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We consider a multiserver queueing system in which customers request 
service from a random number of identical servers. In contrast to batch arrival 
queues, customers cannot begin service until all required servers are avail- 
able. Servers assigned to the same customer may free separately. For this 
model, we derive the steady-state distribution for waiting time, the distribution 
of busy servers, and other important measures. Sufficient conditions for the 
existence of a steady-state distribution are also obtained. 

IN CERTAIN STOCHASTIC service systems, it is sometimes neces- 
sary to provide simultaneous service from more than one server in 

order to perform the requested task. If customers require the same 
number of identical servers, and these servers start and finish service 
simultaneously, the system is equivalent to one which provides a single 
server per customer. However, in many of these systems, the number, 
and sometimes the type(s) of servers needed, varies from customer to 
customer. 

This paper examines a multiserver queueing system in which customers 
require a random number of identical servers who must start serving 
together, but who may leave their assigned customer separately. This 
system is one member of a class of queueing systems which allow a 
random number of servers per customer. The most crucial characteristic 
of these systems is that a customer cannot begin service until all required 
servers are available. This characteristic has two important implications: 

1. These systems are not members of the class of batch arrival models. 
Although an arrival who requests i servers can be thought of as a batch 
of i customers who each need 1 server, in a batch arrival system these 
customers may enter service one at a time. 

2. Servers may be idle even when there are customers waiting to enter 
service. 

Queues which fall into this category are found in many contexts. In 
computer systems, buffers and other temporary storage devices are used 
for programs and data of varying dimension. A loss system situation of 
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this type was studied by Kaufman (1977). Communications systems 
provide various examples. Gimpelson (1965) examined a system in which 
a single wide-band facility is used to carry traffic of different bandwidths, 
and Wolman (1972) studied a problem in which data traffic is directed to 
two or more destinations (and cannot be transmitted until the required 
receivers are free). In both of these analyses, simplifying assumptions had 
to be made and/or numerical techniques employed to get approximate 
solutions. 

Other applications include loading docks, where the number of people 
needed to lift an item varies according to the size and weight, and 
maintenance systems in which component failures are interdependent 
and occur in batches of varying size. Many other examples can be found; 
see Green (1978) for a general discussion of this class of queues, as well 
as results for various models. 

Many of these applications have the characteristic of joint service- 
servers assigned to the same customer freeing together. Situations in 
which the model under examination provides a more accurate represen- 
tation include: 

1. Firefighting. The necessary number of fire engines and/or other 
equipment varies with the intensity of the fire. Although individual units 
may begin working as soon as they arrive, the major firefighting effort 
usually cannot begin until all required units are present. As the fire is 
brought under control, some units will be free to leave the scene of the 
fire. 

2. Jury selection. Before a trial can begin, a jury panel of specified size 
(determined by the judge according to the type of trial) must be available 
from the jury pool. Most of the impaneled jurors will be released one at 
a time after questioning by the judge and lawyers. 

3. Emergency surgery. The number of surgeons and/or other medical 
personnel required to begin an operation varies according to the type of 
surgery and the severity of the patient's condition. However, at various 
stages of the surgery, medical personnel who are no longer required will 
become free. 

These applications are intended to be illustrative. The model was not 
chosen because it fits any one application exactly, but because it is 
tractable and preserves the most significant characteristic of such applia- 
tions-randomness in the number of required servers. It is also of interest 
as an approximation to the joint service queuing system (see Green 
[1978]). 

Since there is the possibility in these systems of servers being idle when 
a queue exists, it is of interest to consider alternative service order 
disciplines to FIFO that may use some of these servers sooner. In Green 
(1980), such disciplines are considered for various models and, in many 
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cases, found to perform "better" than FIFO with respect to one or more 
measures of efficiency. 

The operating characteristic of this system of primary interest is the 
steady-state waiting time in queue, denoted by W. In this paper, the 
distribution for W (as well as other important measures) is derived by 
noticing that the redefinition of certain random variables results in an 
M/G/1 queue being embedded in the more complex system. The distri- 
bution of busy servers is also derived for the case when a queue exists, as 
well as when it does not. This is of particular interest since, as noted 
previously, all servers are not necessarily busy when there is a queue. 
Sufficient conditions for the existence of a steady-state solution are 
presented in the last section of the paper. 

