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The bullwhip effect (amplification of order variance from a downstream stage in a supply chain to an upstream stage) is
widely observed in practice, and is generally considered a major cause of supply chain inefficiencies. But are supply chains
always better off with strategies that are designed to dampen the bullwhip effect? This paper considers a model where a
single product is sold through multiple retail outlets. The retailers replenish their inventories from a factory, which in turn
replenishes its own finished-goods inventory through production. The factory’s production capacity is finite, and there are
transportation economies of scale in replenishing the retailer inventories. We study two types of replenishment strategies
that are widely used in practice, and show that a replenishment strategy that reduces the volatility of orders received by
the factory does not necessarily reduce the total costs in the supply chain.
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1. Introduction

Interest in supply chain management has grown tremen-
dously over the past decade. This trend has been driven by
competitive pressures to improve efficiencies and enabled
by advances in information technology. Several industry
studies have indicated that the potential for improvement
is great. For example, a study by Kurt Salmon Associates
(1993) indicates that the grocery industry can reap huge
benefits by employing best supply chain management prac-
tices. Another study by EHCR (1996), a consortium of
North American suppliers, distributors, and providers in the
healthcare industry, concludes that the healthcare supply
chain can save $11 billion annually by efficient materials
management and information sharing. A collective research
effort is underway to identify major supply chain diseases
and propose effective remedies.

The so-called bullwhip effect refers to the phenomenon
that the replenishment orders placed by a supply chain
member are often more volatile than the demand it faces,
and this amplification of order variance propagates through-
out the entire supply chain. Many explanations have been
offered as to why the bullwhip effect occurs; see, e.g.,
Forrester (1961), Blanchard (1983), Caplin (1985), Blinder
(1986), Kahn (1987), and Lee et al. (1997). It is generally
believed that the bullwhip effect is a sign of bad inventory
management.

This paper shows that a replenishment strategy that
dampens the bullwhip effect does not necessarily reduce
the supply chain costs. We consider a supply chain where
a single product is sold through multiple retail outlets.
The retailers replenish their inventories from a factory,
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which in turn replenishes its own finished-goods inventory
through production. The factory’s production capacity is
finite. There are economies of scale in transporting finished
goods from the factory to the retailers. We study two types
of replenishment strategies at the retail level, the staggered
policy and the (R, Q) policy. Under a staggered policy or
(T, Y) policy, each retailer places an order to increase its
inventory position to a base-stock level Y every T peri-
ods, a shipment can only be sent to a retailer on its order
occasions, and the reorder intervals of different retailers are
staggered so as to smooth the aggregate order process the
factory faces. Under an (R, Q) policy, in each period, each
retailer orders a minimum integer multiple of Q units from
the factory to increase its inventory position to above R.
These two types of policies are often used in practice when
there are significant economies of scale in replenishment.
While the (R, Q) policy is known to be optimal for many
single-location inventory settings, the (7', Y) policy has the
advantage of giving the factory a smoother demand process.
On the other hand, the factory always follows a modified
base-stock policy, attempting to increase its inventory posi-
tion to a constant level S every period subject to a capacity
constraint. The replenishment policy parameters, (7, Y, S)
or (R, O, S), are chosen to minimize the total supply chain
costs. That is, the supply chain is under centralized con-
trol. (It is useful to note that the optimal policy for the
two-echelon system considered here is unknown.)

For both types of policies, we develop procedures for
computing the long-run average systemwide costs in the
supply chain. We then use these procedures to determine
the optimal control parameters within each policy type. In a
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numerical study, we compared the (7, Y) policy with the
(R, Q) policy. We found that the aggregate retailer order
process under the optimal (7', Y) policy is often much less
volatile than that under the optimal (R, Q) policy. How-
ever, in many examples, the (R, Q) policy provides lower
supply chain costs. The numerical study was also used to
illustrate how the relative performance of the (7, Y) and
(R, Q) policies depends on several key system parameters.
Finally, we study, again via numerical examples, the impact
of the factory allocation policy and the value of centralized
demand information in the (7, Y) system.

That (T, Y) policies dampen the bullwhip effect is not
new. Lee et al. (1997) identify several causes for the
increased demand volatility faced by an upstream supply
chain member. One of these causes is the so-called order
batching: Due to economies of scale, retailers tend to order
in batches, and as a result, the factory sees a demand pro-
cess that is lumpier than the demand process seen by the
retailers. They consider several possible order patterns for
the retailers and find that the staggered structure minimizes
the upstream demand volatility.

The fact that minimizing the demand variance at the sup-
plier does not necessarily minimize the supply chain’s costs
has been noted in Cachon (1999). In Cachon’s model, the
retailers order once every 7T periods, and the order size
is some integer multiple of Q. The retailers’ order inter-
vals are staggered. When T =1, his policy resembles the
above (R, Q) policy; when Q = 1, his policy is essentially
the above (7', Y) policy. (There are some differences at the
factory/supplier level.) Cachon experiments with different
values of T and Q to reach his conclusions. The key differ-
ences between the current setup and Cachon’s are that we
explicitly model (a) the capacity constraint at the factory
(the supplier), thus giving more benefits to variance reduc-
tion at the factory; and (b) the fixed costs incurred in ship-
ping inventories to the retailers. Moreover, our conclusion
is based on the minimum supply chain costs achievable by
either the (7T, Y) class or the (R, Q) class of policies.

This paper has brought together two streams of research
in the multiechelon inventory literature. For many mul-
tiechelon stochastic inventory systems, the optimal pol-
icy remains unknown. Consequently, research effort has
been directed at various heuristic policies. Generally speak-
ing, there are two categories of heuristic policies. In one,
the policy has a fixed reorder interval but allows flexible
order quantities; in the other, the policy allows flexible
reorder intervals but restricts the order quantity in one way
or another. For the former, see, e.g., Eppen and Schrage
(1981), Federgruen and Zipkin (1984), Jackson (1988),
Graves (1996), Aviv and Federgruen (1997), and Chen
and Samroengraja (2000). For the latter, see, e.g., Deuer-
meyer and Schwarz (1981), De Bodt and Graves (1985),
Svoronos and Zipkin (1988), Axsiter (1993a), Chen and
Zheng (1994, 1997), and Cachon (2001). This paper pro-
vides a plausible setting so that one can compare the poli-
cies in the above two categories. The multiechelon inven-

tory literature is reviewed in Axséter (1993b) and Fed-
ergruen (1993). For more recent developments of supply
chain models, see Tayur et al. (1998).

The rest of this paper is organized as follows. Section 2
describes the model and the two types of replenish-
ment policies. Section 3 provides an exact (respectively
approximate) procedure for evaluating the long-run aver-
age systemwide costs under the (7,Y) (respectively
(R, Q)) policy. Section 4 reports the numerical comparisons
between the two policies. Section 5 considers a different
allocation policy and the use of centralized demand infor-
mation in the (7T, Y) system and reports related numerical
results. Section 6 concludes.

2. Preliminaries

Consider a two-echelon production/distribution system.
A factory produces a single product and distributes it
to N retailers. Customer demand occurs at each retailer
according to a simple Poisson process. Unsatisfied demands
are completely backlogged. Although demand can occur at
any time, production and distribution decisions are made
periodically. The quantity that the factory can produce in a
period is limited by a capacity constraint. Production lead
time is constant. Each order by a retailer incurs a fixed
cost and the transportation lead time from the factory to the
retailer is constant. (Lateral transshipment between retail-
ers is not allowed.) Holding costs are assessed for inven-
tories in the system, which include on-hand inventory at
the factory, inventories in transit to the retailers, and on-
hand inventories at the retailers. Penalty costs are assessed
for customer backorders at the retail level. The retailers are
assumed to be identical: The demand processes at the retail-
ers are independent with the same average arrival rate, the
factory-to-retailer lead times are identical across retailers,
and the holding and penalty cost parameters at the retail-
ers are not retailer specific. The objective is to minimize
the long-run average systemwide costs. We consider two
classes of replenishment policies.

