
MANAGEMENT SCIENCE
Vol. 51, No. 1, January 2005, pp. 60–75
issn 0025-1909 �eissn 1526-5501 �05 �5101 �0060

informs ®

doi 10.1287/mnsc.1040.0217
©2005 INFORMS

Salesforce Incentives, Market Information, and
Production/Inventory Planning

Fangruo Chen
Graduate School of Business, Columbia University, New York, New York 10027, fc26@columbia.edu

Salespeople are the eyes and ears of the firms they serve. They possess market knowledge that is critical fora wide range of decisions. A key question is how a firm can provide incentives to its salesforce so that it is
in their interest to truthfully disclose their information about the market and to work hard. Many people have
considered this question and provided solutions. Perhaps the most well-known solution is due to Gonik (1978),
who proposed and implemented a clever scheme designed to elicit market information and encourage hard
work. The purpose of this paper is to study Gonik’s scheme and compare it with a menu of linear contracts—
a solution often used in the agency literature—in a model where the market information possessed by the
salesforce is important for the firm’s production and inventory-planning decisions.
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1. Introduction
Firms rely on their salespeople to stay in touch with
customers. Good salespeople know what customers
need and want and the sales prospects of the market
they serve. This market knowledge is critical for a
wide range of decisions, such as salesforce compen-
sation, new product development, and production-
inventory planning. So, how can a firm provide
incentives to its salesforce so that it is in their interest
to truthfully reveal what they know about the mar-
ket and, at the same time, to work hard? We address
this question in a specific context where the market
information is useful in making sound salesforce com-
pensation and production/inventory decisions.
Inducing salespeople to disclose what they know

about the market and providing incentives for them
to work hard can sometimes be conflicting goals. To
encourage the salespeople to work hard, the firm
must reward them for their selling effort, which is
not always proportional to the absolute sales volume.
For example, when times are bad, a high level of
selling effort may only generate a relatively low vol-
ume of sales. Therefore, it is sensible to set a quota
that accurately reflects the potential of a sales terri-
tory and measure a salesperson’s performance based
on the percentage of the quota achieved. However,
only the salesperson working in the territory really
knows its potential. If the firm simply asks the sales-
person to forecast the sales volume for his/her ter-
ritory, the salesperson will try to turn in the lowest
possible forecast. In other words, the firm’s desire to

motivate hard work leads the salespeople to “work
around the system,” i.e., forecast poorly.
Many people have recognized the above problem

and proposed various remedies. Gonik (1978) re-
ported a clever scheme under which it is in the sales-
people’s interest to forecast accurately and to work
hard. Under his scheme, the firm asks each salesper-
son to provide a forecast of the sales volume in his
or her sales territory, and the salesperson’s compen-
sation is determined by the realized sales volume and
the initial forecast. For any submitted forecast, the
salesperson’s compensation is a nonlinear (more pre-
cisely, piecewise linear) function of the realized sales.
According to Gonik, this compensation scheme has
worked successfully in IBM’s Brazilian operations.1

In agency theory, the above problem is said to com-
bine moral hazard (selling effort not observable to
the firm) with adverse selection (the salesperson has
superior information about the market prior to con-
tracting with the firm). A typical solution to this type
of problem is to offer a menu of contracts to the sales-
person (see, e.g., Kreps 1990). By observing which
contract the salesperson chooses, the firm (or princi-
pal) learns something about the market. A menu of
linear contracts is often suggested as a solution and is
sometimes shown to be optimal (see, e.g., Laffont and
Tirole 1986, Gibbons 1987). The main purpose of this
paper is to compare Gonik’s solution with a menu of
linear contracts.

1 Variations of the Gonik story are often taught in accounting and
marketing courses in business schools.
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We consider a model in which a firm sells a sin-
gle product through a single sales agent. The market
demand for the product depends on three factors: the
market condition, the selling effort by the agent, and
a random noise. The agent possesses private infor-
mation about the market condition, and the selling
effort is not observable to the firm. The firm must
design a compensation scheme for the agent and
make production decisions for the product. Therefore,
the agent’s private information about the market con-
dition, if revealed, benefits the firm in two ways: It
increases the accuracy of the firm’s measurement of
the agent’s selling effort, and it reduces the demand
uncertainty, enabling the firm to better match sup-
ply with demand. The question is how the firm can
design a contract so as to maximize its expected profit,
anticipating that a production decision has to be made
after contract signing, but before demand realization.
After describing the model in detail, the paper

presents two benchmarks: an upper and a lower
bound on the firm’s achievable expected profit. The
upper bound is the first-best solution: the firm’s max-
imum expected profit if the firm could observe both
the market condition and the agent’s selling effort.
The lower bound is obtained if the firm adopts a sin-
gle linear contract, thus forgoing the opportunity to
learn about the market condition. Both of these bench-
marks can be obtained in closed form.
This paper then proceeds to consider menu con-

tracts. For a menu of linear contracts, the optimal
values of the contract parameters can be obtained
in closed form, leading to a simple calculation of
the firm’s optimal expected profit. For Gonik’s (1978)
menu of nonlinear contracts (taking his contract struc-
ture while ignoring his particular choices of param-
eter values), the problem becomes much harder.
However, based on several analytical results, we are
able to devise an efficient algorithm for computing
the optimal values of the contract parameters and the
corresponding expected profit for the firm. We then
compare these two solutions in a numerical exper-
iment. Our results show that the Gonik solution is
dominated by a menu of linear contracts. This appears
to be due to the Gonik solution’s inability to induce
different effort levels for different market conditions.
The numerical analysis also compares these solutions
with the above benchmarks and shows how the dif-
ferences among these scenarios vary as some of the
model parameters change.
The salesforce compensation problem has been

widely studied in the marketing literature; see
Coughlan (1993) for a comprehensive review. Many
of the existing models assume, as is done here, that
the sales response function has a random noise term;
i.e., the total sales generated by a given level of sell-
ing effort is random. This, together with the fact that

the selling effort is often unobservable to the firm,
leads to the moral hazard problem: the problem of
motivating the salespeople to work, given that their
reward can only be based on an imperfect signal of
effort. If, in addition, the salespeople have superior
information about the sales response function (the
productivity of selling effort, the sensitivity of cus-
tomers to price changes, the sales prospects, etc.),
then the firm is at an informational disadvantage in
terms of the sales environment. This is the adverse-
selection problem mentioned earlier. The basic model
of the moral hazard problem has been studied and
refined by many in the economics/agency-theory lit-
erature; see, e.g., Shavell (1979); Harris and Raviv
(1978, 1979); Holmstrom (1979, 1982); and Grossman
and Hart (1983). This machinery was then introduced
to the salesforce compensation literature in market-
ing by Basu et al. (1985). Many marketing researchers
have since extended the basic moral hazard model
(one product, one salesperson, symmetric informa-
tion) to models with asymmetric information and
multiple sales territories; see, e.g., Lal (1986), Lal and
Staelin (1986), Rao (1990), and Raju and Srinivasan
(1996). Our model is a combination of moral haz-
ard and adverse selection. Closely related to the cur-
rent paper is Mantrala and Raman (1990), who have
formalized Gonik’s idea and focused on analyzing
the sales agent’s response to a Gonik scheme. Based
on this analysis, they suggested several guidelines as
to how the firm can go about choosing the contract
parameters under Gonik’s scheme. One of our contri-
butions here is to directly address the problem facing
the firm (the agent’s response is only a subproblem)
and to provide analytical results that lead to an effi-
cient algorithm for computing the optimal contract
parameters. It is also worth noting that a novel feature
of our model as compared to Mantrala and Raman
(1990), and for that matter, most models in agency
theory, is that the principal (the firm) has an activity—
i.e., production/inventory planning—that stands to
benefit from the revelation of the agent’s private
information. On the other hand, the operations lit-
erature often takes as given the knowledge about
demand (e.g., the characterization of the demand pro-
cess), whereas here part of the demand information
is unknown to the firm and salesforce incentives are
required for its revelation. We therefore contribute to
the growing body of research in an area often labeled
the “marketing-operations interface.” For some of
this interface research with a specific connection to
salesforce incentives, see Dearden and Lilien (1990),
Porteus and Whang (1991), and Chen (2000).
The rest of this paper is organized as follows.

