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1 Introduction

The performance of a supply chain depends critically on how its members coordinate their decisions.

And it is hard to imagine coordination without some form of information sharing. A signi¯cant

part of supply chain management research is devoted to understanding the role of information in

achieving supply chain coordination. It is the purpose of this chapter to review this literature.1

The ¯rst part of the chapter focuses on papers that have contributed to our understanding of

the value of shared information. We ¯rst consider information pertaining to the downstream part

of the supply chain. The next is upstream information. Finally, we discuss papers that study the

consequences of imperfect transmission of information. All the papers here adopt the perspective of

a central planner whose goal is to optimize the performance of the entire supply chain.

The chapter then proceeds to discuss papers that address incentive issues in information sharing.

Here it is made explicit and prominent that supply chains are composed of independent ¯rms with

private information. The goal is to understand whether or not incentives for sharing information

exist, and if not, how they can be created. This section is divided into three parts. When one

¯rm has superior information, it may hide it to gain strategic advantage or to reveal it to gain

cooperation. If the former, the less-informed party may try to provide incentives for the informed to

release its information. This is called screening, and it constitutes the ¯rst part of the section. If the

informed tries to convey its private information, it is often the case that he has to \put his money

where his mouth is" in order to be credible, i.e., signaling. This is the second part of the section.

The last part of the section deals with situations where it is di±cult to say if a supply chain member

has more or less information: they simply have di®erent information about something they all care

about (e.g., the potential market size of a product). Here a common question is if information

sharing will emerge as an equilibrium outcome in some noncooperative game.

The chapter ends with some thoughts on future research directions.

The structure of the chapter provides an implicit taxonomy for thinking about research on

supply chain information sharing. Speci¯cally, the sections and subsections provide categories so

that (hopefully) every piece of relevant research ¯nds its home. It is important to mention that

the unnumbered, boldfaced headings are meant to represent examples within a category, and the

examples may not be exhaustive. For example, x2.2 deals with the value of upstream information,

and within this subsection are several examples (i.e., cost, leadtime, capacity information). This

should not be taken to mean that these are the only types of upstream information nor that they can

only come from upstream. For example, an upstream supply chain member (e.g., a manufacturer)

may have some private information about demand that the (downstream) retailers don't have, so

demand information is a possible type of upstream information. On the other hand, a seller may

not know a buyer's cost structure, so cost information can also come from downstream. In other

words, the headings without section/subsection numbers are not part of the taxonomy anymore.

A few words on how we choose the papers and what we are going to do with them. The emphasis

here is modeling, not analysis. Therefore, we prefer papers with modeling novelties. And we want

as much variety as possible given limited space. So if there are several papers that are close to

each other in the \novelty space," we will just take one with a simple reference to the others.

1For a summary of recent industry initiatives to improve supply chain information °ows, see Lee and Whang

(2000).
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Within a collection of papers, if there is no clear logical progression, we will simply review them

in chronological sequence. We will often present a model without stating all the assumptions. The

mentioning of results is often brief and is meant to whet your appetite so that the original paper

becomes irresistable. We sometimes purposely \trivialize" a model by further specializing it (e.g., by

making assumptions that a top journal referee would be hard pressed to swallow). The reader should

be assured that this is done for ease of presentation and for crystallizing the main ideas without

getting bogged down on details. In terms of notation, we try to be consistent with the original

paper. The risk of this is that the reader may see di®erent symbols for, say, the wholesale price.

But the chapter is su±ciently modularized that we hope, the reader can easily see which symbol

belongs where. Needless to say, the papers presented in this chapter re°ect the author's knowledge

and taste at a certain point in time, the former of which is inevitably incomplete while the latter is

constantly evolving.

2 Value of Information

The perspective taken by this part of the literature is often that of a central planner, who determines

decision rules to optimize the performance of the entire supply chain. The decision rules re°ect

the information available to the managers who implement the rules. For example, the inventory

manager at a supply chain stage only has access to local inventory information, and so the decision

rule (determined by the central planner) for this manager must be based on the local information.

Clearly, if we increase the information available to the manager (e.g., by providing access to inventory

information at other supply chain locations), the set of feasible decision rules is enlarged and the

supply chain's performance may improve. The resulting improvement is then the value of the

additional information. This section reviews papers that try to quantify the value of information in

di®erent supply chain settings.

2.1 Downstream Information

A signi¯cant part of the literature is interested in the value of information pertaining to the down-

stream part of the supply chain (i.e., the part that is closer to the end customers). We ¯rst consider

papers that deal with information sharing within a supply chain. A typical setup here is one where

the members of a supply chain share their information about the end customer demand, in the form

of realized demand or updated demand forecasts, although other types of information are also dis-

cussed. We then review models where information sharing takes place at a supply chain's boundary,

e.g., when the supply chain's customers provide advance warnings of their demands. While most

researchers use the supply chain-wide costs as the performance measure, there is a stream of papers

that use the \bullwhip e®ect" (i.e., the ampli¯cation of the order variance up the supply chain) as

a surrogate performance measure. These papers are considered at the end of this subsection.

Information Sharing within a Supply Chain

Here are some papers that study the value of giving the upstream members of a supply chain

access to downstream information, which can be the point-of-sale data or information about the
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control rule used by a downstream member. The customer demand process can be stationary or

nonstationary, and the structure of the supply chain can be serial or distributional.

Chen (1998a) studies the value of demand/inventory information in a serial supply chain. The

model consists of N stages. Stage 1 orders from stage 2, 2 from 3, ¢ ¢ ¢, and stage N orders from

an outside supplier with unlimited stock. The leadtimes from one stage to the next are constant

and represent delays in production or transportation. The customer demand process is compound

Poisson. When stage 1 runs out of stock, demand is backlogged. The system incurs linear holding

costs at every stage, and linear backorder costs at stage 1. The objective is to minimize the long-run

average total cost in the system.

The replenishment policy is of the (R,nQ) type. Each stage replenishes a stage-speci¯c inventory

position according to a stage-speci¯c (R,nQ) policy: when the inventory position falls to or below a

reorder point R, the stage orders a minimum integer multiple of Q (base quantity) from its upstream

stage to increase the inventory position to above R. In case the upstream stage does not have su±cient

on-hand inventory to satisfy this order, a partial shipment is sent with the remainder backlogged

at the upstream stage. The base quantities are ¯xed and the reorder points are the only decision

variables. Moreover, the base quantities, which are denoted by Qi for stage i, i = 1; ¢ ¢ ¢ ; N , satisfy
the following integer-ratio constraint:

Qi+1 = niQi; i = 1; ¢ ¢ ¢ ; N ¡ 1
where ni is a positive integer. This assumption is made to simplify analysis, but it also re°ects

some practical considerations aimed at simplifying material handling such as packaging and bulk

breaking. Moreover, there is evidence that the system-wide costs are insensitive to the choice of

base quantities. 2

Two variants of the above (R,nQ) policy are considered. One is based on echelon stock: each

stage replenishes its echelon stock with an echelon reorder point. A stage's echelon stock is the

inventory position of the subsystem consisting of the stage itself as well as all the downstream

stages, which includes the outstanding orders of the stage, either in transit or backlogged at the

(immediate) upstream stage, plus the inventories in the subsystem, on hand or in transit, minus

the customer backorders at stage 1. Let Ri be the echelon reorder point at stage i, i = 1; ¢ ¢ ¢ ; N .
Therefore, under an echelon-stock (R,nQ) policy, stage i orders a multiple of Qi from stage i + 1

every time its echelon stock falls to or below Ri.

Alternatively, replenishment can be based on installation stock: each stage controls its installation

stock with an installation reorder point. A stage's installation stock refers to its local inventory

position, i.e., its outstanding orders (in transit or backlogged at the upstream stage) plus its on-hand

inventory minus backlogged orders from its (immediate) downstream stage. Let ri be the installation

reorder point at stage i, i = 1; ¢ ¢ ¢ ;N . Therefore, under an installation-stock (R,nQ) policy, stage i
orders a multiple of Qi from stage i + 1 every time its installation stock falls to or below ri. Note

that echelon-stock (R,nQ) policies require centralized demand information, while installation-stock

(R,nQ) policies only require local `demand' information, i.e., orders from the immediate downstream

stage. When every customer demands exactly one unit, i.e. the demand process is simple Poisson,

each order by stage i is exactly of size Qi, i = 1; ¢ ¢ ¢ ; N . In this case, the (R,nQ) policy reduces to
the (R,Q) policy.

2Such insensitivity results have been established for single-location models, see Zheng (1992) and Zheng and Chen

(1992). This property is likely to carry over to multi-stage models. Also, the optimality of (R,nQ) policies has been

established by Chen (2000a) for systems where the base order quantities are exogenously given.
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From AxsÄater and Rosling (1993), we know that installation stock (R,nQ) policies are special

cases of echelon stock (R,nQ) policies. The two policies coincide when

R1 = r1; and Ri = Ri¡1 +Qi¡1 + ri; i = 2; ¢ ¢ ¢ ; N:
(Note that ri is an integer multiple of Qi¡1 for i ¸ 2.) To see the intuition behind this result, suppose
the demand process is simple Poisson so that (R,nQ) policies reduce to (R,Q) policies. Under the

installation stock (R,Q) policy, orders are \nested" in the sense that every order epoch at stage i

coincides with an order epoch at stages i¡1; i¡2; ¢ ¢ ¢ ; 1. The installation stock at stage j after each
order is rj +Qj for all j. Consequently, just before stage i places an order, its echelon stock, which

is the sum of the installation stocks at stages 1 to i, is
Pi¡1

j=1(rj +Qj) + ri. Let this echelon stock

level be Ri, i = 1; ¢ ¢ ¢ ; N . It is easy to verify that the echelon reorder points so de¯ned satisfy the
above equalities and the resulting echelon-stock policy is identical to the installation-stock policy.

Echelon stock (R,nQ) policies have very nice properties. As a result, the optimal echelon reorder

points can be determined sequentially in a bottom-up fashion starting with stage 1. Essentially, after

a proper transformation, the batch-transfer model reduces to a base-stock model of the Clark and

Scarf (1960) type. On the other hand, installation stock (R,nQ) policies are not as nice; a heuristic

algorithm is available for determining the optimal installation-stock reorder points, based on several

easy-to-compute bounds.

As mentioned earlier, echelon-stock policies require centralized demand information, while instal-

lation stock policies only require local information. The relative cost di®erence between the two is a

measure of the value of centralized demand information. An extensive numerical study (with 1,536

examples) shows that the value of information ranges from 0% to 9% with an average of 1.75%.

Gavirneni et al. (1999) study di®erent patterns of information °ow between a retailer and a

supplier. The retailer faces independent and identically distributed (i.i.d.) demands and replenishes

his inventory by following an (s, S) policy. At the beginning of each period, the retailer reviews

his inventory level (on-hand inventory minus customer backorders), and if it is below s, he places

an order with the supplier to raise the inventory level to S. The supplier satis¯es this order as

much as possible. In the event the supplier does not have su±cient on-hand inventory to satisfy the

retailer order, a partial shipment is made to the retailer, and the retailer obtains the un¯lled part

of the order from an external source. There is no delivery leadtime with both sources of supply.

Customer demand arises at the retailer during the period, with complete backlogging. The focus of

the analysis is the supplier, who after satisfying (partially or fully) a retailer order at the beginning

of each period, decides how much to produce for the period. Production takes one period and is

subject to a capacity constraint. The supplier incurs linear inventory holding costs and linear penalty

costs for lost retailer orders. The objective is to determine a production strategy to minimize the

supplier's costs, under various scenarios that di®er in terms of the supplier's information about the

downstream part of the supply chain.

The ¯rst scenario assumes that the supplier has no information about the retailer except for the

orders the retailer has placed in the past. Moreover, the supplier is rather naive in assuming that

the orders from the retailer are i.i.d. Under this assumption, the best the supplier can do is to follow

the modi¯ed base-stock policy with the same order-up-to level in every period.3

3A modi¯ed base-stock policy with order-up-to level z works like this: if the inventory position (on-hand inventory

plus work-in-process minus backorders) is less than z, produce as much as possible under the capacity constraint to

increase it to z; if the inventory position is above z, produce nothing. In the context of Gavirneni et al., there are no

backorders at the supplier, only lost sales, and there is no work-in-process at any review time. The optimality of such

a policy has been established by Federgruen and Zipkin (1986a,b).

4



The second model assumes that at the beginning of each period, the supplier knows the number

of periods i since the last retailer order. In addition, the supplier knows the demand distribution

at the retailer, the fact that the retailer follows an (s,S) policy, and the speci¯c policy parameters

used by the retailer. Given this information, the supplier is able to determine the probability that

the retailer is going to place an order in the coming period and the distribution of the order size.

This in°uences the current production decision. It is shown that the optimal policy for the supplier

in this case is again a modi¯ed base-stock policy with state-dependent order-up-to level zi.

The third and ¯nal model assumes that the supplier has access to all the information available

to her in the second model. In addition, at the beginning of each period, the supplier knows the

value of j, the number of units sold by the retailer since the last retailer order. Again, a modi¯ed

base-stock policy with state-dependent order-up-to level zj is optimal.
4

A numerical study has been conducted by Gavirneni et al. to understand the di®erences between

the above three models. From the ¯rst model to the second, the percentage decrease in supplier

costs varies from 10% to 90%; and the savings increase with capacity. From the second model to

the third model, the savings range from 1% to 35 %. They also report sensitivity results on the

cost savings as a function of the supplier capacity, the supplier cost parameters, the retailer demand

distribution, and the retailer's policy parameters. The key observations are: 1) when the retailer

demand variance is high, or the value of S ¡ s is either very high or very low, information tends to
have low values, and 2) if the retailer demand variance is moderate, and the value of S ¡ s is not
extreme, information can be very bene¯cial.

Lee et al. (2000) study the value of sharing demand information in a supply-chain model with

a nonstationary demand process. The supply chain consists of two ¯rms, one retailer and one

manufacturer. The customer demand process faced by the retailer is an AR(1) process:

Dt = d+ ½Dt¡1 + ²t

where d > 0, ¡1 < ½ < 1, and ²t are independent random variables with a common normal

distribution with mean zero and variance ¾2. Both ¯rms know the values of the parameters of the

demand process, i.e., d, ½ and ¾. The retailer sees the realization of demand in each period, while

the manufacturer's information depends on, well, what the retailer provides.

The retailer reviews its inventory at the end of each period. Take period t. The retailer satis¯es

Dt, the demand for period t, from its on-hand inventory with complete backlogging. At the end of

the period, the retailer places an order for Yt units with the manufacturer. The manufacturer satis¯es

this order from its own on-hand inventory, also with complete backlogging. 5 At the beginning of the

next period (period t+1) the manufacturer places an order with an outside supplier with ample stock

4One can imagine that the retailer transmits his demand data to the supplier in every period via some electronic

medium. The supplier can then determine the value of j and use that information in her production decisions (through

the state-dependent policy). A supplier's optimal use of timely demand information from a retailer has been addressed

in other papers. For example, Gallego et al. (2000) address this issue in a continuous-time model without capacity

constraints. They also show that it is not always in the retailer's interests to share demand information with the

supplier. Another reference is Bourland et al. (1996) who study a supply chain model with a component plant

(seller) and a ¯nal assembly plant (buyer). The production cycles of the two factories do not coincide. Traditionally,

information sharing occurs only when the buyer places an order. They study the impact of real-time communication

of the buyer's demand data.
5The original assumption made in Lee et al. is that if the manufacturer's on-hand inventory is insu±cient to

satisfy a retailer order, the manufacturer will make up the shortfall from an external source. The analytical bene¯t

of this assumption is that the retailer always gets its orders ¯lled in full. But this actually complicates the demand

process at the manufacturer, who is e®ectively operating under a lost-sales regime. It is well known that when we
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to replenish its own inventory. For easy exposition, we assume that the leadtimes at both sites are

zero, i.e., transportation from the outside supplier to the manufacturer or from the manufacturer to

the retailer is instantaneous. (Note that if part of Yt is backlogged at the manufacturer, that backlog

will remain there until the end of period t+1, even though the manufacturer's replenishment leadtime

is zero. This is because the manufacturer only ¯lls the retailer's orders at the ends of periods. The

case with a di®erent sequence of events can be analyzed similarly.)

We begin with the retailer's ordering decisions. Suppose we are now at the end of period t. What

is the ideal inventory level for the retailer going into period t+1? Since the delivery leadtime is zero,

the retailer can be myopic, i.e., to minimize its expected holding and backorder costs incurred in

period t+1. The demand in period t+1 is Dt+1 = d+½Dt+²t+1, which is normally distributed with

mean d+ ½Dt and standard deviation ¾. (Dt has been realized by the end of period t.) Therefore,

the ideal inventory level going into period t+ 1 is

St = d+ ½Dt + k¾

where k is a constant depending on the holding and backorder cost parameters at the retailer.

(This is a well known formula for the newsvendor model with normal demand.) To derive the order

quantity Yt, suppose the retailer's inventory at the beginning of period t is St¡1. Thus

St¡1 ¡Dt + Yt = St

or

Yt = Dt + St ¡ St¡1:
This gives us the demand process facing the manufacturer. (The value of Yt can be negative, an

unpleasant scenario, which should indicate to you the potential suboptimality of the myopic policy.

But let's con¯ne ourselves to cases where this rarely happens.)

Now consider the manufacturer's ordering decisions. Suppose we are at the beginning of period

t+ 1, having just received and satis¯ed (completely or partially) the retailer order Yt. What is the

manufacturer's ideal inventory level for the beginning of period t + 1? Since the manufacturer's

replenishment leadtime is zero and the outside supplier has ample stock, the manufacturer can

also be myopic, minimizing its expected holding and backorder costs in period t + 1 alone. (This

argument is again not water-tight because the manufacturer's myopic inventory level in one period

may prevent it from reaching its myopic inventory level in the next period, i.e., there can be too

much inventory. If so, the myopic policy is not optimal. Let's not worry about this here.) In period

t+ 1, the retailer order is Yt+1, which can be expressed as

Yt+1 = Dt+1 + St+1 ¡ St = Dt+1 + ½(Dt+1 ¡Dt):

Since Dt+1 = d+ ½Dt + ²t+1, we have

Yt+1 = (1 + ½)d+ ½
2Dt + (1 + ½)²t+1: (1)

The manufacturer's ideal inventory for period t+ 1 can be written as

Tt = E[Yt+1] +K Std[Yt+1]

combine lost sales with a positive replenishment leadtime, it is very di±cult to characterize the distribution of the

total demand (or satis¯ed retailer orders in this case) over a leadtime. This problem is not addressed in Lee et al.

The same comment applies to Raghunathan (2001), to be reviewed shortly.
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where K is a constant depending on the manufacturer's holding and backorder costs. Moreover, the

manufacturer's minimum expected (one-period) cost is proportional to Std[Yt+1], the value of which

depends on what the manufacturer knows about the retailer's demand process at the beginning of

period t+ 1.

As mentioned earlier, the manufacturer knows the value of Yt in any case. If there is no sharing

of demand information between the retailer and the manufacturer, the latter does not see Dt. Since

Yt = Dt + ½(Dt ¡Dt¡1) and Dt = d+ ½Dt¡1 + ²t, we have

Dt =
Yt ¡ d¡ ²t

½
:

Plugging this into (1), we have

Yt+1 = d+ ½Yt ¡ ½²t + (1 + ½)²t+1:

Therefore

Std[Yt+1j no sharing ] = ¾
p
½2 + (1 + ½)2: (2)

On the other hand, if demand information is shared with the manufacturer, the latter sees the value

of Dt, then we have from (1)

Std[Yt+1j sharing ] = ¾(1 + ½): (3)

From (2) to (3), we see the reduction in the manufacturer's costs as a result of information sharing.

(Recall that the manufacturer's costs are proportional to the standard deviation of its leadtime

demand, i.e., Yt+1.) The savings can be signi¯cant, as Lee et al. have shown by analytical and

numerical results.

In a note commenting on Lee et al., Raghunathan (2001) argues that the manufacturer can do

much better in the case without information sharing. The idea is that the manufacturer can use its

information about the retailer's order history to greatly sharpen its demand forecast. Let's see how

this works. From Yt = Dt + ½(Dt ¡Dt¡1), we have

Dt =
1

1 + ½
Yt +

½

1 + ½
Dt¡1:

Applying the above equation repeatedly, we have

Dt =
1

1 + ½

t¡1X
i=1

(
½

1 + ½
)iYt+1¡i + (

½

1 + ½
)tD0

where it is assumed D0 = d+ ²0. Plugging the above into (1),

Yt+1 = (1 + ½)d+
½2

1 + ½

t¡1X
i=1

(
½

1 + ½
)iYt+1¡i +

½t+2

(1 + ½)t
D0 + (1 + ½)²t+1

with

Std[Yt+1j no sharing ] = ¾
s

½2t+4

(1 + ½)2t
+ (1 + ½)2:

It can be shown that the above expression is less than (2), suggesting that the value of information

is less than what is reported in Lee et al. Moreover, as t!1, the bene¯ts e®ectively disappear.
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Cachon and Fisher (2000) provide a model to quantify the value of downstream inventory in-

formation in a one-warehouse multi-retailer system. When the warehouse has access to real-time

inventory status at the retailers as opposed to just retailer orders, it can make better ordering and

allocation decisions. The supply chain bene¯ts. But by how much? (We choose not to refer to the

warehouse as a supplier, for the view taken here is that of a central planner.)6

The model consists of one warehouse and multiple, identical retailers. The periodic customer

demands at the retailers are i.i.d., both across retailers and across time periods. The retailers re-

plenish their inventories by ordering from the warehouse, who in turn orders from an external source

with unlimited inventory. Complete backlogging is assumed at both the retail and the warehouse

level. The replenishment leadtime at the warehouse is constant, so are the transportation leadtimes

from the warehouse to the retailers. Linear inventory holding costs are incurred at the warehouse

and the retailers, and linear penalty costs are incurred at the retailers for customer backorders. The

objective is to minimize the long-run average system-wide holding and backorder costs (i.e., the

central planner's view).