The first class of policies uses a (7', Y) policy at the retail
level in a staggered manner. Each retailer orders every T
periods. T is restricted to be either a multiple or a divisor
of N.If T > N, then the time between consecutive retailer
orders is given by T/N. Consider N =4 and T = 8; each
retailer orders every eight periods, and the retailers are stag-
gered so that the factory receives a retailer order once every
two periods. If T < N, then the retailers are divided into
T groups, and each group has N/T retailers. Each group
orders every T periods, and the factory receives a group
order every period. For example, with N =6 and 7 =2,
there are two groups of three retailers each, and each group
orders every two periods, with the factory receiving a group
order every period. Each retailer follows a base-stock pol-
icy with order-up-to level Y, based on its nominal inventory
position (orders placed but not yet received plus on-hand
inventory minus customer backorders). The retailer orders
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are filled at the factory according to an allocation policy to
be defined later. A shipment can only be sent to a retailer
on its order occasions. Each period the factory attempts to
increase its inventory position (work-in-process inventory
plus on-hand inventory minus unsatisfied retailer orders) to
a base-stock level S (=0), subject to a constraint that the
production quantity does not exceed C units. (This mod-
ified base-stock policy is optimal in some single-location
settings; see Federgruen and Zipkin 1986a, b.) Therefore,
the above policy has three control parameters (7, Y, S); for
brevity, we will refer to it as a (T, Y) policy.

The second class of policies uses an (R, Q) policy at the
retail level. Each retailer follows a periodic-review (R, Q)
policy based on its nominal inventory position (orders
placed but not yet received plus on-hand inventory minus
customer backorders). In each period, if a retailer’s nomi-
nal inventory position is equal to or less than R, it orders a
minimum integer multiple of Q from the factory to increase
the nominal inventory position to above R. (This type of
policy is often called an (R, nQ) policy, with n standing
for the number of batches, each of size Q, that are included
in an order.) An allocation policy, to be defined later, spec-
ifies how the factory inventory is used to satisfy retailer
orders. Shipments from the factory to the retailers are made
periodically. As in the (7T, Y) system, the production deci-
sions at the factory are made periodically according to a
base-stock policy with order-up-to level S (>0) subject to
capacity C. Therefore, the above policy has three control
parameters (R, Q, S) and, for brevity, will be referred to as
an (R, Q) policy.

To help describe the material flow in the supply chain,
imagine that there are N + 1 bins numbered O, ..., N in
the factory. Bin O holds the available on-hand inventory
of the factory, while the remaining bins are used to hold
inventories committed to retailers 1,..., N, i.e., invento-
ries that have been allocated but not yet shipped. Gener-
ally, whenever the factory receives an order from retailer n,
it attempts to fill this order by moving inventory from bin 0
to bin n. Inventory, once moved to bins 1, ..., N, may not
be reallocated.

To describe the material flow under the (7, Y) system,
first consider the special case with 7' = N. In this case, the
factory receives an order from one retailer every period.
Upon receipt of an order, say from retailer n, the factory
attempts to fill this order as much as possible by transfer-
ring inventory from bin O to bin #. In case bin 0 has insuf-
ficient inventory, the factory creates an outstanding order
for retailer n for the unfilled amount. When a replenish-
ment batch becomes available at the factory, it is transferred
to bin 0 and then used to fill any outstanding orders for
the retailers on a first-come, first-served (FCFS) basis. The
inventory used to fill the outstanding orders for retailer j
is placed in bin j, j=1,..., N. The amount shipped to
retailer n on its order occasion is the inventory in bin n
after the factory completes the inventory allocation for the
period. Now consider the case where T < N. Recall that

in this case the factory receives orders from N /T retailers
every period. If the inventory in bin O is enough to satisfy
these orders, transfers are made to the bins for the retail-
ers. Otherwise, inventory is allocated on an FCFS basis by
sequencing the units being ordered according to the arrival
times of the corresponding demands. (Because each retailer
follows a base-stock policy, every unit in an order is trig-
gered by a demand, the corresponding demand for the unit.
Therefore, the allocation policy requires the factory to have
access to the point-of-sale data at the retail level.) An out-
standing order is created for the remaining units, with their
sequence retained for later allocation. When a replenish-
ment batch becomes available at the factory, it is used to
satisfy the outstanding orders on an FCFS basis (by the
sequence in which these outstanding orders were created).
In case an outstanding order cannot be filled completely, we
allocate according to the retained sequence of the individ-
ual units. Finally, if T > N, the material flow is essentially
the same as when 7' = N. The only difference is that the
factory receives an order from one retailer every T /N peri-
ods. (An alternative allocation policy will be considered
in §5.)

The material flow in the (R, Q) system is simpler. When-
ever a replenishment batch becomes available at the factory,
it goes directly to bin 0. Because the retailers order at the
same time, an allocation policy is required in case the fac-
tory has insufficient inventory to satisfy all retailer orders.
To specify the allocation policy, imagine that the retailers
follow a continuous-review (R, Q) policy; i.e., each retailer
places an order for Q units as soon as its nominal inventory
position falls to R. (This is possible because each customer
demands a single unit, i.e., no batch demands.) It is clear
that the total number of Qs ordered by a retailer in a period
under the continuous-review scenario is the same as the
integer multiple of Os ordered by the same retailer under
the period-review case. The advantage of the continuous-
review scenario is that now no two retailers will order at the
same time, and the factory will be able to satisfy the retailer
orders on an FCFS basis. This is the allocation policy for
the (R, Q) system. (To implement this allocation policy
in the periodic-review scenario, simply associate each sub-
batch Q in a retailer’s order with a time index that is the
arrival time of the demand unit that “triggers” the order for
the sub-batch. Allocation is then based on this time index
on an FCFS basis.) As before, the factory fills the retailer
orders by transferring inventory from bin O to the retailer
bins, but the inventory transfers must now be in integer
multiples of Q. (This integer-multiples assumption is pri-
marily for technical convenience.) If the factory is unable
to fill a retailer order completely, the remainder becomes
an outstanding order. At the beginning of each period, the
contents in bins 1, ..., N are shipped to the retailers.

Under the (7T,Y) system, the following events occur
sequentially at the beginning of each period unless other-
wise stated.
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1. The designated retailers place an order. When 7 > N,
there is at most one designated retailer; otherwise, there are
N/T designated retailers.

2. At the factory, the replenishment batch due this period
becomes available and goes to bin 0. The outstanding
orders for the retailers, if any, are filled according to the
allocation scheme described above. An outstanding order,
or any portion thereof, once filled, is no longer considered
outstanding even if it is not yet shipped.

3. The factory fills the current order from the designated
retailers, if any, as much as possible according to the allo-
cation scheme described above. If bin 0 has insufficient
inventory, the factory creates an outstanding order for the
unfilled portion.

4. The factory reviews its inventory position and places
a replenishment order, if necessary.

5. The contents in the bins for the designated retailers
are shipped.

6. The shipments due to arrive at the retailers this period
are received. Outstanding customer backorders, if any, are
satisfied. (Demand arrives throughout the period at the
retailers and is satisfied from their on-hand inventories, or
otherwise backlogged.)