Section 2 describes the model and presents some pre-
liminary results. Section 3 presents two benchmark
solutions: the first-best solution and one based on a
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single linear contract. Section 4 shows how an opti-
mal menu of linear contracts can be determined in
closed form. Section 5 deals with the Gonik solution.
Section 6 presents the numerical results. Concluding
remarks are in §7.

2. The Model
A firm sells a single product through a sales agent.
The total sales or demand, X, is determined by the
agent’s selling effort (a), the market condition (�), and
a random noise (�) via the following additive form:

X = a+ �+ ��
where a is a nonnegative real number, and � and � are
independent random variables with Pr�� = �H� = 	
and Pr�� = �L� = 1− 	 for 0 < 	 < 1 and �H > �L > 0,
and � ∼ N�0��2�. Moreover, assume that �L is suffi-
ciently large that the probability of X being negative
is negligible.
The relationship between the firm and the sales-

person is that of a principal and an agent in the
sense that the latter sells the product on behalf of
the former. The principal designs the agent’s wage
contract and makes production decisions, while the
agent—endowed with private information about the
market condition—decides whether or not to accept a
contract and, if so, how much selling effort to exert.
More specifically, we assume the following sequence
of events: (1) The firm (or principal) offers a menu of
wage contracts; (2) the agent privately observes the
value of �; (3) the agent decides whether or not to par-
ticipate (work for the firm) and if so, which contract to
sign; (4) under a signed contract, the firm determines
the production quantity, and the agent makes the
effort decision; and (5) both parties observe the total
sales (i.e., the value of X). The firm cannot directly
observe the agent’s effort level, and thus must com-
pensate the agent based on the realized value of X.
The problem facing the firm is thus a mixture of

moral hazard (postcontractual opportunism associ-
ated with the effort decision) and adverse selection
(precontractual asymmetric information regarding the
market condition). A typical response to this type of
problem is to offer a menu of contracts to the agent,
who—knowing the market condition—then chooses
one of them to sign. By observing the choice made
by the agent, the firm may learn something about the
market condition (this is often referred to as screening
in economics), and this knowledge may be helpful in
making production decisions.
Consider the agent’s decisions when offered a

menu of contracts. First, he would consider each con-
tract on the menu and determine the maximum
expected utility that could be obtained under the con-
tract. Suppose s�·� is the contract being considered.

(Thus, s�x� is the wage paid to the agent if the total
sales is x.) Assume the agent’s utility for net income z
is U�z�=−e−rz with r > 0. (The negative exponential
utility function is widely used in the agency litera-
ture.) Note that U�·� is increasing and concave, imply-
ing that the agent is risk averse. The net income is the
wage received, s�X�, minus the cost of effort, which
is assumed to be V �a� = a2/2, an increasing, convex
function.2 To determine the maximum expected utility
achievable under s�·�, the agent solves the following
optimization problem:

max
a
E�−e−r�s�X�−V �a����

Recall that the agent has already observed the
value of � when evaluating the contract. Therefore,
the above expectation is with respect to �, given the
observed value of �. For convenience, we say that the
agent is of high type if he has observed � = �H , and
low type otherwise. The optimal effort decision thus
depends not only on the contract s�·�, but also the
agent’s type. Let a�s� t� be the optimal effort decision
given contract s�·� and agent’s type t (= H or L). Let
u�s� t� be the corresponding expected utility for the
agent, i.e., the maximum achievable expected utility
under s and t. If u�s� t� is greater than or equal to
−U0—the agent’s reservation utility representing the
best outside opportunity for the agent—then s is said
to be acceptable to the agent.3 Among all the contracts
on the menu, the agent chooses the one with the high-
est achievable expected utility and participates if this
utility level exceeds −U0. Throughout this paper, we
will assume that the menu offered by the principal
contains at least one contract that is acceptable to the
high type and, similarly, at least one acceptable to the
low type. This avoids the situation where the princi-
pal is left without a salesperson.
We now turn to the principal’s problem. The above

sequence of events implies that the firm must make its
production decision before observing the total sales.
This is reasonable when the customers demand fast
delivery of their orders and the production lead time
is relatively long. (It is thus impossible to follow
make-to-order.) Let Q be the production quantity. Let
c be the cost per unit produced. When supply does
not match demand, additional costs are incurred. If
X ≤ Q, the excess supply is salvaged at p per unit.
On the other hand, if X >Q, the excess demand must
be satisfied via an emergency action such as a special
production run at a cost of c′ per unit. Let the unit

2 Other functional forms for the cost of effort can be used without
fundamentally changing the analysis.
3 It is reasonable to assume that the reservation utility does not
depend on the agent’s type, because what distinguishes the high
type from the low type is the market condition, something unre-
lated to the agent’s intrinsic quality.
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selling price be 1+ c (the profit margin is thus nor-
malized to 1). To avoid trivial cases, assume p < c <
c′ < 1 + c.4 The firm makes contract as well as pro-
duction decisions with the objective of maximizing
its expected profit (the principal is thus risk neutral).
If s�·� is the contract signed by the agent, the firm’s
profit is

�1+ c�X− s�X�− cQ+ p�Q−X�+ − c′�Q−X�−
=X− s�X�

−��c− p��Q−X�+ + �c′ − c��Q−X�−�� (1)

where w+ = max!w�0" and w− = max!−w�0". Note
that the optimal production quantity minimizes

E��c− p��Q−X�+ + �c′ − c��Q−X�−�� (2)

where the expectation is with respect to X given
the principal’s knowledge about the market condition
and the agent’s selling effort (inferred, not observed)
after a contract is signed.
Because there are only two possible market condi-

tions (i.e., the agent has only two possible types), the
firm needs to offer at most two contracts. Therefore,
there are only two possibilities: Either the two agent
types choose the same contract (in this case the princi-
pal is effectively offering one contract), or they choose
different contracts. If the former, we say that the two
types are “pooled,” and if the latter, “separated.” We
next formulate the principal’s problem under each of
these scenarios.
Consider the pooling case. Let s�·� be the con-

tract offered and signed. This contract induces differ-
ent levels of selling effort depending on the agent’s
type: The high type exerts aH = a�s�H�, and the low
type aL = a�s�L�. (The principal does not observe the
amount of effort, but she can correctly anticipate it for
each type.) As mentioned earlier, the contract must
be acceptable to both types; i.e., u�s�H� ≥ −U0 and
u�s�L� ≥ −U0. Because only one contract is offered,
the principal does not learn any new information
with regard to the market condition after it is signed.
Therefore, before making the production decision, the
firm’s knowledge about the distribution of X is: With
probability 	, the agent is of high type (i.e., �= �H ), he
will exert effort aH , and thus X ∼N�aH+�H��2�; with
probability 1−	, the agent is of low type (i.e., �= �L),
he will exert effort aL, and thus X ∼N�aL+ �L��2�. In
other words, X is a mixture of two normal random

4 The case where the excess demand is lost represents an interesting
question. If we assume that X is still observed even if it exceeds
Q so that compensation can be written as s�X�, then essentially the
same analysis applies; simply replace c′ with 1+ c. On the other
hand, if X is not observable beyond Q, what should compensation
be based on? This is an interesting question for future research.

variables with known means and variances. With this
distribution, one can minimize (2) over Q to identify
the optimal production quantity. This is a standard
newsvendor problem. Let Q∗