1. THE MODEL 

We consider a multiserver queueing system in which arriving customers 
request service from a random number of servers and cannot begin 
service unless at least that number of servers is free. In particular, the 
system consists of s identical and independent servers with completion 
times that are exponentially distributed with mean 1/a. Customers arrive 
according to a Poisson process with rate A and each of them requests 
simultaneous service from i servers with probability ci, 1 c i c s. The 
number of servers requested by successive customers is independent. 
Without loss of generality, we assume co = 0. Customers enter service in 
their order of arrival (FIFO) and leave the system only after all servers 
requested have finished service. Since individual server completion times 
are independent once work is begun, servers associated with the same 
customer do not end service together. Therefore, customers are not in 
service for an exponentially distributed amount of time. A customer's 
service time, B., is distributed as the maximum of a random number of 
exponentially distributed random variables. Thus if Bs(t) is the distribu- 
tion function for B, 

B8(t) = Zi =1 (1 - e-tl)ci. 

2. DEFINITIONS AND NOTATION 

Before proceeding with the analysis, we define some random variables. 
See Figure 1 for illustrations. 

The queueing period, generically denoted by Q, is defined as the period 
of time beginning when a customer arrives at an empty queue and must 
wait for service, and ending when the queue next becomes empty. 
Similarly, the non-queue period, Q, is defined as beginning when the 
preceding queueing period ends, and ending when a queue next forms. 
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Let {t, n = 1, 2, * * } be defined as the times when the customers in a 
queueing period enter service and define Bn+? = t,,+? - t, n - 1. We call 
Bn the interservice time of the nth customer in the queueing period. In 
Section 3 it is shown that the Bn are independent and identically distrib- 
uted (i.i.d.) random variables. Therefore we can drop the subscript and 
denote an interservice time generically by B. 

Since B is defined only for customers who join an existing queue when 
they enter the system, define the initial delay random variable, D, as the 
delay in entering service encountered by a customer who initiates a 

queueing period. If a customer arrives at an empty queue at time to and 
enters service at ti, then D = t- to. 

Derivations for the distributions and expected values of B and D can 
be found in the Appendix. 

Unless otherwise noted X(t) will denote the distribution function for 
the random variable X and E(X) will be its expected value. X(s) will 
denote the Laplace-Stieltjes Transform (LST) defined as 

(X 
X(s) = e-st dX(t) = E(e-sx) 
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3. PRELIMINARY RESULTS 

The analyses which appear in the following sections rely upon the 
results presented below. 

PROPOSITION 1. All s servers are busy whenever a customer enters 
service during a queueing period. 

Proof. Consider a customer who begins service during a queueing 
period and needs i servers. Since servers free one at a time, this customer 
cannot enter service simultaneously with any other customer and will 
occupy the first queue position for a positive amount of time. Therefore, 
he enters service at that epoch when the number of idle servers changes 
from i - 1 to i, causing all s servers to be busy. 

COROLLARY 1. The sequence of interservice times {Bn, n > 1} are i.i.d. 
random variables. 

Proof. Bn is the time it takes for the nth customer of the queueing 
period to enter service, measured from the time he becomes first in the 
queue. Since, from Proposition 1, all servers will be busy when this 
customer becomes first in line, the time it takes for him to enter service 
depends only on the number of servers he requires and the time it takes 
for each server to free up. Since these random variables are i.i.d. for each 
customer, the result follows. 

We define the sum of the non-queue period, Q, and the queueing 
period, Q, to be the queueing cycle. Since, by Proposition 1, all s servers 
are busy at the start of each non-queue period, we have the following 
result. 

COROLLARY 2. The sequence of queueing cycles forms a renewalprocess 
and the queue-length process is regenerative. 

4. WAITING TIME ANALYSIS 

The LST expression for the equilibrium waiting time in queue is 
derived by noticing that an M/G/1 queue is embedded within the 
structure of the original queue. Since the waiting time distribution for 
this M/G/1 queue is known, and the relationship between the waiting 
time in the original system and the waiting time in the embedded system 
can be written as a simple algebraic expression, the desired result is 
obtained. The LST is then easily inverted to arrive at the waiting time 
distribution. 

Let pq be the steady-state probability that there exists a queue, and let 
Pd be the probability that a customer arriving to an empty queue 
experiences a delay before entering service (i.e., initiates a queueing 
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period). These probabilities will be derived in Sections 5 and 6. If W is 
the steady-state waiting time in queue, we have: 

THEOREM 1. 

W(s) = (1 -Pq)*(l -Pd) + (1 Pq)PdD(S) (1) 

+Pq[1 - D(s)][l - XE(B)]/([s - X + AB (s)]E(D))eB(s). 