Under the (R, Q) system, the following events occur
sequentially at the beginning of each period unless other-
wise stated.

1. Each retailer reviews its nominal inventory position
and places an order (for an integer multiple of Q).

2. At the factory, the replenishment batch due this period
becomes available and goes to bin 0. The inventory in
bin O is then used to fill outstanding orders according to
the allocation policy described above. This is accomplished
by transferring inventory to the retailer bins.

3. The factory reviews its inventory position and places
an order, if necessary.

4. The contents in the retailer bins are shipped.

5. The shipments due to arrive at the retailers this period
are received. Outstanding customer backorders, if any, are
satisfied. (Demand arrives at the retailers throughout the
period and is satisfied from their on-hand inventories, or
otherwise backlogged.)

The system parameters are:

A = average demand arrival rate at a retailer.

C = production capacity per period at the factory.

L = production lead time at the factory, a nonnegative inte-
ger representing a number of periods.

H = holding cost per unit per period at the factory.

K = cost per retailer order, regardless of order size.

| = transportation lead time from the factory to a retailer,
a nonnegative integer representing a number of peri-
ods.

h = echelon holding cost per unit per period at the retail-
ers, h > 0 (thus, the installation holding cost at the
retailers is h+ H).

p = backorder penalty cost per unit per period at the retail-
ers.

We assume that C > NA for the system to be stable.
To describe the inventory state of the system, we define
for any time #:

IP,(t) = factory inventory position
= inventory on hand at the factory (i.e., in bin 0)
plus work in progress minus outstanding orders
for the retailers.
X (t) = factory shortfall
=S —IP,(1).
I,(t) =inventory on hand at the factory (i.e., in bin 0).
B,(t) =total outstanding orders for the retailers at the
factory.
IL, () = factory inventory level
= Iy(1) — By(1).
B (1) =total outstanding orders for retailer n at the
factory.
IC, (1) =inventory committed to retailer n at the factory
(i.e., inventory in bin n).
IT,(t) = inventory in transit to retailer n.
IP,(t) = inventory position at retailer n
= inventory on hand at retailer n plus inventory in
transit to retailer n minus customer backorders
at retailer n.
NIP,(t) =nominal inventory position at retailer n
= outstanding orders for retailer n at the factory
plus inventory committed to retailer n at the fac-
tory (i.e., in bin n) plus the inventory position
at retailer n.
I,(t) = inventory on hand at retailer n.
B, (t) = customer backorders at retailer 7.
IL,(t) =inventory level at retailer n
=1,(t)— B,(1).

Note that IP,(¢t) and IL,(t) do not include the inven-
tories in the retailer bins. In other words, for the purpose
of determining the factory inventory position/level, one can
imagine that the retailer bins are “outside” of the factory.

For convenience, the time index ¢, if it is an integer,
marks the beginning of period ¢ after all the replenishment
events for that period have occurred, but before demand.
We write ¢~, with an integer-valued ¢, for the beginning of
period ¢ before all the events.

3. Cost Evaluation

The objective of this section is to compute the long-run
average systemwide costs for both (T, Y) and (R, Q) poli-
cies. We begin with an accounting scheme for assessing the
holding and backorder costs in the system.

For any time ¢, determine the system on-hand inventory
and charge H for each unit. The system on-hand inven-
tory consists of the on-hand and committed inventories at
the factory (i.e., the contents in bins O, ..., N), inventories
in transit to the retailers, and inventories on hand at the
retailers. (It is easy to see that the long-run average holding
cost associated with the inventories in transit to the retailers
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is constant and is independent of the control parameters.
The inclusion of this cost component, while not essential
for determining the optimal control parameters, simplifies
presentation.) Second, charge A for each unit of on-hand
inventory at the retailers. Finally, charge p for each unit
of customer backorder at the retailers. Therefore, the rate
at which the total holding and backorder costs accrue at
time ¢ is given by

H[Io<r>+ SIC, (1) 41T, (1) +1n(r>)}

n=1
N N
+hY L) +pd B,(1).
n=1 n=1

Subtracting and adding H Y-"_| Bi(¢), which is equal to
HB,(t) by definition, to the above expression, we have

H[Ly(1) = By()] + H %[Bg(t) +IC, (1) +1T,(1) +1,(1)]

n=1
N N
+hy 1,(t)+p Y B,(1),
n=1 n=1
which, after subtracting and adding H }"~_, B, (), becomes

N N
HILy(t)+H ) _NIP,(t)+} [hl,()+(p+H)B,(1)]. (1)
n=1 n=1
Below, we determine the long-run average values of these
three components for each policy type.

3.1. Exact Evaluation for the (T, Y) Policy

We begin by determining the long-run average value of
HIL(t). For any t, < 1,, let Z(t,,t,] be the total orders
received by the factory in the time interval (z,, t,]. Because
ILy(t+ L) =1P,(t)— Z(t, t+ L], and by definition IP(t) =
S — X(t) for any ¢, it suffices to determine the long-run
average values of Z(z, 7+ L] and X(¢).

First, consider the long-run average value of Z(¢t, ¢+ L].
Because the expected customer demand in the system in a
period is NA, the long-run average value of Z(¢, ¢+ L] is
equal to the expected system demand over L periods, which
is NLA. This is due to flow conservation. To determine the
long-run average value of X(z), consider two cases.

Case 1: T < N. Let X be X(t) in steady state. The dis-
tribution of X can be determined by solving

X =max{X+Z - C, 0}, 2)

where Z represents the size of the total retailer orders
received in a period. The steady-state distribution of the
shortfall has been characterized by Tayur (1992), Glasser-
man and Tayur (1996), Glasserman (1997), and Roundy
and Muckstadt (1997), and it is easy to compute. Therefore,
the long-run average value of HIL,(?) is

H(S—E[X]—NL)X), T<N. 3)

Case 2: T > N. To determine the long-run average value
of X(¢) in this case, note that the factory receives an order
from a retailer every 7 /N periods, and each order is a
Poisson random variable with mean TA. Define an order
cycle to be the time interval between successive retailer
orders. Thus, the length of an order cycle is T/N periods.
Let 7 be the beginning of an order cycle. Let W(t) be the
shortfall at t~; i.e., X(¢#7), whose steady-state distribution
can be obtained by solving W = max{W+Z—T/N-C, 0},
where Z is a Poisson random variable with mean 7A and
T /N - C is the total production capacity over an order cycle.
This equation is essentially the same as (2) and thus can
be easily solved. We say that period ¢ + k is of type k,
k=0,...,T/N — 1. Let X, be the shortfall in a type-k
period in steady state. Note that
X, =max{W+Z—-(k+1)C,0}, k=0,...,T/N—-2
and Xr,y_; = W. Consequently, the long-run average value
of HIL(?) is

T/N-1
E[X
H(S—%N["]—NLA), T>N. 4)

We proceed to consider the long-run average value of
NIP,(t) for any retailer n. Suppose retailer n places an
order at time 0. Thus, NIP,(0) =Y. Now take any t < T.
Note that NIP,(t) is equal to Y minus the customer
demands in the interval (0, ¢]. Thus, E[NIP,(t)] =Y — At.
Consequently, the long-run average value of NIP,(t) is

1 /T TA

—/ (Y—=-A)dt=Y — —.