0 be the optimal quantity,
and G∗

0 the corresponding value of (2). The problem of
finding an optimal (pooling) contract can be stated as

max
s� aH �aL

	E�X− s�X� �a= aH��= �H�
+ �1−	�E�X− s�X� �a= aL� �= �L�−G∗

0

s.t. aH = a�s�H� (IC-H)�

aL = a�s�L� (IC-L)�

u�s�H�≥−U0 (IR-H)�

u�s�L�≥−U0 (IR-L)�

where the first two constraints are incentive compat-
ibility (IC) constraints indicating that the effort level
for each agent type is indeed optimal for the agent
(thus compatible with the agent’s objective), and the
remaining two constraints indicate that the agent,
regardless of his type, is better off participating rela-
tive to his outside opportunities, i.e., individual ratio-
nality (IR).
Now consider the separating case where the two

agent types choose different contracts. Let sH�·� be the
contract chosen by the high type, and sL�·� chosen by
the low type. Again, the principal can anticipate the
amount of selling effort under each type: aH = a�sH�H�
for the high type, and aL = a�sL�L� for the low type.
Unlike the pooling case, here the principal discov-
ers the realized value of � by observing the contract
choice made by the agent. If the agent chooses the
contract that is preferred by the high type (i.e., sH�·�),
then �= �H . Similarly, if sL�·� is chosen, � = �L. Con-
sequently, the principal can make more accurate pro-
duction decisions. If sH�·� is chosen, then X ∼N�aH +
�H��

2�, and thus the optimal production quantity is
Q∗
H = aH +�H +q∗, where q∗ is the minimizer of g�q�=

E��c − p��q − ��+ + �c′ − c��q − ��−�. Let G∗
1 = g�q∗�,

the minimum expected production/inventory costs if
sH�·� is chosen. On the other hand, if sL�·� is chosen,
then X ∼ N�aL + �L��2�, and the optimal production
quantity is thus Q∗

L = aL+�L+q∗. In this case, the min-
imum expected production/inventory costs are again
G∗
1. An optimal menu of contracts can be found by
solving the following problem:

max
sH �·��sL�·��aH �aL

	E�X−sH�X��a=aH��=�H�
+�1−	�E�X−sL�X��a=aL��=�L�−G∗

1

s.t. aH=a�sH�H� (IC-H)�

aL=a�sL�L� (IC-L)�

u�sH�H�≥u�sL�H� (IC-HL)�

u�sL�L�≥u�sH�L� (IC-LH)�
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u�sH�H�≥−U0 (IR-H)�

u�sL�L�≥−U0 (IR-L)�

where the first two constraints are the incentive com-
patibility constraints for the agent’s effort choices, the
third and fourth constraints ensure that the agent
picks the contract that is intended for his type, and
the last two are the individual rationality constraints.
Implicit in the above formulation is that the two con-
tracts, sH�·� and sL�·�, are distinct. Otherwise, G∗

1 must
be replaced with G∗

0, and the formulation reduces to
the one under pooling. Also, if the agent is indifferent
between two contracts, we assume he chooses the one
intended for his type.
The following useful result is well known. When

the agent’s net income is normally distributed and
his utility function has the negative-exponential form,
his expected utility has a simple expression. Let Y
be the normally distributed net income. The agent’s
expected utility is thus E�−e−rY �. The certainty equiv-
alent of Y , denoted by CE�Y �, is the fixed net income
that provides the agent with a utility level equal to
E�−e−rY �; i.e., −e−rCE�Y � = E�−e−rY �. It can be easily
verified that

CE�Y �='Y − 1
2 r�

2
Y �

where 'Y is the mean of Y and �2Y the variance. Max-
imizing the expected utility is equivalent to maximiz-
ing the certainty equivalent.

3. Two Benchmarks
This section presents two benchmarks for the firm’s
performance. One assumes that the firm is omni-
scient (able to observe both the market condition and
the agent’s effort), while the other assumes that the
firm offers a single contract, thus pooling together the
two agent types and forgoing the opportunity to dis-
cover the market condition. These benchmarks pro-
vide upper and lower bounds on the firm’s expected
profit.

3.1. The First-Best Solution
To obtain the first-best solution, assume that the firm
is able to see the market condition, i.e., the value of
�, and to observe the amount of selling effort exerted
by the agent. In this scenario, the firm can specify the
effort level to be exerted by the agent under each pos-
sible market condition and pay the agent a fixed min-
imum wage that satisfies the participation constraint.
Paying the agent a fixed wage is optimal for the firm
because of the difference in risk attitude: The agent
is risk averse, but the principal is risk neutral. The
firm’s problem is, therefore, to identify an effort level
and a fixed wage that are acceptable to the agent and
at the same time maximize the firm’s expected profit.

Under fixed wage w, the participation constraint
becomes −e−r�w−V �a�� ≥−U0, or

w ≥ V �a�− lnU0
r

def= w0�a��
where w0�a� is the minimum wage for given effort
level a.
Suppose � = �H . Replacing s�X� with w0�a� in (1),

we have the firm’s expected profit as a function of a:

E

{
X−

(
V �a�− lnU0

r

)

− ��c− p��Q−X�+ + �c′ − c��Q−X�−�
}

= �H + a−V �a�+ lnU0
r

−E��c− p��Q− �H − a− ��+
+ �c′ − c��Q− �H − a− ��−�

= �H + a−V �a�+ lnU0
r

− g�Q− �H − a��
where the first equality follows from X = �H + a+ �
and E��� = 0. For any given value of a, the optimal
production quantity is Q∗ = �H +a+ q∗, with the min-
imum production/inventory costs equal to g�Q∗ −
�H − a�= g�q∗�=G∗

1, a value independent of a. There-
fore, the objective function reduces to

�H + a−V �a�+ lnU0
r

−G∗
1�

a concave function in a with the first-order condition
1− V ′�a�= 0. Because V �a�= a2/2, the optimal effort
level is a∗ = 1. The firm’s expected profit is thus �H +
0�5+ �lnU0�/r −G∗

1.
Similarly, if � = �L, the optimal effort level is a∗ = 1

and the optimal production quantity is Q∗ = �L +
1+ q∗, giving the firm an expected profit of �L+ 0�5+
�lnU0�/r −G∗

1.
Combining the above two cases, the firm’s ex ante

(before observing the market condition) expected
profit is �̄ + 0�5 + �lnU0�/r − G∗

1, where �̄ = 	�H +
�1−	��L, the expected market condition.
3.2. A Single Linear Contract
Suppose the firm offers a single wage contract that is
linear in total sales, i.e., s�x�= (x+), where ) is the
fixed salary and (≥ 0 is the commission rate. This is
the pooling scenario discussed in the previous section,
where a formulation for the firm’s problem is also
presented.
Suppose the agent is of type �, and consider his

effort decision under the linear contract. Note that the
agent’s net income is

s�X�−V �a� = (��+ a+ ��+)−V �a�
∼ N�(��+ a�+)−V �a��(2�2��
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with its certainty equivalent

(��+ a�+)−V �a�− 1
2 r(

2�2�

Maximizing the certainty equivalent with respect to a,
the agent solves the first-order condition, (−V ′�a�= 0,
yielding the optimal effort level a∗ = (. Note that this
effort decision is independent of the agent’s type �.
With the optimal effort, the agent’s certainty equiva-
lent becomes

(�+)+ (
2

2
�1− r�2�� (3)

Now consider the participation constraints. Note
that the certainty equivalent of the agent’s outside
opportunities is −�lnU0�/r . From (3), the participation
constraints are