Inventory transfers from the warehouse to the retailers are restricted to be integer multiples of

Qr, an exogenously given base quantity. Similarly, orders by the warehouse (to the external source)

must be integer multiples of QsQr, for some positive integer Qs, another given parameter. The

decisions for the retailers are when to place an order with the warehouse, and how many batches

(each of size Qr) to order, and the decisions for the warehouse are when to place an order with the

outside source, and how many sets of batches to order (each set consists of Qs batches, each of size

Qr).

In the scenario with traditional information sharing, the warehouse only observes the retailers'

orders. Thus a replenishment policy can only be based on local information. Speci¯cally, each

retailer follows an (Rr; nQr) policy, i.e., whenever its inventory position (its outstanding orders, in

transit or backlogged at the warehouse, plus its on-hand inventory minus its customer backorders)

falls to Rr or below, order a minimum integer multiple of Qr to increase its inventory position to

above Rr. Similarly, the warehouse follows an (Rs; nQs) policy: whenever its inventory position

(orders in transit plus on-hand inventory minus backlogged retailer orders) falls to RsQr or below,

order an integer multiple of QsQr units. The decision variables are the reorder points Rr and Rs.

When the warehouse is unable to satisfy every retailer's order in a period, it follows an allocation

policy. It is called a batch priority policy that works as follows. Suppose a retailer orders b batches

in a period. Then, the ¯rst batch in the order is assigned priority b, the second batch is assigned

priority b¡ 1, etc. All batches ordered in a period (by all retailers) are placed in a shipment queue,
6There is a large body of literature on one-warehouse multi-retailer systems. One way to categorize this literature is

by looking at whether or not there are economies of scale in transferring inventory from one location to another. If the

answer is no, then the focus is on the so-called one-for-one replenishment policies. The key references in this area are:

for continuous-time models, Sherbrooke (1968), Simon (1971), Graves (1985), AxsÄater (1990), Svoronos and Zipkin

(1991), Forsberg (1995), and Graves (1996); and for discrete-time models, Eppen and Schrage (1981), Federgruen and

Zipkin (1984a,b), Jackson (1988), and Diks and de Kok (1998). If there are economies of scale, then a batch-transfer

policy makes more sense. The key references here are: for continuous-time models, Deuermeyer and Schwarz (1981),

Moinzadeh and Lee (1986), Lee and Moinzadeh (1987a,b), Svoronos and Zipkin (1988), AxsÄater (1993b, 1997, 1998,

2000), and Chen and Zheng (1997); and for discrete-time models, Aviv and Federgruen (1998), Chen and Samroengraja

(1999, 2000), and Cachon (2001). For comprehensive reviews on the above literature, see AxsÄater (1993a), Federgruen

(1993), and Chapter 10 of this volume by Sven AxsÄater. Most of the replenishment policies studied are based on

local inventory information, and only a couple use centralized demand/inventory information. The objectives of these

papers are typically to show how to determine the system-wide costs for a given class of policies. The desire to

understand the value of demand/inventory information appeared only recently.
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with the batch having the highest priority enters the queue ¯rst. (The rationale for this allocation

policy is that a retailer ordering the most batches in a period is, naturally, considered to have the

highest need for inventory.) When multiple batches have the same priority, they enter the queue

in a random sequence. A shipment queue is maintained for each period. The retailers' orders are

satis¯ed in the order in which the shipment queues are created and within each shipment queue,

on a ¯rst-in ¯rst-out basis. Notice that the warehouse's stock allocation is based on the retailers'

\needs" at the time the orders are placed.

The second scenario, called full information sharing, is where the warehouse has access to the

retailers' inventory status on a real-time basis. In this case, the retailers continue to use the (Rr; nQr)

policy described earlier. The warehouse, however, uses more sophisticated rules for ordering and

allocation. The exact policy is complicated. The idea behind the new ordering policy is that the

warehouse should perform some sort of cost-bene¯t analysis for each set of batches added to an

order, with the cost being additional holding cost at the warehouse and the bene¯t being less delay

for the retailers' orders. On the other hand, with immediate access to retailers' inventory status,

the warehouse can allocate inventory (to satisfy backlogged retailer orders) based on the retailers'

needs at the time of shipment.

By comparing the system-wide costs under traditional and full information sharing, one obtains

a measure of the value of downstream inventory information. In a numerical study with 768 exam-

ples, it is found that information sharing reduces supply chain costs by 2.2% on average, with the

maximum at 12%. 7

Aviv and Federgruen (1998) consider a supply chain model consisting of a supplier and multiple

retailers. The members of the supply chain are independent ¯rms. In this decentralized setting,

they attempt to characterize the value of sales information, which is de¯ned to be the reduction in

supply chain-wide costs if the supplier has access to real-time sales data at the retail level.8 They

then proceed to consider the impact of a vendor managed inventory (VMI) program, which comes

with real-time information sharing and puts the supplier in the position of a central planner for the

supply chain. Their main conclusions are based on three models: a decentralized model without

information sharing, a decentralized model with information sharing, and a centralized model with

information sharing.

We begin with the base model. There are J retailers. Customer demands are stochastic and

occur at the retail sites only. The retailers monitor their inventories periodically. The demand

processes at the retailers are independent. Demands in di®erent periods at the same retailer are

i.i.d. according to a retailer-speci¯c distribution. When demand exceeds on-hand inventory at a

retailer, the excess demand is backlogged. The retailers replenish their inventories from the supplier,

who in turn replenishes its own inventory through production. The transportation leadtimes from

the supplier to the retailers are constant but may be retailer-speci¯c. The production leadtime at the

supplier is also constant. The production quantity that the supplier can initiate in a period is subject

to a constant capacity constraint. Each retailer incurs a ¯xed cost for each order it places with the

7Cachon and Fisher also provide a lower bound on the system-wide costs under full information, and compare that

with the costs under traditional information sharing. This does not change the picture on the value of information

in any signi¯cant way, meaning the proposed full-information policy is near-optimal. Moreover, they show, again via

numerical examples, that signi¯cant savings can be had if the leadtimes or batch sizes (due to ¯xed ordering costs)

are reduced, which may be expected from better information-linkup. Similar ¯ndings have been reported in Chen

(1998b).
8This paper therefore deviates from the mainstream approach of quantifying the value of information in centralized

models.
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supplier, linear inventory holding costs, and linear penalty costs for customer backorders. These cost

parameters are stationary over time, but they can be retailer-speci¯c. The supplier incurs linear

holding costs for its on-hand inventory and linear penalty costs for backorders of retailer orders.

This latter cost component is a contract parameter, which is given exogenously and represents a

revenue for the retailers. There are no ¯xed costs for initiating a production run at the supplier.

The replenishment policies at the retailers are of the (m;¯) type, whereby the retailer reviews

its inventory position every m periods and places an order to increase it to ¯. The values of the

policy parameters can be retailer-speci¯c, with (mj ; ¯j) for retailer j, j = 1; ¢ ¢ ¢ ; J . Let M be the

least common multiple of m1; ¢ ¢ ¢ ;mJ . Therefore, the joint order process of the retailers regenerates

after a grand replenishment cycle of M periods. In general, the replenishment cycles of the retailers

are not coordinated. Aviv and Federgruen consider two extreme arrangements in this regard. One is

called \peaked," in which all retailers order at the beginning of a grand replenishment cycle, and the

other \staggered," in which the retailer cycles are spread out to achieve a smooth order process for

the supplier. (The staggered pattern is clearly de¯ned if the retailers are identical. Otherwise, one

needs to spell out what is meant by \smooth." Staggered policies have been proposed and studied

by Chen and Samroengraja (2000) in one-warehouse multi-retailer systems.)

Given that the demand process at the supplier is cyclical, it is reasonable to expect that the

supplier's production policy is also cyclical. Aviv and Federgruen assume that the supplier follows a

modi¯ed base-stock policy with cyclical order-up-to levels, whereby the supplier initiates a produc-

tion run, subject to the capacity constraint, in period t to increase its inventory position to ¯m, if

period t is the mth period in the grand cycle, m = 0; 1; ¢ ¢ ¢ ;M ¡ 1. 9 In the event that the supplier
cannot satisfy all retailers' orders in a period, an allocation mechanism is given that is based on

some measure of expected needs of the retailers. A shipment can be sent to a retailer even though

it is not the retailer's ordering period. (Recall that the retailers order intermittently.) Of course,

this occurs only when the supplier backlogs an order (or part of it) from the retailer and ¯lls it in a

subsequent period.

The ¯rms minimize their own long-run average costs in a noncooperative fashion. Ideally, the

solution to this noncooperative game can be obtained by using some established equilibrium concept.

Since this is intractable, Aviv and Federgruen take a two-step approach: ¯rst, the retailers optimize

assuming the supplier has ample stock, and then, given the retailers' decisions, the supplier optimizes.

This completes our description of the base model.

The second model retains the above decentralized structure but assumes that the supplier ob-

serves the realized demands at the retail sites immediately. This information allows the supplier to

better anticipate the orders that the retailers are going to place in future periods. As a result, the

supplier can use a state-dependent, modi¯ed base-stock policy, where the state now includes not

only where in a grand cycle the current period is but also a summary of relevant sales information

from the retail sites.

Finally, the third model assumes that a VMI program is in place, which provides the supplier

with immediate access to the sales data at the retail sites and gives the supplier the rights to decide

when and how much to ship to each retailer. It is assumed that the VMI contract is such that it

is in the supplier's interests to minimize the total costs in the supply chain. Aviv and Federgruen

propose a heuristic method to solve this centralized planning problem.

9They also consider a policy with a constant order-up-to level. For proofs of the optimality of the cyclical base-stock

policies in single-location settings, see Aviv and Federgruen (1997) and Kapuscinski and Tayur (1998).
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A numerical study shows that the average improvement in supply chain costs from the ¯rst to

the second model is around 2%, with a range from 0% to 5%. Most of these savings accrue to the

supplier. From the second model to the third, the average improvement is 4.7%, with a range from

0.4% to 9.5%. It is also found that the value of information sharing and VMI increases, as the

degree of heterogeneity among the retailers increases, the leadtimes become longer, or the capacity

becomes tighter. Finally, the system tends to perform better with staggered retailer cycles rather

than the peaked pattern.

One of the key drivers for production-inventory planning decisions is demand forecast. In any

given period, the ¯rm determines a set of predictions for the demands in future periods based on

its information about the operating environment and planned activities. As time progresses and

new information becomes available, the ¯rm revises its demand forecast. From the standpoint

of production-inventory planning, an important question is how to integrate the evolving demand

forecast into the planning decisions. Below, we summarize several papers that address this question.

Gullu (1997) studies a two-echelon supply chain consisting of a central depot and N retailers. The

depot serves as a transshipment center where an order arriving at the depot from an outside supplier

is immediately allocated among the retailers. (Thus the depot does not hold inventory.) Customer

demand arises only at the retailers, with unsatis¯ed demand fully backlogged. The objective is to

determine a depot replenishment/allocation policy that minimizes the system-wide costs. A unique

feature of the model is that each retailer maintains a vector of demand forecasts for a number of

future periods, and this vector is updated from one period to the next. Gullu considers two models,

one that utilizes the demand forecasts in the replenishment/allocation decision and the other that

ignores the forecasts. By comparing the two models, one sees the value of demand information

(contained in the forecasts).

The evolution of demand forecasts is described by the martingale model of forecast evolution

(MMFE). 10 Let Dj
t be retailer j's demand forecasts for periods t; t + 1; ¢ ¢ ¢ at the end of period t,

j = 1; ¢ ¢ ¢ ; N . That is,
Dj
t = (d

j
t;t; d

j
t;t+1; ¢ ¢ ¢)

where djt;t is the realized demand for period t (thus not really a forecast) and d
j
t;t+k, k ¸ 1, is the

retailer's forecast, made at the end of period t, for the demand in period t+k. In the additive model,

Dj
t is obtained by adding an error term (or adjustment) to each relevant component of Dj

t¡1, i.e.,

djt;t = djt¡1;t + ²
j
t;1

djt;t+1 = djt¡1;t+1 + ²
j
t;2

...

Let ¹²jt = (²jt;1; ²
j
t;2; ¢ ¢ ¢) and ¹²t = (¹²1t ; ¢ ¢ ¢ ; ¹²Nt ). Gullu assumes that ²jt;k = 0 for all k > M for some

positive integer M , for all t and all j. In other words, the new information collected during period t

only a®ects the demand forecasts inM periods (i.e., the current period and the nextM¡1 periods).
Moreover, it is assumed that ¹²t, for all t, are independent and have the same multi-variate normal

distribution with zero mean. It is, however, possible that for a given t, the di®erent components

of ¹²t are correlated. This allows for modeling of demand correlation over time and across retailers.

10For the development of the MMFE model, see Hausman (1969), Graves et al. (1986, 1998), and Heath and

Jackson (1994). Hausman (1969) and Heath and Jackson (1994) also consider a multiplicative model.
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Finally, the initial forecast for the demand in a period that is more than M periods away is a

constant, i.e.

djt;t+k = ¹
j ; 8t and 8k ¸M:

(Thus ¹j is the mean demand per period at retailer j.) Consequently,

djt;t = d
j
t¡1;t + ²

j
t;1 = ¢ ¢ ¢ = ¹j +

MX
i=1

²jt¡i+1;i

Letting ¾2j;i be the variance of ²
j
t;i, we have

V ar[djt;t] =
MX
i=1

¾2j;i

Note that at the end of period t ¡ 1, the conditional variance of djt;t given djt¡1;t is only ¾2j;1. In
other words, as the demand forecast for a ¯xed period is successively updated, the variance for the

demand in that period is successively reduced. This reduction in demand uncertainty in turn leads

to improvement in supply chain performance.11

Under the above demand model, Gullu considers two scenarios depending on whether or not the

demand forecasts are used in the depot's allocation decision. The depot's replenishment policy is

the order-up-to S policy, i.e., in each period, the depot places an order with the outside supplier to

increase the system-wide inventory position to the constant level S.12 The key analytical results are

that the use of demand forecasts leads to lower system-wide costs and if and only if the backorder

penalty cost rate is higher than the holding cost rate (identical cost rates are assumed across retail-

ers), a lower system-wide inventory position. (This latter result is well known for the newsvendor

model with normal demand.) There are also various asymptotic results for some special cases, which

we omit.

Toktay and Wein (2001) consider a single-item, single-stage, capacitated production system with

an MMFE demand process. Random demand for the item arises in each period. Demand is satis¯ed

from the ¯nished-goods inventory, which is replenished by a production system with capacity Ct in

period t. That is, the system can produce up to Ct units of the product in period t, with Ct in

di®erent periods being i.i.d. normal random variables with mean ¹ and variance ¾2C . If demand

exceeds the ¯nished-goods inventory, the excess demand is fully backlogged. Let It be the (¯nished

goods) inventory level at the end of period t. The system incurs holding and backorder costs equal

to (hI+t + bI
¡
t ) in period t, where h and b are the holding and backorder cost rates. Let Pt be the

production quantity in period t. Thus Pt = minfQt¡1; Ctg, where Qt¡1 is the number of production
orders waiting to be processed at the end of period t¡1. At the end of each period t, Rt new orders
are released to the production system. Thus Qt = Qt¡1¡Pt+Rt. The objective is to ¯nd a release
policy fRtg to minimize the expected steady-state holding and backorder costs.13

Let Dt be the demand in period t. The demand process is stationary with E[Dt] = ¸. (Thus we

need ¹ > ¸ for stability.) Let Dt;t+i be the forecast for Dt+i determined at the end of period t, i ¸ 0.
11Updates of demand forecasts do not always make them more accurate, see Cattani and Hausman (2000) for both

empirical and theoretical evidence.
12It is possible that the supply chain's performance can be improved if the depot's replenishment decision takes

into account the demand forecasts at the retail level. This should be investigated. If you are familiar with Eppen and

Schrage (1981), then you can see that the Gullu model is basically the Eppen-Schrage model with forecast evolution.

The analysis is also similar to Eppen-Schrage's.
13What queueing folks call a release policy is called a replenishment policy by inventory folks.

12



Thus Dt;t is the realized demand in period t. It is assumed that nontrivial forecasts are available

only for the next H periods, i.e., Dt;t+i = ¸ for all i > H. De¯ne ²t;t+i = Dt;t+i ¡Dt¡1;t+i, i ¸ 0.
It is then clear that ²t;t+i = 0 for al i > H . Thus ²t = (²t;t; ²t;t+1; ¢ ¢ ¢ ; ²t;t+H) is the forecast update
vector whose value is observed at the end of period t. The forecast update vectors (for di®erent

periods) are assumed to be i.i.d. normal random variables with zero mean.

Toktay and Wein consider two classes of release policies: one ignores the forecast information,

and the other utilizes it. In the former case, Rt = Dt. Under the initial condition that Q0 = 0 and

I0 = sm, the proposed release policy leads to Qt + It = sm for all t.14 To integrate the demand

forecasts into the release policy, consider

Rt =

HX
i=0

Dt;t+i ¡
H¡1X
i=0

Dt¡1;t+i =
H¡1X
i=0

²t;t+i +Dt;t+H =

HX
i=0

²t;t+i + ¸:

Under this release policy and with proper initial conditions, one can show that for all t

Qt + It ¡
HX
i=1

Dt;t+i = sH

for some constant sH which can be controlled by setting the initial inventory level.15 A key ¯nding

of the paper is the observation that excess production capacity, as measured by ¹¡ ¸, and demand
information, as contained in the demand forecasts, are substitutes. (Other studies on capacitated

problems with forecast evolution include Gullu (1996) and Gallego and Toktay (1999).)

Aviv (2001) considers a supply chain model with one retailer and one supplier. Customer demand

arises at the retailer, who replenishes its inventory from the supplier, who in turn orders from an

outside source with ample stock. The two members of the supply chain independently forecast

the customer demands in future periods and periodically adjust their forecasts as more information

becomes available. The retailer and the supplier are modeled as a team in the sense that they share a

common objective to minimize the system-wide costs, but they do not necessarily share their demand

forecasts. Aviv studies the following three scenarios. In scenario one, the two members neither share

their demand forecasts nor use their own demand forecasts in making replenishment decisions. In

scenario two, they still do not share their demand forecasts, but now they each integrate their own

forecasts in their replenishment decisions. In scenario three, they share their demand forecasts and

use the shared information in their replenishment decisions.

Aviv uses an MMFE demand model. The demand in period t, dt, is the sum of a constant and

a stream of random variables representing adjustments to the forecast of dt made at di®erent times

leading up to period t. Speci¯cally,

dt = ¹+ ²t +

1X
i=0

(²rt;i + ²
s
t;i)

14In traditional inventory lingo, Qt is the outstanding orders, while It is the inventory level. The sum of the two is

the inventory position. The proposed policy is thus a base-stock policy whereby the inventory position is maintained

at a constant level.
15Again one can draw some connection to inventory theory here. As noted above Qt + It is the inventory position

at the end of period t. So the second release policy corresponds to a modi¯ed base-stock policy that is based on an

\adjusted inventory position." The adjustment is the total forecasted demand in the next H periods. From inventory

theory, the \optimal" adjustment should be based on the demand during the replenishment \leadtime." The problem

is that there is no leadtime here, only capacity. The proposed release policy seems to draw an equivalence between

\leadtime" and the forecast horizon in a capacitated production system. If capacity is tight, then the \leadtime"

should be long, and the opposite holds if capacity is ample. But that has little to do with the forecast horizon.
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where ¹ is a constant, f²tgt¸1 are i.i.d. normal random variables, the components of the vector

f(²rt;i; ²st;i)g1i=0 are independent and each a bi-variate normal and the vectors (for di®erent t) are
i.i.d., and f²tgt¸1 are independent of f(²rt;i; ²st;i)gt¸1;i¸0. All the random variables have zero mean.

(Di®erent notation is used in Aviv.) As a result, fdtg is a sequence of i.i.d. normal random

variables with mean ¹. At the beginning of period ¿ , for any ¿ , the retailer privately observes the

vector f²rt0;t0¡¿gt0¸¿ , and the supplier privately observes the vector f²st0;t0¡¿gt0¸¿ . Therefore, by the
beginning of period t¡k, k ¸ 0, the retailer has observed the value ofP1

i=k ²
r
t;i whereas the supplier

has observed the value of
P1

i=k ²
s
t;i. It is easy to see that as they get closer and closer to period t,

i.e., as k decreases, the supply chain members have less and less uncertainty about dt (or better and

better forecast for dt). In scenario three, the supply chain members share their private information.

This enables them to improve (by unifying) their demand forecasts.

In a numerical study, Aviv found that integrating the forecast updates in the replenishment

decisions reduces, on average, the supply chain costs by 11%, and information sharing between the

retailer and the supplier brings in an additional reduction of 10%.

It is worthwhile to note that demand forecasts can take other forms with di®erent patterns of

evolution. For example, a parameter of the demand distribution may be unknown. Beginning with

a prior distribution for the unknown parameter, one can sharpen the estimate of the parameter after

each observation of demand. The production/inventory decisions can be made to dynamically re°ect

the new information that becomes available as time progresses. Alternatively, demands in di®erent

periods may be correlated and the data on early sales can be used to update the forecasts for the later

sales. The following are additional papers that incorporate adjustments of demand forecasts: Scarf

(1959, 1960), Iglehart (1964), Murray and Silver (1966), Hausman and Peterson (1972), Johnson

and Thompson (1975), Azoury and Miller (1984), Azoury (1985), Bitran et al. (1986), Miller (1986),

Bradford and Sugrue (1990), Lovejoy (1990, 1992), Matsuo (1990), Fisher and Raman (1996), Eppen

and Iyer (1997a,b), Sobel (1997), Barnes-Schuster et al. (1998), Brown and Lee (1998), Lariviere

and Porteus (1999), Dong and Lee (2000), Donohue (2000), Milner and Kouvelis (2001), and Ding

et al. (2002). On the other hand, the demand process can be modulated by an exogenous Markov

chain; the state of the exogenous Markov chain determines the current period's demand distribution.

For inventory models with Markov-modulated demands, see Song and Zipkin (1992, 1993, 1996a),

Sethi and Cheng (1997), Chen and Song (2001), and Muharremoglu and Tsitsiklis (2001).

Advance Warnings of Customer Demands

When members of a supply chain share information, no new information is created; only existing

information moves from one place to another. In some situations, however, customers can, and

willing to, provide advance warnings of their demands. These warnings represent new information

for the supply chain. And the question is how to exploit such information.