T Jo 2

Summing across all the retailers, we have the long-run aver-
age value of HY_ NIP,(t) as

HN(Y— %") (5)

To determine the long-run average holding and backorder
costs at the retailers, we use an approach developed by
Axsiter (1990) that determines the long-run average hold-
ing and backorder costs associated with an arbitrary unit
of customer demand. The idea is to “follow” the sequence
of events generated by the arrival of an arbitrary customer
demand. This demand triggers a later request (by a retailer)
for a replacement unit. This replacement unit will be used
to satisfy a future demand. We determine the time that this
replacement unit will arrive at the retailer that ordered it as
well as the arrival time of the future demand that this unit
satisfies. If the replacement unit arrives ahead of the future
demand, a holding cost is incurred; otherwise, a backorder
cost is incurred. This cost is said to be associated with
the demand that triggered the replacement unit. Multi-
plying the expected holding and backorder cost incurred
by an arbitrary demand by the total demand rate at all
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Figure 1. Diagram of events.
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retailers yields the long-run average holding and backorder
costs at the retailers. We now describe this procedure in
detail.

Take an arbitrary demand. This demand, hereafter
referred to as the specified demand, occurs at, say,
retailer n. It arrives 7 units of time before the next order
occasion by the retailer, which happens at time ¢. Recall
that when T < N, there are additional retailers ordering
at t. Let i be the number of demands that have occurred at
all the retailers that order at ¢ since their last order occasion
(at time ¢t — T), but before the arrival of the specified
demand. Figure 1 illustrates the timeline of the events gen-
erated by the specified demand.

The specified demand triggers a request for a replace-
ment unit for retailer n, hereafter referred to as the
replacement request. To characterize the arrival time of
the replacement unit at the retailer, note that at time ¢ an
order containing the request is transmitted to the factory.
Because all retailers follow a base-stock policy, the number
of units ordered is equal to the number of demands that
have occurred since the last order occasion. Based on the
allocation policy presented in the previous section, the fac-
tory fills retailer orders in the following sequence: (1) all
the retailer orders before 7, (2) all the requests triggered by
the i units of demand that preceded the specified demand,
and (3) the replacement request. If the factory is able to
fill all these orders/requests by time ¢, then the replacement
unit is shipped immediately. Otherwise, the replacement
unit will be shipped at the next order occasion by retailer n
or even later. The time from 7 to the shipment of the
replacement unit is the delay, A. Once shipped, it takes an
additional / periods for the replacement unit to reach the
retailer. Thus, the total time from the arrival of the spec-
ified demand to the arrival of the replacement unit at the
retailer that ordered it is 7+ A + 1 «

=1,

ty

Arrival of Yth demand following
specified demand

The future demand that the replacement unit is used to
satisfy is the Yth demand at retailer n following the speci-
fied demand. Let ¢, be the time from the specified demand
to the Yth demand. If the Yth demand occurs before the
replacement unit arrives, then backorder costs are incurred.
Otherwise, holding costs are incurred. The holding and
backorder costs associated with the specified demand can
be expressed as

h(tY - l‘r)+ + (p + H)(tY - tr)i‘
Note that 7, is an Erlang random variable with param-

eters Y and A because the demand process at retailer n is
Poisson with rate A. Let g?(¢) be the density function of

ty; i.e.,
)\YtY—lef)\t
g =——,
(Y -=1)!

Let c¥(z,) be the expected holding and backorder costs
associated with the specified demand conditioned on the
replacement unit arrival time ¢,. Because ¢, is independent
of 7, (which is determined by the demand processes up to
time ¢ — 7 at the retailers ordering at time ¢ as well as the
demand processes at the other retailers), we have

)= [ g6, —5)ds

t>=0.

+h/ g (s)(s—t)ds, Y>1,
rf
(t,) = (p+H)(,).
Following Axsiter (1990), we can simplify the above

expression:
(1) = e"‘"—p tH AR

A
Y-y

Y %rﬁﬂﬂpwxn —Y/A),
k=0 :

where 0! = 1. It remains to determine the distribution of ¢,.
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We begin with the distribution of A given 7 and i. Recall
that A is the time from when the request for the replace-
ment unit is received by the factory until the replacement
unit is shipped. Because shipments to a retailer are only
made every T periods, it is possible that a replacement unit
is filled, but not yet shipped. Define A to be the time from
when the request for the replacement unit is received at the
factory (at time #) until it is filled. The distribution of A
uniquely determines the distribution of A:

Pr(A=0]7,i)=Pr(A=0)=1—Pr(A>0),
Pr(A=,T |7,i)=Pr((j — )T <A< jT)
=Pr(A> (j— 1)T) —Pr(A > jT),
j=1.2,....

Below, we derive Pr(A > j), j=0,1,....

Recall that the factory receives orders from the retailers
periodically. The allocation policy described in the previ-
ous section establishes a sequence in which these orders
are to be filled. This sequence is determined by the fol-
lowing rules: (1) retailer orders received by the factory at
time ¢, are filled before retailer orders received by the fac-
tory at time #, for any #, < t,; (2) the units contained in
the orders received by the factory in the same period are
sequenced according to the arrival times of the correspond-
ing demands. Take any periods, ¢, and ¢,, with #; <t <t,.
Recall that the replacement unit is contained in an order
to the factory in period ¢. Define V~(¢,) to be the total
retailer orders received by the factory after period #, (exclu-
sive) but filled before the replacement unit. Define V*(z,)
to be the total retailer orders filled by the factory after the
replacement unit, but received before period ¢, (inclusive).
Thus,

Z(t, )=V () +1+ V+(t2),
where “1” corresponds to the replacement request.

Consider Pr(A > j), j=0,1,.... Note that (A > j) if
and only if the backlog at the factory at time ¢+ j exceeds
all the outstanding orders that are filled after the replace-
ment request; i.e., By(t+j) > VT (t+ j). Because B,(7) >0
implies 1,(t) =0, and thus IL,(t) = —B, (1),

Pr(A > j) =Pr(ILy(t+j) < =V (1 +))). (6)

To obtain the value of the right-hand side, we distinguish
between two cases.
Case 1: j < L. In this case,

ILy(t+j)=IPy(t+j—L)—Z(t+j—L,t+]]
=IPy(t+j—L)=V (t+j—L)—1=V*(t+)).
Therefore, from (6),
Pr(A > j)
=Pr(IPy(t+j—L)—V (t+j—L)
—1=V*(t+j) <=V (1+)))
=Pr(IPy(t+j—L)—V (t+j—L)—1<0)
=Pr(S—X(t+j-L)—-V (t+j—-L)—1<0). (7)

Note that X (r+ j — L) is independent of V= (r+ j—L). To
determine the distributions of these variables, consider the
following two cases.

Case A: T < N. In this case, the factory receives retailer
orders every period and the order quantities received
in different periods are independent and identically dis-
tributed. Let X be the shortfall in steady state. Note that
V=(t+j—L)isequal to Z(t+j— L,t — 1]+ i, where
Z(t+ j—L,t— 1] is the total retailer orders received by
the factory in L — j — 1 consecutive periods. Let Z* be the
total retailer orders received by the factory in k£ consecutive
periods. Thus, Z* is a Poisson random variable with mean
k-(N/T)-TA=kNA. From (7), we have

Pr(A> j)=Pr(X+Z"7'>85—i—1),
j=0,1,...,L—1 if T<N.