(�+)+ (
2

2
�1− r�2�≥− lnU0

r
� �= �H��L�

Because (≥ 0, we only need to consider the constraint
associated with the low type.
Recall from the previous section that the firm’s

objective function under the pooling case is

	E�X− s�X� �a= aH��= �H�
+ �1−	�E�X− s�X� �a= aL� �= �L�−G∗

0�

Using aH = aL = ( and simplifying, we have the firm’s
objective function

�1−(���̄+(�−)−G∗
0�

The firm’s problem is thus

max
(�)

�1−(���̄+(�−)−G∗
0

s.t. (�L+)+
(2

2
�1− r�2�≥− lnU0

r
�

Note that the optimal solution must make the con-
straint binding; i.e.,

)=−(�L−
(2

2
�1− r�2�− lnU0

r
�

Substituting this expression for ) in the firm’s objec-
tive function leads to a concave function of (. Maxi-
mizing it over (≥ 0, we obtain

(∗ = 1
1+ r�2 max!1−	��H − �L��0"�

It is interesting to note that when �H − �L is suf-
ficiently large, the optimal solution is to offer the
agent a fixed salary (with no incentive pay). Also
note that if �H − �L = 0—i.e., there is no uncertainty
about the market condition—the firm always offers
a pay package with a positive commission rate. This

suggests that one reason for the prevalence of fixed
salaries in practice is the firm’s uncertainty about the
market condition (and its desire to offer a single con-
tract). The intuition for this result is that if ( is posi-
tive, the high-type agent obtains a surplus because of
the low-type agent’s participation constraint, and this
surplus is proportional to �H − �L. When �H − �L is
very large, the firm is paying the agent too much; i.e.,
the high type’s surplus exceeds the incremental rev-
enue generated by the agent’s effort (which is equal
to (). In this case, the firm is better off with a fixed
salary, which can be chosen to make the agent’s par-
ticipation constraint binding for both types.

4. A Menu of Linear Contracts
This section takes up the case where the firm offers
two linear contracts to the agent, who then chooses
one based on his knowledge of the market condition.
By observing which of the two contracts the agent
chooses, the firm discovers the agent’s type (i.e., mar-
ket condition). This information enables the firm to
tailor its production decision to the market condi-
tion, reducing production/inventory costs. In short,
we consider the formulation presented in §2 for the
separating case by restricting to linear contracts.
Recall from §3.2 that the optimal response of the

type-� agent to a linear contract s�x� = (x + ) is to
exert effort a∗ = (, yielding a maximum expected util-
ity with certainty equivalent (� + )+ ��1− r�2�/2�(2.
By offering s�·�, the principal’s expected profit (exclud-
ing the production/inventory costs) is E�X− s�X�� =
�1 − (��( + �� − ) if the market condition is �. These
results are useful in formulating the firm’s problem
under a menu of linear contracts.
Consider the separating scenario. Let sH�x�= (Hx+

)H be the contract intended for the high-type agent,
and sL�x�= (Lx+)L the contract intended for the low-
type agent, with (H�(L ≥ 0. The firm’s optimization
problem can be written as

max
(H�)H �(L�)L

	��1−(H��(H + �H�−)H�
+ �1−	���1−(L��(L+ �L�−)L�−G∗

1

s.t. (H�H +)H + 1− r�
2

2
(2H

≥ (L�H +)L+
1− r�2
2

(2L (IC-HL)�

(L�L+)L+
1− r�2
2

(2L

≥ (H�L+)H + 1− r�
2

2
(2H (IC-LH)�

(H�H +)H + 1− r�
2

2
(2H

≥− lnU0
r

(IR-H)�
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(L�L+)L+
1− r�2
2

(2L

≥− lnU0
r

(IR-L)�

The following observations significantly simplify
the above optimization problem. First, the constraints
(IC-HL) and (IR-L) together imply (IR-H) because
�H > �L and (L ≥ 0. Thus, eliminate (IR-H). Sec-
ond, in the reduced problem, observe that (IC-HL)
must hold as an equality, because otherwise one can
always decrease )H without violating the constraints,
and improve the principal’s payoff. Thus, change
the inequality in (IC-HL) to equality. Third, (IC-LH)
can be replaced with (H ≥ (L. To see this, note that
(IC-LH)⇔ (IC-HL) with equality+ (IC-LH), i.e.(
(H�H+)H+

1−r�2
2

(2H

)
+
(
(L�L+)L+

1−r�2
2

(2L

)

≥
(
(L�H+)L+

1−r�2
2

(2L

)

+
(
(H�L+)H+

1−r�2
2

(2H

)
�

which can be simplified to (H ≥ (L because �H > �L.
Now replace (IC-LH) with (H ≥ (L. Finally, (IR-L)
must hold as an equality because otherwise one can
decrease )H and )L by the same amount without vio-
lating any constraints and increase the objective func-
tion. Changing (IR-L) to an equality and applying all
of the above changes, we have the following equiva-
lent problem:

max
(H�)H �(L�)L

	��1−(H��(H + �H�−)H�
+ �1−	���1−(L��(L+ �L�−)L�−G∗

1

s.t. (H�H +)H + 1− r�
2

2
(2H

= (L�H +)L+
1− r�2
2

(2L (IC-HL)�

(L�L+)L+
1− r�2
2

(2L =− lnU0
r

(IR-L)�

(H ≥ (L�
Therefore, in the optimal solution the high-type

agent is indifferent between the two contracts (see
(IC-HL)), and the low-type agent is indifferent be-
tween sL�·� and his outside opportunities.
We are now ready to solve the principal’s problem.

First, use (IR-L) to solve for )L, and use this result in
(IC-HL) to solve for )H . That is,

)L =− lnU0
r

−(L�L−
1− r�2
2

(2L

and

)H =− lnU0
r

+(L��H − �L�−(H�H − 1− r�
2

2
(2H�

Using these expressions to replace )H and )L in the
objective function, we have the following:

max
(H�(L

	

[
(H + �H −(L��H − �L�−

1+ r�2
2

(2H

]

+ �1−	�
[
(L+ �L−

1+ r�2
2

(2L

]
+ lnU0

r
−G∗

1

s.t. (H ≥ (L ≥ 0�
where the nonnegative constraints on (H and (L were
mentioned earlier, but are now explicitly included
in the formulation. Note that the objective func-
tion is separable and concave in (H and (L. It is
then straightforward to obtain the optimal solution,
which is

(∗
H = 1

1+ r�2 and

(∗
L =

1
1+ r�2 max

{
1− 	

1−	��H − �L��0
}
�

We close this section with an examination of the
agent’s selling effort under various scenarios. First,
suppose the firm knows the market condition but can-
not observe the agent’s effort. In this case, the firm
can have two linear contracts, one for each agent type.
It is easy to verify that under the optimal linear con-
tracts, the selling efforts for the two agent types are
the same:

a0L = a0H = 1
1+ r�2 �

This should be intuitive because the two agent
types have the same productivity of effort in terms
of revenue generation, and they have the same cost
of effort. Second, suppose the firm does not know
the market condition and cannot observe the agent’s
effort (this is the case we have been considering all
along). Here the firm can either restrict itself to a sin-
gle linear contract (as in §3.2) or offer a menu of two
linear contracts (as in this section). Under a single lin-
ear contract, the selling efforts for the two agent types
are still the same:

a1L = a1H = 1
1+ r�2 max!1−	��H − �L��0"�

Under a menu of two linear contracts, the selling
efforts are different:

a2L=
1

1+r�2 max
{
1− 	

1−	��H−�L��0
}
� a2H=

1
1+r�2 �

Note that a0L ≥ a1L ≥ a2L and a0H ≥ a1H ≤ a2H = a0H . There-
fore, the firm’s lack of market information generally
leads to reduced selling effort, and adopting a menu
of contracts rather than a single contract increases the
effort of the high-type agent, but reduces the effort of
the low type.
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5. The Gonik Proposal
Gonik (1978) has designed a salesforce compensation
scheme to motivate the agent to be precise about
the total sales and, at the same time, to work hard.
Under his scheme, the firm asks the salesperson to
submit a forecast of the total sales. If the forecast is F ,
then s�x � F �—a given function of the actual total
sales x parameterized by F—is the compensation for
the agent. Therefore, the firm is effectively offering
a menu of contracts; by submitting a forecast, the
agent chooses a particular contract from the menu.
The agent submits his forecast after observing the
market condition. Therefore, the forecast may contain
useful information about the market condition, which
the firm can then use in making its production deci-
sions. A key feature of the Gonik scheme is that if the
agent expects to sell x units, it is in his best interest to
submit a forecast that is equal to x; and that given any
forecast, the agent’s compensation is increasing in the
actual total sales, providing the agent with incentives
to generate more sales.
Let us formalize the above idea. Recall that s�x � F �

is the agent’s compensation, with F being the forecast
and x the (actual) total sales. To motivate the agent
to provide an accurate forecast, we must have s�x �
x�≥ s�x � F � for all F and x. To motivate the agent to
work hard, s�x � F � must be increasing in x for any F .
The following example satisfies these two conditions:
s�x � x�= (x+) for all x; and for any x and F ,

s�x � F �=
{
s�F � F �−u�F − x�� x≤ F �
s�F � F �+ v�x− F �� x > F �

(4)

where (, ), u, and v are contract parameters chosen
by the firm with u > ( > v > 0. Figure 1 depicts two
possible contracts under the above scheme. This menu
of piecewise linear (in x) contracts—with properly
chosen parameters—is precisely what Gonik (1978)
proposed and implemented at IBM Brazil’s sales

Figure 1 Gonik’s Menu of Piecewise Linear Contracts

u

v

F F ′
x

s (x/F ′)
s (x/F )

αx+β

operations. The purpose for the rest of this section
is to show how the optimal values of (�)�u, and v
can be determined to maximize the firm’s expected
profit.

5.1. The Agent’s Problem
Consider the problem facing the agent when given a
menu of contracts specified in (4). The agent makes
two decisions: the forecast F and the selling effort a.
These decisions are made after the agent sees the
market condition (�), but before the demand noise �
is realized. The objective is to maximize the agent’s
expected utility, which is

E�−e−r�s�X�F �−V �a���=−erV �a�E�e−rs�X�F ���
Recall that X = � + a+ � ∼ N�� + a��2�. Using (4),

we have

E�e−rs�X�F �� =
∫ F

−
e−r�s�F �F �−u�F−x��

1
�
,

(
x− �− a

�

)
dx

+
∫ 

F
e−r�s�F �F �+v�x−F ��

1
�
,

(
x− �− a

�

)
dx�

where ,�·� is the standard normal density function.
Using s�F � F � = (F + ) in the above expression and
simplifying, we have

E�e−rs�X�F �� = e−r�(F+)�
[
eruz+

1
2 �ru��

2
.

(
z

�
+ ru�

)

+ ervz+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)]
� (5)

where z = F − a − �, . is the standard normal cdf,
and �. = 1 − .. Therefore, the agent’s optimization
problem can be stated as

max
a�z

−er�V �a�−(a�e−r(�−r)/�z�� (6)

where

/�z� = er�u−(�z+
1
2 �ru��

2
.

(
z

�
+ ru�

)

+ er�v−(�z+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)
�

which also depends on (�u, and v, but is independent
of ).
Note that the agent’s objective function in (6) is

separable in a and z. The optimal selling effort a∗

minimizes V �a� − (a. With V �a� = a2/2, a∗ = (. It
is interesting that the optimal effort level is entirely
determined by only one contract parameter, (, and it
is independent of the agent’s type. Now let /�z� be
minimized at z∗. The optimal forecast decision then
is, F ∗ = z∗ + a∗ + � = z∗ +(+ �. Note that z∗ depends
on (�u, and v, but it is independent of ) and the
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agent’s type. Therefore, the high-type agent forecasts
FH = z∗ + (+ �H and the low-type forecasts FL = z∗ +
(+�L. As a result, after receiving the agent’s forecast,
the firm discovers the market condition and makes
the production decision accordingly. This is the sepa-
rating case discussed in §2.
We pause here to collect several results on /�·�,

which are useful in determining z∗.

Theorem 1. /�·� is quasi-convex with /�z� ≥ 1 for
all z.

Proof. Define

f1�(�z� = e−r(z and

f2�z� = eruz+
1
2 �ru��

2
.

(
z

�
+ ru�

)

+ ervz+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)
�

Thus, /�z� = f1�(�z�f2�z�. Because df1�(�z�/dz =
−r(f1�(�z�,

/′�z�= �−r(f2�z�+ f ′
2�z��f1�(�z�� (7)

Because f1�(�z� > 0 for all z, the sign of /′�z� is the
same as the sign of −r(f2�z�+ f ′

2�z�. Note that

f ′
2�z� = rueruz+

1
2 �ru��

2
.

(
z

�
+ ru�

)

+ eruz+ 1
2 �ru��

2
,

(
z

�
+ ru�

)
1
�

+ rvervz+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)

− ervz+ 1
2 �rv��

2
,

(
z

�
+ rv�

)
1
�

= rueruz+
1
2 �ru��

2
.

(
z

�
+ ru�

)

+ rvervz+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)
�

Therefore,

−r(f2�z�+ f ′
2�z�

= r�u−(�eruz+ 1
2 �ru��

2
.

(
z

�
+ ru�

)

− r�(− v�ervz+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)

= rervz
[
�u−(�er�u−v�z+ 1

2 �ru��
2
.

(
z

�
+ ru�

)

− �(− v�e 12 �rv��2 �.
(
z

�
+ rv�

)]
� (8)

Therefore, the sign of −r(f2�z� + f ′
2�z� is the same

as the sign of the term inside the square brackets,

which is equal to an increasing function of z minus
a decreasing function of z. Moreover, the term inside
the square brackets is negative as z→− and posi-
tive as z→+. Therefore, the sign of −r(f2�z�+f ′

2�z�
changes from negative to positive exactly once, imply-
ing that /�·� is quasi-convex.
To prove that /�z� ≥ 1 for all z, note that the

type-� agent’s expected utility satisfies the following
inequalities:

E�−e−r�s�X�F �−V �a��� ≤ −e−r�E�s�X�F ��−V �a�� ≤−e−r�E�s̄�X��−V �a��
= −e−r�(��+a�+)−V �a��� (9)

where s̄�x�= (x+) because the utility function is con-
cave (for the first inequality) and s�x � F �≤ s̄�x� for all
x and F (for the second inequality). As we saw ear-
lier, E�−e−r�s�X�F �−V �a��� = −er�V �a�−(a�e−r(�−r)/�z�. Com-
bining this inequality with (9), we have /�z� ≥ 1 for
all z. �

Theorem 2. z∗ is increasing in (, but decreasing in u
and v.

Proof. From (7) and the quasi convexity of /�·�, we
know z∗ is the solution to

−r(f2�z�+ f ′
2�z�= 0�

As ( increases to (′, −r(′f2�z∗�+ f ′
2�z

∗� < 0. To make
this inequality an equality, the quasi convexity of /�·�
implies that z∗ must be increased.
To show that z∗ is decreasing in u, take the deriva-

tive of −r(f2�z� + f ′
2�z� with respect to u (using the

expression in (8)):

reruz+
1
2 �ru��

2
.

(
z

�
+ ru�

)
(10)

+ r�u−(��rz+ �r��2u�eruz+ 1
2 �ru��

2
.

(
z

�
+ ru�

)
(11)

+ r�u−(�eruz+ 1
2 �ru��

2
,

(
z

�
+ ru�

)
�r��� (12)

The term (10) is clearly positive. Now consider the
sign of the sum of (11) and (12) (and ignore the com-
mon term r�u − (�eruz+ 1

2 �ru��
2 because it is positive).

