dependence.

It is worth noting that the method of antithetic variates is by no means restricted
to simulations whose only stochastic inputs are standard normal variates. The most
primitive stochastic input in most simulations is a sequence {U,} of independent
variates uniformly distributed on the unit interval. In this case, 1 — U, has the
same distribution as U, and the pair (U,, 1 — U,) are called anfithetic because
they exhibit negative dependence. If the simulation output depends monotonically
on the input random numbers, then the output obtained from {1 — Uy, 1 — Us, .. .}
will be negatively correlated with that obtained from (U, Us, ...}, resulting in
increased efficiency compared with independent replications.

For further general background on antithetic variates and other methods based
on correlation induction, see Bratley, Fox, and Schrage (1987), Hammersley and
Handscomb (1964), Glynn and Iglehart (1988), and references there. For some
examples of application in finance, see Boyle (1977), Clewlow and Carverhill
(1994), and Hull and White (1987).

2.3 Contirol variates

The method of control variates is among the most widely applicable, easiest to
use, and effective of the variance reduction techniques.” Simply put, the principle
underlying this technique is “use what you know.”

The most straightforward implementation of control variates replaces the eval-
uation of an unknown expectation with the evaluation of the difference between

3 The earliest application of this technique to option pricing is Boyie (1977).
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the unknown quantity and another e'ipectation whose value is known. A speci
illustration can be found in the analysis of Boyle and Emanuel (1985) and Kemp,
and Vorst (1990) of Asian options. Let P4 be the price of an option whose pay
depends on the arithmetic average of the underlying asset. Let Pg be the price of
an option equivalent in every respect except that a geometric average replaces ¢
arithmetic average. Most options based on averages use arithmetic averaging,
Py is of much greater practical value; but whereas P, is analytically intractabl
Pg can often be evaluated in closed form. Can knowledge of Pg be leveraged to
compute Py?

It can, through the control variate method. Write P, = E [f’A] and P = E[Pg
where Py and Pg are the discounted option payofifs for a single simulated path of
the underlying asset. Then

"he variance-minimizing |/
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in other words, P4 can be expressed as the known price Pg plus the expecte
difference between Py and Pg. An unbiased estimator of Py is thus provided by,

P = Py + (Ps — Bo). @
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This representation® suggests a slightly different interpretation: ﬁ;;“ adjusts th
straightforward estimator ﬁA according to the difference between the known valu
Py and the observed value ISG. The known error (Pg — ﬁG).is used as a control i
the estimation of P,.

If most of the computational effort goes to generating paths of the underlyin,
asset, then the additional work required to evaluate ﬁG along with ﬁA is minor.
therefore seems reasonable to compare variances alone. Since

Var[ PS'] = Var[ PA] + Var[Pg] — 2 Cov[ By, B5l,

this method if effective if the covariance between P, and P is large. The numeri-:
cal results of Kemna and Vorst indicate that this is indeed the case. Fu, Madan, and
Wang (1998) have investigated the use of other control variates for Asian options
based on Laplace transform values. These appear to be less strongly correlated
with the option price.

A closer examination of (6) reveals that this estimator does not make optimal
use of the relation between the two option prices. Consider the family of unbiase
estimators

Pa -+
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6 2o from {f) to Boyle’s (1977) example, let Py be the price of a Buropean cafl option on a no-dividen
stock and let P4 be the corresponding option price in the presence of dividends.
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parameterized by the scalar f. We have

Var[ P21 = Var[ PA] + p* Var[ Ps] — 28 Cov[ Py, Pol.
The variance-minimizing g is therefore

COV[PA, PG]
Var[ Pgl

Depending on the application, 8% may or may not be close to 1, the implicit value
in (6). In using an estimator of the form (6), we forgo an opportunity for greater
variance reduction. Indeed, whereas (6) may increase or decrease variance, an
estimator based on % is guaranteed not to 1ncrease variance, and will result in a
strict decrease in variance so long as P, and Pg are not uncorrelated.

In practice, of course, we rarely know §* because we rarely know Cov[ Py, PG}
However, given n independent replications {(Pa;, Pei),i = 1,...,n} of the pairs
(Pa, Pg) we can estimate 8% via regression. At this point we face a choice. Using
all n replications to compute an estimate £ of B* introduces a bias in the estimator

i n . 1 7
;;PMM(PG—;;P@),

and its estimated standard error because of the dependence between B and the
Pgi. Reserving n; replications for the estimation of 8* and the remaining n — )
replications for the sample mean of the Pg; (typically with n; < n) eliminates
the bias but may deteriorate the estimate of 8*. Neither issue significantly limits
the applicability of the method, because the possible bias vanishes as n increases
and because the estimate of 8* need not be very precise to achieve a reduction in
variance.

The advantage of working with (7) over (6) becomes even more pronounced
when further controls are introduced. For example, when the asset price is simu-
lated under risk-neutral probabilities, the present value e T E[S7] of the terminal
price must equal the current price Sy. We can therefore form the estimator

ﬁA + ﬁ](PG - ﬁG) + ﬁz(S[) -_— 6—'.TST).

The variance-minimizing coefficients (8}, §5) are easily found by multiple regres-
sion. This optimization step seems particularly crucial in this case; for whereas one
might guess that 8% is close to 1, it scems unlikely that B% would be. Optimizing
over the fs also allows us to exploit controls that are negatively correlated with the
option payoff.

For further general background on control variates see Bratley, Fox, and Schrage
(1987), Glynn and Iglehart (1988), and Lavenberger and Welch (1981). For ex-
amples of control variate applications in finance, see Boyle (1977), Boyle and

#
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Emanuel (1985), Broadic and Glasserman (1996), Carverhill and Pang (1995
Clewlow and Carverhill (1994), Duan (1995), and Kemna and Vorst (1990).
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2.4 Moment matching methods

Next we describe a variance reduction technigue proposed by Barraquand (1995
who termed it quadratic resampling. His technique is based on moment matchm
As before, we introduce it with the simple example of estimating the European only the first momet
option price on a single asset and then generalize. a5 in the moment matchil

Let Z;, i = 1,...,n, denote independent standard normals used to driv : eﬁeral analytical terms
simulation. The sample moments of the n Z’s will not exactly match those of the 1
standard normal. The idea of moment matching is to transform the Z’s to match
finite number of the moments of the underlying population. For example, the ﬁr
momient of the standard normal can be matched by defining
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where Z = Y | Z;/n is the sample mean of the Z’s. Nofe that the Z’s an
normally distributed if the Z;’s are normal. However, the Z;’s are not independent.
As before, terminal stock prices are generated from the formula
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An unbiased estimator of the call option price is the average of the n values C;
e T max(8 (i) — K, 0).

In the standard Monte Carlo method, confidence intervals for the true value €
could be estimated from the sample mean and vagiance of estimator. This cannot
done here since the # values of Z are no longer independent, and hence the value:
C; are not independent. This points out one drawback of the moment matchi
method: confidence intervals are not as easy to obtain.” Indeed, for confiden
intervals it appears to be necessary to apply moment matching 1o independe

. batches of runs and estimate the standard error from the batch means. This reduc
the efficacy of the method compared with matching moments across all runs.

Equation (8) showed one way to maich the first moment of a distribution with
mean zero. If the underlying popula‘uon does not have a zero mean, transformed
Z’s could be generated using Z; = Z; — 7 + iz, where 5 is the population me
The idea can easily be extended to match two morments of a distribution. In thi
case, an appropriate transformation is
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7 The p01nt is not merely a minor technical issue. The sample variance of the Eisis usually a poor estimate of
Var{C;).




6. Monte Carlo Methods for Security Pricing 195

where sz is the sample standard deviation of the Z;’s and oz is the population
standard deviation. Of course, for a standard normal, 4, = Oandoz = 1. An
estimator of the call option price is the average of the n values C;.

Using the transformation (9), the Z;’s are not normally distributed even if the
Z:’s are normal. Hence, the corresponding C,; are biased estimators of the true
option value. For most financial problems of practical interest, this bias is likely to
be small. However, the bias can be arbitrarily large in exireme circumstances (even
when only the first moment of the distribution is matched).® The dependence and
bias in the moment matching method makes it difficult to quantify the improvement
in general analytical terms.

The moment matching method is another example of the idea to “use what you
know.” 1In this simple European option example, the mean and variance of the
terminal stock price St is also known. S0 the moment matching idea could be
applied to the simulated terminal stock values S7(i). In this case, to match the first

moment, define
Sp(i) = Sp(i) — S + s, (10)

where pg, = See" " and Sp is the sample mean of the Sz (i)’s. To match the first

two moments, define

§r) = (Srli) = ST + sy (1)
vy

where ag, = Sov/ e T (e7’T — 1) and ss, is the sample standard deviation of the

Sr(i)’s. Duan and Simonato (1998) usc a related method. They apply a multiplica-

tive transformation to asset prices to enforce the martingale property over a finite

set of paths.® They apply their method to GARCH option pricing.

Comparisons of various moment matching strategies are given in Table 1. For
this comparison, n = 100 simulation trials were used to estimate the European call
option price. Standard errors were estimated by re-simulation. Thatis, m = 10000
simulation trials were conducted, each one based onn replications of the estimator.
The sample standard deviation of the m simulation estimates gives an estimate of
the standard error of a single simulation estimate. Root-mean-squared errors are
not reported because they are identical to the standard errors for the number of

digits reported.

8 Por example, let Z take the values +1 ar —1 with probability one-half. Consider a security which pays +$1 if
7 — 1 and —$x if Z # . The expected payoff of Ibe security is (1 - x}/2. To estimate this expected payoff
by Monte Carlo simulation, draw # samples Z; according to the prescribed distribution. Then use eguation (8)
to define Z;’s which match the first moment. For almost all samples for any large n, the estimated expected
payoff is —x and the bias is {1 + x)/2. This bias does not dJecrease as n increases. Care must be taken when

) when the support of the random variable of not the entire real line. For example,

using equation {8) or (
uld cause the transtormed values to fall

applying (8) or (9) to uniform or exponential random variables co
ouiside of the relevant domain.
9 This is equivalent to enforcing put-call parity.
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2.5 Strafif

iike many variance reductic

Table 1. Standard errors for European call options.

No variance MM1 MM?2 MM MM2 ﬁputs to simulation more reg

o So/K  teduction  Equation (8) Equation (9) Equation (10) Equation (11) :'mpil'ical probabilities to ma
02 . 09 0.24 0.19 0.11 0.19 009 orces empirical moments to
1.0 0.62 0.29 0.09 0.26 0.10 . Consider, for example, th

_ 1.1 0.93 0.19 0.09 0.15 0.11 . : .
04 09 0.80 0.55 0.24 0.51 o1 o a simulation. The empiric:
10 1.22 0.66 0.19 0.56 0.23 will look only roughly like

1.1 1.61 0.63 0.17 0.48 0.28 fien the most important p

06 09 1.40 0.95 0.38 0.84 0.28 ampling can be used (o fore
1.0 1.93 1.10 0.31 0.91 0.39 and i percentile, i = 1,..