Hariharan and Zipkin (1995) study inventory models where customers provide advance warnings

of their demands. Customer orders arise randomly. Each order comes with a due date, a future time

when the customer wishes to receive the goods ordered. They call the time from a customer's order

to its due date the demand leadtime. The customer does not want to receive delivery before the due

date. Deliveries after due dates are possible, but undesirable. They show that demand leadtimes

are the opposite of supply leadtimes in terms of their impact on the system performance.

A simple model illustrates the basic idea. Suppose customer orders arrive according to a simple

Poisson process. Each customer orders a single unit. The demand leadtime is a constant l, i.e., an
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order at time t calls for a \demand" at time t+ l. Demand is satis¯ed from on-hand inventory, with

complete backlogging. Inventory is replenished from an outside source with ample stock, and the

supply leadtime is a constant L. There are no economies of scale in ordering.

If l ¸ L, then one can satisfy all customer demands perfectly without holding any inventory.

Here is how to achieve that. Whenever a customer order arrives, wait (l ¡ L) units of time before
placing an order for one unit with the outside supplier. This replenishment unit will arrive just in

time to satisfy the customer's demand (at time t+ l).

Now suppose l < L. From basic inventory theory, we know that the inventory position at time

t should \cover" the total demand during the supply leadtime (i.e., the leadtime demand). Note

that at time t, the total demand in the interval (t; t+ l) is already known due to advance ordering,

whereas the demand in (t + l; t + L) remains unknown (it is a Poisson random variable with mean

¸(L ¡ l) where ¸ is the arrival rate of customer orders). Let dt be the known part, and Dt the
unknown portion. The leadtime demand is DL

t = dt + Dt. Therefore, the inventory position at

time t should consist of dt and a bu®er inventory S for protection against the uncertain part of the

leadtime demand Dt. The inventory level at time t+ L is (dt + S) ¡DL
t = S ¡Dt. Therefore, the

expected holding and backorder cost rate at time t+ L can be written as

E[h(S ¡Dt)+ + b(S ¡Dt)¡]
where h and b are the holding and backorder cost rates. Let S¤ be the S value that minimizes
this cost expression. If we set the inventory position at time t to dt + S

¤, then we know that the
expected holding and backorder costs one supply leadtime later are minimized. If this inventory

position can be achieved for all t, then the system's long-run average costs are minimized and we

have an optimal policy. Here is a proof. Assume at t = 0, the inventory position is d0 + S
¤. (If it

is lower than this target level, order enough to make up the shortfall; otherwise, just wait until the

inventory position at some time ¿ equals d¿ + S
¤.) Then, whenever a customer order arrives, order

one unit from the outside source. This is just like the one-for-one replenishment policy used in the

conventional system without advance ordering, with a caveat that replenishment orders are based

on customer orders not customer demands. It is a simple matter to see that the inventory position

at any time coincides with the ideal target. The key point of the above exercise is that a system

with demand leadtime l and supply leadtime L is essentially the same as the conventional system

with supply leadtime (L¡ l). Thus, demand leadtime is the opposite of supply leadtime, an elegant
characterization of the value of (one type of) demand information.

Hariharan and Zipkin also study advance ordering in other models, where the supply leadtime

is stochastic or where the replenishment process consists of multiple stages. We omit the details.

One limitation of the Hariharan-Zipkin construct is that all customers come with the same de-

mand leadtime. This assumption is relaxed in Chen (2001a), the customer population is divided

into M segments. The customers from segment m are homogeneous and provide a common demand

leadtime lm, m = 1; ¢ ¢ ¢ ;M . In this multi-segment case, it is still rather straightforward to charac-
terize the value of advance ordering, even in a multi-stage serial inventory system. But the main

objective of Chen (2001a) is to study the incentives required by the customers in order for them to

willingly o®er advance warnings of their demands and how these incentives can be traded o® against

the bene¯ts of demand information embodied in the advance orders. We will review Chen (2001a)

in greater detail in x3.1.
Gallego and ÄOzer (2001) provide a discrete-time version of the above multi-segment model of

advance ordering. Time is divided into periods. In each period t, a demand vector is observed:
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~Dt = (Dt;t; ¢ ¢ ¢ ; Dt;t+N ), where Dt;s is orders placed by customers in period t for deliveries in period
s and N is a constant (positive integer) and is referred to as the information horizon.16 (Therefore,

the customer population e®ectively consists of N + 1 segments.) For this demand process, Gallego

and ÄOzer prove optimal policies in a single-location model with or without ¯xed ordering costs.

They consider multiple scenarios where the planning horizon can be ¯nite or in¯nite and the cost

parameters can be nonstationary. The main result is that if there are ¯xed order costs, the optimal

policy is a state-dependent (s,S) policy; otherwise, the optimal policy is a state-dependent base-stock

policy. But what is the state? De¯ne for any s ¸ t

Ot;s =

t¡1X
¿=s¡N

D¿;s

which represents what we know at the beginning of period t about the demand in period s. As in

any inventory model, we care about the total demand during the supply leadtime, which is assumed

to be a constant L. De¯ne

OLt =

t+LX
s=t

Ot;s

which is what we, standing at the beginning of period t, know about the future demands in periods

t; t + 1; ¢ ¢ ¢ ; t + L. (Therefore, the leadtime demand is total demand over L + 1 periods; the extra
period is simply due to the convention that orders are placed at the beginning of a period and

costs are assessed at the end of a period.) The modi¯ed inventory position at the beginning of

period t is simply the inventory level (on-hand minus backorders) plus outstanding orders minus

OLt . (Therefore, the known part of the leadtime demand has been taken out of the inventory

position. This is just for control purposes, of course, as we will see.) The state of the inventory

system consists of the above modi¯ed inventory position plus what we know about the demands

beyond the supply leadtime, i.e.

~Ot = (Ot;t+L+1; ¢ ¢ ¢ ; Ot;t+N¡1):

The optimal (s,S) policy has control parameters that are dependent on ~Ot and operates based on

the modi¯ed inventory position. That is, at the beginning of period t, if the modi¯ed inventory

position is at or below s( ~Ot), order to increase it to S(~Ot); otherwise, do nothing. When there are

no ¯xed order costs, the action is simply ordering to increase the modi¯ed inventory position up to

S( ~Ot) every period. For this latter case, and when the problem is stationary, the base-stock level

no longer depends on ~Ot. This makes intuitive sense.

Other related studies include Gallego and ÄOzer (2000), ÄOzer (2000), Karaesmen et al. (2001), and
ÄOzer and Wei (2001). These papers show how advance demand information can be used to improve

performance in various production/distribution systems with or without capacity constraints.

A mirror image of customers providing advance demand information is the decision maker post-

poning a decision until after customers have placed their orders. This is, e.g., the case when a

¯rm switches from a make-to-stock regime to a make-to-order regime. The postponement reduces

16The reader may notice that this demand model, where customers place orders in advance of their requirements,

resembles the MMFE model considered earlier. In fact, strictly speaking, the demand model with advance orders can

be considered a special case of the forecast evolution model. The only, perhaps super¯cial, distinction is that the

updates in the advance-orders model represent actual customer orders, whereas the updates in the MMFE don't have

to be. Moreover, the advance-orders model assumes no order cancellation (i.e., the updates are always nonnegative).

No such assumption has been detected under the MMFE framework.
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the uncertainty confronting the decision maker, improving the quality of the decision and thus per-

formance. For more on the impact of the postponement of operations decisions, see the cases of

Benetton (by Signorelli and Heskett, 1984) and Hewlett-Packard (by Kopczak and Lee, 1994) and

the papers by Lee and Tang (1998) and Van Mieghem and Dada (1999) and the references therein.

Refer to Chapter 5 of this volume by Hau L. Lee and Jayashankar M. Swaminathan for extensive

discussions on postponement strategies.

The Bullwhip Phenomenon

The bullwhip e®ect refers to a phenomenon where the replenishment orders generated by a stage

in a supply chain exhibit more volatility than the demand the stage faces. Recently there has been a

°urry of activities on the bullwhip e®ect. We review this part of the literature here mainly because

information sharing (e.g., sharing of customer demand information) is often suggested to combat

the undesirable e®ect.

Many economists have studied the bullwhip phenomenon; they are interested in it because empir-

ical observations refute a conventional wisdom that inventory smoothes production. A ¯rm carries

inventory, the conventional wisdom goes, which serves as a bu®er to smooth out the peaks and valleys

of demand. This in turn generates a relatively stable environment for production. So production

should be smoother than demand. Unfortunately, industry data point to the other way. Why? Pos-

sible explanations include: the use of (s,S) type of replenishment policies, the presence of positive

serial correlation in demand, etc. See Blinder (1982, 1986), Blanchard (1983), Caplin (1985), and

Kahn (1987). Other explanations call for industrial dynamics and organizational behavior (Forrester

1961) and irrational behavior on the part of decision makers (Sterman 1989).

We focus on the operations management literature, which has provided some new insights into

the bullwhip phenomenon. The general approach in this literature is to ¯rst specify the environment

(e.g., revenue/cost structure, characteristics of the demand process, etc.) in which a supply chain

member operates, and then show that when the supply chain member optimizes its own performance,

it generates orders that are more volatile than the demand process it faces. The implicit message here

is that the supply chain member should not be blamed for the bullwhip e®ect; it is the environment

that has created the observed behavior. Sometimes, one can change the environment, with potential

bene¯ts for some members of the supply chain or the supply chain as a whole.

Lee et al. (1997a,b) exemplify the above approach. They have identi¯ed four causes for the

bullwhip e®ect. The ¯rst is the demand characteristics. In a single-location inventory model with

a positively correlated demand process, they show that the optimal policy that minimizes, say,

the retailer's costs leads to variance ampli¯cation. There is an intuitive explanation. When the

retailer observes a low demand, he takes that as a signal of low future demands as well and places

an order that re°ects that lowered forecast. Conversely, a high demand suggests to him that the

demands in the future periods are likely to be high as well. He then places a large order based on

that outlook. In sum, due to the positive correlation between the demands in di®erent periods, the

orders placed by the retailer exhibit larger swings than the demands he observes. The second cause

is the possibility of supply shortage. To see the intuition, consider a supply chain with one supplier,

whose capacity °uctuates over time, and multiple retailers. In periods when the supplier's capacity

is likely to be insu±cient, the retailers|engaged in a rationing game to secure an adequate supply

for themselves|place large orders (larger than what they would order if there were no capacity

shortage). Suppose a retailer faces a deterministic demand stream, say, 4 units per period. So he
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would order 4 units when no capacity shortage is expected, and order more otherwise. Clearly, when

the capacity °uctuates over time, the order stream has a larger variance than the demand stream

(which has zero variance). The third cause is economies of scale in placing orders. When there is a

¯xed cost in placing an order, it makes sense to order once every few periods. This order batching

leads to the bullwhip e®ect. The fourth cause is °uctuating purchase costs. In periods when the

supply is cheap, you want to buy a lot and stockpile, whereas in periods when supply is expensive,

you wait. It is easy to see that the high-low prices encourage extreme orders. In order to dampen

the bullwhip e®ect, one has to attack the root causes. Lee et al. have described several industry

initiatives that do just that.

Below, we describe a supply chain model that has been used to show that a quasi-optimal

operating policy ampli¯es the order variance.17 Graves (1999) considers a supply chain model with

a nonstationary demand process. The demand process is an autoregressive integrated moving average

(ARIMA) process:

d1 = ¹+ ²1

dt = dt¡1 ¡ (1¡ ®)²t¡1 + ²t; t = 2; 3; ¢ ¢ ¢

where dt is the demand in period t, ® and ¹ are known constants, and ²t are i.i.d. normal random

variables with mean zero and variance ¾2. It is assumed that 0 ∙ ® ∙ 1. 18 From the above

description of the demand process, one can write

dt = ²t + ®²t¡1 + ¢ ¢ ¢+ ®²1 + ¹:

Note that each period, there is a shift in the mean of the demand process: the random shock ²t shifts

the mean of the demand process by ®²t, starting from period t+ 1. Therefore, each random shock

has a permanent e®ect on the demand process. Note that ® = 0 corresponds to an i.i.d. demand

process, whereas ® = 1 is a random walk. In general, a larger ® means the process depends more

on the most recent demand realization.

For the above demand process, a ¯rst-order exponential-weighted moving average provides a

minimum mean square forecast. De¯ne

F1 = ¹

Ft+1 = ®dt + (1¡ ®)Ft; t = 1; 2; ¢ ¢ ¢

where Ft+1 is the forecast for the demand in period t+ 1, after observing the demand in period t.

It is easy to verify that

dt ¡ Ft = ²t; t = 1; 2; ¢ ¢ ¢ :
Therefore, the exponential-weighted moving average is an unbiased forecast with a minimum mean

square error. Note that

Ft+1 = dt+1 ¡ ²t+1 = ®²t + ®²t¡1 + ¢ ¢ ¢+ ®²1 + ¹:

At the end of period t (after the realization of dt or ²t), the forecast for dt+i for any i ¸ 1 is equal
to Ft+1.

17For other such studies, see, e.g., Chen et al. (2000), Ryan (1997), and Watson and Zheng (2001).
18The above demand process is also known as an integrated moving average (IMA) process of order (0,1,1), see Box

et al. (1994).
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Consider, for a moment, a single-location, single-item inventory system with the above demand

process. Assume that when demand exceeds on-hand inventory, the excess demand is completely

backlogged. Moreover, the replenishment leadtime is L periods, where L is a known integer. The

events in each period are sequenced as follows: demand is realized, an order is placed, the order from

L periods ago is received, and demand and backorders (if any) are ¯lled from inventory. Consider a

base-stock policy, with the order-up-to level for period t being

St = S0 + LFt+1

where S0 is some constant. Note that LFt+1 is the forecast for the leadtime demand from period

t + 1 to period t + L. (And recall that the order-up-to level should cover the leadtime demand.)

There is no optimality proof for this policy; but if orders are allowed to be negative, the policy is

optimal. Let us assume that orders can be negative, and thus the order-up-to level for each period

is reached exactly. We have the order quantity in period t,

qt = dt + (St ¡ St¡1) = dt + L(Ft+1 ¡ Ft):

Note that the order quantity qt re°ects the most recent demand dt as well as an update on the

forecast for the total demand during the next L periods.19

Let xt be the inventory level (on-hand inventory minus backorders) at the end of period t. Graves

shows that under the above policy,

E[xt] = S0 + ¹; Std[xt] = ¾

vuutL¡1X
i=0

(1 + i®)2:

Note that when the leadtime demand is normally distributed, the minimum costs of the system are

proportional to Std[xt], which can sometimes, especially when ® is large, be a convex function of

L. This is in sharp contrast with the traditional setting with i.i.d. demands, where the minimum

costs are proportional to the square root of L. Our intuition is challenged, and it is because of the

nonstationary demand process!

Another observation is that the variance of qt is larger than the variance of dt, given Ft. To see

this, ¯rst recall that dt = Ft+ ²t. Thus, V ar[dtjFt] = ¾2. On the other hand, since Ft+1¡Ft = ®²t,
we have

qt = dt + L(Ft+1 ¡ Ft) = (Ft + ²t) + L®²t = Ft + (1 + L®)²t:
Therefore, V ar[qtjFt] = (1 + L®)2¾2. This shows that the variance of the order process exceeds

the variance of the demand process, and this ampli¯cation increases with leadtime and ® (larger

® means a less stable demand process). Graves shows that the order process fqtg has the same
characteristics as the demand process fdtg. Thus one can easily extend the analysis to a multi-stage
serial system and show that the order variance is further ampli¯ed upstream.

Although attention to the bullwhip e®ect can sometimes help us identify opportunities to improve

supply chain performance, it is dangerous if we take as our goal the reduction or elimination of the

bullwhip e®ect. This point is illustrated in a paper by Chen and Samroengraja (1999). They

consider a supply chain model with one supplier and N identical retailers. The perspective is that

19We are not going to make a big deal out of negative orders here. If you continue to feel that negative orders are

annoying, ¯rst consult Graves (1999) for further discussions on this and if that is still not enough, then you have a

challenging, and potentially rewarding, task ahead of you.
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of a central planner whose goal is to minimize the total cost in the supply chain. The supplier's

production facility is subject to a capacity constraint, and transportation from the supplier to the

retailers incurs ¯xed costs as well as variable costs. They consider two classes of replenishment

strategies at the retail level. One is the staggered policy, whereby each retailer places an order to

increase its inventory position to a constant base-stock level Y every T periods, and the reorder

intervals of di®erent retailers are staggered so as to smooth the aggregate demand process at the

supply site. The other strategy is the (R;Q) policy, whereby each retailer orders Q units from the

supplier as soon as its inventory position decreases to R. These two types of replenishment strategies

are commonly used in practice when there are ¯xed ordering costs. The supplier replenishes its

inventory through production; the production policy is a base-stock policy modi¯ed by a capacity

constraint. Numerical examples show that although the (T; Y ) policy gives a smoother demand

process at the supply site, the (R;Q) policy often provides a lower system-wide cost. 20

It is also interesting to note that discussions on the bullwhip e®ect can sometimes become con-

fusing and pointless. Consider a supply chain with a manufacturer and a retailer. The retailer

agrees to share its point-of-sale information with the manufacturer. For some unexplained reasons

(historical?), the manufacturer has a quantity discount policy in place that charges a lower per-unit

price for a larger order. Finally, the manufacturer can ship a retailer order in any way it desires

so long as a certain service level is achieved at the retail site. In this decentralized model with

information sharing and a speci¯c contractual relationship, the manufacturer can plan its produc-

tion based on the true demand information at the retail site. From the standpoint of the supply

chain, what matters is the manufacturer's production quantities and the shipment quantities to the

retailer. The retailer's orders don't matter very much; they exist largely for accounting purposes.

There is nothing to worry about even if the retailer's orders are more volatile than the customer

demands.

In summary, the existence of the bullwhip e®ect is only a characteristic of an operating policy,

which re°ects the economic forces underlying the supply chain and the experience and knowledge of

the people who manage it. It is a symptom, not a problem. 21

20Cachon (1999) also studies the impact of staggered ordering policies, which he calls scheduled or balanced ordering

policies, on the supply chain performance. The setup is still the one-warehouse N-identical-retailer supply chain. The

class of policies considered is that of (T;R;Q) policies: each retailer orders every T periods according to an (R;nQ)

policy based on its own inventory position, and the reorder intervals of di®erent retailers are staggered. Cachon

provides an exact method to evaluate the supply chain costs under a (T;R;Q) policy as well as numerical examples

that illustrate how the supply chain costs respond to changes in the parameters T and Q. Primary conclusions are

that the staggering of retailer reorder intervals generally reduces the demand variance at the warehouse and that the

combination of increasing T and decreasing Q is an e®ective way to decrease the total supply chain costs in systems

with a small number of retailers and low customer demand variability. Although the general objective of Cachon

(1999) coincides with that of Chen and Samroengraja (1999), i.e., to study the impact of variance-reduction policies

on supply chain performance, the models are di®erent (whether or not there is a capacity constraint at the warehouse),

so are the approaches (the former focuses on a sensitivity analysis whereas the latter compares the optimal solutions

from two classes of policies that o®er di®erent degrees of variance reduction).
21Any discussion of the bullwhip e®ect would be incomplete without mentioning the beer game, which is described

in Sterman (1989) and some of the references therein. The game simulates a four-stage supply chain, consisting of a

manufacturer, a distributor, a wholesaler, and a retailer. The demand at the retail site is 4 kegs of beer per period

for the ¯rst several periods, and then jumps to 8 kegs per period for the rest of the game. The players, who manage

the four supply-chain stages, do not know the demand process a priori. For several decades, the beer game has been

a very e®ective tool to illustrate the bullwhip e®ect to an uncountable number of students in many countries. But

it has a shortcoming: it merely demonstrates a phenomenon without o®ering any solutions. How should we play the

game? Nobody knows the answer, a quite awkward situation especially in a classroom setting. It is easy to say what

we should have done in hindsight, but that is not helpful to the supply chain's managers. In fact, it is quite possible

that most strategies could be explained with a belief system that uses the past to predict the future in a particular

20



2.2 Upstream Information

So far, our discussions have been con¯ned to the sharing of information coming from the demand

side, i.e., an upstream supply-chain member's access to downstream information. We now turn to

supply-side information. Interestingly, upstream information has received much less attention in the

literature.

Cost Information

Chen (2001b) considers a procurement problem facing an industrial buyer. Given Q units of

input, the buyer can generate pro¯ts R(Q), an increasing and concave function. The buyer's net

pro¯t is therefore R(Q) minus the purchase cost incurred for the input. For convenience, let us call

R(¢) the buyer's revenue function. The buyer seeks a procurement strategy to maximize its expected
(net) pro¯t.

There are n (> 1) potential suppliers for the buyer's input. For supplier i, i = 1; ¢ ¢ ¢ ; n, the
cost of producing Q units of the buyer's input is ciQ, for any Q. It is common knowledge that the

suppliers' unit costs, ci's, are independent draws from a common probability distribution F (¢) over
[c; c]. Supplier i privately observes the value of ci, but not the costs of other suppliers, i = 1; ¢ ¢ ¢ ; n.

Here is an optimal solution to the buyer's procurement problem. The buyer announces a quantity-

payment schedule, P (¢), which is basically a commitment that says that the buyer will pay P (Q)
for Q units of input, for any Q. A supplier, if chosen by the buyer, is free to choose any quantity

to deliver to the buyer and be paid according to the pre-announced plan. Therefore, the buyer has

e®ectively proposed a business proposition to the potential suppliers. Of course, di®erent suppliers

will value this business deal di®erently, with the lowest-cost supplier deriving the highest value. In

an English auction, the suppliers openly bid up the price they are willing to pay for the buyer's

proposed contract, with the winner being the supplier willing to pay the highest price.22 With a

little bit of thinking, the lowest-cost supplier always wins the contract and pays a price equal to the

value that the second-lowest cost supplier derives from the contract.