Note that

�rz+ �r��2u�.
(
z

�
+ ru�

)
+,

(
z

�
+ ru�

)
�r��

= �r��
((

z

�
+ ru�

)
.

(
z

�
+ ru�

)
+,

(
z

�
+ ru�

))
> 0�

where the last inequality follows because w.�w� +
,�w� > 0 for any w. (To see the latter, just show that
the function of w is increasing and tends to 0 as
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w→−.) Therefore, as u increases, −r(f2�z�+ f ′
2�z�

increases, implying that z∗ is decreasing.
The fact that z∗ is decreasing in v can be shown sim-

ilarly. The derivative of −r(f2�z�+ f ′
2�z� with respect

to v (using the expression in (8)) is

rervz+
1
2 �rv��

2 �.
(
z

�
+ rv�

)

− r�(− v��rz+ �r��2v�ervz+ 1
2 �rv��

2 �.
(
z

�
+ rv�

)

+ r�(− v�ervz+ 1
2 �rv��

2
,

(
z

�
+ rv�

)
�r���

which can be shown to be positive. (Here one uses
the fact that ,�w�−w�.�w� > 0 for any w. To see this,
simply note that the function of w is decreasing and
tends to zero as w→+.) �

It is interesting that the agent’s forecast decision
is analogous to the order quantity decision in a
newsvendor problem. Suppose a retailer can buy a
product for free and sell it for a per-unit price of (.
The retailer must determine a purchase quantity Q
before the demand X is realized. The retailer’s incen-
tives for matching supply with demand come from
the overage and underage costs: If supply exceeds
demand, the retailer incurs a disposal cost of �u−(�
per unit of excess inventory; otherwise, if demand
exceeds supply, the retailer must satisfy the excess
demand by making an emergency purchase at a per-
unit cost of �(−v�. The retailer’s profit is (X−�u−(� ·
�Q − X�+ − �( − v��X − Q�+, which differs from
s�X �Q� only by a constant ). Therefore, our agent’s
optimal forecast is the same as the retailer’s optimal
order quantity as long as the retailer is also risk averse
with the same utility function. Risk-averse newsven-
dor problems have been studied by, e.g., Eeckhoudt
et al. (1995) and Agrawal and Seshadri (2000). Sen-
sitivity results similar to those in Theorem 2 have
been reported in Eeckhoudt et al. (1995). Note that
the agent’s problem is only part of a larger problem,
which is the principal’s choice of contract parameters.
Continuing with the above newsvendor analogy, we
note that the values of (, u, and v determine the
retailer’s price/cost parameters. So, one can think of
the principal’s problem as one facing a manufacturer
who can control the retailer’s price/cost parameters.
This kind of problem has often been addressed in the
context of channel/supply chain coordination; see,
e.g., Pasternack (1985), with risk neutrality at both
levels being a common assumption. We now turn to
the principal’s problem.

5.2. The Principal’s Problem
The principal’s expected profit consists of three
components: expected revenue E�X�, expected wage
E�s�X � F ��, and the expected production/inventory

costs. Recall from the previous subsection that the
agent’s optimal effort is a∗ = ( regardless of his type.
Thus, X = � + (+ �. Because E��� = 0, E�X� = �̄ + (.
Also from the previous subsection, the agent’s opti-
mal forecast depends on his type: A low type leads to
a forecast lower than the high type’s. Therefore, the
agent’s forecast unambiguously signals the market
condition. Under this separating case, the minimum
expected production/inventory costs are G∗

1 (see §2).
It remains only to derive the expected wage paid to
the agent.
Given that the agent is type �, forecasts F , and

exerts effort a, the expected wage is

E�s�X � F � � �� F � a�
= E�s��+ a+ � � F ��
=
∫ F

−
�s�F � F �−u�F − x�� 1

�
,

(
x− �− a

�

)
dx

+
∫ 

F
�s�F � F �+ v�x− F �� 1

�
,

(
x− �− a

�

)
dx

= (F +)−u
∫ z/�

−
�z−�y�,�y�dy

+ v
∫ 

z/�
��y− z�,�y�dy�

where z= F − �− a and the last equality follows after
a change of variable x= �y+ �+ a. Note that∫ z/�

−
�z−�y�,�y�dy = �

(
z

�
.

(
z

�

)
+,

(
z

�

))

and∫ 

z/�
��y− z�,�y�dy =−�

(
z

�
�.
(
z

�

)
−,

(
z

�

))
�

Because FH = �H + (+ z∗ and FL = �L + (+ z∗, E�F �=
�̄+(+ z∗. The ex ante expected wage is

(��̄+(+ z∗�+)−u�
(
z∗

�
.

(
z∗

�

)
+,

(
z∗

�

))

− v�
(
z∗

�
�.
(
z∗

�

)
−,

(
z∗

�

))

= (��̄+(�+ �(− v�z∗ +)
− �u− v��

(
z∗

�
.

(
z∗

�

)
+,

(
z∗

�

))
�

There are two participation constraints, one for each
agent type:

−er�V �a∗�−(a∗�e−r�(�H+)�/�z∗�≥−U0
and

−er�V �a∗�−(a∗�e−r�(�L+)�/�z∗�≥−U0�
where the agent’s maximum expected utility for each
type comes from the agent’s objective function in (6),
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with the decision variables a and z replaced with their
optimal values. It is clear that the constraint for the
high type is redundant. Recall that ), the fixed salary,
does not impact the values of a∗ and z∗. Therefore, the
optimal ) (from the firm’s standpoint) binds the par-
ticipation constraint for the low type. Because a∗ = (
and V �a�= a2/2, we have the optimal ) (as a function
of the other contract parameters):

)=−(
2

2
−(�L−

lnU0
r

+ ln/�z
∗�

r
�

Therefore, the minimum wage given (�u, and v is

(��̄+(�− (
2

2
−(�L−

lnU0
r

+ ln/�z
∗�

r
+ �(− v�z∗

− �u− v��
(
z∗

�
.

(
z∗

�

)
+,

(
z∗

�

))
� (13)

Combining the above revenue and cost terms, we
have the firm’s expected profit:

��̄+(�−G∗
1−

{
(��̄+(�− (

2

2
−(�L−

lnU0
r

+ ln/�z
∗�

r
+�(−v�z∗

−�u−v��
(
z∗

�
.

(
z∗

�

)
+,

(
z∗

�

))}
� (14)

The firm seeks the values of (, u, and v that maximize
the above expression.

5.3. Bounds
This subsection presents bounds that are helpful
in determining a numerical solution to the princi-
pal’s contract-design problem. We first show that z∗

is within easily computable bounds. These bounds,
together with the quasi convexity of /�·�, can be used
for a quick calculation of z∗. We then show that the
principal’s objective function is bounded from above
by a concave quadratic function of (. This leads to
bounds on the optimal value of (. This subsection can
be safely skipped in the first reading.
We first show that /�·� can be bounded below by

a simple function. Define su�x � F �= (F +)−u�F − x�
and sv�x � F � = (F + )+ v�x − F � for all x. It is clear
that s�x � F �=min!su�x � F �� sv�x � F �". Therefore,

E�e−rs�X�F �� = E�e−rmin!su�X�F �� sv�X�F �"�

= E�emax!−rsu�X�F ��−rsv�X�F �"�

= E�max!e−rsu�X�F �� e−rsv�X�F �"�

≥ max!E�e−rsu�X�F ��� E�e−rsv�X�F ��"�
Suppose the agent is type �, forecasts F , and exerts

effort a. Let z = F − � − a. Because X = � + a + �,
su�X � F �∼ N�(�z+ � + a�+ )− uz� �u��2�. Therefore,

the agent’s certainty equivalent of the random income
su�X � F � is (�z+ � + a�+ )− uz− 1