Case B: T > N. In this case, the factory receives an
order from one retailer every 7 /N periods, while the order
quantities received at different order occasions are still
independent and identically distributed. Recall that there
are T'/N period-types and that X, is the shortfall in a type-k
period in steady state, k =0, ..., T /N —1. Note that period
t (an order occasion) is of type 0. Let ¢’ be the last order
occasion before or at time t+j— L. Lett+j—L—t =m.
Then, period ¢t + j — L is of type m. Similarly, Z(t 4 j —
L, t — 1] represents a total of

et
(T/N)
retailer orders, where | x| is the largest integer < x. Rede-

fine Z* to be the sum of k retailer orders, which is a Poisson
random variable with mean kT A. From (7), we have

Pr(A> j)=Pr(X,,+Z¢>S—i—1),
j=0,1,...,L—1 if T>N.
Case 2: j > L. Again, we have,
ILy(t+j)=1IPy(t+j—L)—Z(t+j—L,t+j].

Take any k =0,1,...,j — L. The event (A > j) implies
(A > k 4+ L), which in turn implies (ILy(t + k + L) <
—V*(t + k + L)); see (6). Because ILy(t + k + L) =
IPy(t+k)—Z(t+k,t+k+ L], we have

IP(t+k)—Z(t+k,t+k+L] <=V (t+k+L).

Because Z(t + k,t +k+ L] < V*(r+ k + L), we have
IP,(t + k) < 0. However, the factory base-stock level is
S > 0. Therefore, the factory production in period 7 + k
must be at its capacity, C, k=0, 1, ..., j— L. This obser-
vation leads to

IPy(t+j—L)=IPy(t—1)—V (t—1)—1
—Vr(it+j-L)+(—L+1)-C.
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Therefore,

Pr(A> )
=Pr(IPy(t+j—L)—Z(t+j—L,t+j1<—V*(t+)))
=Pr(IPy(t+j—L)<—=V*(t+j—L))

Pr(IPy(t—1)—V (t—=1)—1-V*(t+j—L)

+(j—L+1)-C<=V*(1+j-L))
=Pr(S—X(t—1)—V (t—1)—14+(j—L+1)-C <0).

Note that V~(z— 1) is equal to i because it does not include
any orders received by the factory before time f. When
T <N, X(t—1) in steady state is distributed as X, the
steady-state shortfall. When 7 > N, X (¢ — 1) in steady state
is distributed as X7 ,y_,, the steady-state shortfall in a type-
(T/N — 1) period. Therefore,

Pr(A > j)
Pr(X>S—i—14+(i—L+1)-C), T<N,
| Pr(Xyy > S—i—14+(—L+1)-C), T>N.

Note that the distribution of A depends on the values
of 7 and i. Due to the Poisson demand processes, T is uni-
formly distributed over (0, T'). Recall that i is the number
of demands that have arrived at the retailers that order at
time ¢ in an interval of length 7' — 7. Thus, the probability
mass function of i is

iy

N
pli.7)=——.

i=0,1,2,...,

where wu = A(T —7) if T >N and w = A(N/T)(T — 1)
otherwise.

The expected holding and backorder costs associated
with the specified demand are given by

T o0 o

%/0 NS (r+jT+D)Pr(A= T | 7,i)p(i, 7) dr.

i=0 j=0

(Note that this cost expression also depends on S.) Because
the demand rate is A units per period per retailer, the long-
run average holding and backorder costs per period at all
the retailers are

T o oo

N)‘%/O S (e T+DPr(A=)T |7.0)p(i.7)d7. (8)

i=0 j=0

Finally, note that the long-run average systemwide ordering
costs are N-K(1—e~*T)/T per period. Therefore, the long-
run average total costs per period in the system are the
sum of (3), (5), (8), and N - K(1 — e *")/T when T < N.
Substitute (4) for (3) when 7' > N.

3.2. Approximate Evaluation for the (R, Q) Policy

As with the (7,Y) policy, the systemwide holding and
backorder costs have three components; see (1). First, we
derive the long-run average value of HIL(t). To this end,

we again use the relation ILy(r+ L) =1P,(t) — Z(t,t + L].
Because for any ¢, IP,(t) = S — X(¢), we have

ILy(t+L)=S—X(t)—Z(¢t,t+L].

The same flow conservation argument used to determine
the long-run average value of Z(¢,t + L] in the (7,7Y)
system applies in the (R, Q) system as well; i.e., the long-
run average value of Z(z,t + L] is simply the expected
customer demand over all retailers in L periods, NLA.

However, the steady-state distribution of X () is more
difficult to obtain than in the (7, Y) system. The prob-
lem lies in the order process. In the (7,Y) system, the
orders received by the factory are independent and identi-
cally distributed, while the orders received by the factory
in different periods in the (R, Q) system are not. To see
this, imagine a system where the demand rate is low and
Q is large. If a retailer places an order in a period, it is
quite unlikely that the same retailer will place an order
again in the following period. As a result of this depen-
dency, the factory shortfall at time ¢, which is affected by
the retailer orders in period # — 1, contains information
about the retailer orders in period 7. Consequently, the fac-
tory shortfall in steady state, X, is difficult to characterize
analytically. We rely on simulation for its distribution. The
long-run average value of HIL(t) is then

H(S — E[X]— NLA). )

The long-run average value of NIP,(t), for any n, is easy
to obtain. Because retailer n uses an (R, Q) policy and its
demand follows a Poisson process, it is well known that the
steady-state distribution of the nominal inventory position
is uniform in the interval [R + 1, R + Q]. Thus, the long-
run average value of NIP, (1) is simply R+ (Q + 1)/2. The
long-run average value of H Y.\ NIP,(t) is given by

HN(R—l—%). (10)

The methodology for determining the long-run average
value of - [hI,(t)+(p+H)B,(t)] is similar to that used
in the (T, Y) case. The sequence of events generated by an
arbitrary demand is used to determine the costs that will be
associated with it. We are interested only in demands that
trigger an order (of batch-size Q). (Therefore, we are using
the continuous-review scenario in the following deriva-
tion; see §2.) Consider an arbitrary demand that arrives at
retailer n and triggers an order for a replacement batch.
This replacement batch will be used to satisfy Q future
demands at retailer n. We compute the time this replace-
ment batch will arrive at retailer n. We also determine the
arrival times of the Q future demands that this batch sat-
isfies. For each of the Q demands, we determine whether
a holding or backorder cost is incurred. The total cost is
associated with the demand that triggered the replacement
batch. Multiplying this cost by the rate at which orders



Chen and Samroengraja: Order Volatility and Supply Chain Costs
Operations Research 52(5), pp. 707-722, © 2004 INFORMS

715

occur at all the retailers yields the long-run average holding
and backorder costs at the retailers. We now describe this
procedure in detail.

Consider an arbitrary demand. This demand occurs at,
say, retailer n. It arrives 7 units of time before the next
shipping occasion, which happens at time ¢. (Thus, ¢ is the
beginning of the first period after the demand occurrence.)
Suppose this demand, hereafter referred to as the specified
demand, triggers an order.

To determine the costs associated with the specified
demand, note that the order it triggers, hereafter referred to
as the replacement request/batch, is placed just after retailer
n’s nominal inventory position reached R. Thus, the units
in the replacement batch will meet the (R + y)th succes-
sive demands, y =1, ..., Q. Holding and backorder costs
are assessed depending on whether the replacement batch
arrival time is before or after the demands to be satisfied
by the units in this batch. These costs are associated with
the specified demand.