To better understand the above solution, suppose the buyer is a retailer, who buys a product

from a supplier and re-sells it to customers. The selling price to the customers is p per unit, which is

exogenously given. The total customer demand isD, a random variable with cumulative distribution

function G(¢). If demand exceeds supply, the excess demand is lost. Otherwise, the excess supply is
useless and can be disposed of at no cost. The total quantity sold to customers is thus minfQ;Dg.
The buyer's expected revenue is

R(Q) = pE[minfQ;Dg] = pE[Q¡ (Q¡D)+] = pQ¡ p
Z Q

0

G(y)dy:

way. Frankly, there is little we can teach our students about how to manage a supply chain that resembles the beer

game setup (at least, not yet). Interestingly, if we replace the 4-8 demand stream with a stream of i.i.d. random

variables, and suppose the players all know the demand distribution, then we know how the game should be played.

(A diligent reader would realize that this game was discussed in x2.3 of this chapter.) Under the optimal strategy, the
bullwhip e®ect does not exist. But it may still occur (and it has) depending on the strategies used by the managers.

So here is a game that can be used to illustrate the bullwhip e®ect, which we can say with con¯dence is bad. For a

description of the i.i.d. version of the beer game and some teaching experience with it, see Chen and Samroengraja

(2000).
22The theory of auctions is huge and well developed. Vickrey (1961) is seminal. Myerson (1981) and Riley and

Samuelson (1981) are important milestones for their contributions to optimal auction design. McAfee and McMillan

(1987) and Klemperer (1999) provide comprehensive reviews.
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Note that this revenue function is concave and increasing in Q. To make things even simpler, suppose

the suppliers' costs are drawn from the uniform distribution over [0; 1]. Under this condition, the

optimal quantity-payment schedule is

P (Q) =
1

2
R(Q):

Note that this payment schedule is independent of the number of potential suppliers. Moreover,

it is a revenue-sharing contract: the business deal the buyer proposes calls for a 50-50 split of the

buyer's revenue. It is also a returns contract, which says that the buyer pays the winning supplier

a wholesale price of w = p=2 for each unit of input delivered (before demand realization), and in

case there is excess supply after demand is realized, the buyer can return the excess inventory to the

supplier for a full refund. Under this contract, and assuming the returned inventory has no value

to any supplier, a supplier, if he wins, earns the following expected revenue (as a function of the

production quantity Q):

E[
p

2
Q¡ p

2
(Q¡D)+] = P (Q):

To put our hands around the ine±ciencies caused by the asymmetric cost information, let us

further assume that G(x) = x for x 2 [0; 1] and p = 2. In this case, R(Q) = 2Q ¡ Q2, and the
optimal quantity-payment schedule becomes P (Q) = Q¡Q2=2. As mentioned earlier, the lowest-cost
supplier wins the contract. Let C1 be the cost of the winning supplier. (Thus C1 = minfc1; ¢ ¢ ¢ ; cng.)
The quantity delivered by the winning supplier solves the following problem

Q(C1) = argmaxQP (Q)¡ C1Q = argmaxQ(1¡ C1)Q¡Q2=2:

Therefore Q(C1) = 1¡C1. The total pro¯t for the supply chain (the buyer plus the winning supplier)
is R(Q(C1))¡ C1Q(C1) = 1¡ C1, with an expected value

¼ = 1¡ E[C1]:

On the other hand, the e±cient input quantity, one that maximizes the supply chain pro¯t, is

Q¤(C1) = argmaxQR(Q)¡ C1Q = argmaxQ(2¡ C1)Q¡Q2:

Therefore, Q¤(C1) = (2¡ C1)=2. Note that Q¤(C1) > Q(C1); asymmetric cost information reduces
the input quantity. The maximum expected supply chain pro¯t under full information is

¼¤ = ¼ +
1

4
E[C21 ]:

Therefore the supply chain ine±ciency due to asymmetric information is

¼¤ ¡ ¼ = 1

4
E[C21 ] =

1

2(n+ 1)(n+ 2)

which is decreasing in n. This is the value created if the suppliers disclose their cost information.

But why should they?

Leadtime Information

Another important piece of information coming from the supply side is the status of a replen-

ishment order. Chen and Yu (2001a) address the value of leadtime information in the following
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inventory model. A retailer buys a single product from an outside supplier, stores it in a single loca-

tion, and sells it to her customers. Customer demand arises periodically, with demands in di®erent

periods being i.i.d. random variables. If demand exceeds the on-hand inventory in a period, the

excess demand is backlogged. On-hand inventories incur holding costs, and customer backorders

incur penalty costs. The analysis is done from the retailer's standpoint: how to make replenishment

decisions so as to minimize the retailer's long-run average holding and backorder costs.

Here is the supply process. Let Lt be the leadtime for an order placed in period t. And fLtg
is a Markov chain with a ¯nite state space. The one-step transition matrix of the Markov chain is

chosen so as to prevent order crossovers (so orders are received in the sequence in which they were

placed). The supply process is exogenous, i.e., the evolution of the Markov chain is independent of

the operations of the retailer's inventory system.23 The supplier observes the state of the Markov

chain fLtg, and he may or may not share this information with the retailer.

Two scenarios are considered. First, suppose the retailer knows the value of Lt for each period

t before her replenishment decision. In this case, the optimal policy is to place an order in period

t so as to increase the retailer inventory position up to a base-stock level that is a function of Lt,

for all t. That is, a state-dependent, base-stock policy is optimal. On the other hand, suppose now

that the supplier does not share with the retailer the leadtime information. In this case, the retailer

has to rely on the history of order arrivals to infer something about the current leadtime and make

her replenishment decisions accordingly. By comparing these two solutions, one sees the value of

leadtime information. Numerical evidence indicates that the value of leadtime information is small

for small-volume items, but signi¯cant for high-volume items where the percentage cost savings due

to leadtime information can be as high as 35%.

Capacity Information

Our third example deals with the value of capacity information. Chen and Yu (2001b) consider

a model with one retailer and one supplier. There is a single selling season. The retailer has two

opportunities to place orders with the supplier before the season starts, one at time 0 and one at

time 1. At time 0, the supplier has unlimited capacity, i.e., whatever the retailer orders will be ready

for the selling season. At time 1, the supplier's capacity is uncertain, and it can be written as C¡ ²,
where C is the \forward capacity," i.e., the supplier's capacity at time 1 perceived at time 0, and

², which can be positive or negative, is an external random shock re°ecting uncertainties between

time 0 and time 1. At time 0, there are two possible states, high or low, for the total demand in

the selling season. A cumulative distribution is given for each demand state. At time 1, the true

demand state is revealed; the retailer now has better demand information. This suggests that there

is a bene¯t for the retailer to postpone the ordering decision to time 1. But the cost of doing this is

that the retailer may not get what he orders (at time 1), due to the supplier's capacity constraint.

Let q0 be the quantity ordered by the retailer at time 0, and q
s
1 the quantity ordered at time 1 if the

demand state is s, s = high or low. The optimal values of these quantities balance the bene¯t from

demand information with the cost of capacity risk.

Before time 0, it is common knowledge that C comes from a given probability distribution. At

time 0, before the retailer decides on the value of q0, the supplier privately observes the realized

23Song and Zipkin (1996b) have provided several concrete examples to motivate such a leadtime process. Other

models of random leadtimes have been provided by Kaplan (1970), Nahmias (1979), Ehrhardt (1984) and Zipkin

(1986).
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value of C. The retailer then o®ers a menu of contracts: a mapping from the supplier's reported

capacity (which can be di®erent from the true value of C) to q0. The supplier then reports a value

of C, e®ectively choosing a value for q0. (This is the screening idea, to be discussed in detail in

x3.1.) The solution to this asymmetric information case is then compared with the full-information
scenario where the retailer also sees the value of C (before deciding q0). The comparison gives the

value to the retailer of knowing the supplier's forward capacity.

2.3 Information Transmission

Chen (1999a) considers a supply-chain model where information transmission is subject to delays. A

¯rm has N divisions arranged in series. Customer demand arises at division 1, division 1 replenishes

its inventory from division 2, 2 from 3, etc., and division N orders from an outside supplier. The

demands in di®erent periods are independent draws from the same probability distribution. Each

division is managed by a division manger. Information in the form of replenishment orders °ows

from downstream to upstream, triggering material °ow in the opposite direction. Both °ows are

subject to delays.24

An important feature of the model is that the division managers only have access to local in-

ventory information. That is, each manager knows 1) his on-hand inventory, 2) the orders he has

placed with the upstream division, 3) the shipments he has received from the upstream division, 4)

the orders he has received from the downstream division, and 5) the shipments he has sent to the

downstream division. However, he does not exactly know the shipments that are in transit from the

upstream division that may be unreliable, and neither does he know the orders from the downstream

division that are currently being processed. The decisions made by each manager can only be based

on what he knows.

The ¯rst model considered by Chen assumes that the division managers behave as a team, i.e.,

they have a common goal to minimize the system-wide costs.25 This is reasonable when, e.g., the

owner of the ¯rm has implemented a cost-sharing plan whereby each manager's objective function

is a ¯xed, positive proportion of the overall cost of the system. It is shown that the optimal decision

rule for each division manager is to follow an installation, base-stock policy. Division i's installation

stock is equal to its net inventory (on-hand inventory minus backorders) plus its outstanding orders.

Recall that manager i knows the orders he has placed (with the upstream division) as well as the

shipments he has received (from the upstream division). The di®erence between the two is the

outstanding orders. Therefore, installation stock is local information. The optimal decision rule for

each division manager is to place an order in each period to restore the division's installation stock

to a constant target level, which may be division-speci¯c.

The solution to the team model reveals the role played by the information leadtimes (delays in

the information °ow). In terms of division i's safety stock, the information leadtime from division i

to i + 1 plays exactly the same role as the production/transportation leadtime from division i + 1

to i; the safety stock level only depends on the sum of the two leadtimes. (This is intuitive at ¯rst

glance. But the optimality proof requires some ¯nessing.)

24This may remind you of the beer game, which is described in Sterman (1989). A key di®erence is the i.i.d. demand

process assumed here.
25For the economic theory of teams, see Marschak and Radner (1972).
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An alternative to the team model is the cost-centers model, where each manager is evaluated

based on his division's performance. But how should local performance be determined? Chen

suggests using the so-called accounting inventory level. The accounting inventory level at a division

is its net inventory under the hypothetical scenario where no orders by the division will ever be

backlogged at the upstream division. Note that the accounting inventory level may di®er from the

actual inventory level, because the upstream division is not always reliable. A division is charged a

holding cost if its accounting inventory level is positive and a penalty cost otherwise.26 It has been

shown that the owner of the ¯rm can choose the cost parameters so that when the individual division

managers minimize their own (accounting) costs, the system-wide costs are also minimized.27

Firms decentralize the control of their operations for many reasons. One key reason is that

the local managers are better informed about the local operating environments than the owner is.

Therefore, it makes sense to let the local managers make local decisions. In the above supply chain

model, let us suppose the division managers all know the true demand distribution, but the owner

of the ¯rm does not. Consider the following two scenarios. In one, the owner solves the team

model based on her (erroneous) knowledge of the demand distribution and tells her employees to

implement the installation, base-stock policies she found. (The owner only provides the decision

rule, leaving the division managers to implement it. Since the division managers only have access

to local information, the decision rule must be based on local information.) Call this the dictator

scenario. In the other scenario, the owner organizes the divisions as cost centers. After the owner

has speci¯ed a measurement scheme, each division manager chooses a replenishment strategy to

minimize his accounting costs by using the true demand distribution. In both cases, the system-

wide performance will be suboptimal, because the owner's inaccurate knowledge about the demand

distribution has been used in one way or another. Numerical examples provided by Chen show that

the system-wide performance under cost centers is nearly optimal, whereas the dictator scenario can

be far from optimal. The bene¯t of decentralization is clear. Moreover, the measurement scheme for

the cost centers is rather robust with respect to shifts in the demand distribution; a scheme based

on an outdated demand distribution works very well for a new demand distribution so long as the

division managers update their replenishment strategies based on the new information.

Finally, what if managers make mistakes? To explore this issue, consider the following speci¯c

irrational behavior. Manager i strives to maintain his net inventory at a constant level Y : if it is

below Y , order the di®erence; otherwise, do nothing. It is a mistake because the decision maker

forgets about the outstanding orders. (Recall that the optimal strategy is to maintain the installation

stock at a constant level.) This mistake corresponds to the \misperceptions of feedback" Sterman

(1989) found in the beer game. A simulation study shows that such mistakes can be very costly,

especially those committed at the downstream part of the supply chain.28

When a downstream manager follows an erroneous strategy, the upstream managers receive

distorted (and delayed) demand information. This is at the heart of the problem. Now consider

the following alternative design of information °ow in the supply chain. When division 1 places an

26The accounting and management literature advocates that individuals should only be evaluated on controllable

performance, see, e.g., Horngren and Foster (1991). For this reason, the actual local inventory level (on-hand inventory

minus backorders) at a division is inadequate as a basis for measuring local performance, since it is also a®ected by

decisions made at the other divisions. The accounting inventory level removes the impact of the upstream division,

but is still a®ected by the downstream division's orders.
27For other coordination mechanisms for serial inventory systems, see Lee and Whang (1999) and Porteus (2000).

G¶erard P. Cachon discusses these papers in Chapter 6 of this volume.
28Watson and Zheng (2001) provide a more recent attempt to address supply chain mismanagement due to irrational

managerial behavior.
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order, he is also required to report the demand in the previous period. This demand information is

then relayed to the upstream managers along with the orders. Assume that the rational managers

place their orders according to the accurate demand information, whereas the irrational ones follow

the above \forgetful" strategy. In this way, a downstream ordering mistake can no longer corrupt

the upstream order decisions. Simulation results indicate that by making the accurate demand

information accessible to the upstream members of the supply chain, the system becomes much

more robust. This is another reason for sharing demand information.

Most of the supply chain models on information sharing assume that the transmission of informa-

tion is instantaneous and reliable. (We just saw one exception.) Moreover, they assume (implicitly)

that information/knowledge is always transmittable. (We will see an exception soon.) However,

managers are sometimes endowed with knowledge that is so speci¯c to the local operating envi-

ronment that it is very di±cult to share such knowledge. This is perhaps what people mean by

\experience," the sharing (or rather the acquisition) of which may take years of apprenticeship. So

a more realistic view of organizations is that there are two kinds of knowledge: one can be readily

shared (e.g., sales data) and the other is di±cult to share, i.e., information sharing takes time and

e®ort, is imperfect with noise, or is just impossible. When the local, speci¯c knowledge plays a

dominant role, it is important to give the manager possessing the knowledge the authority to make

decisions that have the most use of the knowledge. In other words, decisions rights should re°ect

the dispersion of knowledge in an organization. This is, however, not the only challenge in designing

an organization because the distribution of knowledge is, to some extent, manageable. This points

to another aspect of organizational design, i.e., an organization's information structure (or \who

knows what"). We refer the reader to Hayek (1945) and Jensen and Meckling (1976, 1992) for

further discussions on speci¯c knowledge and the design of organizations. Below, we review a paper

from the operations literature that studies the above issues in a supply chain context.

Anand and Mendelson (1997) consider a ¯rm that produces and sells a product in n markets.

Production takes place in one location, and the total cost of producing Q units is assumed to be

TC(Q) = cQ+
1

2
°Q2:

A common reason cited for assuming increasing marginal costs is capacity constraints, e.g., overtime

is used when production exceeds a certain threshold level and the overtime wage is higher than the

regular wage. The n markets each face an independent, linear demand curve. Consider market i,

i = 1; ¢ ¢ ¢ ; n. There are only two possible market states, high or low. If the market is high, the
(inverse) demand curve is P (qi) = aH ¡ bqi, where qi is the quantity of the product allocated to
market i, and P (qi) is the corresponding market clearing price. On the other hand, if the market is

low, the demand curve is P (qi) = aL ¡ bqi, with aL < aH . (No transshipments are allowed among
the markets after the initial allocation.) The market state is denoted by a binary random variable,

si: if si = 1 (0) the market is high (low).

A key feature of the model is that the n markets are managed by branch managers who possess

two types of information: one is speci¯c knowledge that is not transmittable to anyone else, and the

other is transferable data. This is modeled by assuming that si = xiyi, where both xi and yi are

binary random variables, with xi representing transferable market-i data and yi the unobservable

market-i condition, i = 1; ¢ ¢ ¢ ; n. It is assumed that fxi; yi; i = 1; ¢ ¢ ¢ ; ng are independent random
variables with Pr(xi = 1) = t and Pr(xi = 0) = 1¡t, 0 < t < 1, and Pr(yi = 0) = Pr(yi = 1) = 1=2,
i = 1; ¢ ¢ ¢ ; n. The value of t is common knowledge. The branch manager at market i observes the
value of xi as well as a binary signal Li that may contain information about yi with yi = Li with
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probability 1 ¡ ® and yi = 1 ¡ Li with probability ®. If ® = 0 or 1, then the signal is perfect; if

® = 1=2, then the signal does not provide any new information beyond the prior on yi. It is clear that

we can restrict to 0 ∙ ® ∙ 1=2 without loss of generality. Under this restriction, the value of (1¡®)
represents the precision of the signal. The local signal Li is branch manager i's speci¯c knowledge

that is not transferable to anyone else, i = 1; ¢ ¢ ¢ ; n. (Refer to the original paper for motivating
stories behind this elaborate design. An alternative view one may take is that information is always

transmittable, but some kinds of information are very costly to transmit.)

The decision variables are the supply quantities qi. The objective of any decision maker (to be

speci¯ed below) is to maximize the ¯rm's expected pro¯ts, which are equal to the revenues generated

by the branches minus the production cost that depends on the total quantity.

Anand and Mendelson then consider three di®erent organizational designs, depending on where

decision rights reside and how information is distributed (through the design of the ¯rm's information

system, e.g.). The ¯rst design is a centralized one, where a \center" makes all the decisions by using

all the transferable data but none of the speci¯c knowledge. The ¯rm thus has in place an information

system that allows the branches to report their transferable data, xi for i = 1; ¢ ¢ ¢ ; n, to the center.
The second design is decentralized, where each branch manager i makes his own quantity decision

qi based on his own speci¯c knowledge (Li) and transferable data (xi). Therefore, in this case, there

is no information sharing so that all local knowledge (transferable or not) remains local. The third

design is in between the previous two, with the branches making their own quantity decisions based

on their speci¯c knowledge and all the transferable data (again, enabled by an intra-¯rm information

system). That is, branch manager i determines the value of qi with knowledge of (x1; x2; ¢ ¢ ¢ ; xn) and
Li, i = 1; ¢ ¢ ¢ ; n. This design is referred to as the \distributed" structure. The analysis of the second
and the third organizational structures follows that of a team model, where the team members (i.e.,

branch managers) share a common goal but have access to di®erent sets of information. (The team

model thus assumes away all potential incentive problems. Anand and Mendelson also consider

transfer-pricing schemes when incentive issues can't be ignored.)

It is intuitive (and true) that the distributed design dominates the decentralized design in terms

of the ¯rm's expected pro¯ts. The di®erence represents the value of information sharing, which

is shown to increase in the number of branches at ¯rst and then decrease. In other words, the

distributed structure adds more value to ¯rms that operate in a moderate number of markets.

On the other hand, the di®erence between the centralized and decentralized systems captures the

tradeo® between coordination, information sharing, and local knowledge. The centralized system

bene¯ts from better coordination of quantity decisions (due to centralized decision making) and the

pooling of all the transferable data. However, the decentralized system sometimes performs better

than the centralized system, indicating the usefulness of the local knowledge.

In their concluding remarks, Anand and Mendelson said that \the design of organizations requires

an analysis of what kinds of information the ¯rm needs to acquire, alternative ways of distributing

this informational endowment and ways of structuring the organization (i.e., allocation of decision

rights) to match its information structure." (The parenthetical explanation is added.) What they

have done in their paper is to treat the allocation of information and decision rights as design

variables to be jointly determined, leaving out information acquisition.
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3 Incentives for Sharing Information

Information sharing in supply chains with independent players is tricky. When a player has superior

information, two things may happen. He may withhold it to gain strategic advantage, or he may

reveal it to gain cooperation from others. If the former, the other (less informed) players may try to

provide incentives for him to reveal his private information; this is called screening. If the latter, we

have signaling, i.e., revealing information in a credible way. Sometimes it is impossible to say who

has more or less information; players simply have di®erent information about something they all care

about. For example, di®erent retailers may obtain di®erent signals about the market demand for a

product. In this case, a player's willingness to share his information depends on if the others are

going to share their information and how the revealed information will be put to use. This section

reviews papers that deal with information exchanges in decentralized supply chains. 29

3.1 Screening

This subsection presents several examples where a ¯rm tries to \smoke out" either consumer pref-

erences or private information held by an employee or by a supply chain partner.30

A Simple Example

A product line usually refers to a range of goods of the same generic type, but di®erentiated along

some attributes. For example, Dell o®ers two lines of notebook computers, Inspiron and Latitude,

and each product line consists of models with di®erent speeds, storage capacities, etc. An important

question is how a ¯rm can optimally design and price a product line.

Suppose a monopolist is o®ering a line of goods di®erentiated along a quality dimension. There

are two consumers, with di®erent demand intensities for quality. (This is thus a toy problem. But

the basic ideas are here.) Consumer i values the variety with quality level q at µiq, i = 1; 2, with

0 < µ1 < µ2. Therefore, both consumers prefer more quality, but di®er in their willingness to pay

for any given quality level. Each consumer buys one unit of the good, or nothing at all. There are

constant marginal costs of production at any given quality level, and the marginal cost of producing

variety q is q2.