1.1 2.38 L13 0.25 0.85 0.49 al distribution. One way t

All results are based on n = 100 simulation trials. The option parameters are: K = 100 dates Ui, - . ., Utoo, unifo
r = 0.10, T = 0.2, with 5y and ¢ varying as indicated. Standard error estimates arc base 1,...,100, where N -1
on m = 10000 simulations. This works because (i 4 U; -
of the uniform distribution, ¢

'Of course, Zl, s Zmo ;

The results in Table | show that matching two moments can reduce the simu
lation error by a factor ranging from 2 to 10. Matching two moments dominate
matching one moment, but there is not a clear choice between transforming th
original standard normals using (9) or the terminal stock prices using (11). Fur
ther computational results, not included in Table 1, indicate that the improvemen
factor with moment matching is essentially constant as n increases. This ma
seem counterintuitive, since the moment matching adjustments converge to zer
as n increases. But the progressively smaller adjustiments are equally importan
in reducing the estimation error as the number of simulation trials increases. Fo
example, the standard error for n = 10000 simulation trials is one-tenth of th
corresponding number for n = 100 reported in Table 1. :

The moment matching method can be extended to match covariances. For OP
tions that depend on multiple assets, the entire covariance structure is typicall
a simulation input. Barraquand (1995) suggests a method to match the entir
covariance structure and reports error reduction factors ranging from two to severa
hundred for this method applied to pricing options on the maximum of k assets.

The moment matching procedure could be applied to matching higher order mo
ments as well. In addition to different methods for transforming random outcome
to match specified moments, additional points could be added as another way t
match moments. '

Whenever a moment is known, it can be used as a contro] rather than for momen
matching. In an appendix, we give a theoretical argument favoring the use O
moments as controls rather than for matching.

andard errors. Computing
tiuires batching the runs.

might run 100 indepenc
single stratified sample o
erefore sacrifice some vati
' principle, this approac
d sample from the d-din
ate, we could generate a sex

actly one V; will lieinea
each coordinate.
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a’ﬁlp_ie of size n? may be
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niroduced by McKay, Con
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2.5 Stratified and Latin hypercube sampling

Like many variance reduction techniques, stratified sampling seeks to make the
ipputs to simulation more regular than random inpats. In particular, it forces certain
empirical probabilities to match theoretical probabilities, just as moment matching
forces empirical moments to match theoretical moments.

Consider, for example, the generation of 100 normal random variates as inputs

to a simulation. The empirical distribution of an independent sample Z1, ..., AT
the tails of the distribution —

will look only roughly like the normal density;
often the most important part — will inevitably be underrepresented. Stratified

sampling can be used to force exacily one observation to lie between the (7 — 1y
and [ percentile, i = 1,..., 100, and thus produce a better match to the nor-
mal distribution. One way to implement this generates 100 independent random
. Uioo, uniform on [0, 1] and set 7. = N7(( + Ui — D/100),
i =1,...,100, where N ~1 ig the inverse of the cumulative normal distribution.
This works because (i + U; — 1)/100 falls between the (i — 1) and i™ percentiles
of the uniform distribution, and percentiles are preserved by the inverse transformn.

Of course, Z1, -+ -» 7100 are highly dependent, complicating the estimation of
standard errors. Computing confidence intervals with stratified sampling typically

requires batching the runs. For example, with a budget of 100000 replications

we might run 100 independent stratified samples each of size 1000, rather than

a single stratified sample of size 100000. To estimale standard errors we must
therefore sacrifice some variance reduction, just as with moment matching.

In principle, this approach applics in arbitrary dimensions. To generate a strat-
ified sample from the J-dimensional unit hypercube, with r strala in each coordi-
nate, we could generate a sequUence of vectors U; = (UJSI), e U}d)), i=482,..

variates Uy, ..

and then set

VJ:_L"}'_(B_____I‘L)’ iy =0,...,n—1, k=1,....4d.
1

Fxactly one V; will lie in cach of the n? cubes defined by the product of the r strata

in each coordinate.
The difficulty in high dimensions is that generating even a single stratified

sample of size n? may be prohibitive unless n is very small. Latin hypercube
sampling can be viewed as a way of randomly sampling 7 points of a stratified
sample while preserving some of the regularity from stratification. The method was
introduced by McKay, Conovet, and Beckman (1979) and further analyzed in Stein
(1987). Tt works as follows. Let Ty, ..., 4 DE independent random permutations
of {1, ..., n}, each uniformly distributed over all n! possible permutations. Set

UR + () -1
n

ke=1....,d, j=1,....n

b

) _
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The randomization ensures that each vector V; is uniformly distributed over

d-dimensional hypercube. At the same time, the coordinates are perfectly stratifi Table 2. Standare

in the sense that exactly one of Vl(k), o, VO falls between (j —1)/n and j/n, No va
1,...,n, for each dimension £ = 1, ..., d. As before, the dependence introdu K/So redu
by this method implies that standard errors can be estimated only through batchin 0.9 0.0
These methods can be viewed as part of a hierarchy of methods introducing a 1.0 0.1
ditional levels of regularity in inputs at the expense of complicating the estimatig L 0.3
of errors. Some, like stratified samphing, fix the size of the sample while othe 0.9 0.
leave flexibility. The extremes of this hierarchy are straightforward Monte Car }(1) ?E‘
(completely random) and the low-discrepancy methods (completely deterministi ' '
discussed in Section 3. Owen (1995a, 1995b) discusses these and other metho (1)(9) ?E
and introduces a hybrid that combines the regularity of low-discrepancy metho 1.1 1.4

with the simple error estimation of standard Monte Carlo. Shaw (1995) uses
extension proposed by Stein (1987) to handle dependent inputs in a novel approac

to estimating value at risk. varying as indicated. Sta

The geometric average

2.6 Some numerical comparisons

The variance reduction methods discussed thus far are fairly generic, in the sen:
that they do not rely on the detailed structure of the security to be priced. Thi
contrasts with the remaining two methods that we discuss - importance sampli
and conditional Monie Carlo. These methods must be carefully tailored to eac
application. It therefore seems appropriate to digress briefly into a numeric;
comparison of the generic methods on some option pricing problems.

We first examine the performance of these methods in pricing Asian Optioh_
The payoff of a discretely sampled arithmetic average Asian option is max(s -
K,0), where § = Z:‘:] Si/k, S; is the asset price at time f; = iT/k, and 7 is the
option maturity. The value of the option is E[e”"? max(§ — K, 0)]. There is n
easily evaluated closed-form expression for this option value. Various formulas t
approximate the Asian option price have been developed, but simulation is usuall
used to test the accuracy of the approximations.

For this Asian option, k& random numbers are needed to simulate one optio
payoff, and nk random numbers are needed in total. Moment matching (MM2, fo
two moments) was applied k times to the n numbers used to generate each S;
time ;. Latin hypercube sampling (LHS) was applied to sample n points from the
k-dimensional unit cube. The discretely sampled geometric average Asian pnce.
was used as a control variate (see Turnbull and Wakeman 1991 for a closed-form the error estimation is mor
solution for this price). Results appear in Table 2 om the same ermor estima

The results in Table 2 indicate that matching two moments can reduce the Sim-'_ ariate technique can lead
ulation error by a factor ranging from 1 to 10. Using the geometric average Asian. ges on finding a good c«

tion price as a control vz
nd is consistently the mos
tithetics are consistently

ext we compare these
1 options with discrete |
ndard call option payoff
T ki o= 1,

A §; < H at any tim
tandard call, Moment 1
ion. Results are given
Table 2, except that the supx
_Although it is always rish
e suggest the following

nplement, but often lead:
similarly easy to implen
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Table 2. Standard ervors for arithmetic average Asian options.

No variance Antithetic Control

K/S reduction method variate MM?2 LHS

0.2 09 0.053 0.052 0.003 0.048 0.049
1.0 0.344 0.231 0.004 0.162 0.161

i1 0.566 0.068 0.006 0.052 0.058

0.4 0.9 0.308 0.297 0.014 0.240 0.248
1.0 0.694 0.506 0.017 0.352 0.354

1.1 1.017 0.388 0.021 0.281 0.289

0.6 0.9 0.632 0.583 0.032 0.451 0.455
1.0 1.052 0.817 0.038 0.566 0.578

1.1 1.443 0.759 0.047 0.339 0.560

All results are based on n = 100 simulaiion trials with £ = 50 prices in the
average. The option parameters are: K = 100, = 0.10, T = 0.2, with Sp and o
varying as indicated. Standard error estimates based on m = 10000 simulations.
The geometric average Asian option is used as the control variate. Moment
matching (MM?2) was applied to the it price in the average,i = 1, ..., 5, across
replications.

option priée as a conirol vartate reduces error by a factor ranging from 20 to 100,
and is consistently the most effective method. LHS and MM2 perform similarly.
Antithetics are consistently dominated by the other methods,

Next we compare these variance reduction techniques in pricing down-and-out
call options with discrete barriers. The payoff of this option at expiration is the
standard call option payoff if the asset price S; exceeds the barrier A at all times
t =1iT/k,i = 1,..., k, otherwise the payoif is zero. The option is knocked
out if §; < H at any time #. As a control we use the Black—Scholes price of
a standard call. Moment matching and LHS are implemented as with the Asian
option, Results are given in Table 3. These are consistent with the pattern in
Table 2, except that the superiority of the control variate method is less pronounced.

Although it is always risky to draw conclusions from limited numerical evidence,
we suggest the following broad conclusions. The antithetic method is easy to
implement, but often leads to only modest error reductions. Moment matching
ts similarly easy to implement and often leads to significant error reductions, but
the error estimation is more difficult and bias is a potential problem. LHS suffers
from the same error estimation difficulty but does not introduce bias. The control
variate technique can lead to very substantial error reductions, but its effectiveness
hinges on finding a good control for each problem:.
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_ ovaluated at Sr, g
Table 3. Standard errors for down-and-out call options with discrete barrier,

No variance Antithetic Control

o K/S reduction method variate = MM?2 LHS
0.2 0.9 0.96 0.44 0.37 0.43 0.39 S P
10 - 0.62 0.44 0.13 0.31 0.30 T. ee ©
1.1 0.30 0.28 0.03 0.22 0.22 ent is that the sv
0.4 0.9 1.59 1.15 0.73 0.95 0.88 ort-of the original m
1.0 1.22 1.00 0.45 0.76 0.74 bsolute continuity )
1.1 0.88 0.82 0.26 0.61 0.61 bution for S whose
0.6 0.9 2.19 1.83 1.07 1.44 1.36 callv. one would tike:
- 1.0 1.86 1.62 0.80 1.25 1.23 o
1.1 1.54 1.40 0.58 109 109 ce. In the example

m the density
All results are based on n = 100 simulation trials. There are k = 5 points i :
the discrete barrier at 95. The other option parameters are: Sy = 100, r = 0.10,
T = 0.2, with K and o varying as indicated. Standard error estimates are based
on m = 10000 simulations. The standard European call option {Black-Scholes.
formula) is used as the control variate. Moment matching (MM?2) was applied to the:
i" retwm, i = 1, ..., 5, across replications.