Upon receipt of a retailer order (for Q units), the fac-
tory attempts to fill this order (i.e, transfer inventory from
bin O to bin n). However, the factory can ship to a retailer
only at the beginning of a period. Thus, the replacement
request is delayed at least 7 units of time. If the factory is
unable to fill this request before the next shipping occasion
(at time 7), additional delay ensues. Let A be the num-
ber of periods from the first shipping occasion (at time #)
until the replacement batch is shipped from the factory. The
total time from the arrival of the specified demand to the
arrival of the replacement batch at the retailer that ordered
it is given by 7+ A+ o t,. Lett,, y=1,..., 0, be the
time from the arrival of the speciﬁed demand to the arrival
of the (R + y)th successive demand. Thus, the total costs
associated with the specified demand is given by

o]
Z[h(ty —,)"+(p+ H)(t,—1,)"].

It remains to derive the distributions of Ly, y= 1,...,0,
and the stochastic components of #,: 7 and A.

First, because the demand process at each retailer is
Poisson, the distribution of ¢, y=1, ..., Q, is Erlang with
parameters A and R + y. Let g,(?) be the density function
of t,; i.e.,

AR+yt(R+y71)e—)\t

=Ry

t>20, y=1,...,0.

Let ¢”(z,) be the expected holding and backorder costs
for the yth unit in the replacement batch, given #,. Note
that ¢”(t,) is equivalent to c¢?(z,) in the (T, Y) system with
R+y=Y and t, =t,. Thus,

a,PTH+R .R+y71 (R—i—y—k)t
A = k!

+(p+H)(t,— (R+y)/),

A(t,)=e AR

where 0! = 1. Given ¢,, the total expected holding and
backorder costs associated with the specified demand is
Zszl (1)

We proceed to derive the distribution of A given 7. Take
any periods #, and #, with #, <t < t,. Redefine V~(¢,) to
be the total retailer orders (in terms of individual units)
received by the factory after time ¢, (exclusive), but before
the replacement request. Similarly, redefine V*(z,) to be
the total retailer orders after the replacement request that
are received by the factory by time 7, (inclusive). Thus,
Z(t,,1,] is equal to V= (¢;) + QO + V*(z,), where Q repre-
sents the replacement request.

Consider Pr(A > j), j=0,1,.... The event (A > j) is
equivalent to B,(t+ j) > V(¢ + j) because retailer orders
are filled on an FCFS basis. To establish a linkage between
By(t+j) and ILy(t + j), recall that retailer orders cannot be
partially filled. Therefore, it is possible that 1,(¢) and B,(¢)
are both positive, which is the case only if [,(#) < Q — 1.
The following observations are true for any #':

1. By(¥) =mQ, m >0, integer;

2. I)(t) =0

3. If m>1, then I,(¢t') < Q;

4. ILy(¥) 20= By(¥')=0.

Let V*(¢t+ j) = mQ (=0). Suppose that By(+ j) > mQ.
From the above observations, I,(t + j) < Q — 1. Therefore,

ILy(t +j) = Iy(t + j) — By (1 + j)
<@-1)—-(m+1Q
<O0-1-mQ-0

—mQ.

Conversely, if IL,(t + j) < —mQ, then By(t + j) =
I,(t+j) —ILy(t + j) = —ILy(t + j) > mQ. Consequently,

A

Pr(A > j) =Pr(ILy(t + j) < =Vt (t +J)). (11)

The value of the right-hand side of (11) is obtained by

using arguments almost identical to the ones used for the

right-hand side of (6). We distinguish between two cases.
Case 1: j < L. In this case,

ILy(t+j)=IPy(t+j—L)—Z(t+j—L,t+]
=IPy(t+j—L)—V (t+j—L)—Q—V*(t+)).
Therefore, from (11),
Pr(A > j)
=Pr(IPy(t+j—L)—V (t+j—L)
—Q=VH(t+)) <=V (t+)))
=Pr(IPy(t+j—L)—V (t+j—L)— Q0 <0)
=Pr(S—X(t+j—L)—V (t+j—-L)—0<0). (12)

To determine the distribution of V~(¢+ j— L), recall that
it equals the orders placed by all retailers in the interval
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(t+j—L,t—7). Let Z? be the total amount ordered by
retailer n in the interval (t — 7 — 90,1 — 7). Let Zin be the
total amount ordered by all retailers except retailer n in the
same interval. Thus,
V(t+j—L)y=2Z0T+z8 0

First, consider Z,‘?. Because retailer n places an order at
t — 7, the nominal inventory position just before the order
placement is equal to R. Going backward in time, an order
by retailer n is triggered every Q demands. Let D? be the
number of demands that occur at any retailer in an interval
of length . Thus,

Pr(Z>=0)=Pr(D° < Q),

Pr(Z]=z0)=Pr(zQ<D’ < (z+1)Q), z=1,2,....

Now consider Z° . Take any retailer n’, n’' # n. Let A°
be the total amount ordered by retailer »" in the interval
(t—71—8,t— 7). Note that the nominal inventory position
of retailer n’ at t — 7 — 6 is uniformly distributed over the
interval [R+ 1, R+ Q] in steady state. By conditioning on
this nominal inventory position, we have

Pr(A6 =0|NIP,(t—T—8)=R+y) =Pr(D° <y),
Pr(A°=zQ|NIP,(t—7—8)=R+Y)
=Pr(y+(z—1)Q <D’ <y+20)

for z=1,.... Thus,

Q
Pr(A°=zQ) = éZPr(A%ZQ |NIP, (t—T—8)=R+y),
y=1

z=0,1,....

Because the order processes at all the retailers except
retailer n are independent with identical characteristics, the
distribution of Z° is obtained by taking the (N — 1)-fold
convolution of A°.

To evaluate the right-hand side of (12), recall that X (z +
J — L) contains information about the retailer orders in
period ¢+ j — L. Therefore, X(¢+ j— L) is not independent
of V=(t 4+ j — L). To simplify computation, however, we
assume that they are independent. Under this approxima-
tion, we have

Pr(A> j)=Pr(X+Z:77"+2Z%77>5-0),
j=0,1,...,L—1,

which is evaluated by convolving the three random vari-
ables X, ZE=7=" and Z% 777,

Case 2: j > L. Using the arguments developed under
(T,Y), we have
IPy(t+j—L)=1IPy)(t—1)—-V (t—1)—-Q

—Vie+j-L)+(j—-L+1)-C.

Because IL(t+j)=1Py(t+j—L)—Z(t+j—L,t+j],
we have from (11),

Pr(A > j)
=Pr(IPy(t—1) =V (t—1)-Q
—VYt+j-L)+(—-L+1)-C
—Z(t+j—Lt+jl <=V (t+J)
=Pr(IPy(t—1) =V (t—1)—Q+(j—L+1)-C<0)
=Pr(X+Z, " +2Z,>S-0+(i—L+1)-C),

which is evaluated by convolving X, Z!~7, and Z"". (This
is an approximation, as discussed above.)
We are now ready to determine the distribution of A:

Pr(A=0)=1-Pr(A>0),

Pr(A=j)=Pr(A>j—1)—-Pr(A>}j), j=1,2,....
Note that the distribution of A is dependent on 7, which is
uniformly distributed over (0, 1). To make this dependency
explicit, we write Pr(A = j | 1) for Pr(A = j). The total
expected holding and backorder costs associated with the
specified demand is given by

] o Q
/ Y Y A+ j+D)Pr(A=j|T)dT,

j=0y=1

which is a function of R, Q, and S. Because demand occurs
on average A units per period per retailer with an order
being triggered every Q units, the long-run average holding
and backorder costs per period at all retailers are

1 o 0

N)\l/ > M+ j+D)Pr(A=j|7)dT. (13)
0Jo

Jj=0y=1

Finally, note that the expected ordering costs per period
are equal to

R+0
NK— > Pr(y—D<R),

y=R+1

where D denotes the total demand at a retailer in a period.
The long-run average total costs per period in the system
are the sum of (9), (10), (13), and the above ordering costs.