29A branch of economics (sometimes called information economics) addresses issues arising from various information

asymmetries. One type of information asymmetry is often studied under the heading \moral hazard," which refers

to situations where one party (called agent) performs a task on behalf of another (called principal), and the agent's

e®ort level is unobservable to the principal. A con°ict arises because the principal prefers the agent to work hard

while the agent dislikes exerting e®ort. The solution is an incentive contract that pays the agent for his output. The

principal-agent theory, originating from economics, has been used/developed in the accounting, marketing, and lately

operations literatures. Kreps (1990) provides an excellent introduction to the principal-agent theory; some of the

seminal papers in this area are cited later in this chapter. For principal-agent models in the operations literature, see,

e.g., Porteus and Whang (1991), Chen (2000b), and Plambeck and Zenios (2000a,b). We choose not to review this

part of the literature here because the goal of providing incentives in principal-agent models is to induce a certain level

(or pattern) of e®ort by an agent (not to facilitate information sharing). By the way, many of the ideas behind the

papers reviewed in this section originated from economics often under rubrics such as adverse selection, mechanism

design, or signaling.
30There is a large body of research on screening in queueing contexts. For example, a service provider can charge

di®erent prices for di®erent priority levels. An arriving customer decides which priority class to join based on his/her

(private) cost of waiting. For a comprehensive survey of this literature, see Hassin and Haviv (2001).
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Consider ¯rst the case of a perfectly discriminating monopolist who is able to sell to each con-

sumer individually (i.e., deny one consumer access to the product o®ered to the other consumer)

and prevent any re-sales. The monopolist will thus charge each consumer his reservation price and

the only remaining problem is what variety to o®er to each consumer. To solve this problem, simply

maximize µiq ¡ q2 over q for each i. Therefore, the optimal strategy is to o®er quality level µi=2
to consumer i and charge him µ2i =2 for it. Both consumers will buy the products o®ered them and

derive zero surplus. The ¯rm may be able to achieve this ideal solution in some cases. For example,

a telephone company is routinely charging di®erent rates to business users and residential users (it

is relatively easy for the company to verify if a user is business or residential and it is very di±cult

to trade phone calls between business and residential users). In other cases, it is impossible to deny

one consumer access to the products o®ered to other consumers, for technical or legal reasons. In

other words, a product line, whatever it may be, must be made available to all types of consumers.

What should the monopolist do then?

First, note that the above solution will not work when consumers self-select. When given the

above two variety-price combinations: (µi=2; µ
2
i =2) for i = 1; 2, consumer 1 will continue to choose

(µ1=2; µ
2
1=2), but consumer 2 will switch from (µ2=2; µ

2
2=2) to (µ1=2; µ

2
1=2) and earns a positive surplus

(before, he earned zero surplus). In order to prevent consumer 2 from switching, the ¯rm must lower

the price for variety µ2=2, if everything else stays unchanged. Finding the monopolist's optimal

strategy involves a systematic tradeo® among multiple dimensions. Let (qi; pi), i = 1; 2, be the

quality-price pairs o®ered to the market (i.e., the two consumers). Suppose consumer i chooses

(qi; pi). (If the two pairs are identical, then the product line consists of only one good.) We ¯rst

consider the case where both consumers are served (i.e., they each buy a unit). The monopolist's

problem can be written as:

max
q1;p1;q2;p2

(p1 ¡ q21) + (p2 ¡ q22)
s:t: µ1q1 ¸ p1 (P1)

µ2q2 ¸ p2 (P2)

µ1q1 ¡ p1 ¸ µ1q2 ¡ p2 (SL1)

µ2q2 ¡ p2 ¸ µ2q1 ¡ p1 (SL2)

where the objective function represents the ¯rm's total pro¯ts, the ¯rst two constraints ((P1) and

(P2)) are necessary in order for the consumers to participate, and the last two constraints ((SL1)

and (SL2)) ensure that the consumers choose the right bundle. This problem is easy. First note

that µ2q1 ¡ p1 ¸ µ1q1 ¡ p1 and the right side is nonnegative from (P1). This, together with (SL2),

implies that µ2q2 ¸ p2. Therefore, (P2) is redundant and is thus deleted. Moreover, (P1) must bind,
for otherwise, one can simultaneously increase p1 and p2 by the same amount without violating any

constraints. Note that (SL1) and (SL2) can be combined to produce:

µ2(q2 ¡ q1) ¸ p2 ¡ p1 ¸ µ1(q2 ¡ q1):

It then follows that q2 ¸ q1, which then implies p2 ¸ p1. On the other hand, (SL2) must bind,

because if not, one can increase p2 to get a better solution for the monopolist. Therefore, p2 ¡ p1 =
µ2(q2 ¡ q1) ¸ µ1(q2 ¡ q1) because q2 ¸ q1. Consequently, (SL1) is implied by the binding version of
(SL2) plus q2 ¸ q1. In sum, the above optimization is equivalent to

max
q1;p1;q2;p2

(p1 ¡ q21) + (p2 ¡ q22)
s:t: p1 = µ1q1
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µ2q2 ¡ p2 = µ2q1 ¡ p1
q2 ¸ q1:

This has a closed-form solution:

q¤1 = maxfµ1 ¡
µ2
2
; 0g; q¤2 =

µ2
2
:

Note that compared with the previous solution without consumer self-selection, the lower demand-

intensity consumer (i.e., consumer 1) gets a lower quality product, a lower price, and the same

(zero) surplus, whereas the higher demand-intensity consumer gets the same quality product, a

lower price, and a positive surplus. Moreover, if we interpret q¤2 ¡ q¤1 as the breadth of the product
line, self-selection leads to a broader range of goods. Finally, if µ1 ∙ µ2=2, consumer 1 is not served.

The above simple example captures the basic idea of screening. For more sophisticated models

involving consumer self-selection, see, e.g., Mussa and Rosen (1978), Maskin and Riley (1984), and

Moorthy (1984).

Quality, broadly interpreted, represents product attributes for which the consumer preference

is of the more-is-better kind. Other product attributes include color, size, taste, etc., and each

consumer is likely to have a unique ideal point in the attribute space.31 It is possible to di®erentiate

products along these dimensions as well. For this part of the literature, we refer the reader to Shocker

and Srinivasan (1979), Green and Krieger (1985), Lancaster (1979, 1990), de Groote (1994), Dobson

and Kalish (1988, 1993), Nanda (1995), Chen et al. (1998), and Yano and Dobson (1998). A recent

book edited by Ho and Tang (1998) contains further references on this topic.

Market Segmentation and Product Delivery

Di®erent customers may exhibit di®erent degrees of aversion to waiting: some want to have their

orders delivered right away, while others can tolerate a delay. Therefore, the delivery schedule of a

product can be a useful tool for segmenting the market. One bene¯t of such a segmentation strategy

is that when a customer places an order that does not have to be shipped immediately, the ¯rm

obtains advance demand information that can be used for better production-distribution planning.

A potential cost of this strategy occurs when a price discount must be o®ered in order for a customer

to accept a delay. How can a ¯rm design an optimal price-delivery schedule?

Chen (2001a) provides a model to address the above question. A ¯rm sells a single product to

consumers. The ¯rm announces a price-delay schedule f(pk; ¿k)gKk=0, for some nonnegative integer
K, where pk is the price a customer pays if he agrees to have his order shipped ¿k units of time after

order placement, with 0 = ¿0 < ¿1 < ¢ ¢ ¢ < ¿K and p0 > p1 > ¢ ¢ ¢ > pK . The maximum price p0 is

paid only if a consumer wants immediate shipment.

The consumers divide into M segments. Let um(¿) be the maximum (or reservation) price

that the customers in segment m are willing to pay for one unit of the product if their orders are

shipped ¿ units of time after order placement, m = 1; ¢ ¢ ¢ ;M . It is assumed that um(¢) is decreasing,
31The ideal-point model is often used to describe consumer preferences along dimensions that are not quality-like.

For example, a consumer's utility of buying a product with level x of certain attribute can be written as A¡ (x¡a)2,
where A is the maximum possible utility level and a is the ideal attribute level for the consumer. Di®erent consumers

can have di®erent ideal attribute levels.
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di®erentiable, convex with u0m(¿) < u0m+1(¿ ) (< 0) for all ¿ .
32 Thus, segment 1 is uniformly more

sensitive to waiting than segment 2, segment 2 more so than segment 3, and so on. The surplus that

a type-m customer derives from (pk; ¿k) is um(¿k) ¡ pk. His objective is to choose a pair from the

schedule that maximizes his surplus, i.e., consumer self-selection.

The product is replenished by an N -stage supply chain. Stage 1 is the ¯nal stocking point from

which product is shipped to customers, stage 1 is replenished by stage 2, stage 2 by stage 3, etc.,

and stage N by an outside supplier with ample stock. The transit time from one stage to the next

is constant. Customer orders are satis¯ed ¯rst-come, ¯rst-served according to the sequence of their

shipping dates, not the dates in which the orders are placed. If the ¯rm cannot ship an order on the

date chosen by the customer because the product is out of stock (at stage 1), the order is backlogged.

The backlogged orders are shipped as soon as inventory becomes available. In this case, the ¯rm

incurs a goodwill loss (or backorder cost). In addition, the ¯rm incurs holding costs for inventories

held in the supply chain and variable costs for every unit sold.

Determining an optimal price-delivery schedule turns out to be a hard problem. Below is a brief

description of the solution.

The optimal schedule always has the segments bundled in a sequential manner, with lower seg-

ments choosing higher prices and shorter delays. For example, suppose there are ¯ve segments in

the market, and the ¯rm o®ers f(p0; 0); (p1; ¿1); (p2; ¿2)g. Sequential bundling means something like
the following. Suppose segments 1 and 2 choose (p0; 0), segment 3 chooses (p1; ¿1), and segments 4

and 5 choose (p2; ¿2). Given this, a property of the optimal schedule is that segment 3 is indi®erent

between (p1; ¿1) and (p0; 0), and segment 4 is indi®erent between (p2; ¿2) and (p1; ¿1). (It is assumed

that when indi®erent, a consumer will choose the lower price.) These indi®erence relationships imply

that a price-delay schedule is fully speci¯ed by the delays and the marginal segments, i.e., (¿1; ¿2)

and segments 3 and 4 in the above example.

Now ¯x the price-delay schedule and consider the ¯rm's supply chain. Suppose segmentm chooses

a shipping delay equal to lm, m = 1; ¢ ¢ ¢ ;M . Therefore, if a segment-m customer places an order at

time t, the corresponding demand occurs at time t + lm. Suppose lm > 0 for some m. Therefore,

some orders serve as warnings of future demand, and the question is how this information can be

incorporated into the ¯rm's replenishment strategy. The optimal strategy, and the corresponding

minimum supply chain costs, can be obtained by carefully separating the known demand information

from the unknown and following the approach of Chen and Zheng (1994). The optimal policy is an

echelon base-stock policy with °oating order-up-to levels (one for each stage).

To gain some intuition on how the shipping delays translate into cost savings, suppose N = 2.

Let the leadtimes at stages 1 and 2 be 4 and 2 periods respectively. To make matters really simple,

assume there is only one segment choosing a shipping delay of l periods. It is easy to see that if

l = 6, the supply chain faces no demand uncertainty at all and as a result, no inventories need to

be carried at any stage. Now suppose l = 5. In this case, there is no need to carry any inventory at

stage 1. Consider the problem facing stage 2. Say a customer order arrives at time t (at stage 1).

This order needs to be shipped out of stage 1 at time t+ l = t+5. This means that the order needs

to be shipped out of stage 2 at time t+1. Therefore, stage 2's problem is basically a single-location

32Note that um(0)¡ um(¿) is the cost of waiting for a segment-m customer. The assumption that um(¢) is convex
implies that the cost of waiting is concave, i.e., the marginal cost of waiting is decreasing. This is true if, for example,

the excitement about the product decreases over time after the order is placed. In this case, the marginal cost of

waiting is very high in the ¯rst few days, while the excitement still lingers, and decreases as time goes by.
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inventory problem where customers choose a shipping delay of 1 period. This, together with the

fact that the leadtime at stage 2 is 2 periods, implies that the demand uncertainty facing stage 2 is

just one-period worth of demand, not the usual two-periods worth of demand. Finally, if, say, l = 3,

then both stages will need to carry some safety stock. With some thinking, the reader will see that

the demand uncertainty facing stage 1 is one-period (= 4 ¡ 3) worth of demand and the demand
uncertainty facing stage 2 remains to be two-periods worth of demand.

An optimal price-delay schedule can be obtained by solving an optimization problem that cap-

tures both the costs and bene¯ts of the segmentation strategy. Numerical results show that the net

bene¯t of this strategy can be substantial.

Screening and Moral Hazard

Sometimes the party being screened also takes hidden actions. Chen (2000c) studies such a

model. Suppose a ¯rm sells a single product through a single sales agent. The market demand is

the sum of the agent's selling e®ort (a), the market condition (µ), and a random shock (²), i.e.

X = a+ µ + ²

where µ and ² are independent random variables, Pr(µ = µH) = ½ and Pr(µ = µL) = 1 ¡ ½ for
0 < ½ < 1 and µH > µL > 0, and ² » N(0; ¾2). The agent privately observes the value of µ, and

the agent's e®ort level is not observable to the ¯rm. The ¯rm's decisions are how to compensate

the agent for his work (i.e., a wage contract) and how much to produce before demand realization.

Given a contract, the agent decides whether or not to accept it and if so, how much e®ort to expend.
33

The model assumes the following sequence of events: 1) the ¯rm (or principal) o®ers a menu of

wage contracts (for screening); 2) the agent privately observes the value of µ; 3) the agent decides

whether or not to participate (work for the ¯rm) and if so, which contract to sign; 4) under a signed

contract, the ¯rm determines the production quantity, and the agent makes the e®ort decision; and

5) ² is realized.

Consider the agent's decisions when o®ered a menu of contracts. First, he considers each contract

on the menu and determines the maximum expected utility that can be obtained under the contract.

Suppose s(¢) is the contract being considered, i.e., s(x) is the wage paid to the agent if the total
sales is x. Assume the agent's utility for net income z is U(z) = ¡e¡rz with r > 0. 34 Note that
U(¢) is increasing and concave, implying that the agent is risk averse. The net income is the wage
received, s(X), minus the cost of e®ort, V (a) = a2=2.35 To determine the maximum expected utility

33Coughlan (1993) reviews the salesforce compensation literature. A common assumption is that the total sales is

a function of selling e®ort and a random shock and that e®ort is unobservable to the ¯rm. This is the moral hazard

problem, which has been widely studied in the economics/agency-theory literature, see, e.g., Shavell (1979), Harris

and Raviv (1978,1979), Holmstrom (1979, 1982), and Grossman and Hart (1983). If, in addition to the moral hazard

problem, the ¯rm is in an informational disadvantage in terms of the sales environment, i.e., the sales people have

superior information about the sales response function (the productivity of selling e®ort, the sensitivity of customers

to price changes, the sales prospects, etc.), then the ¯rm also faces an adverse selection problem. The typical solution

is a menu of contracts. The salesforce compensation literature in marketing includes Basu et al. (1985), Lal (1986),

Lal and Staelin (1986), Rao (1990), and Raju and Srinivasan (1996).
34The negative exponential utility function is widely used in agency models.
35The quadratic form is not critical for the analysis. An often-assumed feature of the cost-of-e®ort function is

increasing marginal cost of e®ort.
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achievable under s(¢), the agent solves the following optimization problem

max
a
E[¡e¡r(s(X)¡V (a))]:

Recall that the agent has already observed the value of µ when evaluating the contract. Therefore,

the above expectation is with respect to ² given the observed value of µ. If the maximum expected

utility is greater than or equal to U0, the agent's reservation utility representing the best outside

opportunity for the agent, then s is said to be acceptable to the agent. 36 Among all the contracts

on the menu, the agent chooses the one with the highest achievable expected utility and participates

if this utility level exceeds U0.

We now turn to the principal's problem. Recall that the ¯rm must make its production decision

before observing the total sales. This is reasonable when the customers demand fast delivery of their

orders and the production leadtime is relatively long. (It is thus impossible to follow make-to-order.)

Let Q be the production quantity. Let c be the cost per unit produced. If X ∙ Q, the excess supply
is salvaged at p per unit. On the other hand, if X > Q, the excess demand must be satis¯ed by a

special production run at a cost of c0 per unit. Let the unit selling price be 1 + c (the pro¯t margin
is thus normalized to 1). To avoid trivial cases, assume p < c < c0 < 1+ c. As mentioned before, the
¯rm makes contracting as well as production decisions with the objective of maximizing its expected

pro¯t (the principal is thus risk neutral). If s(¢) is the contract signed by the agent, the ¯rm's pro¯t
is

(1 + c)X ¡ s(X)¡ cQ+ p(Q¡X)+ ¡ c0(Q¡X)¡
= X ¡ s(X)¡ [(c¡ p)(Q¡X)+ + (c0 ¡ c)(Q¡X)¡]

where w+ = maxfw; 0g and w¡ = maxf¡w; 0g. Note that the optimal production quantity mini-
mizes

E[(c¡ p)(Q¡X)+ + (c0 ¡ c)(Q¡X)¡]
where the expectation is with respect to X given the principal's knowledge about the market con-

dition and the agent's selling e®ort (inferred not observed) after a contract is signed.

Since there are only two possible market conditions, the ¯rm needs to o®er at most two contracts.

Let sH(¢) be the contract chosen by the high-type agent, and sL(¢) chosen by the low type. The
principal, by putting herself in the shoes of the agent, can anticipate the amount of selling e®ort

under each type. Let aH be the selling e®ort of the high-type agent, and aL the e®ort of the low

type. Assume that sH(¢) 6= sL(¢). In this case, the principal discovers the market condition after
observing the contract choice made by the agent. If µ = µH then X » N(aH + µH ; ¾2); otherwise,
if µ = µL, then X » N(aL + µL; ¾2). And the principal can make her quantity decision accordingly.
This is a bene¯t the principal obtains from screening.

One way to achieve screening is by o®ering a menu of (two) linear contracts. Let sH(x) =

®Hx + ¯H be the contract intended for the high-type agent, and sL(x) = ®Lx + ¯L the contract

intended for the low-type agent, with ®H ; ®L ¸ 0. It can be shown that the optimal values of the
contract parameters are

®H =
1

1 + r¾2

36It is reasonable to assume that the reservation utility does not depend on the agent's type, because what dis-

tinguishes the high type from the low type is the market condition, something unrelated to the agent's intrinsic

quality.
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®L =
1

1 + r¾2
max

½
1¡ ½

1¡ ½ (µH ¡ µL); 0
¾

¯L = ¡ lnU0
r

¡ ®LµL ¡ 1¡ r¾
2

2
®2L

¯H = ¡ lnU0
r

+ ®L(µH ¡ µL)¡ ®HµH ¡ 1¡ r¾
2

2
®2H :

Another way to achieve screening is suggested by Gonik (1978). Under his scheme, the ¯rm

asks the salesperson to submit a forecast of the total sales. If the forecast is F , then s(xjF )|a
given function of the actual total sales x parameterized by F|is the compensation for the agent.

Therefore, the ¯rm is e®ectively o®ering a menu of contracts; by submitting a forecast, the agent

chooses a particular contract from the menu. Gonik's original proposal uses the following functional

forms: s(xjx) = ®x+ ¯ for all x, and for any x and F ,

s(xjF ) =
½
s(F jF )¡ u(F ¡ x) x ∙ F
s(F jF ) + v(x¡ F ) x > F

where ®, ¯, u, and v are contract parameters chosen by the ¯rm with u > ® > v > 0. Note that

s(xjx) ¸ s(xjF ) for all F and x. Therefore, if the agent expects to sell x units, it is in his best

interest to submit a forecast that is equal to x. Also, for any given F , s(xjF ) is increasing in x,
providing the agent with incentives to generate more sales.

It can be shown that the agent's optimal e®ort level is a¤ = ®, which is entirely determined by
only one contract parameter, ®, and it is independent of the agent's type. Moreover, the optimal

forecast decision is F ¤ = z¤+ a¤ + µ = z¤+®+ µ for some value z¤, which depends on ®; u; v but is
independent of ¯ and the agent's type. Therefore, the high-type agent forecasts FH = z

¤ + ®+ µH
and the low-type forecasts FL = z

¤ + ®+ µL. The agent is screened!

Numerical examples comparing the menu of linear contracts with the Gonik scheme show that

the former dominates the latter in terms of the ¯rm's expected pro¯ts.

Screening in Supply Chains

An important type of information asymmetry in supply chains is about cost structures. A

supplier may only have imperfect knowledge about a buyer's cost structure, and vice versa. Here

again the less informed may try to screen the more informed with a menu of contracts. Below, we

describe a few papers that deal with screening in supply chains with asymmetric cost information.37

Ha (2001) provides a screening model where the supplier does not know the buyer's marginal

cost. The setting is that of the newsvendor model (with pricing): the buyer faces a demand that is

stochastic and price-sensitive, and before demand realization, an order quantity must be determined

together with the selling price. The demand model is the additive kind, i.e., D = ¹(p) + Y where p

is the selling price, ¹ is a decreasing and concave function, and Y is a random variable independent

of p. Let s be the supplier's marginal cost of production, and c the buyer's marginal cost (of selling

and maybe additional processing). A key feature of the model is that c is known only to the buyer,

with the supplier endowed with a prior distribution of c over a ¯nite interval. Everything else is

assumed to be common knowledge. The analysis is from the standpoint of the supplier: how to o®er

a menu of contracts to the buyer so as to maximize the supplier's expected pro¯t.

37A careful reader would realize that some of the models discussed in x2.2 fall under this category.
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The contract menu is restricted to be of the form: fp(ĉ); q(ĉ); R(ĉ)g, where ĉ is the buyer's
announced marginal cost (which can be di®erent from the true cost c), and works as follows: if the

buyer announces ĉ, then the supplier will deliver q(ĉ) units to the buyer for a total payment of R(ĉ),

and the buyer is to set the selling price at p(ĉ). The functions p(¢), q(¢) and R(¢) are chosen by the
supplier. Given this menu, the buyer then decides whether or not to sign a contract and if so, which

one (by choosing ĉ). Ha has solved this mechanism design problem.

As mentioned in Ha (2001), the above menu of contracts is a nonlinear contract with price ¯xing,

and this may run into problem with commercial laws such as Resale Price Maintenance (RPM), see,

e.g., Tirole (1988). This would not be a problem if the contract menu is changed to fq(ĉ); R(ĉ)g and
the retailer is free to choose any selling price after contract signing. Ha has not solved this problem,

except for a special case where the selling price is exogenously given.

Corbett and de Groote (2000) consider a model with one supplier and one retailer, where the

retailer's holding cost parameter hb is unknown to the supplier. The basic setup is a two-stage

economic lot-sizing problem with deterministic demand and no backlogging, with an additional

restriction that the supplier's lot size is equal to the retailer's (i.e., the lot-for-lot replenishment).