Fx
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2.7 Importance sammpling

This technique builds on the observation that an expectation under one probabili
measure can be expressed as an expectation under another through the use of
likelihood ratio or Radon—Nikodym derivative. This idea is familiar in finan
because it underlies the representation of prices as expectations under a martingal
measure. In Monte Carlo, the change of measure is used to try to obtain a me
efficient estimator. We present some examples using this technique; for genc

- packground see Bratley et al. (1987) or Hammersley and Handscomb (1964).
As a simple example, consider the evaluation of the Black—Scholes price of:
call option — i.e., the computation of e T E[max{Sr — K, 0}] with Sy as in (2
A straightforward approach generates samples of the terminal value Sy consistert
with a geometric Brownian motion having drift r and volatility o, just as in (2). Bu
we are in fact free to generate Sy consistent with any other drift i, provided w
weight the result with a likelibood ratio. For emphasis, we subscript the expectatio
. operator with the drift parameter. Then

s the price today of a zc
E,[max{S; — K, 0}] = E,[max{Sy — K, 0}L], I o example T o

where the likelihood ratio L is the ratio of the lognormal densities with parameters REe, e.g., Hull (1993, Chapter
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r and g evaluated at Sz, given by

_(S\F (=T
s/ TP\t )

Indeed, St need not even be sampled from a lognormal distribution. The only
requirement is that the support of the importance sampling measure contain the
support of the original measure so that the likelibood ratio is well-defined; this
is an absolute continuity requirement. In the example above, this means that any
distribution for Sy whose support includes (0, 0o) is admissible.

Ideally, one would like to choose the importance sampling distribution to reduce
variance. In the example above, one obtains a zero-variance estimator by sampling
Sr from the density

Fx) =c¢ 'max{x — K,0le T g(x),

where g is the (lognormal) density of $7 and ¢ is a normalizing constant that makes
f integrate to 1. The difficulty is that ¢ is the Black—Scholes price itself, so this
method requires knowledge of the solution for its implementation. Nevertheless, it
gives some indication of the potential gain from importance sampling.

Reider (1993) has investigated the impact of importance sampling based on a
change of drift and volatility. (Changing the volatility is consistent with abso-
lute continuity in a discrete-time approximation of a diffusion though not in the
continuons-time limit.) He finds that choosing the importance sampling distribu-
tion to have higher drift and volatility provides substantial variance reduction in
pricing deep out-of-the-money options. He also investigates the combination of
importance sampling with antithetic variates and control variates, and the use of
put-call parity for indirect estimation. Nielsen {1994) has explored some related
Importance sampling ideas in sampling from a binomial tree.

Andersen (1995) has developed a powerful application of importance sampling
for simulating interest rates and has applied it to nonlinear stochastic differential
equation models. We briefly describe his approach. Let r, be the instantaneous
short rate described, e.g., by a diffusion model. Then

) = |exp( - | )|

is the price today of a zero-coupon bond with face value $1, maturing at time 7.
In, for example, the Cox—Ingersoll-Ross and Vasicek models,'® B(T') is available

HY)
See, ez, Hull (1993, Chapter 15) for background on these models,
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1.d. normal ha
drops below -

T :
P(A) = E[exp(——f rydt —log B(T))IA] ' and ¢ are large, th
0

in closed form. We may therefore define a new probability measure P by settin

, for any event A, where 1, denotes the indicator of the event A. Let E de
expectation with respect to P. Then for any random variable X, E[X] = E (X
where the likelihood ratio Ly is given by

sz__der alternative pri
and then switch the
ve the asset price to
or:any jty, fy, W

T
Ly = exp(/ rrdt +log B(T)).
i

In particular, if we take X = exp(- jDT rrdt), we know that E[X] = B(T) P(r <m

therefore B(T') is the expectation under E of XLr;i.e., of

T T L exp(—0
exp(mf ry dr) X exp (f rdt + log B(T)). ity T EXpL—v1
0 0 - ; ]

lihood ratio is giv

But this simplifics to B(T') itself, meaning that we obtain a zero-variance estimato i Ows(?r:)rﬂ ;1ge§;
of the bond price by switching to the new probability measure. Moreover, An o X under the ot
sen shows that sample paths of r, can be generated under P simply by applyi mains to choose &
change of drift to the original process. ‘ (th e time of the b

As described above, the method would appear to require knowledge Of. pect to have Uy ~

solution for its implementation. Nevertheless, the method has two important a '. ab ility. If we choos
cations. The first is in the pricing of contingent claims. Because P eliminates
variance of bond prices, it should be effective in reducing variance for pricin

e.g., Buropean bond options expiring at time 7. Andersen’s numerical resulls
bear this out. A second application is in the pricing of bond models with
closed-form solutions: Andersen’s results show that the change of drift deriv
from a tractable model (like CIR or Vasicek) remains effective when applied i
intractable model, and this significantly expands the scope of the method.

Importance sampling is frequently used to make rare events less rare; thi
already suggested in Reider’s (1994) application to out-of-the-money options.”O
next example further highlights this aspect through a new application to bag
options. We consider a knock-in option far from the barrier and use importan
sampling to increase the probability of a payoul.

Suppose the barrier is monitored at discrete times nAf, n = 0,1, ..., m,
AT = T/m. Set the barrier at H = Soe™" and the strike at K = Spe’, with
b,c > 0. A down-and-in call pays Sy — K at time 7 if S7 > K and S;ar <
for some n = 1,...,m. We can write the price of the underlying at monitor
instants as

ch depends on t onl
ates to by = — i

choose it so that the
¢ atrate (1 equals

= @b+c)/T. 1
1 mean increment
ble 4 illustrates the
and without impor
rovement is just the
ows the potential 1
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Sear = Soe, Uy =) X,

i=1
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with the X; i.i.d. normal having mean (r — ;%) At and variance o2 Ar. Let t be the
first time U, drops below —b: then the probability of a payoutis P(r < m, U,, >
¢). If b and ¢ are large, this probability is small, and most simulation runs return
zero. Through importance sampling, we can increase this probability and thus get
more information out of each ron.

Consider alternative probability measures P, ,, that give U, a drift of u Az
until T and then switch the drift to 1, Ar. Intuitively, we would like to make (¢, < 0
to drive the asset price to the barrier and then make @, > 0 to drive it above the
strike. For any ¢, ji;, we have

Pt <m, Uy > ¢) = Eu uo[ Ly o Vwem Uy=ey]-
The likelihood ratio is given by
Lﬂh#z = exp(—glUr + ‘#(91)‘5 - 92(Um — U‘L’) + Tﬁ(ﬁz)(ﬂ’l - T)),

where 8; = (u; —r + 302 /0% i = 1,2, and ¥ (0) = (r — 36 A6 + o2 AL6°.
This follows from algebraic simplification of the product of the ratios of the densi-
ties of the X; under the original and new means.

It remains to choose j4;, 1, Intuitively, most of the variability in L, ,, comes
from 7 (the timé of the barrier crossing): for large b, ¢, in the event of a payout
we expect to have U; ~ —b and U,, & c so these terms should contribute less
variability. If we choose i, ity so that ¢(6;) = (8), the likelihood ratio
simplifies to

Ly, =exp(—(0) — 02)U; — 02Uy + myp(62)),

which depends on 7 only through U; =~ —b. The condition ¥ (#;) = ¥ {62)
translates to p; = —p, = —u, so it only remains to choose this drift parameter.
We choose it so that the time to traverse the straight line path from 0 to —b and
then to ¢ at rate u equals the number of steps m:

b (b+ey

WAt pAt

ie, u = (2b + ¢)/T. Interestingly, this change of drift does not depend on the
original mean increment (r — %O‘E)Af.

Table 4 iltustrates the performance of this method. The computational effort
with and without importance sampling is essentially the same, so the efficiency
improvement is just the ratio of the variances. The improvement varies widely
but shows the potential for dramatic gains from importance sampling, particularly
when the barrier is far from the current price of the underlying.!!

11 , . . . .
The standard errors in the table are all quite small, but so are the associated option values. Hence, the relative
ertor without impaortance sampling is guite significant.
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Table 4. Stqndard errors for down-and-in calls: importance sampling. riced by the Black—Scho

No variance Importance Efficiency T B

H K reduction sampling ratio e " E[max{Sy — K
92 100 (.003 09 0.00069 20

92 105 0.00129 0.000 14 85

88 96 0.001 10 0.000 11 96

85 90 0.000 84 0.00008 116

92 105 0.01418 0.00541 7 verage squared volati
85 105 0.003 28 0.000 38 75 L f 2 call with
75 9  0.00030 0.000 01 1124 es price o1 a calt With «
75 85 0.0071 48 0.00010 222 d. Using this conditional
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rth emphasizing that both
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_ See Willard (1997) for
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ration in the pricing of ¢
fo < f < .- <
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1ic, <71], where H is il
arrier is breached.
traightforward simulatio

All results are based on 7 = 100000 simulation trials. The
parameters are: Sp = 95, ¢ = 0.15, and r = 0.05, with the
barrier H and strike K varying as indicated. The first four
cases have T = 0.25 and m = 50; the last fowr have T' = 1
and m = 250.

In recent work, Andersen and Brotherton-Ratcliffe (1996) and Beaglehole, Dy
bvig, Zhou (1997) show how to ¢liminate the bias caused by using a simulati
at a discrete set of times to price continuous options on extrema, e.g., barrier
lookback options.

2.8 Condifional Monte Carlo

This approach to efficiency improvement exploits the variance reducing prope.
~ of conditional expectation: for any random variables X and ¥, Var[E[X|Y]]:
Var[X1, with strict inequality except in trivial cases.'” In replacing an estima
by its conditional expectation we reduce variance essentially because we are doin
part of the integration analytically and leaving less to be done by Monte Carlo.

Hull and White (1987) use this idea to price options with stochastic volatiliti
Consider a model in which an asset price and its volatility evolve as follows:

first alternative conditic
- barrier crossing; i.e.,

Ele ! max{Ss —

= "TEL
dS=rSdt +v5dwW, — TR
dv? = av’dt + €02 dWs, . )
telds the estimator
with W, W, independent. Suppose we want to price a standard European call .
S. A straightforward approach simulates sample paths of v and S up to time T a
averages max{Sr — K, 0} over all paths. An alternative notes that, conditional

the path of v, in [0, T'], the asset price S; may be treated as having a time-vary i

CMC] =€

is says: simulate until the
crossed, retarn the Blac

12 This is a direct consequence of Jensen’s inequality for conditional expectations,
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but deterministic volatility. Thus, conditional on the volatility path, the option can
be priced by the Black—Scholes formula:

e TEfmax{Sy — K, O}|v,,0 <t < T]=BS(Ss, K, r, T, V' Vr),

1 f 2 1t
T T 0 d

is the average squared volatility aver the path, and BS(S, K, T, , o) is the Black—
Scholes price of a call with constant volatility o and the other parameters as indi-
cated. Using this conditional expectation as the estimator is sure to reduce variance
and may even reduce computational effort since it obviates simulation of S. It is
worth emphasizing that both straightforward Monte Carlo and conditional Monte
Carlo would have to be applied to discrete-time approximations of the continuous
processes above. Also, the applicability of conditional Monte Carlo in this setting
relies on the fact that the evolution of the asset price does not influence the volatility
path. See Willard (1997) for an extension to the case of correlated W, and W,.

As a further illustration of the use of conditional Monte Carlo, we give a new
illustration in the pricing of a down-and-in call with a discretely monitored barrier,
LetO =1 < # < .-+ < #, = T be the monitoring instants and §,, the price
of the underlying at the i such instant. The option price is E[e™ " max{Sr —
K, My <y, where H is the barrier and 7 4 is the first monitoring time at which
the barrier is breached.