2 r�u��
2. Similarly,

the certainty equivalent of sv�X � F � is (�z+ � + a�+
)− vz− 1

2 r�v��
2. Consequently,

E�e−rs�X�F ��

≥max!e−r�(�z+�+a�+)−uz− 1
2 r�u��

2��

e−r�(�z+�+a�+)−vz−
1
2 r�v��

2�"

= e−r�(��+a�+)�max!er�u−(�z+ 1
2 �ru��

2
� er�v−(�z+

1
2 �rv��

2
"�

On the other hand, replace F in (5) with z+�+a, and
we have

E�e−rs�X�F ��= e−r�(��+a�+)�/�z��
Consequently,

/�z� ≥ /lb�z�

def= max
{
er�u−(�z+

1
2 �ru��

2
� er�v−(�z+

1
2 �rv��

2}
4 (15)

i.e., /�·� is bounded below by the maximum of two
simple convex functions of z, one increasing in z and
the other decreasing.
The immediate benefits of the above lower-bound

function are easily computable bounds around z∗. Let
y0 be the value of /�z� for any given z. For example,
y0 = /�0� = e

1
2 �ru��

2
.�ru�� + e

1
2 �rv��

2 �.�rv��. Let z̄ =
max!z5 /lb�z� ≤ y0" and z =min!z5 /lb�z� ≤ y0". From
(15), z≤ z∗ ≤ z̄. To obtain z̄ and z, simply solve

er�u−(�z̄+
1
2 �ru��

2 = y0 and er�v−(�z+
1
2 �rv��

2 = y0
to arrive at

z̄= ln y0−
1
2 �ru��

2

r�u−(� and z= ln y0−
1
2 �rv��

2

r�v−(� �

The minimum point of /�z�, z∗, can then be obtained
by, e.g., a bisection search over z ∈ �z� z̄�.
Next, we derive an upper bound on the firm’s

expected profit. First, fix ( and consider the firm’s
expected profit as a function of u and v. (Recall that
) is always set at its minimum value, which binds
the participation constraint for the low-type agent. In
other words, ) has been replaced by a function of
the other contract parameters.) Note that the firm’s
expected revenue and expected operations costs are
independent of u and v, and only the agent’s expected
wage depends on u and v. Consider the expected
wage in (13) after removing all the terms that are not
affected by u and v:

ln/�z∗�
r

+�(−v�z∗−�u−v��
(
z∗

�
.

(
z∗

�

)
+,

(
z∗

�

))
�

(16)
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(Note that z∗ depends on u and v.) To derive a lower
bound on the above expression (and thus eventually
an upper bound on the firm’s objective function), we
replace /�·� with /lb�·� and allow the firm to choose
the value of z. That is, the solution to the following
problem provides a lower bound on (16):

min
z

ln/lb�z�
r

+ �(− v�z

− �u− v��
(
z

�
.

(
z

�

)
+,

(
z

�

))
� (17)

To solve the problem in (17), recall that /lb�·� is
the maximum of two convex functions, one increasing
and the other decreasing. The two convex functions
intersect at z0, which is the solution to

r�u−(�z+ 1
2
�ru��2 = r�v−(�z+ 1

2
�rv��2�

Thus, z0 =− 1
2 r�

2�u+v�. For z≥ z0, the objective func-
tion in (17) can be written as

�u−(�z+ 1
2
r�u��2+�(−v�z

−�u−v��
(
z

�
.

(
z

�

)
+,

(
z

�

))

= �u−v�z−�u−v��
(
z

�
.

(
z

�

)
+,

(
z

�

))
+ 1
2
r�u��2

because /lb�z�= er�u−(�z+ 1
2 �ru��

2 for z ≥ z0. It is easy to
verify that the above function is increasing in z. Sim-
ilarly, the objective function is decreasing for z < z0.
Therefore, the solution to (17) is z= z0, with the min-
imum objective function value

�u− v�z0− �u− v��
(
z0
�
.

(
z0
�

)
+,

(
z0
�

))
+ 1
2
r�u��2

= 1
2
r��v�2− �u− v��

·
(− 1

2 r�
2�u+ v�
�

.

(− 1
2 r�

2�u+ v�
�

)

+,
(− 1

2 r�
2�u+ v�
�

))
� (18)

Now consider the problem of minimizing (18) over
u and v. If we keep u + v constant and decrease
v (thus increase u), the above expression decreases
because w.�w�+,�w� > 0 for all w. Setting v= 0, we
have a new lower bound:

−u�(− 1
2 r�u.

(− 1
2 r�u

)+,(− 1
2 r�u

))
�

Letting w = − 1
2 r�u, the above lower bound can be

written as
2
r
w�w.�w�+,�w��� (19)

Lemma 1. Define f �w�=w�w.�w�+,�w�� for all w.
Then, f �·� is quasi-convex. Moreover, f �w� is minimized
at w≈−0�6 with f �−0�6�≈−0�1.

Proof. Note that

f ′�w�= 2w.�w�+,�w�= 2,�w�
(
w.�w�

,�w�
+ 1
2

)
�

To examine the sign of f ′�w�, one only needs to look
at the sign of the term inside the brackets. Note that(

w.�w�

,�w�

)′
= .�w�+w,�w�+w2.�w�

,�w�
> 0

because .�w�+w,�w�+w2.�w� > 0 for all w. (To see
this, simply note that �.�w� + w,�w� + w2.�w��′ =
2,�w� + 2w.�w� > 0, a fact noted earlier, and that
limw→−.�w� + w,�w� + w2.�w� = 0.) Also, one
can easily find a w value with f ′�w� < 0 and a w
value with f ′�w� > 0 (such as w = 0). Therefore f ′�·�
changes from negative to positive exactly once, imply-
ing that f �·� is quasi-convex. Numerical optimiza-
tion shows that f �w� is minimized at w ≈−0�6 with
f �−0�6�≈−0�1. �

The above lemma implies that a lower bound on (19)
is −0�2/r . Combining this lower bound on (16) with
those terms in the expected wage expression (13) that
were removed because they are independent of u and
v, we have a lower bound on the expected wage (13):

(��̄+(�− (
2

2
−(�L−

lnU0
r

− 0�2
r
�

Combining the above expression with the firm’s
expected revenue and expected production/inventory
costs, we have an upper bound on the firm’s profit
function:

6̄�(�
def= ��̄+(�−G∗

1

−
{
(��̄+(�− (

2

2
−(�L−

lnU0
r

− 0�2
r

}

= �1−(���̄+(�−G∗
1+

(2

2
+(�L+

lnU0
r

+ 0�2
r
�

This upper bound is a concave, quadratic func-
tion of (. Let 60 be a feasible value of the firm’s
expected profit. Define (=min!(5 6̄�(�≥60" and (̄=
max!(5 6̄�(�≥60". The following result is immediate.
Theorem 3. (≤ (∗ ≤ (̄, where (∗ is the optimal value

of (.

5.4. Optimization
The above results suggest the following algorithm for
determining the values of the contract parameters (,
), u, and v that maximize the firm’s expected profit.
As noted earlier, the optimal value of ) is uniquely
determined by the other three contract parameters
through the binding participation constraint of the
low-type agent. It remains only to determine the
optimal values of (, u, and v. To this end, first compute
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the bounds ( and (̄ on the optimal (. The algorithm
has two main loops. The outer loop iterates through
a finite number of values of ( in the interval �(� (̄�,
determined by a given step size. For each value of
(, the inner loop performs a grid search over �u�v�.
For each given pair �u�v� inside the inner loop, first
determine z∗ and then use this value to determine the
optimal corresponding value of ), as well as the firm’s
expected profit. The optimal values of (, u, and v are
the ones that return the maximum value of (14), the
firm’s expected profit. Note that G∗

1 can be computed
outside of the two loops, because it does not affect the
optimal values of the contract parameters.