The supplier, however, is endowed with a prior distribution of hb. The problem facing the supplier

can be formulated as a direct revelation game, whereby the supplier asks the retailer to announce the

value of hb: if the announced value is ĥb, then the lot size is Q(ĥb) and the discount is P (ĥb) given

as a lump-sum payment per unit of time. The task is to determine the pair of functions Q(¢) and
P (¢) so as to minimize the supplier's expected costs subject to the incentive compatibility constraint
that the retailer always wants to announce his true holding cost. Corbett and de Groote show that

the optimal Q(¢) and P (¢) are both decreasing functions, which can thus be interpreted as a quantity
discount scheme because larger quantities are associated with larger discounts.

Corbett (2001) considers a supplier-retailer model with stochastic demand. The setup is basically

the same as the classic (Q,r) model: whenever the retailer inventory position falls to the reorder

point r, it orders (and the supplier produces) a batch of Q units. The twist here is that the

supplier makes the lot-sizing decision (i.e., the value of Q) and incurs a ¯xed cost for each batch

produced, and that the retailer determines the reorder point r and is responsible for the holding

and backorder costs incurred at the retail site. 38 The ine±ciency in this supply chain is evident

if there is no coordination: the supplier will set the batch size to be in¯nity! Corbett derives

screening solutions to the following scenarios: 1) the supplier privately observes the value of the

¯xed cost, and 2) the retailer privately observes the backorder penalty cost. Also discussed is

how consignment|the practice of giving the ownership of retailer inventory to the supplier|a®ects

supply chain coordination. We omit the details. For other studies on supply chain models with

asymmetric cost information, see Corbett et al. (2001) and the references therein.

Another type of information asymmetry in supply chains is about demand information. For

example, a retailer, due to its proximity to the market, may possess better information about the

demand than the supplier. Cachon and Lariviere (1999) consider a one-period model with one

supplier and N retailers. The retailers are local monopolists, each of which receives a private signal

about its own market, which in turn determines its desired stocking level. The supplier has a ¯nite

38Here lies a critical assumption: the supplier sets the retailer's order quantity. It is worth thinking about an

alternative model where there are two quantity decisions: the supplier sets its production quantity, and the retailer

sets its order quantity. Under the current cost structure, it is reasonable to assume that the production quantity is

larger than the order quantity. Consequently, the supplier will also incur some inventory holding costs. How would

supply chain coordination come about in this case? The same comment applies to Corbett and de Groote (2000).
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capacity, and must determine an allocation mechanism in the event the sum of the retailer orders

exceeds the capacity. (An allocation mechanism is therefore a mapping from a vector of retailer

orders to a vector of capacity allocations.) They consider various allocation mechanisms and their

impact on the supply chain. They found that some mechanisms induce the retailers to truthfully

order their desired quantities, but the supply chain often fares better with a mechanism that induces

order in°ation (i.e., the retailers order more than they need hoping to get a higher allocation in the

event of capacity shortage). In other words, the truthful sharing of retailer order information is not

necessarily the appropriate goal for the supply chain. A recent paper by Deshpande and Schwarz

(2002) considers a similar problem and derives an optimal mechanism from the supplier's standpoint.

3.2 Signaling

We begin with a simple example to illustrate the basics of signaling. We then review several supply

chain models where an informed party likes to convey a piece of private information to the unin-

formed. These models are, interestingly, all set forth in the context of new product introductions.

A Simple Example

Consider a supply chain with one manufacturer and one retailer. The manufacturer (she) pro-

duces one product and sells it through the retailer (he). The retailer faces a linear demand function

D = a ¡ p. The demand intercept, a, has two possible values: a = 8 or a = 4. The manufacturer
observes the value of a, while the retailer assesses a probability of ½ that a = 8 and a probability of

1 ¡ ½ that a = 4, 0 < ½ < 1. And the manufacturer is aware of this assessment by the retailer. To
make numbers simple, say the manufacturer's marginal cost of production is zero. The one-period

game begins with the manufacturer o®ering a wholesale price w. Then, the retailer sets the retail

price p. Finally, the market demand is realized and pro¯ts accrue to the two players.

To start, let us consider the full information case, i.e., the value of a is also known to the

retailer. In the high-type case (i.e., a = 8), the retailer chooses p to maximize (p¡ w)(8¡ p) when
the wholesale price is w. The optimal solution is p = (8 + w)=2. Given this, the manufacturer

maximizes w(8 ¡ (8 + w)=2). The solution is wH = 4, which leads to a retail price of pH = 6. The
pro¯ts for the manufacturer and the retailer are ¼MH = 8 and ¼RH = 4, respectively. On the other

hand, if a = 4, i.e., the low-type case, we have wL = 2, pL = 3, ¼
M
L = 2, and ¼RL = 1.

We can already see that the high-type manufacturer has an incentive to \pretend" to be low

type. For example, suppose, miraculously, the high-type manufacturer charges w = 2 and the

retailer believes she is actually low type. The retailer then chooses a retail price p to maximize

(p¡ w)(4¡ p), leading to p = 3. In this case, the high-type manufacturer's pro¯t is w(8¡ p) = 10,
which is higher than ¼MH = 8 under full information. The intuition is clear: the manufacturer

\prefers" the retailer to think the demand intercept is low and hence, to charge a lower retail price

leading to a higher demand. Interestingly, the retailer's actual pro¯t in this case is (p¡w)(8¡p) = 5,
which is also higher than the pro¯t under full information ¼RH = 4. On the other hand, the low-type

manufacturer does not want the retailer to think otherwise. To verify this is a good exercise.

Now back to the case with asymmetric information. Suppose the manufacturer sets the wholesale

price at w. Let ¹(w) be the probability the retailer attributes to the event that a = 8. If, e.g.,

¹(w) = ½, then the retailer obtains no new information about the demand intercept after observing

36



w. The other extreme is ¹(w) = 0 or 1, in which case the retailer learns the exact value of the

demand intercept. With w and ¹(w), the retailer chooses a retail price to maximize his expected

pro¯ts:

(p¡ w)[8¹(w) + 4(1¡ ¹(w))¡ p] = (p¡ w)[4 + 4¹(w)¡ p]:
Therefore, the optimal solution is

p(w;¹(¢)) = 4 + 4¹(w) + w

2
= 2(1 + ¹(w)) + w=2:

Given ¹(¢), the manufacturer can anticipate what the retailer is going to do through the above
equation for each possible value of w. The optimal wholesale price for the high-type manufacturer

is the solution to

max
w
¼MH (w)

def
= w(8¡ p(w; ¹(¢))) = w(6¡ 2¹(w)¡ w

2
):

Let the solution be w¤H . Similarly, the low-type's optimal wholesale price w
¤
L solves

max
w
¼ML (w)

def
= w(4¡ p(w; ¹(¢))) = w(2¡ 2¹(w)¡ w

2
):

In sum, given ¹(¢), the two players simply play a Stackelberg game with the manufacturer as the
leader and the retailer as the follower. But the story does not end here. Where does ¹(¢) come from?
It must be consistent with the pricing strategies that prevail in the Stackelberg game. For example,

if w¤H 6= w¤L, then a wholesale price equal to w¤H signals to the retailer that a = 8, and a wholesale

price of w¤L signals a = 4. Therefore, to be consistent, we must have ¹(w¤H) = 1 and ¹(w¤L) = 0.

On the other hand, if w¤H = w
¤
L, then the retailer is going to see only one wholesale price no matter

what the manufacturer type is. In this case, consistency calls for ¹(w¤H) = ½. In the former case, we
have a separating equilibrium because the retailer is able to separate the two manufacturer types;

in the latter, a pooling equilibrium because the two manufacturer types do the same thing. A belief

structure that is consistent is referred to as an equilibrium belief.

Let us see if there exists any equilibrium, separating or pooling, in the above game.

Suppose a pooling equilibrium exists. Let w0 be the wholesale price chosen by both types of the

manufacturer. Let ¹0(¢) be the retailer belief. Recall that consistency calls for ¹0(w0) = ½. We

claim that if ½ < 3 ¡ 2p2 ¼ 0:1716, then the following strategy pro¯le and belief form a pooling

equilibrium: w0 = 2¡ 2½, ¹0(w) = ½ for all w ∙ 2¡ 2½ and ¹0(w) = 1 for all other w. To verify, all
we need to do is check that under the given belief, w0 = 2¡2½ is indeed the optimal choice for both
manufacturer types. Consider ¯rst the high type. If the manufacturer o®ers a wholesale price w

greater than w0, then ¼MH (w) = 4w¡w2=2, which is maximized at w = 4 with ¼MH (4) = 8. If w = w0,
¼MH (w

0) = 6w0¡ (w0)2=2¡2½w0. It is easy to verify that ¼MH (w0) > 8 when ½ < 3¡2
p
2. Moreover,

for all w < w0, ¼MH (w) = 6w ¡ w2=2 ¡ 2½w is increasing in w. This shows that the high-type

manufacturer's optimal choice of a wholesale price is w0. Now consider the low-type manufacturer.

If the low-type manufacturer o®ers a wholesale price w > w0, the retailer thinks the manufacturer is

of high type. Under this scenario, the low-type manufacturer's pro¯t function is ¼ML (w) = ¡w2=2.
Therefore, it is not in the interest of the low-type manufacturer to \pretend" to be of high type. For

all w ∙ w0, ¼ML (w) = 2w ¡ w2=2 ¡ 2½w, which is maximized at w = w0. This establishes that the
above strategy-belief combination is a pooling equilibrium. 39

39Various equilibrium re¯nements are possible. We consider one here, i.e., the test of equilibrium domination that is

also known in the literature as the \intuitive criterion." The reader is referred to Kreps (1990) for discussions on the

intuitive criterion and references to other re¯nements. In the above pooling equilibrium, the high-type manufacturer
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The following is a separating equilibrium: wH = 4, wL = 6 ¡ p20 ¼ 1:5279, ¹(w) = 0 for all

w ∙ wL, and ¹(w) = 1 for all w > wL. To verify, ¯rst consider the high-type manufacturer. For any
wholesale price w greater than wL, the retailer thinks a = 8 and the manufacturer faces the pro¯t

function ¼MH (w) = 4w ¡ w2=2, which is maximized at w = 4 with ¼MH (4) = 8. If the manufacturer
wants to pretend to be of low type, he must o®er a wholesale price w ∙ wL. Over this range,

¼MH (w) = 6w ¡ w2=2, which is an increasing function in w for w ∙ wL. Therefore, misleading the
retailer gives the high-type manufacturer a pro¯t lower than or equal to 6wL ¡ w2L=2 = 8, which is
not better than \truth-telling." This veri¯es that the optimal choice for the high-type manufacturer

is wH = 4. On the other hand, recall from our earlier discussions that the low-type manufacturer will

never want to pretend to be of high-type (doing so would give him a negative pro¯t). For wholesale

prices w ∙ wL, the low-type manufacturer's pro¯t function is ¼ML (w) = 2w¡w2=2. It is easy to see
that this function is increasing over w ∙ wL. Thus the low-type manufacturer's optimal wholesale
price is wL. Moreover, the choices by the two manufacturer types con¯rm the above retailer belief.

We thus have a separating equilibrium.

You may wonder if there exists any other pooling or separating equilibrium. It is a good exercise

to try to ¯nd one. To read more about signaling games, see, e.g., Kreps (1990), Fudenberg and

obtains an expected pro¯t (8¡ p0)w0, where p0 is the retailer's selling price in the equilibrium, i.e.
p0 = 2(1 + ½) + w0=2 = 3 + ½:

Likewise, the low-type manufacturer's equilibrium expected pro¯t is (4¡p0)w0. The ¯rst step in the test is to identify
all signals (i.e., wholesale prices) that are \equilibrium dominated." A wholesale price w is equilibrium dominated if

the maximum achievable pro¯t for the manufacturer under w is less than what she gets in equilibrium. Consider the

high-type manufacturer. We know her expected pro¯t in equilibrium is (8 ¡ p0)w0. If she charges wholesale price
w and the retailer sets the retail price at p, her pro¯t is (8 ¡ p)w. The maximum achievable pro¯t is 8w, which is

obtained when p = 0. Thus w is equilibrium dominated at the high type if

8w < (8¡ p0)w0 or w < (1¡ p0=8)w0 = (5¡ ½)(1¡ ½)
4

def
= ~wH :

Similarly, w is equilibrium dominated at the low type if

4w < (4¡ p0)w0 or w < (1¡ p0=4)w0 = (1¡ ½)2
2

def
= ~wL:

The central idea of the intuitive criterion is that it should be obvious what the retailer's beliefs should be at wholesale

prices that are equilibrium dominated. For example, if the retailer observes w < ~wH , then the signal must not

come from the high-type manufacturer and thus ¹(w) = 0. Similarly, a signal w < ~wL tells the retailer that the

manufacturer cannot be of low type. But can she be of high type in this case? No, because ~wL < ~wH and thus

w < ~wH . We are in a quandary here; a reasonable assumption is that such a wholesale price will never be observed.

Under this assumption, the intuitive criterion suggests that ¹(w) = 0 for all w < ~wH . Notice that ¹
0(w) = ½ for the

same range. (Check that ~wH < w0.) Let us see if this change in retailer belief will change the manufacturer's signaling

strategy, assuming the retailer continues with his optimal response p(w;¹(¢)) where ¹(¢) is the updated belief. First,
consider the high-type manufacturer. If she o®ers w < ~wH , then ¹(w) = 0 and

¼MH (w) = 6w ¡ w2=2 < 6 ~wH ¡ ( ~wH)2=2
which can be shown to be less than 8, which is the manufacturer's expected pro¯t if the wholesale price is 4 (and

thus the retailer thinks she is high type), which in turn is less than what she gets by charging w0. Therefore, the

high-type's choice remains intact. Now consider the low-type manufacturer. For any w < ~wH , we have

¼ML (w) = 2w ¡ w2=2 < 2 ~wH ¡ ( ~wH)2=2:
It can be shown that if ½ < 0:11 then

2 ~wH ¡ ( ~wH)2=2 < (w0)2=2
where the right-hand side is the low-type manufacturer's expected pro¯t if she chooses w0 as the wholesale price.

Consequently, for ½ < 0:11, the pooling equilibrium is sustained by the intuitive criterion.
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Tirole (1992), and Kreps and Wilson (1982).

Demand Signaling in New Product Introductions

When a manufacturer introduces a new product to the market, it often possesses some private

information about the potential market demand for the product. This information is critical for a

retailer who is deciding whether or not to carry the product because the retailer may not be able to

recoup the overhead for a low-demand product. Similarly, the information is valuable to a supplier

who is considering how much capacity to build for the manufacturer's product; building a lot of

capacity for a low-demand product is wasteful. In both cases, the manufacturer has an incentive to

report high demand, whether the actual demand is high or low. (This is di®erent than the scenario

considered in the above example, where the manufacturer bene¯ts if the retailer thinks the market is

low.) As a result, a simple announcement by the manufacturer will not be believed. To be credible,

the manufacturer needs to put money where its mouth is, i.e., signaling. Below are several papers

that deal with this issue.

Chu (1992) considers a distribution channel consisting of a manufacturer and a retailer. The

product, produced by the manufacturer and sold by the retailer, draws a demand that depends on

the market condition, the retail price P , and the manufacturer's advertising expenditure A:

Qi = a¡ biP + f(A); i = H;L

where Qi is the demand for the product under market condition i, a is a constant, bi is the demand

sensitivity to price, and f(¢) is a concave, increasing function. Assume bH < bL. Thus, for any given
P and A, the demand is higher when the market condition is `H'. For convenience, we say the market

condition is either high (i = H) or low (i = L). The manufacturer knows the true market condition,

whereas the retailer assesses a probability ½ that the market is high (and the manufacturer knows

of this assessment). The manufacturer incurs a constant marginal cost of production C.

A signaling game is where the manufacturer (with superior information) moves ¯rst by o®ering a

wholesale price Pw and spending A on advertising. Given Pw and A, the retailer updates his belief

about the market condition from ½ to ½̂, decides whether or not to carry the manufacturer's product,

and if the latter, sets the retail price. The retailer incurs a ¯xed cost F for carrying the product.

The retailer will accept the manufacturer's o®er if his expected pro¯t (excluding the carrying cost)

exceeds F , and will reject it otherwise.

Chu makes an additional assumption that as soon as the retailer accepts the manufacturer's

o®er, he sees the true market condition. Therefore, the retail price can be made contingent upon

the value of the slope bi.

An equilibrium for the signaling game consists of a manufacturer strategy fP iw; Aig, i = H;L, a
retailer accept/reject strategy R(x; y) that is a binary function, and a retailer belief ¹(x; y), which

is the posterior probability that the market is high, for any possible o®er (Pw; A) = (x; y) from the

manufacturer. Recall that the retailer's pricing decision is made after learning the market condition.

Thus if the retailer accepts an o®er (x; y) from the manufacturer, the optimal retail price is

P i(x; y) = argmaxP (P ¡ x)(a¡ biP + f(y)); i = H;L:

Let the retailer's pro¯t (excluding the ¯xed cost F ) be ¼iR(x; y), i.e., ¼
i
R(x; y) = (P

i(x; y) ¡ x)(a¡
biP i(x; y) + f(y)). Before the accept/reject decision, the retailer's expected pro¯t is ¼R(x; y)

def
=
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¹(x; y)¼HR (x; y)+ (1¡¹(x; y))¼LR(x; y). Therefore, if ¼R(x; y) ¸ F , the retailer accepts the manufac-
turer's o®er (x; y), i.e., R(x; y) = 1; otherwise, if ¼R(x; y) < F , the retailer rejects the o®er (x; y),

i.e., R(x; y) = 0. Anticipating all this, the manufacturer, knowing her own type, maximizes her

pro¯ts:

(P iw; A
i) = argmaxPw;AR(Pw; A)(Pw ¡ C)(a¡ biP i(Pw; A) + f(A)); i = H;L:

An equilibrium with (PHw ; A
H) 6= (PLw ; A

L) is a separating equilibrium; otherwise, if (PHw ; A
H) =

(PLw ; A
L)

def
= (P̂w; Â), we have a pooling equilibrium. For a separating equilibrium, the consistency

requirement for the retailer belief is ¹(PHw ; A
H) = 1 and ¹(PLw ; A

L) = 0. For a pooling equilibrium,

consistency requires ¹(P̂w; Â) = ½.

Chu has identi¯ed a separating equilibrium, where the high-type manufacturer advertises and

prices above its complete information levels. He has also identi¯ed a pooling equilibrium, where

both the high-type and the low-type manufacturers advertise and price at or above the complete

information levels of the high-type manufacturer. (The complete information case is simply one

where the retailer knows the true market condition, and the two players carry out a Stackelberg game

with the manufacturer as the leader, setting the wholesale price and the advertising expenditure,

and the retailer as the follower, setting the retail price, with an option to reject the manufacturer's

o®er.)

Chu proceeds to consider the case where the retailer moves ¯rst to screen the manufacturer. This

is achieved through a slotting allowance, which is a lump-sum payment from the manufacturer to the

retailer in order for the latter to carry the product. The game proceeds in the following sequence.

The retailer speci¯es a slotting allowance, which the manufacturer can either accept or reject. If

rejected, the game ends with zero pro¯t for both parties. If the manufacturer agrees to pay the

slotting allowance, she gets to set the wholesale price and an advertising expenditure. Given these,

the retailer then sets the retail price after observing the market condition (as in the signaling case).

Notice that once the manufacturer has accepted to pay the slotting allowance, the rest of the

game is the same as in the complete information case, because the retailer sees the market condition

(due to screening) before his pricing decision. It is possible to choose a slotting allowance such that

only the high-type manufacturer ¯nds it acceptable. For example, let the slotting allowance be the

high-type manufacturer's maximum pro¯ts in the complete information case. (Recall that this is

what the manufacturer can achieve in the Stackelberg game with complete information, where the

manufacturer moves ¯rst by announcing the wholesale price Pw and the advertising expenditure

A, and the retailer follows by setting the retail price P .) It is clear that such a slotting fee is

unacceptable to the low-type manufacturer. In this case, only high-type products will be carried by

the retailer, who takes all the channel pro¯ts.

So, signaling or screening? This is, of course, determined by the balance of power in the channel.

Clearly, the manufacturer prefers to move ¯rst, by signaling, whereas the retailer prefers to move

¯rst too, by screening. From the channel's perspective, the result depends on the e®ectiveness of

advertising.

Consider, for a moment, the complete information case. Compared with the channel-optimal so-

lution, the Stackelberg solution leads to a wholesale price greater than the manufacturer's marginal

cost, which in turn leads to a retail price greater than the channel-optimal retail price. This is the

40



well-known double-marginalization phenomenon.40 On the advertising side, because the manufac-

turer reaps only part of the bene¯ts from advertising (because the retailer also makes a margin),

the advertising level in the Stackelberg solution tends to be lower than the channel-optimal adver-

tising level. In sum, ine±ciencies result because the wholesale price is too high and the advertising

expenditure is too low.

Now consider the asymmetric information case with a high-type manufacturer. (It is reasonable

to ignore the low-type manufacturer if a low-type product is not sustainable.) As mentioned earlier,

the signaling game leads to a wholesale price and an advertising level both higher than those in the

Stackelberg solution (with complete information). Therefore, signaling increases the wholesale-price

distortion (further away from the channel optimum) but decreases the advertising distortion. When

advertising has low e®ectiveness, the former e®ect dominates the latter, leading to a channel pro¯t

even lower than in the Stackelberg solution. In contrast, screening with a slotting allowance restores

the channel pro¯t to the Stackelberg-game level, because the slotting allowance, being a ¯xed fee,

does not alter the pricing and advertising decisions in the channel. Therefore, one can say that

signaling involves wasteful expenditures, whereas screening keeps the money in the channel. On the

other hand, if advertising is highly e®ective, then the channel may be better o® with signaling.