Straightforward simulation generates paths of the underlying and evaluates the
estimator

where

e max{Sy — K, O ey <71

Our fitst alternative conditions on {Sp, ..., S¢, ]}, the path of the underlying until
the barrier crossing; i.e.,

E[e_rT max{ST — K, O}l{fHET}]
= e ETE[max{St — K, Oz <y S0, ..., S:,, 1]
= ¢ TEIBS(Sry, K1 T = Th, 0y zr]

This yields the estimator

CMC_‘[ = e_rTBS(S‘[H3 K& r! T - IH’ U)l{fHST}

This says: simulate until the barrier is crossed or the option expires; if the barrier

Was crossed, return the Black—Scholes price starting from price S;,, with maturity
Tt
H.
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Our second alternative conditions one step earlier, at each monitoring in
evaluating the probability that the barrier will be breached for the first time a
next monitoring instant:

e 5. Comparl.

Method

i
Ele™T max(S; — K, Nlzp=ri] = ’TE[max{ST - K,0} Z | PR } Base
=1 CMCl
" CMCZ
—e¢'TE |:Z Elmax{Sr — K, O} -1 |Sis - s an_;]] cMC
n=1 Results ba
L p[RR 04,7 = 0
=e7TE| ) BSAS,, K, H,r b4 — 15, T~ 1y, 0) and 10 equ
n=4{

where BS2(S, K, H,r,t, T, o) is the price of a down-and-in call that knocks

. .. . . . '.However, re
only if the underlying is below H at time . We thus arrive at the estimator il P

uming, making C
T—1

CMC2 = G_JAT Z BSZ(S;" N K, H, F, fn+l - tu: T - tns J)v
n=0

with 16_)( problems the

\ BS2(S, K., H,r 1, T,0) = SNa(ay, by, p) — e " K Na(az, bz, 0) atisfactory becau

where p = —/t/T, N3 is the bivariate cumulative normal distribution with C
lation p, and

1,2
o — log(S/K)+ (r + 50 )T, & = ar — oT
ovT

log(H/S) ~ (r + 30°)}

1= o )
(The derivation of this formula is fairly standard and therefore omitted.) The CM
estimator can be expected to have lower variance than the CMC, estimator beca
it conditions on less information and thus does more integration analytically:
fact, CMC; is ot a conditional Monte Carlo estimator in the strict sense beca
it conditions on different information at different times, making it more precis
a filtered Monte Carlo estimator in the sense of Glasserman (1996).

Because the two estimators above have the same expectation, their differes
has mean 0 and can be used as a control variate to form a further estimator

z ! discrepancy metho
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CMC’ = CMC, + S(CMC, — CMC,).

With 8 optimized, this has lower variance than either individual estimator.
Numerical results appear in Table 5. As expected, each level of condition
further reduces variance, and the combined estimator achieves the lowest stand

s the name quasi-random is
be sanctioned by usage.
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Table 5. Comparison of CMC estimators for down-and-in call.

Standard Computation

Method Error (s5) Time {f) N
Base 0.108 0.133 0.039
CMC, 0.034 0.117 0.012
CMC, 0.021 3.233 0.038
CcMcC’ 0.014 3.367 0.026

Results based on n = 10000 replications witho =
04,y =0.10, 5% = K =100, H =95, T = 0.5,
and 10 equally spaced monitoring times.

error of -all. However, repeated evaluation of the function BS2 turns out to be
time-consuming, making CMC, overall the most efficient estimator,

3 Low-discrepancy sequences

For complex problems the performance of the basic Monte Carlo approach may be
rather unsatisfactory because the error is O(1/./n). We can sometimes improve
convergence by using pre-selected deterministic points to evaluate the integral. The
accuracy of this approaéh depends on the extent to which these deterministic points
are evenly dispersed throughout the domain of integration. Discrepancy measures
the extent to which the points are evenly dispersed throughout a region: the more
evenly dispersed the points are the lower the discrepancy. Low-discrepancy se-
quences are often called quasi-random sequences even though they are not at all
random.!* We shall use both terms in this paper.

Low-discrepancy methods have recently been used to tackle a number of prob-
lems in finance. These applications are more fully described in papers by Birge
{1994), Joy, Boyle, and Tan (1996) and Paskov and Traub (1995); the use of
quasi-Monte Carlo is also proposed in Cheyette (1992). In this section we de-
scribe how the approach works and review some of the recent applications. The
book by Press et al. (1992) provides an intuitive introduction to low-discrepancy
scquences and quasi-Monie Carlo methods. Spanier and Maize (1994) provide a
fecent overview of guasi-random methods and how they can be used to evaluate in-
tegrals with medium sized samples. Niederreiter (1992) and Tezuka (1995) provide
in-depth analyses of low-discrepancy sequences. Moskowitz and Caflisch (1996)
discuss recent developments in improving the convergence of quasi-random Monte
Catlo methods. In earlier work, Haselgrove (1961) describes a method for multi-

13 . . . A A .
Thus the name quasi-random is very misleading since these sequences are deterministic. However, it seems
to be sanctioned by usage.
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variate integration that can be applied to security pricing. Haselgrove’s metho
developed for problems of eight dimensions or less and our numerical experim
suggest that it is competitive with the low-discrepancy sequences investigated.
this section for problems of this size.

The basic idea behind the approach is quite intuitive and is readily explaine
the one-dimensional case. Suppose we wish to integrate a function f(x) over
interval [0, 1] using a sequence of n poiﬁts. Rather than pick a random seque
suppose we pick a deterministic sequence of points that are, in some sense, even
distributed. With this choice, the accuracy of the estimate will be higher th
that obtained using the crude Monte Carlo approach. If we use an equally space
grid we obtain the trapezoidal method of numerical integration which has an er
of O(n~"). However, the more challenging task is to evaluate multi-dimension:
integrals. Without loss of generality we can assume that the domain of integrat
is contained in the d-dimensional unit hypercube. The advantages of the unifort
spaced grid in the one-dimensional case do not carry over to higher dimensio
The principal reason is that the error bound for the d-dimensional trapezoidal
is O(n~%9). In addition, if we use an evenly spaced Cartesian grid, we woul
have to decide the number of points in advance to achieve uniformity. This
restrictive because, in numerical applications, we would like to be able to ad
points sequentially until some termination criterion is met.

Low-discrepancy sequences have the property that as successive points!
added the entire sequence of points still remains more or less evenly disper:
throughout the region. Niederreiter (1992) gives a detailed analysis of the discr
ancy of a sequence. Here, we just briefly recall the definition. Suppose we h:
a sequence of r points {x;, x2, ..., x,} in the d-dimensional half-open unit cub

1:-then the discrepancy
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1<
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where A(J; n) is the number of k, 1 < k < n, with x; € J and V(J) is the volu
of J. The discrepancy, D,, of the sequence is defined to be the supremu
{D(J;'n)| over all J. The star discrepancy D}, is obtained by taking the suprem
over sets J of the form

restingly, linear congruentia
ordinary Monte Carlo -
enerator; see Niederreiter (19
ughly equal to the total num
Monte Carlo, one prefers inste
oints required. We thank Peier
Fora more complete discussios
Niederreiter (1992).

d
[T10,un.
i=l

In the one-dimensional case there is a simple explicit form for the (star)! dis
crepancy of a sequence of n points, If we label the points so that, 0 < x; =< -

14 For the rest of the paper we simply use the term discrepancy rather than star disciepancy to refer to D



‘We can see that the star discrepancy is at least 1/(2n) and that the lowest value is
7 attained when
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< 1, then the discrepancy of this sequence is
| 2% — 1
2n

X — .

1
D} = — 4+ max
2n k==1,...,1

2k—1
= 2n
In higher dimensions there is no simple form for the discrepancy of a sequence.
There are several examples of low-discrepancy sequences, including the se-
quences proposed by Halton (1960), Sobol’ (1967), Faure (1982), and Niederreiter
(1988).'° For these sequences the asymptotic form of the star discrepancy has been

shown to be
d
D — O(M)

& n

, 1=<k<n,

This bound for the discrepancy involves a constant which in general depends on
the dimension d of the sequence. These constants are very difficult to estimate
accurately in high dimensions. For large vaiues of 4 the constants “are often
ridiculously large for reasonable values of n” according to Spanier and Maize
(1994, p. 23). Furthermore for high dimensions it may take a long time before
the discrepancy reaches its asymptotic level. Morokoff and Caflisch (1995) note
that for intermediate values of n the discrepancy may be O(/n). They suggest
that the transition to O (n~' (logn)) occurs at around values of n = e?. For large
d this will be an enormous number.

The error in numerical integration using a low-discrepancy sequence admits a
deterministic bound. The bound refiects both the discrepancy of the sequence of
points used to evaluate the integral as well as the regularity of the function. The
result is contained in the following theorem.

Theorem (Koksma-Hlawka) Let I7 = [0, 1)? and let f have bounded variation
V(f) on [0, 119 in the Hardy—Krause'® sense. Then for any x1, xa, . . ., x, € I¢ we

have
i n
’Zf(xk)— [, s
n 1 Id

S Interestingly, linear congruentiat generators — frequently used o generate the pseudo-random numbers that
drive ordinary Monte Carlo — produce sets of points with low-discrepancy over the entire period of the
generator; see Niederveiter {1976). This suggests the possibility of choosing such a generator with period
roughly equal to the tatal number of points required as a type of quasi-Monte Carlo method. In ordinary
Monte Carlo, one prefers instead that the period be many orders of magnilude larger than the number of

6 points required. We thank Peter Hellekalek of the University of Salzburg for this observation,

For a more complete discussion of the Hardy—Krause definition of variation and details on this theorem see
Niederreiter (1992).

< V(f)D}.
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The error bound provided by this theorem, while it is of theoretical interest;
of little help in most practical situations. The theoretical bound normally overes
mates the actual error by a wide margin and V' (f) may be difficult to evaluate
even approximate. We have noted that the constants buried in the bounds for {
discrepancy are large. Another reason for the coarseness of the bound is that
Koksma-Hlawka theorem does not reflect additional smoothness in f. Intuitive
we would expect the approximation to be better as f becomes smoother. Tn ﬁnarj
applications the payoffs are normally continuous functions of the variables (w
some important exceptions — payoffs on digital and barrier options are disconti_f;
ous), but may not be sufficiently smooth to have finite variation because of fun
tions like “max” embedded in the payoffs. Hlawka (1971) provides an alternat;
bound under weaker smoothness requirements, '
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To date, studies using low-discrepancy sequences in finance applications finy
that the errors produced are substantially lower than the corresponding errors ge
erated by crude Monte Carlo, Joy, Boyle, and Tan (1996) used Faure sequences:
price several complex derivative securities. They found that the quasi-Monte Carlg
approach resulted in significantly smaller errors than the standard Monte Car
approach. They confirmed that the actual error bound (for cases in which it coul
be computed precisely) was dramatically less than the bound computed from
Koksma—-Hlawka inequality. Paskov and Traub (1995} used both Sobol’ sequences
and Halton sequences to evaluate mortgage-backed security prices. Their woik
involves the evaluation of integrals with dimensions up to 360; they find that Sobo
sequences are more efficient than Halton sequences and that the quasi-rando
approach outperforms the standard Monte Carlo approach for these types of pro
lems.!” Paskov and Traub’s results stand in contrast to the claim that is sometimes
found in the literature'® that the superiority of low-discrepancy algorithms vanish
for intermediate values of d around 30. Bratley, Fox, and Niederreiter (199
conducted practical numerical experiments using low-discrepancy sequences ang
conclude that standard Monte Carlo is superior to quasi-Monte Carlo for hi
dimensions, say greater than 12. They used Sobol’ and Niederreiter sequenc
in their tests. They conclude that in high dimensions, “quasi-Monte Carlo seem
to offer no practical advantage over pseudo-Monte Carlo because the discrepancy
bound for the former is far larger than /n for n = 2%, say” (In a personal
communication, Fox adds that the crossover probably depends a lot on the se:
quencé.) The reason for the difference between this verdict and the results of th_f?
finance applications may be that the integrands typically found in finance applic
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17 Bratley et al. (1992) note that the Niederreiter sequence they tested theoretically beats Sobol” sequences 11
dimensions higher than seven.