4. Numerical Examples

We used numerical examples to compare the performance
of (T,Y) policies with that of (R, Q) policies. Specifi-
cally, we were interested in the volatility of orders faced
by the factory, the long-run average systemwide costs, and
the impact of key system parameters on the relative cost
performance of the two types of policies.
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Table 1. System parameters.

N 2,4,8,16

p 20%, 40%, 60%, 80%, 99%
C 50

L 1,5

H 1

K 25, 100

l 3

h 1

p 10, 20

We have chosen the sets of parameters in Table 1, where
p = NA/C is the factory’s capacity utilization, with the
mean demand rate A = pC/N. There are 160 examples.

For each example, we used the exact procedure devel-
oped in §3.1 to compute the long-run average costs of a
(T, Y) policy and the approximate procedure developed in
§3.2 for an (R, Q) policy. For both cases, we obtained
the steady-state shortfall distribution via simulation and
the optimal control parameters, i.e., the optimal values of
(T,Y,S) and (R, Q,S), via a search. Once the optimal
control parameters were obtained, a simulation of 50,000
periods was used to verify that the long-run average costs
generated by the above algorithms were accurate for both
(T,Y) and (R, Q). (For the (T,Y) case, even though the
procedure was exact, there was a step where the ran-
dom variable 7 was discretized, introducing a potential
error.) For (T, Y), the average absolute percentage differ-
ence between the evaluated and simulated costs was 0.1%
and the standard deviation was 0.5%. For (R, Q), the aver-
age was 0.4% and the standard deviation was 0.7%. We
henceforth use the simulated costs as our performance mea-
sures of the policies.

We also determined the variability of the orders seen
by the factory. For the (R, Q) system, the variance of the
total retailer orders in any period can be easily computed
because the nominal inventory positions of the retailers are
independent and uniformly distributed. (As we mentioned
earlier, the orders by a retailer in different periods are typi-
cally correlated. Therefore, the variance of the total retailer
orders in a period is, admittedly, a simplistic way to mea-
sure the uncertainty in the factory’s demand process.) For
(T, Y), we computed the variance of the total retailer orders
received by the factory on any retailer order occasion.
(Tt turns out that in all our examples, 7 < N. Therefore, the
factory sees a retailer order(s) every period. In other words,
every period is a retailer order occasion. Now if 7 > N,
it may be necessary to consider alternative variance mea-
sures as the factory expects zero retailer orders in some
periods.) Not surprisingly, the order variance under the
optimal (R, Q) policy was found to be higher than or equal
to that under the optimal (7,Y) policy in every exam-
ple. The highest ratio of the order variances exceeds 25.
Figure 2 shows the histogram of the variance ratio and
how it depends on several system parameters. Note that
the variance ratio increases as the transportation fixed cost

Ratio of order variance in the (R, Q) system
to order variance in the (7, Y) system.

Figure 2.

wW
o

NN
o o

—_
o
)

Number of examples
o

[6;]
illi
_—:_:'l
:‘::IE
=
)
;l
E——
=
SEER

o

02468101214161820222426
Variance ratio

=

o

104
K=100
g .
2 L=1
- =
© 67---------- R e e --
[}
g
.E 4--- T - T - I O -
S
s
ol- I I I S | .
0
2
= ——-N=2
; - N=4
Q —A&—N=8
(1]
= —— N=16
©
>
0

20% = 40% = 60% = 80%  99%
Capacity utilization

becomes larger, implying that the order variance in (R, Q)
systems increases at a faster pace than the order variance in
(T,Y) systems as the need for batching intensifies. Also,
the nature of the relationship between the variance ratio and
the capacity utilization is highly dependent on the number
of retailers.

Unlike order variances, there is no clear dominance in
terms of supply chain costs. In 45% of the examples,
(R, Q) outperformed (7, Y). Figure 3 depicts a histogram
of the relative cost difference between the two policies with
a mean of 0.99%, as well as how this relative performance
depends on several key system parameters. The figure sug-
gests that (R, Q) policies are likely to outperform (7, 7Y)
policies when one of the following is true. (Tentative expla-
nations are in square brackets.)

(a) The factory production lead time is long. [As the fac-
tory production lead time lengthens, the demand variance
at the factory becomes less harmful because of risk pooling
of the factory’s demands over its lead time (i.e., its lead
time demand). This is in favor of (R, Q) policies, which
have larger order variance at the factory.]

(b) The customer backorder cost is high. [As the cus-
tomer backorder cost increases, the retailers carry more
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Cost comparison between the (7, Y) system
and (R, Q) system.

Figure 3.
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safety stock. As a result, the induced penalty for shipment
delays at the factory decreases. This is again in favor of
(R, Q) policies, which induce larger order variance at the
factory.]

(c) The transportation fixed cost is large. [As the
economies of scale for retailer replenishment increase,
both T and Q are expected to increase. Thus, the respon-
siveness of the (T, Y) system diminishes greatly because
each retailer is allowed to order only once every T periods,
whereas the responsiveness of the (R, Q) system remains
largely unchanged because each retailer can, if necessary,
order in every period.]

(d) The number of retailers is large. [One possible expla-
nation is risk pooling of retailer orders at the factory, which

serves to again diminish the negative impact of the larger
order variance induced by the (R, Q) policy.]

(e) The factory capacity utilization is either extremely
low or extremely high. [When capacity utilization is either
very low or very high, planning at the factory is less criti-
cal: either produce to demand or produce to capacity. Plan-
ning is important in the midrange, and that is where the
(R, Q) policy is likely to do worse because of the larger
order variance at the factory induced by it.]

5. Demand Information and
Allocation Policy

Suppose that the factory has access to point-of-sale data
on a real-time basis; i.e., the factory observes every cus-
tomer demand as it occurs at the retail level. How can the
factory make use of, and what is the value of, this central-
ized demand information? Moreover, is there an alterna-
tive allocation policy that the factory can use? We address
these questions in the context of (7,Y) systems. (Recall
that in (7,Y) systems with 7 < N, the current alloca-
tion policy at the factory allocates, if necessary, inventory
among the retailers ordering at the same time by using
the sequence of the individual demands contained in those
retailers’ orders. Therefore, strictly speaking, the factory’s
access to the point-of-sale demand information has already
been implicitly assumed. However, the factory has so far
not used that information in its production decisions.)

With access to centralized demand information, the fac-
tory is able to accumulate information about a future
retailer order. For example, suppose T = 8. Consider a
retailer order placed at time ¢. This order comprises eight
periods’ worth of demands at that retailer. In the previ-
ous (7, Y) system, all the factory knows about this retailer
order before time ¢ is that it is a Poisson random vari-
able with mean AT. In the current system, the factory
observes an increasing portion of the random variable as
time approaches ¢. For example, at time ¢ — 4, the fac-
tory has observed four periods’ worth of demand that will
be part of the order at time ¢. This demand information
can be incorporated into the factory’s production decision.
Vendor-managed inventory (VMI) systems typically rely on
such information to enable the supplier to anticipate the
replenishment needs of its downstream partners. (Note that
the factory is incorporating information about its future
demands into its production decisions. Several papers have
considered the impact of this type of demand information.
A key difference is that the future-demand information here
comes from within the supply chain, instead of from the
end customers. As a result, the scenario we are consider-
ing here is also one of information sharing between supply
chain stages. Many papers have studied this, but informa-
tion sharing in the context of staggered (7,Y) policies
is new. See Chen 2003 for a survey on the supply chain
information-sharing literature.)