Lariviere and Padmanabhan (1997) further investigate the role of slotting allowances in new

product introductions. Suppose, as before, a manufacturer introduces a new product through an

independent retailer. The manufacturer begins by o®ering the terms of trade, consisting of a whole-

sale price w and a slotting allowance A. The retailer then either accepts or rejects the terms. If

the former, the retailer agrees to carry the product and proceeds to set a retail price p and exert

merchandising e®ort e. The quantity sold can be expressed as

D(e; p) = ¿ + f(e)¡ ¯p

where ¿ is a market-size parameter, ¯ measures demand sensitivity to price, and f(¢) is an increasing,
concave function. The cost of merchandising e®ort is assumed to be e as well, i.e., a linear e®ort-cost

model. The retailer incurs a ¯xed cost K for carrying the product. He accepts the contract o®ered

by the manufacturer if and only if his pro¯t is nonnegative. A key feature of the model is that the

two players possess asymmetric information about the market size. It is assumed that ¿ takes one

of two possible values H and L with H > L. The manufacturer knows the value of ¿ , whereas the

retailer assesses a probability µ that ¿ = H (and the manufacturer knows about this assessment).

As in all signaling games, the retailer may infer something about the value of ¿ from the terms of

trade o®ered (w;A), i.e., forming a posterior belief ¹(w;A) that ¿ = H .

Lariviere and Padmanabhan have characterized a separating equilibrium in the above signaling

game. The equilibrium consists of a contract o®ered by the manufacturer, (ŵ; Â), and a supporting

retailer belief ¹(¢; ¢) such that ¹(ŵ; Â) = 1 and ¹(w;A) = 0 for all (w;A)6= (ŵ; Â). The parameters
of the model are such that if the market is low, it is impossible for the manufacturer and the retailer

to make nonnegative pro¯ts at the same time. Therefore, in any separating equilibrium where the

retailer learns the true type of the manufacturer, only the high-type product may be accepted by

the retailer.

Let us identify the constraints that a separating equilibrium must satisfy. Suppose the manu-

facturer o®ers (w;A) that leads the retailer to believe that the market is high. The retailer's pro¯t

40Spengler (1950) is the ¯rst to discuss this phenomenon.

41



function (excluding ¯xed costs) is thus

¼R(e; p) = (p¡ w)(H + f(e)¡ ¯p) +A¡ e:

The retailer's optimal response is thus (~e; ~p)
def
= argmax(e;p)¼R(e; p). Note that the slotting al-

lowance, since it is ¯xed, does not a®ect the retailer's pricing and e®ort decisions. But it certainly

a®ects whether or not the retailer will accept the manufacturer's o®er. Acceptance results only if

¼R(~e; ~p) ¸ K:

In order for the belief to be correct in equilibrium, it must be unpro¯table for the low-type manufac-

turer to mimic the high-type. Suppose the low-type manufacturer o®ers (w;A), the contract o®ered

by the high-type. As a result, the retailer believes ¿ = H and thus responds by choosing (~e; ~A). The

manufacturer's pro¯t is thus:

¼LM (w;A) = (w ¡ c)(L+ f(~e)¡ ¯~p)¡A

where c is the manufacturer's marginal production cost. Doing so must be unpro¯table for the

low-type manufacturer, i.e. ¼LM (w;A) ∙ 0. On the other hand, the high-type manufacturer's pro¯t
is

¼HM (w;A) = (w ¡ c)(H + f(~e)¡ ¯~p)¡A:
The high-type manufacturer seeks a separating equilibrium that maximizes her pro¯t by solving the

following optimization problem:

max
(w;A)

¼HM (w;A)

s:t: (~e; ~p) = argmax(e;p)¼R(e; p)

¼R(~e; ~p) ¸ K
¼LM (w;A) ∙ 0:

The solution (ŵ; Â) is the contract the high-type manufacturer will o®er in equilibrium.

The following results have been obtained. First, when the ¯xed cost K is lower than a threshold

level K¤, the separating equilibrium does not involve any slotting allowance, i.e., Â = 0, and the

wholesale price ŵ is greater than the full information wholesale price (for high market condition).41

Second, when K ¸ K¤, the separating equilibrium requires a positive slotting allowance, i.e., Â > 0,

and a wholesale price ŵ that is still greater than the full information price. The main message here

is that slotting allowances can be a useful signaling device to show to the retailers that the products

the manufacturers are introducing are promising. This is in contrast with Chu (1992), who models

slotting allowances only as a screening device.

Desai and Srinivasan (1995) study demand signaling in the presence of moral hazard. A principal

sells a product through an independent agent. The product is new, and the principal has private

information about the demand for the product.42 The agent can also in°uence the demand by

expending selling e®ort, which is not observable to the principal. Both the principal and the agent

are risk neutral. The issue is the contract emerging between the two parties in this two-sided

information asymmetry model.

41The full information case is where the retailer also observes the value of ¿ . In this case, due to the assumptions

made about the model parameters, the only relevant problem is what faces the high-type manufacturer. This problem

is solved in a Stackelberg fashion with the manufacturer being the leader and the retailer the follower.
42The model can be interpreted in other ways. We choose this principal-agent, new-product story for convenience.
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More speci¯cally, the demand function is either QH or QL with

QJ = T J ¡ p+ f(a) + ²; J = H;L

where TH > TL. The principal knows the true demand function, whereas the agent remains uncer-

tain. For convenience, if the demand function is QH , we say the principal is of high-type; otherwise,

the principal is of low-type. The agent's prior belief is that the principal is of high-type with proba-

bility ½, with 0 < ½ < 1. It is assumed that both types of principals have the same marginal cost c.

The agent determines the selling price p and selling e®ort a, whose impact on sales is captured by

an increasing concave function f(¢). The cost of e®ort (to the agent) is w(a), a convex increasing
function. The demand is subject to a random shock ² with mean zero. Although the realized demand

is observable and contractible, the selling e®ort is not.

The sequence of events is as follows. The principal o®ers a contract to the agent; the contract

speci¯es a payment from the agent to the principal that can be a function of the realized demand.

Given a contract, the agent then updates his belief about the principal's type, from his prior belief

½ to a posterior belief ½̂. Based on this updated belief, the agent chooses a selling price and an

e®ort level to maximize his expected pro¯t. The principal, anticipating the agent's behavior, selects

a contract that maximizes her expected pro¯t, under the constraint that the expected pro¯t for the

agent is at least ¹u, a reservation utility level re°ecting the agent's outside opportunities.

Desai and Srinivasan, citing Arrow (1985) that simple linear contracts are prevalent in practice,

start with a simple, two-part contract with a ¯xed fee F and a variable fee r, so that the agent pays

the principal F + rq if the realized demand is q. They then consider a nonlinear contract with a

quadratic component.

First, notice that although the model involves private information on both sides, it is crucial

to have the private demand information (held by the principal). To see this, let us ¯rst consider

the ¯rst-best scenario where both parties have full information, i.e., the agent also knows the true

demand function, and the principal can observe the agent's selling e®ort. In this case, the principal

can demand a speci¯c level of e®ort. Given a contract (r; F; a) of variable fee, ¯xed fee, and e®ort

level, the agent chooses a retail price to maximize his expected pro¯t. This is an easy problem.

In the solution, the principal sets the variable fee r equal to her marginal cost c (to avoid double

marginalization), the agent earns exactly his reservation utility, and the principal extracts all the

surplus (via the ¯xed fee). It can be veri¯ed that the ¯rst-best e®ort level and ¯xed fee are higher

with the high-type principal than with the low-type principal.

Now suppose the agent's selling e®ort is unobservable to the principal (but the agent still knows

the true demand function). The solution to this problem is also well known. From agency theory,

since the agent is risk neutral, the moral hazard problem can be easily overcome by making the

agent a residual claimant. For either type of principal, simply set the variable fee to the marginal

cost and the ¯xed fee to make the agent's participation constraint binding. The ¯rst-best solution

prevails.

The above discussions make it clear that if the principal did not hold private demand informa-

tion, the problem would be trivial. From now on, we focus on the case with asymmetric demand

information. To understand the impact of moral hazard on demand signaling, Desai and Srinivasan

¯rst consider the signaling game without moral hazard, i.e., assuming the principal can observe

the agent's selling e®ort. The signaling instruments are therefore (r; F; a). They have identi¯ed a

separating equilibrium in which the high-type principal o®ers (rS ; FS ; aS), whereas the low-type
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principal o®ers her corresponding ¯rst-best contract. It is shown that rS > rHfb, F
S < FHfb, and

aS = aHfb, where r
H
fb, F

H
fb and a

H
fb are the variable fee, ¯xed fee, and e®ort level in the high-type

principal's ¯rst-best solution. The somewhat unintuitive result is that it is unnecessary for the

high-type principal to distort the e®ort level (from the ¯rst-best level) in order to credibly convey

its type; a distortion in the variable fee su±ces. (Since the variable fee is raised, the ¯xed fee must

be reduced to meet the agent's participation constraint.)

If the agent's selling e®ort is unobservable to the principal (thus not contractible)|as in the

original case with two-sided information asymmetry|the principal's signaling instruments are re-

duced to (r; F ). A separating equilibrium for this game has also been identi¯ed, where the high-type

principal o®ers (rSM ; FSM ), and the low-type principal continues to o®er her ¯rst-best contract. It

has been shown that rHfb < r
SM < rS and FS < FSM < FHfb. This leads to a main conclusion of the

paper that moral hazard dampens the signaling distortions of the ¯xed and variable fees. Moreover,

the high-type principal makes less pro¯t when the agent's e®ort is unobservable.

Interestingly, when we allow nonlinear contracts, the ¯rst-best solution can be achieved for both

types of principals even in the presence of moral hazard. This is established under a three-part

contract where the agent's payment to the principal is F + r1q + r2q
2, with q being the realized

demand. A separating equilibrium has been identi¯ed where both types of principals earn their ¯rst-

best pro¯ts. The above conclusion is obtained under the following additional assumptions: ¹u = 0,

c = 0, f(a) = a, and w(a) = a2. It is worth noting that in equilibrium, the two variable fees are

such that r1 > 0 and r2 < 0. In other words, the ¯rst-best is achieved not by making the agent

a residual claimant. This is in contrast with the way in which the ¯rst-best is achieved when the

principal does not hold private information about demand.

The above three papers on demand signaling focus on a manufacturer's task of conveying her

private demand information to a retailer, a downstream supply-chain partner. We next consider the

problem of signaling to an upstream supply-chain partner.

In the relationship between a manufacturer and her supplier, it is often the case that the man-

ufacturer knows more about the demand (for the end product) than the supplier does. Suppose

the supplier is always the bottleneck of the supply chain, i.e., production is constrained only by

the supplier's capacity. From the manufacturer's standpoint, the more capacity the supplier installs

the better (a higher capacity relaxes the constraint on production). Therefore, the manufacturer

has an incentive to in°ate her demand forecast, hoping the supplier will increase his capacity. But,

of course, the supplier knows this and will not take the manufacturer's demand forecast at face

value. The result is a communication breakdown leading to an e±ciency loss. Is there a way for the

manufacturer to reveal her demand forecast in a credible way?

Cachon and Lariviere (2001) provide a model to address the above question. A manufacturer

sells a single product that has uncertain demand, D. The manufacturer relies on a single supplier for

a critical component of the product. Let K be the supplier's capacity, which must be built before

demand realization. Some demand may be lost due to the capacity constraint, with minfD;Kg
being the demand ful¯lled and the rest lost. The supplier incurs a cost for every unit of capacity

built. A key feature of the model is that the manufacturer possesses private information about the

demand. It is assumed that D = µX , where µ and X are independent random variables. Moreover,

µ has only two possible values, H and L with H > L. The parameter µ may be interpreted as an

indicator of the market condition. The manufacturer observes the value of µ, whereas the supplier

assesses a probability ½ that µ = H and 1¡ ½ that µ = L. (Both players have the same information
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about X , i.e., its distribution.) For convenience, the manufacturer observing µ = H is said to be

of high-type, whereas if µ = L, low-type. The manufacturer moves ¯rst by o®ering a contract to

the supplier, the supplier builds capacity given the contract and his belief about demand, demand

is then realized, and ¯nally, production takes place (within the capacity set by the supplier). This

is a signaling game because the informed party (i.e., the manufacturer) takes a more active role by

designing the contract.

Let Z be the set of all admissible contracts. Both the supplier and the manufacturer agree

that only contracts in Z are considered. (Cachon and Lariviere consider linear contracts with

commitments and options.) The supplier's capacity decision depends on the contract o®ered by the

manufacturer and his belief about the market condition. Let z 2 Z be the contract o®ered, and b

the supplier's belief, i.e., b is a probability distribution for the values of µ. Note that b might be a

function of z. Let ¼(K; z; b) be the supplier's expected pro¯t if he builds capacity K. The optimal

capacity level, from the supplier's standpoint, is then K(z; b) = argmaxK¼(K; z; b). Consequently,

the manufacturer's expected pro¯t is a function of her type t, the contract o®ered to the supplier z,

and the supplier's belief b about the market condition, i.e., ¦t(z; b), t = H;L.

We focus on separating equilibria, whereby the supplier learns the manufacturer's type upon

seeing the contract o®ered by the manufacturer. That is, given a contract z, the supplier assigns

probability one to either µ = H or µ = L. For convenience, denote the former by b = H and the

latter b = L. Therefore, the supplier's belief can be characterized by a partition of Z, i.e., ZH and

ZL with Z = ZH [ZL and ZH \ZL = ;. If a contract z 2 ZH is o®ered, b = H ; otherwise if z 2 ZL
is o®ered, b = L. In equilibrium, the supplier's belief must be correct, i.e.

max
z2ZL

¦L(z; L) ¸ max
z2ZH

¦L(z;H) and max
z2ZH

¦H(z;H) ¸ max
z2ZL

¦H(z; L):

In words, given the supplier's belief (i.e., a partition of Z), a type-t manufacturer has no incentives to

mislead the supplier into believing that she is of type-t0, t6= t0. A partition or belief with the above
properties is called an equilibrium partition or equilibrium belief. Corresponding to an equilibrium

partition, ZH and ZL, is a pair of contracts, zH and zL, that are o®ered by the high- and low-type

manufacturer, respectively. Clearly,

zt = argmaxz2Zt¦t(z; t); t = H;L:

A separating equilibrium, then, consists of an equilibrium partition, ZH and ZL, and a corresponding

pair of contracts, zH and zL.

Now assume that

¦t(z;H) ¸ ¦t(z; L); 8z 2 Z; t = H;L: (4)

In words, for any contract, the manufacturer, regardless of her type, is better o® if the supplier

believes that the market condition is high rather than low. This seems plausible because a belief of

high market condition leads the supplier to build more capacity, to the bene¯t of the manufacturer.

Below, we characterize a separating equilibrium under the above condition.

Let z¤L be the optimal contract for the low-type manufacturer in the full-information case, i.e.,

z¤L = argmaxz2Z¦L(z;L):

Assume that the above optimization problem has a unique solution; thus ¦L(z
¤
L; L) > ¦L(z; L) for

all z6= z¤L. It is easy to establish that any equilibrium partition (ZH ; ZL) has z
¤
L 2 ZL. The proof is
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by contradiction. Suppose z¤L 2 ZH . Then ¦L(z¤L; H) ¸ ¦L(z¤L; L) > ¦L(z; L) for all z 2 ZL, where
the ¯rst inequality follows from (4). Thus the low-type wants to pretend to be the high-type. Thus

(ZH ; ZL) is not an equilibrium partition, a contradiction.

Now take any equilibrium partition (ZH ; ZL). Let (zH ; zL) be the corresponding pair of contracts

o®ered by the two manufacturer types. From the above discussion, zL = z
¤
L. Also, by the de¯nition

of equilibrium partitions, we have

¦L(zH ; H) ∙ ¦L(z¤L; L) (5)

and

¦H(zH ;H) ¸ max
z2ZL

¦H(z; L): (6)

Also by the de¯nition of zH and (4), for any z 2 ZH , ¦H(zH ; H) ¸ ¦H(z;H) ¸ ¦H(z; L). This

inequality, together with (6), implies

¦H(zH ; H) ¸ max
z2Z

¦H(z; L): (7)

Therefore, the high-type manufacturer's expected pro¯t, i.e., ¦H(zH ;H), is no greater than the

maximum value of the objective function in

max
z2Z

¦H(z;H)

s:t: ¦L(z;H) ∙ ¦L(z¤L; L)
¦H(z;H) ¸ max

z02Z
¦H(z

0; L)

where the ¯rst and second constraints are from (5) and (7) respectively. Suppose this problem

has a unique solution z = z¤H . De¯ne Z
¤
H = fz¤Hg and Z¤L = Z n Z¤H . It is easy to verify that

(Z¤H ; Z
¤
L) is an equilibrium partition. The contract o®ered by the high-type (resp., low-type) man-

ufacturer is z¤H (resp., z¤L) with the corresponding expected pro¯t ¦H(z
¤
H ; H) (resp., ¦L(z

¤
L; L)).

Thus (Z¤H ; Z
¤
L; z

¤
H ; z

¤
L) is a separating equilibrium. Note that from the above arguments, both man-

ufacturer types can do no better than this with any other equilibrium partition.

While the supplier in Cachon and Lariviere (2001) is the only source of supply for the manu-

facturer, Van Mieghem (1999) considers a setting with two sources of supply: the manufacturer's

in-house production facility and an outside supplier (i.e., subcontractor). At the beginning of the

game, the manufacturer and the subcontractor simultaneously and independently make their capac-

ity investment decisions, i.e., the manufacturer decides how much in-house capacity KM to build

and the subcontractor decides on its own capacity KS . The manufacturer faces market demand

DM , which can be served by in-house as well as the subcontractor's production. Moreover, the

subcontractor can also sell its product to a separate market with demand DS . At the time of the

capacity decisions, only a joint probability distribution of DM and DS is known (to both players).

After the capacity decisions, the demands are realized and the ¯rms decide on their production/sales

quantities. More speci¯cally, the manufacturer determines how much to produce in-house (i.e., xM )

and how much to order from the subcontractor (i.e., xMt ); the subcontractor decides how much to

sell to its own market (i.e., xS) and how much of the manufacturer's order to ¯ll (i.e., x
S
t ). Of course,

xM ∙ KM , xM + xMt ∙ DM , x
S
t ∙ xMt , x

S
t + xS ∙ KS , and xS ∙ DS . These production/sales

decisions are governed by various contractual arrangements between the two ¯rms. In one contract

(called the price-only contract), a transfer price pt is speci¯ed ex ante for each unit supplied by the

subcontractor. (This price is known before the capacity decisions.) In this scenario, the two ¯rms
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sequentially solve for their production/sales quantities, with the manufacturer as the ¯rst mover.

Under another contractual arrangement, there are simply no ex-ante contracts and the parties ne-

gotiate the transfer quantity and price after the demands are realized. In this scenario, the ¯rms

arrive at production/sales quantities that maximize their total pro¯ts and the surplus (relative to a

scenario with no transactions between the two) is split between them based on their relative bargain-

ing power, which is captured by an exogenous index. Van Mieghem also considers state-dependent

contracts: a price-only contract with pt being a function of the installed capacities and the realized

demands, or an incomplete contract/bargaining arrangement where the bargaining-power index is

state-dependent. For each of these contractual arrangements, one can solve the resulting two-stage

stochastic game and examine a contract's impact on the coordination of both capacity and pro-

duction/sales decisions. Although information sharing is not the focus of Van Mieghem (1999) (in

fact, there is no information asymmetry), the paper does provide an interesting discussion on co-

ordinating capacity and quantity decisions in a manufacturer-subcontractor supply chain. Among

the key ¯ndings are 1) a higher transfer price can actually increase the manufacturer's pro¯t and 2)

only state-dependent contracts (price-only or incomplete contract) can coordinate both the quantity

and capacity decisions. It remains an interesting open question as to the impact of information

asymmetries (about demands, capacities, costs, etc.) on the manufacturer-subcontractor supply

chain.

3.3 Information Sharing in Competitive Environments

We begin by considering papers that deal with information sharing among horizontal competitors,

e.g., competing retailers sharing market demand information. These papers are all published in

economics journals in the 1980s. (Are economists tired of this problem? Extensions to supply chains

may breathe new life.) Recently, there have been several attempts to generalize the horizontal

information-sharing literature to vertical information sharing in supply chains, e.g., will competing

retailers share their demand information with their common supplier? We will discuss these papers

as well. 43

A Simple Example

We begin with a simple example to illustrate the incentives of sharing demand information

43A somewhat related paper is Lee and Whang (2002) who consider a supply chain with one supplier and n retailers.

These supply chain members are independent ¯rms. The retailers face a selling season with two periods. The retailers

independently make their inventory decisions at the beginning of the ¯rst period by ordering from the supplier.

The retailers are able to adjust their inventory levels after the ¯rst-period demands are realized by trading among

themselves through a secondary market. They study the impact of the secondary market on the supply chain. The

paper is related if one considers the secondary market as an institution that facilitates the sharing (more precisely, the

aggregation) of the information embodied in the ¯rst-period demands (about the needs for inventories at the beginning

of the second period). In this respect, Mendelson and Tunca (2001) is also related. Another paper that touches upon

information sharing in a competitive environment is Anupindi and Bassok (1999), who study a decentralized supply

chain with one manufacturer and two retailers. The retailers order inventories from the manufacturer, and their

ordering decisions are inter-dependent because of consumer market search, i.e., there is a positive probability that a

consumer who experiences a stockout at one retailer will look for inventory at the other retailer. It is clear that market

search provides incentives for one retailer to increase its inventory (to capture the bene¯ts of demand spillovers), given

the other retailer's ordering decision; and such incentives are stronger when search becomes easier. The consequence

is that the manufacturer sees an increase in total retailer order quantities as market search increases, which can be

facilitated by the installation of an information system that makes the inventory status at the retailers visible to the

consumers.
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between two competitors.44 Consider a duopoly facing stochastic linear demand, p = a¡Q, where p
is the market price, a is a random variable, and Q is the total output of the duopolists. Assume that

a = 50; 150 with equal probabilities. Also, the marginal production costs are zero for both ¯rms.

The two ¯rms are engaged in a Cournot competition, i.e., making quantity decisions independently.

Before their quantity decisions, ¯rm 1 observes the true value of a, while ¯rm 2 does not receive

any private signal about a. Consider a two-stage game. In the ¯rst stage, ¯rm 1 decides whether or

not to share its information about a with ¯rm 2. Information sharing, if it occurs, is assumed to be

truthful. Firm 1 then observes the true value of a. Information transmission takes place according

to the agreement reached in the ¯rst stage.45 In the second stage, the ¯rms make quantity decisions

based on their information about a.