18 See, for example, Rensburg and Torrie (1993) or Morokoff and Caflisch (1995). '_I'his integrand is highly periodi
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Gions behave better than those used by numerical analysts'? to compare different
algorithms. Another important consideration is that financial applications typically
involve discounting, and this may effectively reduce dimensionality; for example,
some of the 360 months in the life of a mortgage may have little influence on the
value of a mortgage-backed security. Nevertheless, the experience of Bratley et
al. (1992) serves as a useful caution against assuming that quasi-Monte Carlo will
outperform standard Monte Carlo in all situations.

Some theoretical differences among low-discrepancy sequences can be under-
stood through the concepts of (z, m, s)-nets and (¢, 5)-sequences; these are dis-
cussed in detail in Niederreiter (1992). Briefly, an elementary interval in base b in
dimension s is a set of the form

ﬁ [ a; a;+ 1)
i pri’ bk S
with k;, a; nonnegative integers and a; < . A (t,m,s)ynet (with0 <t =< m)
is a set of b™ points in the s-dimensional hypercube such that every elementary
interval of volume A/~ contains &' points. Speaking loosely, this means that the
proportion of points in each sufficiently large box equals the volume of the box.
Smaller ¢ implies greater uniformity. An infinite sequence forms a (7, s)-sequence
if for all m > ¢ certain finite subsequences of length b form (¢, m, s)-nets in base
b. Sobol’ points are (¢, s)-sequences in base 2 and Faure points are (0, 5) sequences
in prime bases not less than s. Thus, Faure points achieve the smallest value of 7,
but at the expense of a-large base. A smaller base implies that uniformity holds
over shorter subsequences,

An important issue in the use of quasi-Monte Carlo concerns the termination
criterion, since the Koksma—Hlawka bound is often of little practical value. Various
heuristics are available. Birge (1994) suggests that a rough bound may be obtained
by tracking the maximum and minimum values over a period that shows equal
numbers of increases and decreases. For instance the criterion could be to stop at
the first set of two thousand observations in which the number of increases and
decreases are within ten percent of each other. He suggests that the maximum and
minimum realized values could be used as bounds on the true value. Fox (1936)
suggests that we compare the estimate of the integral based on a sample of 2n
points with the estimate based on n points and stop if the answer lies within some
tolerance level, Paskov and Traub (1995) use a similar termination criterion based

19 : -
For example, one of the integrals used by Bratley, Fox, and Niederrciter (1992) was

1 1 d
f [ n kcos(kxy)dxy - dxg.
0 0 2

‘This integrand is highly periodic for large values of d.
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on successive errors: stop when the difference between two consecutive appr
mations using 10000i, i = 1, 2, ..., 1000, sample points falls below some thr
old. Owen (1995a, 1995b) proposes a hybrid of Monte Carlo and low-discrepany
methods which provides error estimates and has good convergence properties
addition to these approaches, one can also run standard Monte Carlo at the o
and use the probabilistic error term to assess when enough low-discrepancy p.
have been used in the quasi-random calculation. This benchmarking with staﬁ
Monte Carlo would be useful if the same set of calculations were being carried
frequently with only slightly different input values. This situation is commo
finance applications. There is often a need to perform the same set of calcula
frequently; e.g., the risk analysis of a book of business at the end of each: plots RMS
In these cases one can conduct experiments to see which sets of low-discrepan arlo method (i.e.
sequences provide the best results. The right number of low-discrepancy poin 1) convergence: €
could be determined just once at the outset. y a factor of 10. Th
Before leaving this section, we should mention some recent advances an onte Carlo mef
techniques to improve the performance of quasi-random Monte Carlo. Niederre onte Carlo points,
and Xing (1996), Tezuka (1994), and Ninomiya and Tezuka (1996) have propos sing 192 Sobol’
new low-discrepancy sequences that appear to have the potential to perform.
stantially better than previous methods. We have noted that the efficiency of
random Monte Carlo improves as the integrand becomes smoother. Moskot
and Caflisch (1996) illustrate procedures that can be used for this purpose. ‘1
sometimes possible to enhance the performance of quasi-random sequences
reducing the effective dimension of the problem. Moskowitz and Caflisch.
indicate how this can be accomplished in the discretization of a Wiener prof
and in the solution of the Feynman-Kac equation. This is relevant for fina
applications since the prices of derivative securities have a Feynman-Kac rept
sentation. See Acworth, Broadie, and Glasserman (1997), Berman (1996)
Caflisch, Morokoff, and Owen (1998) for recent work applying low-discrepanc
sequences with alternative constructions of Wiener processes. Spanier and Mg
(1994) discuss a battery of techniques that can be used to improve the performan
of quasi-Monte Carlo methods for relatively small sample sizes.
Next we compare the Monte Carlo method using pseudo-random numbers w
the Faure, Halton, and Sobol” low-discrepancy methods. :
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3.1 Numerical results

For an initial comparison, we test the methods on the problem of pricing a E
ropean option on a single underlying asset with the usual Black—Scholes assumj
tions. In this framework, the Black-Scholes formula can be evaluated to give th
true option values in order to compare altemative methods. Rather than usil,

i¢ details of the distribution ar
e the first point of the Sol
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a single option, we evaluate the methods on a random sample of 500 options.
The probability distribution of the parameters is chosen to represent a reasonable
ﬁmge of values in practical applications.?® The error measure that we use is
- root-mean-squared (RMS) relative error defined by

1 & C\'j _ Ci 2
RMS = | — e | 12
m Z( C; ) (12)

i=1

where i is the index of the m = 500 options in the test set, C; is the true option
value, and C; is the estimated option value. The results are given in Figure 1.
Figure 1 plots RMS relative error against the number of points, n. The
‘Monte Carlo method (i.e., using pseudo-random numbers) displays the expected
O(1/./n) convergence: e.g., increasing n by a factor of 100 decreases the RMS
error by a factor of 10. The low-discrepancy method using Faure sequences domi-
nates the Monte Carlo method. Indeed, 129 Faure points gives an error lower than
1000 Monte Carlo points. The Sobol’ method is -the best of the three methods
tested. Using 192 Sobol’ points gives an error lower than 10 000 Monte Carlo
points.

A major consideration in the comparison of methods is the overall computation
time, not just the number of points. The Sobol’ sequence numbers can be generated
significantly faster than Faure numbers (see, e.g., Bratley and Fox 1988) and as
fast as most pseudo-random number methods. Hence, in the important RMS error
versus computation time comparison, the relative advantage of the Sobol” method
increases.

A low-discrepancy sequence will often have additional uniformity properties at
certain points in the sequence (see, e.g., Fox 1986 and Bratley and Fox 1988). For
example, in the Sobol’ sequence the running average returns to 0.5 at the points
n=2_1fork=1,2,.... One might expect that choosing » to be one of these
“favorable” points would lead to better option price estimates. For large values of
n, the advantage of using favorable points becomes negligible, but for small n the
effect can be quite significant. Indeed, in the experiment above, using the Sobol’
points 1 through 254 gives an RMS error of 10%, while using the points 1 through
255 gives an RMS error of 4%.2' Better results are often obtained by ignoring an
initial portion of a low-discrepancy sequence. For example, using the Sobol’ points
I through 63 gives an RMS error of 13%, while using the Sobol’ points 64 through
127 gives an RMS error of 2%. Tn the results in Figure 1, the Sobol’ sequence
was always started at point 64, so the label 192 in Figure 1 corresponds to the 192
Sobol” points from 64 to 255. Similarly, the Faure sequence was always started at

ZU The details of the distribution are given ir: Broadie and Detemple (1996).
b We take the first point of the Sobol” sequence to be (1.5, not 0.0,




P. Boyle, M. Broadie and P. Glasserman 6. Mo
10 551 0%

100

10-

T T TTTTIT

10-2

T T T TTTT
R

RMS Relative Error

102

T T TTTTTT
TG

H S s b ||\(K||| ; ;;r\iil L P N
102 102 104 103

res 2 and 3 show
y.‘The figures illus
Fig. 1. RMS relative error vs. number of points. wonlar but different

point 16, so the label 129 in Figure 1 corresponds to the 129 Sobol” points from 1
to 144. :
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3.2 One-dimensional vs. higher dimensional sequences

Tt is sometimes asserted that low-discrepancy methods can be implemented |
existing simulation programs by simply replacing the pseudo-random number ge
erator with a low-discrepancy sequence generator. This naive approach can lead 10
disastrous results as the following example shows.

Consider pricing a European option on the maximum of two non-dividend pa:
ing assets with the parameters: S| = 8, = K =100, 0) =0, =02, 0 = 03
r = 0.05, and T = 1. Under the usual Black—Scholes assumptions, a formula f )
the price of the option can be derived (see, e.g., Johnson 1987 or Stulz 1982) anc
gives a price of 16.442. Running one Monte Carlo simulation with 1000 points
(hence 2000 random numbers) gave an estimated price of 16.279 with a standard
error of 0.533. Using 2000 one-dimensional low-discrepancy values gave a price
estimate of 4.320 using the Sobol’ sequence and an estimate of 1.909 using the

test the effect of prob
00. We price disc
roblem dimension
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Fig. 2. 1000 two-dimensional Faure points.

Faure sequence (starting at point 16). The cause of the problem can be seen by
examining Figures 2-5.

Figures 2 and 3 show 1000 two-dimensional Faure and Sobol’ points, respec-
tively. The figures illustrate how the sequences fill the two-dimensional space
in regular but different ways. By contrast, Figures 4 and 5 show 2000 one-
dimensional Faure and Sobol” points, respectively, plotted in two dimensions. The
plots are created by taking successive points in the one-dimensional sequence to
be the (x, y) coordinates in two-dimensional space. In neither figure are the points
filling the two-dimensional space (note that the axes do not extend from 0 to 1) and
this explains why the price estimates do not converge to the correct values, Even
in the quarter of the unit square where the points fall, the points do not uniformly
fill the space. This problem is reminiscent of the well-known “collinearity”
“hyperplane” problem of some pseudo-random number generators, but is even
more serious with these low-discrepancy sequences.

A similar problem can occur if a high-dimensional low- d1scrf:pancy sequence is
used for a problem of low dimension. Figure 6 shows the 49" and 50" dimension
of 1000 50-dimensional Faure points. Using the last two dimensions of the 50-
dimensional sequence to price a two-dimensional option will give very poor results.