We assume that the factory follows a floating base-stock
policy; i.e., in period ¢, the factory attempts to produce
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enough to raise its inventory position to a base-stock level
equal to s+ v(t), where s is a control parameter and v(7)
is a function of the observed demand data at time ¢.

Suppose we are at time ¢. To gain some intuition on the
form of wv(¢), let us consider a special case with L = 2.
Let x; be the random variable representing the unknown
portion of the retailer order placed at time ¢ + i, and let
y; be the observed part of this retailer order, i =1, 2. Note
that the total retailer orders received by the factory in the
time interval (¢, t+ L] is x; + x, + y, + y,. Intuitively, the
factory’s target inventory position at time ¢, i.e., s + v(t),
should cover this lead-time demand. It seems reasonable to
let s cover the unknown portion of the lead-time demand,
i.e.,, x; + x,, and let v(¢) cover the known portion, i.e.,
yi +¥,. In general, let y,(¢) be the part of the retailer order
that will be placed at time ¢ + i that has been observed
by time ¢, i=1,..., L. It seems plausible to have v(z) =
i yi(0).

Now let us consider the factory’s allocation policy.
Recall that under the FCFS allocation policy, the inven-
tory allocated to a retailer’s bin (at the factory) represents
inventory committed to that retailer and thus cannot be used
to satisfy another retailer’s order. This may create a situ-
ation where there is inventory in one retailer’s bin (to be
shipped to the retailer on its next order occasion) while
another retailer’s order has to be backlogged. This moti-
vates an alternative allocation policy that we call current
order allocation (COA). Under this policy, the factory will
give priority to the current retailer order. That is, in every
period, the factory will attempt to fill the current retailer
order as much as possible from its on-hand inventory. If the
on-hand inventory is insufficient, the factory will create a
backlog for the retailer for the unfilled portion. This back-
log will be added to the next order placed by this retailer,
and the total becomes the then-current retailer order. If in a
period the factory has simultaneously received orders from
multiple retailers, and if the factory on-hand inventory is
insufficient to satisfy all these orders, inventory allocation
is according to the sequence of demands that correspond to
the individual units in the orders in an FCFS manner. The
factory then creates a backlog for each of the retailers and
retains the demand sequence for later allocation, and these
backlogs will be added to the corresponding orders placed
by this group of retailers on their next order occasion.

The original (7, Y) system can be modified in several
ways, depending on whether or not the centralized demand
information (CDI) is utilized and if the allocation policy is
FCFS or COA. The value of CDI is defined to be the per-
centage reduction in systemwide costs resulting solely from
the use of CDI (and the allocation policy remains FCFS).
Similarly, the value of COA refers to the cost reduction
resulting from COA alone (without CDI), and the value of
CDI and COA combines the benefits of both the demand
information and the new allocation policy.

To calculate the supply chain performance under the
above three variations of the original (7', Y) system for the

160 examples described earlier, we fixed the values of T
and Y found in the original system and searched for the
optimal value of s based on simulation. This made com-
putation manageable. Figures 4, 5, and 6 report the values
of the various improvements and how they depend on key
system parameters.

On average, CDI reduces costs by 0.9%, with a range
from 0% to 4%. (This magnitude of improvement is com-
parable to what has been reported in the literature on the
value of centralized demand information; see Chen 2002.)
The value of CDI tends to be higher if one of the following
is true. (Tentative explanations are in square brackets.)

(a) The factory production lead time is shorter. [If the
factory production lead time is long, the factory would
require high safety stock. Thus, the floating factor v(¢), due
to CDI, is relatively small, implying that the value of CDI
is small as well.]

(b) The customer backorder cost is lower. [When the
customer backorder cost is low, the retailers carry low
safety stock. Thus, the fill rate at the factory becomes
important. CDI helps improve factory fill rate.]

Value of centralized demand information in
(T,Y) system.

Figure 4.
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Figure 5. Value of current order allocation in the (7', Y) Figure 6. The combined value of CDI and COA.
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(c) The transportation fixed cost is higher. [As the fixed
cost increases, T increases. The amount of information
about future demands at the factory increases.]

(d) The number of retailers is larger. [As the number of
retailers increases, while keeping capacity utilization con-
stant, the average demand at each retailer decreases. Thus,
the optimal T is likely to increase, implying that the factory
has more future-demand information. ]

(e) The factory capacity utilization is lower. [When the
factory has ample capacity, it is in a better position to
exploit the CDI.]

On the other hand, the new allocation policy is not
always better than FCFS: On average, it reduces costs

by 0.8%, with a range from —4.4% to 9.4%. One disadvan-
tage of COA is that it does not anticipate future demands
and hold-back inventory for an expected large retailer order
in the future. The value of COA tends to be higher if one of
the following is true. (Tentative explanations are in square
brackets.)

(a) The factory production lead time is longer. [When
the factory production lead time is long, the factory’s abil-
ity to respond to demand changes is diminished. In this
case, it is more important not to have any factory inventory
“wasted,” i.e., sitting idle in a retailer bin while another
retailer’s order is backlogged. This scenario may arise
under FCFS, but it does not happen under COA.]

(b) The customer backorder cost is lower. [When the
customer backorder cost is low, the retailers hold low safety
stock. This implies that it is more important to have a high
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fill rate at the factory. By not having idle inventory at the
factory, COA tends to increase the factory fill rate.]

(c) The transportation fixed cost is higher. [When the
fixed cost is higher, T is lengthened. As a result, under
FCFS the idle time of inventory (sitting in a retailer bin) is
also lengthened, making COA relatively better.]

(d) The number of retailers is larger. [As the number of
retailers increases, while keeping capacity utilization con-
stant, the average demand at each retailer decreases. Thus,
the optimal T is likely to increase, implying that there is
more “wasted” inventory at the factory under FCFS.]

(e) The factory capacity utilization is very high. [The
effect of high factory capacity utilization is similar to a
long factory lead time.]

Finally, by combining CDI with COA in the (T, Y) sys-
tem, we have achieved an average cost reduction of 2.3%,
with a range from 0% to 9.5%. This suggests “synergy”
between CDI and COA: The two together are more than the
sum of what they can achieve individually. Figure 6 sug-
gests that the combined value tends to be higher if (a) the
factory production lead time is longer, (b) the customer
backorder cost is lower, (c) the transportation fixed cost is
higher, (d) the factory capacity utilization is very low, or (e)
the factory capacity utilization is very high and the number
of retailers is large. These trends are, of course, a result
of the relative strengths of the trends depicted in Figures 4
and 5.

6. Conclusions

The central message of this paper is that reducing or elim-
inating the bullwhip effect does not always improve supply
chain efficiency. Therefore, for firms interested in improv-
ing their supply chains, measuring and controlling the bull-
whip effect is no substitute for a sound economic analysis
of the entire chain’s operations. The paper has also found
that in the considered supply chain model, the value of cen-
tralized demand information is comparable with the exist-
ing findings in the literature, and that this value tends to
increase under an inventory allocation policy at the supplier
that gives priority to the current retailer order rather than
one that satisfies retailer orders on an FCFS basis.
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