First, suppose ¯rm 1 has decided to conceal its information about a. The second-stage game

is thus a Bayesian game (with incomplete information). Firm 1's strategy is a decision rule that

speci¯es a quantity for each signal it may receive. Let ¯rm 1's output be qh1 if it observes a = 150

and ql1 if it observes a = 50. Let q2 be ¯rm 2's output. Firm 2's best response to ¯rm 1's strategy

is obtained by solving:

max
q2

1

2
(50¡ ql1 ¡ q2)q2 +

1

2
(150¡ qh1 ¡ q2)q2:

That is,

q2 =
200¡ ql1 ¡ qh1

4
: (8)

Similarly, ¯rm 1's best strategy against ¯rm 2's quantity is

ql1 =
50¡ q2
2

; and qh1 =
150¡ q2

2
: (9)

Solving (8) and (9) gives a Bayesian Nash equilibrium: (ql1; q
h
1 ; q2) = ( 25

3
; 175
3
; 100
3
). The expected

pro¯ts for ¯rm 1 and ¯rm 2 are: (¼ns1 ; ¼
ns
2 ) = (

15;625
9 ; 10;0009 ), where the superscript `ns' stands for

`no sharing of information.'

Now suppose ¯rm 1 has decided to share its information with ¯rm 2. If a = 50, the two

¯rms each produce 50=3; otherwise, if a = 150, they each produce 50. The expected pro¯ts are

(¼s1; ¼
s
2) = (

12;500
9
; 12;500

9
).

Comparing the above two scenarios, we see that it is to the interest of the informed ¯rm to conceal

its information. Note that the total pro¯ts of the two ¯rms are also higher with no information

sharing. This is a pretty gloomy picture for information sharing.

A body of literature in economics is devoted to the investigation of information sharing among

horizontal competitors. It turns out that whether or not it is optimal to share information depends

on many things, including the type of competition (Cournot or Bertrand), the type of information

(e.g., common demand information or private cost information), and whether or not the products

sold by the competitors are substitutes or complements.

44This example was given by Gal-Or (1985).
45If ¯rm 1 ¯rst observes a and then decides whether or not to share the information with ¯rm 2, we have a very

di®erent model. It looks like a signaling problem, with retail competition as a subgame.
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Duopoly with Demand Information: Cournot and Bertrand, Substitutes and Comple-

ments

Vives (1984) considers the following duopoly model. Two ¯rms, each producing a di®erentiated

good, face the following inverse demand functions:

pi = ®¡ ¯qi ¡ °qj ; i; j = 1; 2; j6= i

where qi are the quantities of the goods and pi their prices, with j°=¯j ∙ 1. If ° = 0, the goods

are independent and the ¯rms are local monopolists. If ° > 0, the goods are substitutes. If ° < 0,

they are complements. Both ¯rms have constant and equal marginal costs, which are normalized to

zero. The two ¯rms are engaged in either Cournot competition where they compete in quantities or

Bertrand competition where they compete in prices.

Note that pro¯ts of ¯rm i are given by ¼i = piqi. Since ¼i is symmetric in pi and qi and

the demand curves are linear, Cournot (resp., Bertrand) competition with substitutes has similar

strategic properties as Bertrand (resp., Cournot) competition with complements.

The common demand intercept, ®, is a normally distributed random variable with known mean

and variance. It is assumed that the ¯rms employ an \independent testing agency" to collect

samples of ®. Through the agency, ¯rm i has contracted for ni observations: (ri1; ¢ ¢ ¢ ; rini), where
rik = ® + uik, and the uik's are i.i.d. normal random variables with zero mean and variance ¾2u
and they are independent of ®. Moreover, ¯rm i has instructed the agency to put the ¯rst mi

observations that it has contracted for in a common pool, available for the other ¯rm. Therefore,

¯rm i's best (minimum variance unbiased) estimate of ® based on ni +mj , j6= i, observations is

si = ®+

Pni
k=1 uik +

Pmj

k=1 ujk
ni +mj

:

If m1 = m2 = 0, then there is no sharing of information. On the other hand, if m1 = n1 and

m2 = n2, there is a complete sharing of information.

The ¯rms play a two-stage game. First, they decide how much information to put in the common

pool, i.e., choosing m1 and m2 independently. (n1 and n2 are not decision variables in the model.)

The values of ni and mi, i = 1; 2, are common knowledge. The agency then collects independent

observations of ® and distributes the information according to the agreement reached in the ¯rst

stage (i.e., transmitting some information to a ¯rm privately and some to the common pool). At

the second stage, the ¯rms independently choose their quantities in Cournot competition or prices

in Bertrand competition. Each pair of (m1;m2) de¯nes a subgame with incomplete information,

which can be solved by using the concept of Bayesian Nash equilibrium.

Here are some results obtained by Vives. In Cournot competition with substitutes (or Bertrand

competition with complements), expected pro¯ts of ¯rm i decrease with mi. So no information

sharing is the unique equilibrium. In Cournot competition with complements (or Bertrand compe-

tition with substitutes), expected pro¯ts of ¯rm i increase with mi and with mj , j6= i. So complete
information sharing is the unique equilibrium. If the goods are independent, expected pro¯ts of

¯rm i are increasing in mj and una®ected by mi, j 6= i. In this case, any pair of (m1;m2) is an

equilibrium.
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Oligopoly with Demand Information: Cournot, Substitutes

Gal-Or (1985) provides an alternative model of information sharing in an oligopoly model with

Cournot competition. There are n ¯rms producing a common product at no cost. The industry is

facing a linear demand function:

p = a¡ bQ+ u; a; b > 0

where p is price and Q is the total quantity produced. The prior distribution of u is normal with

zero mean and a ¯nite variance. Before making their quantity decisions, each ¯rm receives a noisy

signal for u. The signal observed by ¯rm i is xi. The following assumptions characterize the signals:

xi = ui + ei; ui » N(0; ¾); ei » N(0;m);
Cov(ei; ej) = 0; i6= j;
Cov(ui; ej) = 0; 8i; j;
Cov(ui; uj) = h; i6= j;

u =
nX
i=1

ui=n:

Furthermore, it is assumed that h ¸ 0, a parameter that measures the (positive) level of correlation
among the signals.

Before making quantity decisions, the ¯rms choose whether or not to reveal their private signals

to the other ¯rms, and how complete this revelation will be. This is modeled by assuming that

an outside agency is responsible for information transmission. The ¯rms are required to commit

themselves to a ¯xed amount of garbling prior to learning their signals. Upon learning its private

signal, each ¯rm i reports its private signal xi to the agency, who then reports a message x̂i to the

other ¯rms, with

x̂i = xi + fi; fi » N(0; si)
where the fi's are independent of each other and of any uj and ej , j = 1; ¢ ¢ ¢ ; n. The value of
si represents the level of garbling. If this noise variance is zero for all ¯rms, we have complete

information sharing. If it is in¯nite for all ¯rms, there is no sharing of information. The case with

a ¯nite noise variance represents partial information sharing.

Gal-Or characterizes a symmetric equilibrium in the following two-stage game. (A symmetric

equilibrium is reasonable because the ¯rms have symmetric cost/information structure.) At the ¯rst

stage, each ¯rm i chooses si independently. Once chosen, this vector of noise variances becomes

common knowledge. The ¯rms then receive their private signals, and the outside agency reports

messages with levels of garbling determined in the ¯rst stage. At the second stage, the ¯rms make

their quantity decisions simultaneously. Each ¯rm i's strategy is a decision rule that determines its

output level as a function of its private signal xi and the vector of messages reported by the outside

agency. The conclusion is that no information sharing is the unique symmetric Nash equilibrium.

Therefore, allowing for partial revelation and various degrees of correlation between the private

signals does not change the incentives for sharing demand information. Similar results have been

obtained by Clarke (1983).
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Duopoly with Cost Information: Cournot and Bertrand, Substitutes

Gal-Or (1986) shows that the incentives for sharing information depend not only on the type

of competition (Cournot or Bertrand) and the relationship between the products (substitutes or

complements), as Vives (1984) has shown, but also on the type of information under consideration.

The private signals received by Gal-Or's ¯rms are about unknown private costs, instead of an

unknown demand intercept as in previous works. She considers a duopoly model consisting of two

¯rms each producing a di®erentiated product. The demand is linear, as in Vives (1984), with an

additional assumption that ° > 0, i.e., the products are substitutes. The production costs are linear,

with ci the unit cost of production for ¯rm i, i = 1; 2. The value of ci is a normal random variable

with zero mean and a known variance, with c1 and c2 being independent. Each ¯rm receives a signal

for its own unit cost. Firm i receives signal zi, where

zi = ci + ei; i = 1; 2

where ei » N(0;m), ei and cj are independent for any i and j, and e1 and e2 are independent.

Information sharing is implemented by an outside agency. Prior to receiving their private signals,

each ¯rm commits to a level of garbling that the agency will use in reporting the private information.

The reported signal is

ẑi = zi + fi; fi » N(0; si); i = 1; 2

where f1 and f2 are independent, and fi is independent of cj and ej for all i and j. As in Gal-Or

(1985), the values of the si's are determined independently by the ¯rms at the ¯rst stage of the

game, and they represent the degree of information sharing. At the second stage of the game, the

¯rms choose their output levels (in Cournot competition) or prices (in Bertrand competition). The

second-stage strategy is a decision rule based on available information, i.e., zi and ẑj , j6= i, for ¯rm
i.

The main ¯nding is that complete (resp., no) information sharing is a dominant strategy in

Cournot (resp., Bertrand) competition. Notice that changing the type of information (from demand

to cost) reverses the incentives for information sharing. A similar set of results was obtained by

Shapiro (1986).46

Vertical Information Sharing in the Presence of Horizontal Competition

Consider a supply chain with multiple parties and dispersed information. Suppose a subset of

those parties, called the insiders, have decided to share information among themselves. What is

the impact of such an agreement on the insiders, the outsiders (i.e., those who do not engage in

information sharing), and the supply chain as a whole? The answer to this question is complicated

partly due to the spillover e®ect of information sharing. That is, an outsider may gain valuable

information from the insiders either directly if the insiders fail to keep the shared information con¯-

dential or indirectly by observing the actions taken by the insiders. The former kind of information

leakage may be prevented by the insiders through a contract protecting the con¯dentiality of the

shared data, while the latter kind is impossible to avoid as long as the shared information a®ects the

behavior of an insider that is observable to the outsiders. The outsiders may change what they do

46Li (1985) generalizes the above literature on the incentives for sharing demand or cost information in Cournot

oligopolies by making weaker distributional assumptions about the random variables.
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upon learning the information, with potentially signi¯cant impact on the insiders' pro¯ts and their

decisions whether or not to share information in the ¯rst place.

Li (2002) considers a model with one manufacturer and n symmetric retailers (n ¸ 2). The

retailers sell an identical product, which is produced by the manufacturer. Both production and

sales incur constant marginal costs, which are normalized to zero. The consumer market (to which

the retailers sell) is characterized by the inverse demand function, p = a+ µ¡Q, i.e., the prevailing
retail price p is determined by a known constant a, a random variable µ, and the total supply Q,

which is the sum of the individual quantities given by the retailers. (Thus the retailers engage in a

Cournot competition.) The manufacturer determines the wholesale price P . Each retailer i receives

a private signal Yi about µ, with the joint distribution of (µ; Y1; ¢ ¢ ¢ ; Yn) being common knowledge.

The sequence of events is as follows:

1. Each retailer decides whether or not to share his private signal with the manufacturer. If a

retailer decides to share, the information revelation is assumed to be truthful. Let K be the

set of retailers who decide to share their information. Because the retailers are symmetric, we

only need to know the cardinality of K, i.e., jKj def= k, k = 0; 1; ¢ ¢ ¢ ; n.
2. Each retailer receives his private signal. Information transmission occurs according to the

arrangements made in the ¯rst step.

3. The manufacturer sets the wholesale price. The wholesale price P is thus a function of the

disclosed information fYj ; j 2 Kg.
4. The retailers simultaneously choose their sales quantities and place orders with the manufac-

turer. Retailer i's strategy thus depends on whether or not i is a member of K, his signal

Yi, the wholesale price P , and the information embedded in the wholesale price P (which is

observable to all).

5. The manufacturer produces the retailer orders.

Li shows that there is an equilibrium outcome where P is a monotone function of
P

j2K Yj . Thus
in equilibrium, the retailers i 62 K (i.e., the outsiders) can infer the value of

P
j2K Yj . Moreover,

knowing this sum is as good as knowing the individual signals Yj ; j 2 K. Therefore, the leakage of
the private signals from the insiders to the outsiders is complete. In other words, even though the

information sharing is between the retailers in K and the manufacturer, we could as well imagine

that the retailers in K announce their private signals in public.

Suppose that k retailers have decided to share information with the manufacturer, k = 0; 1; ¢ ¢ ¢ ; n.
Let ¦SR(k) be the expected pro¯ts for a retailer who shares information, and ¦

N
R (k) the expected

pro¯ts for a retailer who does not share information. Let ¦M (k) be the manufacturer's expected

pro¯ts. Li shows that ¦M (k) is increasing and concave in k. Therefore, the manufacturer always

bene¯ts if a retailer decides to share information. On the other hand, ¦NR (k ¡ 1) > ¦SR(k) for all

k = 1; ¢ ¢ ¢ ; n. In words, a retailer is always better o® by switching from sharing information to not

sharing. Consequently, no information sharing is the unique equilibrium outcome.

If the manufacturer's gains from information sharing exceed the losses of the retailers, the manu-

facturer can pay the retailers for their private information. Let ¦(k) be the supply chain's total pro¯t

when k retailers share information, k = 0; 1; ¢ ¢ ¢ ; n. Thus ¦(k) = ¦M (k) + k¦SR(k) + (n¡ k)¦NR (k).
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Li shows that ¦(n) ¸ ¦(0) if and only if (n ¡ 2)(n + 1) ¸ 2s, where s is an indicator of the

informativeness of the retailers' private signals, with a smaller s value meaning more informative.

Consequently, there is no guarantee that the supply chain will bene¯t from information sharing. In

cases where the supply chain does bene¯t from information sharing (when the number of retailers is

large or the demand signals are informative), there exists a Pareto improvement if the manufacturer

pays the retailers for sharing their information.

Li has also considered a case where the retailers hold private information about their costs. This

is done by modifying the above model with demand uncertainty as follows. First, let µ ´ 0, thus

eliminating demand uncertainty. Let Ci be retailer i's marginal cost, i = 1; ¢ ¢ ¢ ; n. After making
decisions about whether or not to share their cost information with the manufacturer but before

making quantity decisions, each retailer i observes his own cost Ci. The retailers' costs are assumed

to be positively correlated.

As expected, the manufacturer always bene¯ts if a retailer decides to share his cost information.

However, complete information sharing, i.e., all retailers decide to share their cost information

with the manufacturer, is now always an equilibrium. And it is the unique equilibrium sometimes.

Moreover, complete information sharing increases the supply chain's total pro¯ts. 47

There are two recent extensions of Li (2002). One is Li and Zhang (2001), where the manufac-

turer can produce before the retailers make their quantity decisions. Production after receiving the

retailers' orders is still possible, but incur a higher cost. Moreover, the manufacturer must satisfy

all retailers' orders. The manufacturer makes the early-production decision and the wholesale price

decision at the same time. By and large, replacing make-to-order with make-to-stock does not al-

ter the qualitative insights. The second extension is Zhang (2001), who focuses on the sharing of

demand information but considers both Cournot and Bertrand competition with substitutes and

complements. It is thus a direct generalization of Vives (1984) to a supply chain setting.

4 Future Research

The role of information in achieving supply chain coordination will continue to be a fruitful research

area. As in the past, research will progress in many directions.

Full Information, Centralized Control

Here we imagine a supply chain controlled by a central planner with all relevant information.

The challenge is to determine a strategy that optimizes the supply chain-wide performance. Many

people say that this is the traditional way of thinking in operations management/operations research.

But that should not be construed to mean that the area is unimportant. In fact, there are many

important problems that are begging for solutions.

47The fact that the retailers will share their cost information with the manufacturer is striking at ¯rst glance. This

may have a lot to do with the assumption that the decision whether or not to share information is made before

observing the private information. This assumption is particularly strong with the cost information; if the retailers

have been in the business for a while, it seems reasonable that they have better information about their own costs

than anyone else prior to making information-sharing decisions. Another scenario that may alter the result is when

the parties interact repeatedly.
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To see how di±cult these problems can be and how little we understand them, simply consider

a two-level supply chain with one distribution center replenishing multiple local sales o±ces. (This

kind of supply-chain structure is often under the unglamorous name of one-warehouse multi-retailer

systems.) The truth of the matter is nobody knows what the optimal policy is. Many have studied

\heuristic" policies: the ones that seem to make intuitive sense. One example is the control rules

that are based on echelon inventory positions, i.e., the replenishment strategy at the distribution

center is based on the total inventory (on-hand and in-transit) in the system. The allocation decision

at the distribution center when it runs out of stock is often of the myopic sort or based on some,

often arbitrary, priority rule. This heuristic approach sometimes puts us in a very awkward position,

where a strategy based on full information is actually inferior to a strategy that is based only on

local information (e.g., the so-called installation-stock policies). Information has a negative value!

To be sure, many years of work has suggested to us that the optimal strategy for the above system

(or many other multi-echelon systems with common cost or topological structures) is, if it exists,

likely to be very complex. So for all practical purposes, we should con¯ne ourselves to heuristic

policies that are easy to implement. But the quest for better heuristics will never stop, unless we

know that the heuristic we have is already very close to optimality. The most powerful statement

one can make about a heuristic's closeness to optimality is the worst-case gap between the two.

Since the optimal policy is unknown, the worst-case analysis must rely on bounds on the optimal

performance. Discovering heuristics with small worst-case gaps is the holy grail of multi-echelon

inventory theory. 48

Decentralized Information, Shared Incentives

Now replace the central planner with local managers who are each responsible for managing

part of the supply chain. These managers only have access to local information. But they share

a common goal to optimize the supply chain-wide performance. This is the team-model approach

(Marschak and Radner 1972). And it is appropriate when, e.g., the supply chain consists of multiple

divisions of the same ¯rm, and the divisions' incentives are aligned. It is an intermediate step to a

full-blown decentralized system.

An important feature of team models is that the control rules used by the local managers can

only be based on local information. To obtain a solution to a team model, it is convenient to take

the view of an analyst, who optimizes the system-wide objective by restricting to strategies that can

be implemented by the local managers (i.e., a strategy, when followed by a local manager using his

local information, leads to an unambiguous decision). Therefore, it looks like a centralized planning

model, but with an added informational constraint. The di®erence between the team model and

its full-information, central-planner counterpart reveals the value of information. Section 2 of this

48A lower-bounding methodology has been given by Chen and Zheng (1994) for general stochastic multi-echelon

inventory systems. But the use of lower bounds in evaluating the optimality of heuristic policies has been sporadic

and is largely numerical. It is hard to resist the temptation to mention the spectacular successes achieved for general

multi-echelon inventory systems with deterministic demand, for which a class of heuristic policies|the so-called

power-of-two policies|have been guaranteed to be within 2% of optimality. See, e.g., Maxwell and Muckstadt (1985),

Roundy (1985, 1986), and Federgruen et al. (1992). So far, unfortunately, the only comparable result for a stochastic

system is the one in Chen (1999b) established for a simple two-stage serial system. In Chapter 10 of this volume,

Sven AxsÄater reviews studies of heuristic policies in one-warehouse multi-retailer systems.
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chapter has reviewed many papers in this area. This will continue to be a fruitful research direction.

Decentralized Information, Independent Entities

A full-blown decentralized supply chain consists of independent ¯rms with asymmetric informa-

tion. Section 3 of this chapter has covered many such models. As mentioned there, a member of the

supply chain may take the initiative of \setting the stage" by either screening or signaling, or the

supply chain's members come together (cooperatively or noncooperatively) to form some trading

rules. This is a relatively new area for many in operations management. Below we describe several

promising research directions.

One potentially fruitful research area is the integration of price discovery with a ¯rm's internal

optimization. In x2.2, we have already seen a procurement example with one buyer and multiple
potential suppliers with private cost information. There, the solution is a marriage between an

auction mechanism and a supply contract. Infusing auction theory into operations management

research is exciting.

Another interesting research direction is information acquisition. In x3.1, we saw an example

where a ¯rm can `buy' advance demand information from customers. The challenge was to balance

the cost of information acquisition with the bene¯t of the acquired information. It is certainly

possible to study information acquisition in other contexts, with other kinds of information and

between members of a supply chain.

In x3.3, we have seen papers dealing with information sharing among competing ¯rms. How
about competing supply chains? Information sharing between two supply chains can happen in

many di®erent ways: 1) same-layer, cross-channel (e.g., retailer to retailer, supplier to supplier), 2)

inter-layer, same-channel (retailer to supplier), and 3) inter-layer, cross-channel (retailer in supply

chain A to supplier in supply chain B, and vice versa). Opportunities abound. 49

Bounded Rationality and Robust Supply Chain Design

Real ¯rms (and people) have limitations. First of all, their data may be inaccurate. For exam-

ple, a retailer may not know exactly how many units of a product are in the store. This occurs

even at successful retailers who have invested large sums in information technology, mostly to track

sales and automate transactions. 50 In supply chains, inaccurate data may also result from imper-

fect transmission of information, which can be noisy and laden with delays. On the other hand,

managers like to have easy, intuitively appealing control rules. This is simply because people have

limited information-processing power. The same holds for modelers/analysts/researchers: real-world

problems are complex with multiple facets, and it is impossible to include all the complexities in a

model. (Simply put, people|managers or not|are boundedly rational.) As a result, any \optimal

solution" obtained from a model is unlikely to be implemented as is; at best, it will inform a man-

ager's \insight" or \intuition," which in turn in°uences the ¯nal decision. Given inaccurate data,

modeling limitations, and managers' desire for simplicity, there is a pressing need to develop simple

control mechanisms that are robust to such imperfections. This is virtually an uncharted territory.

But it is worthwhile to ask the question.

49For an example on competing supply chains, see Corbett and Karmarkar (2001) and the references therein.
50See Raman et al. (2000) and Raman and Ton (2000) for discussions on the magnitudes and drivers of inaccurate

inventory data in retail stores.
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