3.3 Higher dimensional test

To test the effect of problem dimension, we price options in dimensions d = 10, 50,
and 100. We price discretely sampled geometric average Asian options, because
the problem dimension is easily varied and a closed form solution for the price
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where § = (]—[?’:] $;)1/9 and S; is the asset price at time i 7'/d.

We test standard Monte Carlo, Monte Carlo with antithetic variates, and
low-discrepancy sequences of Faure, Sobol’, and Halton.?2 For each dimension
we select 500 option parameters at random, and compute RMS relative error (s

22 We thank Spassimir Paskov and Joseph Traub for providing their code for the Sobol’ segaences. The details of the distribution are gi
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equation 12) for each method.?* Results for 50000 and 200 000 sample points are
given in Figures 7 and 8, respectively. (The antithetic method uses 25000 and
100 000 independent pairs of points, respectively.)

Results for the Halton sequence were not competitive and are suppressed. RMS
error for standard Monte Carlo is nearly independent of the problem dimension.
The antithetic method gives minimal variance reduction. The relative advantage, in
terms of RMS error, of the low-discrepancy sequences decreases with the problem
dimension. For this test problem, the crossover point is beyond dimension 100.

23 . .
‘The details of the distribution are given in Broadie and Detemple (1996).
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4 Estimating price sensitivities al price, a discoun
Most of the discussion in this paper centers on the use of Monte Carlo for pricid C(Sp) = T max|

securities. In practice, the evaluation of price sensitivities is often as irpportan
the evaluation of the prices themselves. Indeed, whereas prices for some securitie

See, e.g., Chapter 13 of Hull |
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can be observed in the market, their sensitivities to parameter changes typically
cannot and must therefore be computed. Since price sensitivities are important
measures of risk, the growing emphasis on risk management systems suggests 2
greater need for their efficient computation.

The derivatives of a derivative security’s price with respect to various model
parameters are collectively referred to as Greeks, because several of these are com-
monly referred to with the names of Greek letters.?* Perhaps the most important
of these — and the one to which we give primary attention — is delta: the derivative
of the price of a contingent claim with respect to the current price of an underlying
assel. The delta of a stock option, for example, is the derivative of the option price
with respect to the current stock price. An option involving multiple underlying
assets has multiple deltas, one for each underlying asset.

In the rest of this section, we discuss various approaches to estimating price sen-
sitivities, especially delta. We begin by examining finite-difference approximations
and show that these can be improved throogh the use of common random numbers.
We then discuss direct. nethods that estimate derivatives without requiring resinu-
lation at perturbed parameter values.

4.1 Finite-difference approximations
Consider the problem of computing the delta of the Black-Scholes price of a
European call; i.e., computing
dC
dSo

L]

where C is the option price and So is the current stock price. There is, of course, an
exphicit expression for delta, so simulation is not required, but the example is useful
for purposes of illustration. A crude estimafe of delta is obtained by generating a
terminal stock price

ST — Sﬂe(J‘ﬁ%dz)T-HTﬁZ (13)

(see (2) for notation) from the current stock price ¢ and a second, independent
terminal stock price

Sr(e) = (So + e)e("#%dz)”“"ﬁz' (14)

from the perturbed jnitial price Sp + €, with Z and 7' independent. For cach
terminal price, a discounted payoff can be computed like this:

E(Sy) = e~ 7 max{0, St — K}, ESy 4+ €) = T max{0, Sr(e) — K}

24 See, e.g., Chapter 13 of Hull (2000) for background.
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(see (3) for notation). A crude estimate of delta is then provided by the ﬁ:; pper bound ha

difference approximation ' ElIE
A =e'[C(Sy +€) — C(So)l.

By generating n independent replications of Sy and Sr(e) we can calculate Var[e™

sample mean of » independent copies of A. As n — oo, this sample m o .
converges to the true finite-difference ratio ance of A fema
sarance of A incr
eHC(So +€) — C(Sy)1, . A (by making

. . . . . reover, this in
where C(-} is the option price as a function of the current stock price. :

This discussion suggests that to get an accurate estimate of A we should maki
small. However, because we generated St and S7(¢) independently of each o
we have

¢ decrease faste
verall convergenc
4‘)' shows that a ¢
the best that can
Var[A] = ¢ 2(Var[C(Sy + €) + Var[C(Sp)]) = 0(c™2), rgence rates using
so the variance of A becomes very large if we make € small. To get an esti : amatic success of ¢
that converges to A we must let € decrease slowly as n increases, resulting in sl
overall convergence. A general result of Glynn (1989) shows that the best pos$1___ oes not apply in
convergence rate using this approach is typically n~'/4. Replacing the f(grw__ 'option paying 4 fix
difference estimator in (15) with the central difference (2¢) 1 {C‘ (Sp+¢e)—C (_Sg'_k tionis C = e T BP(
€)] typically improves the optimal convergence rate to n~1/3. These rates sho Id :
be compared with n~1/?, the rate ordinarily expected from Monte Carlo.

Betier estimators can generally be improved using the method of common ra o SO) and C(Sp +
dom numbers, which, in this context, simply uses the same Z in (13) and ( '
Denote by A the finite-difference approximation thus obtained. For fixed €,
sample mean of independent replications of A also converges to (16). The varian
parameter is given by

5o+ €) — C(So)f

ared -with O(e?) for
ult for the digital opti
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antial improvement co
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o015, The numerical resu
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Var[A] = ¢ 2(Var[€(Sp)] + Var[€ (S + €)] — 2 Cov[E(Sy), C(Se + D,

because C (So) and ¢ {So + €) are no longer 'mdependent Indeed, if they ar
positively correlated, then A has smaller variance than A. That they are in fa
posmvely correlated follows from the monotonicity of the function mapping Z 10
¢ by the argument used in our discussion of antithetics in Section 3. Thus, the u
of common random numbers reduces the variance of the estimate of delta. _

The impact of this variance reduction is most dramatic when € is small. A simp
calculation shows that, using common random numbers,

1E(So 1 €) — CSo)l < ISr(e) — 7

= %UZ)T""” ~T Z. alled a “binary™ or “cash-ol

< ee
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| Because this upper bound has finite second moment, we may conclude that
EfIC(So + &) = C(S0)l'] = 0(eY), an
and therefore that )
Varle™ (E(S) + €) — C(So))l = 0(1);

i.e., the variance of A temains bounded as ¢ — 0, whereas we saw previously
that the variance of A increases at rate e 2. Thus, the more precisely we try
to estimate A (by making € small) the greater the benefit of common random
numbers. Moreover, this indicates that to get an estimator that converges o A
we may let € decrease faster as n increases than was possible with A, resulting
in faster overall convergence. An application of Proposition 2 of I’Ecuyer and
Perron (1994) shows that a convergence rate of n~1/2 can be achieved in this case,
and that is the best that can ordinarily be expected from Monte Carlo. For more
on convergence rates using common random numbers see Glasserman and Yao
(1992), Glynn (1989), and L'Ecuyer and Perron (1994).

The dramatic success of common random numbers in this example relies on the
fast rate of mean-square convergence of C(Sy + €) to C(S,) evidenced by (17).
This rate does not apply in all cases. It fails to hold, for example, in the case of a
digital option®® paying a fixed amount B if St > K and 0 otherwise. The price of
this option is C = e~"T BP(Sy > K); the obvious simulation estimator is

C(So) = Ligp-rye "TB.
Because C (Sp) and ¢ (So + €) differ only when Sy < K < Sr(€), we have
E[IC(Sy+€) — C(So)"1 = B2 T P(Sy < K < Sr(e)
=B%2 ¥TpPS; <K < (1+€/85)87) = O(e),

compared with ((e?) for a standard call. As a result, delta estimation is more
difficult for the digital option, and a similar argument applies to barrier options
generally. Even in these cases, the use of common random numbers can result in
substantial improvement compared with differences based on independent runs.
Table 6 compares the performance of four types of delta estimates: forward and
central finite-differences with and without common random numbers. The methods
are compared at four values of the perturbation parameter €, and applied to the two
options discussed above. The values in the table are estimated root mean squate
errors. The numerical results substantiate the analysis above. Much lower errors
are obtained for the standard call than for the digital option, allowing for smaller €;
central differences beat forward differences; common random numbers helps, but

2 . . .
3 Also called a “binary” or “cash-or-nothing™ cption; see Hull (2000, p. 464).
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Table 6. RMS errors for various delta estimation methods.

Independent Common
€ Forward Central Forward Central
Standard 10 0.10 001 0100  0.009 imating derivatives by sin
Call i 0.18 0.09 0.012 0.006 ; :
Opton 01 178 087 0006 0006 | alue. Under appr
0.0t 747 8.98 0.006 0.006 .
Digital 20 0.51 037 051 037 afives themselves;
1gita . ST . .
Option 10 022 011 021 0.10 5 on the use of pathy
5 0.16 007  0.11 0.05 ally called infinitesim
1 0.67 0.34 0.14 0.10 athwise estimate ¢

Root ‘mean square error of delta estimates for two options ::.Wlth respect to So.

using four methods with various values of €. Both options 4
have S = 100, K = 100, 0 = 040, r = 0.10,and T = 0.2. il
The digital option has B = 10{0. Each eniry is computed dSp

from 1000 delta estimates, each estimate based con 10000
replications. The value of delta is 0.580 for the first option
and 2,185 for the second.

ded the limit exists w
the same Z, then pro

it helps the standard call more than the digital option. In several cases, the mini
error 15 obtained using a fairly large e. This reflects the fact that the bias resultin
from a large ¢ is sometimes overwhelmed by the large variance resulting fron
small €. .

Although we have discussed common random numbers in only a limited conte have psed (13) to get
it can easily be applied to a wide range of problems. If all stochastic input
to a simulation are samples from the normal distribution, then common rande
numbers can be implemented by using the same samples at two different paramete
settings. More generaily, if the stochastic inputs are all drawn from a sequence {
uniform random variates, then common random numbers can be implemented b?
using these variates at two different parameter settings.

4.2 Direct estimates

Even with the improvements in performance obtained from common random nu ytically rather than n
bers, derivative estimates based on finite differences still suffer from two shortco Ause it can be comput
ings. They are biased (since they compute difference ratios rather than derivatives ced for a separate simul
and they require fultiple resimulations: estimating sensitivities to paramet_f::rf ression in (18). The g
changes requires repeatedly running one simulation with all parameters at thel

base values and d additional simulations with each of the parameters perturbed ensitivilies to various changes
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. The computation of 10-50 Grecks?® for a single security is not unheard of, and
' this represents a significant computational burden when multiple resimulations are
- required.

Over the last decade, a variety of direct methods have been developed for es-
timating derivatives by simulation. Direct methods compute a derivative estimate
from a single simulation, and thus do not require resimulation at a perturbed pa-
rameter value. Under appropriate conditions, they result in unbiased estimates of
the derivatives themselves, rather than of a finite-difference ratio. Qur discussion
focuses on the use of pathwise derivatives as direct estimates, based on a technique
generally called infinitesimal perturbation analysis (see, e.g., Glasserman 1991).