6. Numerical Examples
Here we numerically compare the Gonik solution
with a menu of linear contracts, using as benchmarks
the first-best solution and the pooling solution under
a single linear contract. We fixed some parameters

Figure 2 Comparisons of Firm Profits
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and varied the others to arrive at 81 examples: 	= 0�5;
U0 = 1; p = 0�1; c′ = 1; ��L� �H� = �2�3�� �3�4�� �2�5�;
� = 0�2�0�5�0�8; r = 0�5�1�2; and c = 0�2�0�5�0�8. The
three pairs of ��L� �H� are indexed by 1, 2, and 3 in
Figure 3.
For each example, we computed the firm’s max-

imum expected profits under the first-best solution,
a single linear contract, a menu of linear contracts,
and the Gonik scheme. The relative differences among
these profits are tabulated and reported in Figure 2.
Figure 3 then examines these differences more closely,
seeking relationships, if any, between the quality of a
solution and model parameters. The numerical results
lead to the following observations.
First, the Gonik solution dominates the pooling

solution, and the average percentage profit difference
is 3.97%. This shows that the firm benefits from a
menu contract that leads to the separation of the
agent types. (Put differently, the market information
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Figure 3 Profit Gaps and System Parameters
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is valuable.) The gap increases when there is greater
variability in the market conditions (reflected in a
larger �H −�L), the demand variance decreases, or the
unit production cost is close to the middle between p
and c′. The gap is insensitive to the agent’s degree of
risk aversion.
Second, a menu of linear contracts dominates the

Gonik solution, with an average percentage profit dif-
ference of 4.27%. The gap between these two solu-
tions increases when (a) there is greater variability in
the market conditions, (b) the variance of the random
noise term decreases, and (c) the agent becomes less
risk averse. Recall that under Gonik’s scheme, both
types of agent exert the same level of effort, whereas
a menu of linear contracts calls for a higher level of
effort for the high type. It is perhaps this flexibility
that makes a menu of linear contracts a better solu-
tion. As �H − �L increases, the abovementioned flexi-
bility becomes more important, explaining (a).
Third, the gap between a menu of linear contracts

and the first-best solution is significant, with an aver-
age percentage difference of 8.82%. The gap increases
when (i) the market contracts (reflected in a smaller
�̄ value), (ii) the variance of the random noise term
increases, and (iii) the agent becomes more risk
averse. Note that (ii) and (iii) are consistent with
the basic moral hazard model: Larger � means more
noise in the measurement of the agent’s effort, and
more risk aversion means the provision of incentives
becomes more costly for the principal; both of these
point to a more serious moral hazard problem. The
reason for (i) seems to be that as �̄ decreases, the
firm’s profit decreases under both solutions, amplify-
ing their relative gap.

Finally, note that the unit production cost c (and
for that matter, the salvage value p and the over-
time cost c′) does not affect the firm’s optimization
problem for choosing the optimal contract parameters
under the first-best solution, a menu of linear con-
tracts, and the Gonik scheme. Therefore, a change in c
will cause the firm’s profits under these solutions to
change by the same amount. The sensitivity analysis
presented in Figure 3 over the unit production cost
shows that the percentage profit differences (among
the three solutions) become higher for c = 0�5. The
reason is that it is often true that if the values of c−p
and c′ −c become closer, while keeping their total con-
stant, the minimum inventory cost increases (this is
easy to verify in the EOQ model with backorders).
Note that one can arbitrarily increase (or decrease) the
percentage profit differences between two contracting
approaches by increasing (or decreasing) the operat-
ing costs.

7. Concluding Remarks
Gonik (1978) said it well when he described the objec-
tives all managers are shooting for in a complex sales
environment:

First, they want to pay salesmen for their absolute sales
volume. Second, they want to pay them for their effort,
even if they are in tough areas where they will sell
less. Third, they want good and fresh field information
on market potential for planning and control purposes.
(p. 118)

A clever method to achieve these goals, the Gonik
scheme is widely quoted in both the marketing and
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the economics/agency literature. The contribution of
this paper is, then, (1) to devise a model that blends
the above first and second challenges articulated by
Gonik with a concrete benefit of good and fresh field
information in production and inventory planning,
(2) to provide a careful analysis of the Gonik scheme
in the context of this model, and (3) to compare the
Gonik scheme with a menu of linear contracts, a con-
temporary solution often suggested in the agency lit-
erature. Our analysis shows that the Gonik scheme is
dominated by a menu of linear contracts.
As mentioned earlier, the Gonik scheme induces the

same level of effort for both agent types, whereas a
menu of linear contracts can cause the agent to exert
different levels of effort under different market con-
ditions. One can modify the Gonik scheme so as to
induce different levels of effort from different agent
types. Consider s�F � F � = f0 + f1F + f2F

2 for some
constants f0� f1� f2. (The original Gonik scheme has
f2 = 0.) Using this new form of s�F � F � in (4), we
have a new menu of nonlinear contracts. Call this
the new Gonik scheme. A full-blown analysis of this
contract form is complex. However, if we assume
that u= v= s′�F � F �= f1+ 2f2F , then the analysis is
fairly straightforward. In this case, the firm offers
a menu of linear contracts, and if the agent sub-
mits a forecast F , he has effectively chosen a linear
contract s�x � F � = (�F �x + )�F �, where (�F � = f1 +
2f2F and )�F � = s�F � F �− (�F �F = f0 − f2F 2. For this
new Gonik scheme, it can be shown that the different
agent types will indeed choose different linear con-
tracts and exert different levels of effort. An immedi-
ate question is whether or not this new scheme will
outperform the menu of linear contracts considered
in §4. The answer is no. This is simply because the
two linear contracts chosen by the two agent types
under the new Gonik scheme can be offered directly
to the agent at the outset (i.e., without going through
the s�F � F � calculations). The question is how much
of the gap between the original Gonik scheme and
a menu of linear contracts (as considered in §4) can
be closed by the new Gonik scheme—according to
preliminary numerical analysis, not much. The rea-
son appears to be that the new Gonik scheme offers
an infinite number of linear contracts, and these con-
tracts are not unrelated because they must be tan-
gents of the same quadratic function. This gives the
agent much flexibility at the expense of the principal.
However, this disadvantage of the new Gonik scheme
is likely to diminish as the number of possible mar-
ket conditions increases. Of course, the Gonik idea
may still prevail with more general functional forms,
and/or with u and v chosen optimally; we will leave
this for future research. (The analysis of the quadratic
Gonik scheme can be obtained from the author upon
request.)

Although our numerical comparison shows that
the Gonik scheme is dominated by a menu of linear
contracts, there are other aspects that need to be
considered before a definitive conclusion can be
drawn about these two solutions. This paper has
assumed a single sales agent serving a single sales ter-
ritory that has two possible market conditions (high
or low). Reality is always much more complicated.
As the sales environment gets more complicated, it
seems that the Gonik scheme has the ability to keep
the contract simple, and thus easily implementable, as
compared with a menu of linear contracts. For exam-
ple, with each additional sales territory, the number
of contracting parameters increases by one under the
Gonik scheme (the firm needs to provide a quota Oi
for territory i and compensates agent i by the amount
s�Xi/Oi � Fi/Oi�, where Xi is the actual sales in terri-
tory i and Fi is the forecast by agent i), whereas under
a menu of linear contracts, the number of contract-
ing parameters (the slope and intercept of each lin-
ear function on the menu) increases by two times the
number of different possible market conditions in the
added territory. By this count, the Gonik scheme is
simpler than a menu of linear contracts. This advan-
tage of the Gonik scheme must be considered together
with the firm’s profit performance to say which of
these solutions is truly better in a multiterritory sales
environment.
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