The pathwise estimate of the true delta dC/d 5 is the derivative of the sample
price ¢ with respect to 5y. More precisely, it is

9E _ tim e (S + €) — C5)]

d SU -0 ’
provided the limit exists with probability 1. If C(Sg) and C(Sp + €) are computed
from the same Z, then provided Sy # K, we have

~d¢  dé dsy
dSy  dSr dSp (18)
' SV R | > —}:
€ {Sr>K] S[]
We have used (13) to get
ASr _ ogoirorz_ 1
dSy So
and
a¢ ., d eT, Sr>K;
E_e dSTmaX{O’ST_K}_{O, S < K.

At S; = K, C fails to be differentiable; however, since this occurs with probability
zero, the random variable dC/d S, is almost surely well defined.

The pathwise derivative dC/d S, can be thought of as a limiting case of the
¢ommon random numbers finite-difference estimator in which we evaluate the limit
analytically rather than numerically. It is a direct estimator of the option delta
because it can be computed directly from a simulation starting at S without the
need for a separate simulation at a perturbed value Sp. This is evident from the
expression in (18). The question remains whether this estimator is unbiased; that

26 T . . . -
Sensitivities to various changes in the yield curve often account for several of these.
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The unbiasedness of the pathwise estimate thus reduces to the interchangeabilj
of derivative and expectation. The interchange is easily justified in this case
Broadie and Glasserman (1996} for this example and conditions for more gen
cases. Applying the same reasoning used above, we obtain the following pathw
estimators of three other Greeks for the Black—Scholes price:

Rho (dC/dr): K Te*"Tl{ Sp=K} gate another techni
. Sr io. method. This metho
. —rT 1,.2

Vega (dC/do ). e sy sxy . (]n(ST/Sg) —(r—30 )T) + than the outco e of
. 7 ST athwise method over

_ . -7 _ - -rT 5
Theta (—dC/dT): re””" max(Sy — K, 0) — Lig»x1e 37 (lu(ST/SO) se method generall
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where S is the average asset price used to determine the option payoff. Evaluatin
this expression takes negligible time compared with resimulating to estimate th
option price from a perturbed initial stock price. The pathwise estimate is thu
both more accurate and faster to compute than the finite-difference approximation
These advantages extend to a wide class of problems.

As already noted, the unbiasedness of pathwise derivative estimates depends on
an interchange of derivative and expectation. In practice, this generally mean
that the security payoif should be a pathwise continuous function of the paramete;
in guestion. The standard call option payoff e™"T max{0, St — K} is continuous.
in each of its parameters, An example where continuity fails is a digital option:
with payoff e"'TI{ST ~x1B, with B the amount received if the stock finishes in th

“We used this example at the er
bers is particularly effecti
e effectively.

ugh not presented in a Mo
proach,
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money.”’ Because of the discontinuity at Sy = K, the pathwise method (in its
simplest form) cannot be applied to this type of option.

The problem of discontinuities often arises in the estimation of gamma, the sec-
ond derivative of an option price with respect to the current price of an underlying
asset. Consider, again, the standard European call option. We have an expression
for dC /d Sy in (18) involving the indicator 15, x)- This shows that dC [d Sy is
discontinzous in Sy, preventing us from differentiating pathwise a second time to
get a direct estimator of gamma.

To address the problem of discontinuities, Broadie and Glasserman (1996) con-
struct smoothed estimators. These estimators are unbiased, but not as simple to de-
rive and implement as ordinary pathwise estimators. Broadie and Glasserman also
investigate another technique for direct derivative estimation called the likelihood
ratio method. This method differentiates the probability density of an asset price,
rather than the outcome of the asset price itself.2® The domains of this method and
the pathwise method overlap, but neither contains the other. When both apply, the
pathwise method generally has lower variance.

Overviews of these methods can be found in Glasserman (1991), Glynn (1987),
and Rubinstein and Shapiro (1993). For discussions specific to financial applica-
tions see Broadie and Glasserman (1996) and Fu and Hu (1995).

5 Pricing American options by simulation

European contingent claims have cash flows that cannot be influenced by decisions
of the owner, Examples include European options, barrier options, and many types
of swaps. By contrast, the cash flows of American contingent claims depend both
on the price path of the underlying asset or assets and the decisions of the owner.
Many types of American contingent claims trade on exchanges and in the over-
the-counter market. Examples include American options, American swaptions,
shout options, and American Asian options. They also arise in other contexts, for
example as “real options” in the theory of economic investment described in Dixit
and Pindyck (1994).

To be concrete, suppose that we wish to estimate the quanfity
max, Efe " *h(S;)], where r is the constant riskless interest rate, A(S;) is
the payoff at time 7 in state S;, and the max is taken over all stopping times
T < T. This formulation of the American pricing problem will suffice to
illustrate the major points. First, note that the statc can be vector-valued and hence
27 e used this example at the end of Section 3. The scttings are related: problems for which commen random

numbers is particularly effective are generaily problems to which the pathwise method can be applied even

more effectively.

2 . . . .
8 Though not presented in a Monte Carlo context, the expressions in Carr (1993) are potentially relevant to this
approach.
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applies to pricing American options on multiple assets. Second, since simulati
algorithms are discrete in nature, the continuous-time exercise decision must
approximated by restricting the exercise opportunities to lie in a finite set of time:
0=ty <t <--- <ty =T, Thisis not always a serious restriction. For examp
for a call option on a stock which pays dividends at discrete points in time, it
be shown that early exercise is only optimal just prior to the ex-dividend dat
In other cases, Richardson or other extrapolation techniques can be used to béttq
approximate the price with exercise in continuous time from a finite set of exer¢
opportunities.” However, we now restrict attention to estimating the quantity*

i993) sparked cons
f applying simulati

asset. To estimate P
ri y...,d an
rice space and call th
¢’ A dynamic prog!
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ias, or the partitions

P = max E[e”""h(S.)1,

where the max is taken over all stopping times t in the set #;, fori = 0, .
The need to estimate an optimal stopping time is the crucial distinction betw:
American and European pricing problems.

If the state space is of low dimension, say three or less, a discretization schem
together with a dynamic programming algorithm can often be used to numericall
approximate the value in (19). Even in these cases, simulation can be usec
estimate the expectation in the recursive step, Simulation-based methods becon
essential when the dimension of the state space is large.

An obvious simulation-based algorithm for estimaiing the quantity P in eqi
tion (19) is to generate a random path of states S, fori = 1,..., d, and form 1
path estimate canse Tilley’s algorith
the value, the estimator
pproximation which is
ariant which reduces:
ef-dimensions. Carrier
suggests a procedure b
cen whether the spline
ertheless, for single st:
acticality of applying sin

P = max e Th(S,).

i=0,...,

However, this estimator corresponds to using perfect foresight, and so it is'b
ased high. That is, E [13] > P, which follows immediately from the inequali
Mmax;—o,..q4¢ " "h(S;) = e h(S;). A natural goal would be to develop an alte;
native unbiased estimator. A negative result in this regard is provided in Broadi
and Glasserman (1997). among a large class of estimators, there is no unbiase
estimator of P. In particular, the estimators proposed in Tilley (1993), Gran
Vora, and Weeks (1997), and Barraquand and Martineau (1995) are all biaseé
Unfortunately, they provide no way to estimate the extent of the bias or to corre
for the bias in a general setting. Broadie and Glasserman (1997) circumver
this problem by developing two estimators, one biased high and one biased 10
(but both asymptotically unbiased), which can be used together to form a vali
confidence interval for the quantity P. In the remainder of this section, we giv
brief descriptions of the four methods mentioned and describe some strengths and:
weaknesses of each,

arraquand and Ma

aquand and Martineal
v’s bundling algoriths
ice. Hence, only a on
dependent of the number

T fact, they distingnish between
and partitioning the payoff space
methed is the only one that they

% Geske and Johnson (1984) gave the first financial application of Richardson extrapolation, An extensiy
method.

treatment of extrapolation techniques is given in Marchuk and Shaidurov (1983).
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5.1 Tilley’s bundling algorithm

Tilley (1993) sparked considerable interest by demonstrating the potential practi-
cality of applying simulation to pricing American contingent claims. Tilley de-
scribes a “bundling procedure” for pricing an American option on a single under-
lying asset. To estimate P he suggests simulating n paths of asset prices denoted
S, (j) for i = I,...,d and j = 1,...,n in the usual way. Next, partition the
asset price space and call the paths which fall into a given partition at a fixed time a
“pundle.” A dynamic programming algorithm is applied to bundles to estimate C.
In particular, the estimated option price Py, (f) at time ; for path j is the maximum
of the immediate exercise value, h(S; (j}), and the present value of continuing.
The latter value is defined to be the average of ¢ "= p, ., (k) over all paths &
which fall in the bundle containing path j at timme #;. Details of the partitioning are
given in Tilley (1993).

In order to implement the algorithm, all paths must be stored so they can be
sorted into bundles at each time step. Since simulation typically requires a large
number of paths for good estimates, the storage and sorting requirements can be
significant. More importantly, the algorithm does not easily generalize to multiple
state variables. In higher dimensions, it is not clear how to define the bundies.
Even then it is likely that most partitions will contain very few paths and lead to a
large bias, or the partitions will be so large that the continuation values are poorly
estimated,

Because Tilley’s algorithm uses the same paths to estimate the optimal decisions
and the value, the estimator tends to be biased high (although the bundling induces
an approximation which is difficult to analyze). Tilley introduces a “sharp bound-
ary” variant which reduces the bias, but this variant does not easily generalize to
higher dimensions. Carriere (1996) contains further analysis of Tilley’s algorithm
and suggests a procedure based on spline functions to reduce the bias. It remains to
be seen whether the spline procedure is practical for higher dimensional problems.
Nevertheless, for single state variable problems, Tilley demonstrated the potential
practicality of applying simulation to American-style pricing problems.

5.2 Barraguand and Martineau’s siratified state aggregation (SSA) algorithm

Bartaquand and Martineau (1995) propose a partitioning algorithm, but unlike
Tilley’s bundling algorithm, they partition the payoff space instead of the state
space. Hence, only a one dimensional space is partitioned at each time step,
independent of the number of state variables.’® Their algorithm works as follows.
30 In fact, they distinguish between partitioning the state space, which they term “stratified state aggregation,”

and partitioning the payoff space, which they term “stratified state aggregation along the payoft” The latter

method is the ouly one that they test or specify in detail. Hence we focus our discussion on this variant of
their method. :
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Fig. 9. State evolution.

First, partition the payoff space into K disjoint cells. Then simulate n path,
asset prices denoted S, (j) fori = 1,...,d and j = 1,...,n in the usual w
For each payoff cell £ at time #;, record the number of paths, a,, (k), which fall in
the cell. For each pair of cells k and I at consecutive times # and #;4, record
number of paths, b, (k, {), which fall into both cells. Also, for each cell k at time
t;, record the sum of the payoff values, ¢, (k) = > h(S, (7)), where the sum
over all paths j which fall info cell £ at time #,. The transition probability fro
(#i, k) to (11, 1) is approximated by p, (k,I) = b, (k,I)/a, (k). The estimate
option price P, (k) at time # in cell k is the maximum of the immediate exercise
value and the present value of continuing. The immediate exercise value is &
proximated by c;, (k)/a; (k). The present value of continuing is approximated
e Ui Zle Pk, 1) Py, (D). This procedure can be applied backwards in tim
to determine the simuolation estimate of the price P.
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Details of a payoff space partitioning scheme are given in Barraquand and Ma
tineau (1995). Once a single path is generated and the summary information a, !
and ¢ is recorded, the path can be discarded. Hence the storage requirements wi
this method are modest: on the order of K2d. One drawback of this method is:
possible lack of convergence, as the foHowing example illustrates.

Figure 9 shows the evolution of two asset prices (S, 52). The option payo
is #{S1, $2) = max(Si, S>) and for convenience the tiskless rate is taken to
zero. Using the risk-neutral probabilities in Figure 9, the true value of the optio
at time /g is 11, which at time #, involves exercise in state (8, 4) but continuing;
state (8',‘8). When the states are partitioned by their payoffs, these two states aI
indistinguishable. As seen in the payoff evolution in Figure 10, the best straieg
at time ¢, in payoff state 8 is to continue. The apparent value of the option i
Figure 10 is 9 (= (1/2)14 + (1/2)4). In this example, partitioning the payoff

5.3 Broadie ar
adie and Glasserman (1!
er to handle the bias
and one biased low, bu
mput:ational effort increas
ingd by taking the uppe
onfidence limit from
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RS, 5]

Fig. 10. Payoff evolution.

space leads to a significant underestimate of the option value. Hence, a simulation
algorithm based on partitioning the payoff space cannot converge to the correct
value. Although this example may seem contrived, Broadie and Detemple (1997)
show that the payoff value is not a sufficient statistic for determining the optimal
exercise decision for options on the maximum of several assets. Indeed, the payoff
process A (S;) is hardly ever Markovian.

There is currently no way to bound the error in the Barraquand and Martineau
method. Without an error estimate, it is difficult to determine the appropriate
number of paths to simulate or the appropriate number of partitions to use. Their
method can be slightly modified to generate an option price estimate which is
biased low as follows. Their procedure gives an exercise strategy based on the
immediate exercise payoff. Using this strategy, a new (independent) set of paths
can be simulated, and an option value can be estimated under the exercise strat-
egy previously estimated. The resulting option price estimate will be biased low
because the exercise policy is not, in general, the optimal policy. With this modi-
fication, the average direction of the error is known. Raymar and Zwecher (1997)
extend the Barraquand and Martineau approach by basing the exercise decision on
a partition of two state-variables, rather than one.

5.3 Broadie and Glasserman’s random tree algorithm

Broadie and Glasserman (1997) propose an algorithm based on simulated trees.
In order to handle the bias problem, they develop two estimators, one biased
high and one biased low, but both convergent and asymptotically unbiased as the
computational efforf increases. A valid confidence interval for the true value P is
obtained by taking the upper confidence Jmit from the “high” estimator and the
lower confidence limit from the “low” estimator. Briefly, their algorithm works as
follows.
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First, simulate a tree of asset prices (or, more generally, state variables) us he average. Using
branches at each node. Two paths emanating from a node evolve as indep "
copies of the state process. The high estimator, @, is defined to be the
obtained by the usual dynamic programming algorithm applied to the sim
tree. Then repeat the process for n trees, and compute a point estimate and ¢
fidence interval for E[®]. A low estimator is obtained by modifying the dyna o
programiming algorithm at each node. Instead of using all b branches to dete W petform extensive !
the decision and value, b, branches are used to determine the exercise decision. fimate is relatively it
the remaining b, = b — b) branches are used to determine the continuation y;

fixed policy. Sin
; .:t'opp'mg rule, the

Their actual low estimator, 0, includes another modification of this proc 1e§rél, but it 18 not -
which reduces the variance of the estimate. As before, estimates from 1 trees ' their estimates
combined to give a point estimate and confidence interval for E[#]. Details of < Their procedure i
procedure can be found in Broadie and Glasserman (1997), o t'this point constitu

For the © estimator, all of the branches at a given node are used to dete
the optimal decision and the corresponding node value, and this leads to an up rts (1989) proposes
bias, i.e., £[®] > P. For the 9 estimator, the decision and the continuatio
are determined from independent information sets. This eliminates the up His method appears
bias, but a downward bias occurs, ie, E[#] < P. The intuition for this ] :
follows. H the correct decision is inferred at a node, the node value estimate
be unbiased. If the incorrect decision is inferred at a node, the node value es
would be biased low because of the suboptimality of the decision, The exp:
node value is a weighted average of an unbiased estimate (based on the e
decision) and an estimate which is biased low (based on the incorrect decis
The net effect is an estimate which is biased low. Both estimators are consi
and asymptotically unbiased as b increases.

The computational effort with this algorithm is order nb” and its main draw
is that d cannot be too large for practical computations. Broadie and Glasse;
(1997) give numerical results for options with d = 4. As mentioned ear
to approximate option values with continuous exercise opportunities, some [y
of extrapolation procedure is required. Special care is necessary to imple e
extrapolation procedures within a simulation context because of the randomne: or:solving some highe
the estimates.

oach described in Fu anc
1997)*? studies the ¢
néiude optimal stopp
e.ﬁlod and shows tha
roblem. Rust’s foc
o provide a promisi

luation of securitics w
al decisions. High d:

thms described here re
long thought to be com
5.4 Other developments®
Grant, Vora, and Weeks (1997) describe a method specially designed to pri
American arithmetic Asian options on a single underlying asset. In this application .
the optimal exercise decision depends on the current asset price and the curren onclude this paper with

: the application of Monte (
3l More recent developments in pricing American options by simulation include Broadie and Glasserman (199

Broadie, Glasserman and Ha (2000) and Lengstaff and Schwartz (2001). We thank A. Dixit for pointing us i
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vyalue of the average. Using repeated simulation rums, they attempt to identify
the form of an optimal exercise policy based on these two pieces of information.
Once an exercise policy is specified, simulation is used to estimate the option value
ander this fixed policy. Since the fixed policy is a suboptimal approximation to
the optimal stopping rule, their procedure leads to a simulation estimator which is
biased low.

GVW perform exiensive sensitivity analysis which indicates that their option
value estimate is relatively insensitive to deviations in the chosen exercise policy.
So it may be that their method gives good option price estimates relative to some
accuracy level, but it is not clear how to quantify their error. It is not clear how
to improve their estimates to an arbitrary accuracy level as the simulation effort
increases. Their procedure is specific to the case of American Asian options and
does not at this point constitute a general approach to pricing American contingent
claims.

Bossaerts (1989) proposes two estimators of optimal early exercise, a moment
estimator and a smooth optimization estimator, and studies their convergence prop-
erties. His method appears (o require a parametric representation of the exercise
boundary and may therefore face difficultics in higher dimension. The optimization
approach described in Fu and Hu (1995) also requires a parametric representation.

Rust (1997)* studies the general problem of solving discrete decision problems,
which include optimal stopping problems as a special case. He develops a Monte
Carlo method and shows that it succeeds in breaking the “curse of dimensionality”
in these problem. Rust’s focus is on computational complexity, but his approach
appears to provide a promising direction for finance applications.

5.5 Summary

The valuation of securities with American-type features requires the determination
of optimal decisions. High dimension versions of these problems arise from multi-
ple state variables and/or path dependencies. Although simulation is a powerful
tool for solving some higher dimensional problems, conventional wisdom was
that simulation could not be applied to American-style pricing problems. The
algorithms described here represent the first attempts to solve these problems that
were long thought to be computationally intractable.

6 Further topics

We conclude this paper with a brief mention of two important areas of current work
in the application of Monte Carlo methods to finance, not discussed in this article.

% We thank A. Dixit for pointing us o this reference.
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A central numerical issue in simulating interest rates, asset prices with stochy ﬁqr are related via
tic volatilities, and other complex diffusions is the accurate approximation
stochastic differential equations by discrete-time processes. Kloeden and Plate
(1992) discuss a variety of methods for constructing discrete-time approximation
with different orders of convergence. Andersen (1995) applies some of theg
to interest-rate models. In general, decreasing the time increment in a discref,
approximation can be expected to give more accurate results, but at the expense g
greater computational effort, Duffie and Glynn (1995) analyze this trade-off a
characterize asymptotically optimal time steps as the overall computational effor
grows. '
In this article we have focused almost exclusively on the use of Monte Cay .
for pricing. A related, growing area of application is risk management — in p, = 1 Z f
ticular, the use of Monte Carlo to assess value at risk, credit risk, and related ' iz
measures. For some examples of recent applications in these areas see Iben and
Brotherton-Ratcliffe (1994), Lawrence (1994), Beckstetm and Campbell (1995)
and Glasserman, Heidelberger and Shahabuddin (2000).

Appendix: Moment controls heat moment matching asymptotically

As mentioned in Section 2.4, any time a morment is available for use with momen
matching, it can alternatively be used as a control variate. In this appendix, w
argue that moment matching is asymptotically equivaient (o a control variate tech
nique with suboptimal coefficients, and is therefore dominated by the optimal us
of moments as controls. This asymptotic link applies in large samples. A relate
link between linear and nonlinear contro] variates is made in Glynn and Whit
(1989), but the current setting does not fit their framework.
LetZ), Z,, .. . beiid. (not necessarily normal) with mean # and variance o4
Let s denote the sample standard deviation of Zi, ..., Zyand 7 their sample mean,
Suppose we want to estimate £ Lf (Z}] for some function f. The standard estimator
isn~' 37 £(Z;) and the moment matching estimator is ! S f(Z) with Z;
defined in (9). For each ; , the scaled difTerence

ontrols (both quantities cor
cients f, B,. In general, t
A3, so moment matching |
od. In additton, the cont
atching itself) because thoug
finite n. In contrast, the m
‘it) have mean zero for al
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= Involving Non-Linear Stochs
Financial Products, New Yor
daersen, L., and R. Brotherton-k
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V(Zi — Zy =/ (?) Zi — (0 Z/s) — u]

converges in distribution, by the central limit theorem for Z and 5. Thus, (Z;
Zi) = 0, (n=1/2) (see, e.g., Appendix A of Pollard 1984 for O,, 0, notation),
Suppose now that, with probability one, £ is differentiable at Z;. Then

FZy=FZ)+ FZ)Z — 2]+ 0, (n1),

suggesting that up to terms o o(n71?) the moment matching estimator and standard:




6. Monte Carlo Methods for Security Pricing

estimator are related via

: ; AT Zl FZ)+ i; FZDZ - 2]
- % gf(zi) + i [i:f’(z,-)[(% - l)z,- - 5;—2': +;L]
. ; £z + (% Zl f'(Z,-)z,-) (% - 1)
+(G o @)(e-32)
= %iijf(z,-) sh(2-1)w(n-T2)

where 8, — 8;,i = 1,2, a8 n — co, with

p,=ELf(Z)Z], and B, = E[f(Z)).

Thus, moment matching is asymptotically equivalent to using

(f _ 1) and (u _ 52) (20)
¥ 5

as controls (both quantities converge to zero almost surely) with estimates of co-
efficients 8,, 8,. In general, these do not coincide with the optimal coefiicients
B3, B3, so moment matching is asymptotically dominated by the control variate
method, In addition, the controls in (20) introduce some bias (as does moment
matching itself) because though they converge to zero they do not have mean zero
for finite n. Tn contrast, the more natural moment control variates (s> — ¢'2) and
(Z - 1) have mean zero for all n and thus introduce no bias.
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