Proof Consider a customer who initiates or arrives during a queueing 
period. Define a new queueing system such that the total time this 
customer spends in the new system is equal to the time he actually spends 
waiting in queue. That is, ignore the actual service function and assume 
that when this customer enters service in the original system, he is 
leaving the constructed system. The "service" time for this constructed 
system is defined as the time spent occupying the first queue position in 
the original system. Since this system has only one "server" and Poisson 
arrivals, it is an M/G/1 queue with a busy period equivalent to the 
queueing period of the original system. Service times are distributed as 
the interservice random variable B except for those customers who 
initiate a queueing period, whose "service" time is distributed as D. Thus 
we have constructed an M/G/1 queue in which the first customer in a 
busy period has exceptional service; such a queue was studied by Welch 
(1964). Let 2 be the waiting time in queue for the constructed sytem. 
Using Welch's result for the LST of the waiting time in queue, 

f2(s) = [1 - XE(B)][X(D(s) - B(s)) - s]([l- A(E(B) (2) 

- E(D))][X - s - AR(s)]). 

In terms of the original system, 2 is the time it takes for a customer who 
joins or initiates a queue to become first in the queue. The LST expression 
for the wait in queue is obtained as follows: 

WOin non-queueing period 
{ 

0 if customer has no delay WI enter -n non-queuelng perlod-D if customer is delayed 

and 
(3) 

WI enter in queueing period = 21 enter in queueing period + B. 

From Welch's (1964) Theorem 2, 7To, the steady-state probability of the 
constructed system being empty is given by 7To = (1 -E (B)) /(1 - 
A[E(B) -E(D)i). Thus, (2) can be rewritten as 

W(S) = 'TO + (-Iro) (4) 

*[1- D(s)][1 - XE(B)]/([s.- A + AB(s)]E(D)) 
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and clearly 

&2 (s/enter in queueing period) (5) 
= [1 - D(s)][1 - XE(B)]/([s - A + XB(s)]E(D)). 

Using (3) and (5), the result is obtained. 

Let Be and De be the equilibrium excess (residual life) random variables 
for the renewal processes with distribution B and D, respectively. That 
is, 

Be(t) f [1 - B(u)]du/E(B), De(t) = f [1 - D(u)]du/E(D). 

COROLLARY 3. 

W(t) = (1 pq) (1 -Pd) + (1 -pq)pdD(t) 

+ pq[l - XE(B)] En-=o [AE(B)] (Be a*De*B)(t) 

where B(n) is the n-fold convolution of Be and * is the convolution 
operator. 

Proof. 

[1 - D(s)]B(s)/(s - X + AR(s)) 

= [1 - D(s)]B(s)/(sE(D))E(D)/(1 - XE(B) (6) 

-[1 -B(s)]/(sE(B)). 

Since [1 - B(s)]/sE(B) is the LST of the equilibrium excess random 
variable Be, and XE (B) < 1 in order to ensure a steady-state solution (see 
Section 7), we have from (1) and (6), 

W(s) = (1 -Pq)(l Pd) + (1 - Pq)PdD(S) 

+pq[l - XE(B)]De(s)B(s) on=o [XE(B)Be(S)]n 

and the result follows. 

As in the case of the M/G/1 queue, the generating function Q(z) for 
the distribution of the number of customers in queue is easily obtained 
from the LST of the waiting time in queue. The proof is the- same as for 
the M/G/1 queue and will be omitted. 

COROLLARY 4. 

Q(z) = W[X(i - z)]. 
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5. QUEUEING CYCLE ANALYSIS 

In order to evaluate transform equation (1) for the waiting time in 
queue, we must derive pq, the stationary probability that there exists a 
queue. Since by Corollary 2 the sequence of queueing cycles forms a 
regenerative process, we can write (see Ross [1970], Chapter 5) 

pq = E(Q)/[E(Q) + E(Q)] (7) 

and thus it suffices to obtain E(Q) and E(Q). 

THEOREM 2. 

E(Q) = E(D)/[1 - AE(B)]. (8) 

Proof. From the proof of Theorem 1, it is clear that the queueing 
period can be viewed as the busy period of an M/G/1 queue with 
exceptional first service. Thus by direct application of the result for the 
expected length of the busy period for this type of system, as found in 
Takaics (1962), we obtain the result. 

To obtain E(Q), let time 0 be defined as an epoch at which the queue 
first becomes empty. At time 0 there are s servers busy and no one 
waiting for service. Define the indicator function 

fo(t if no queue at t 9 
IQ(t) = { otherwise (9) 

and let 

NB(t)M= fnumber of busy servers at t if IQ(t) = 0 (10) 
{s+1I if IQ(t)l= . 

The length of the non-queue period which starts at time 0 is the first 
passage time of NB(t) to state s + 1. 

Consider the Markov chain embedded in the process {NB(t), t 0) at 
arrival and server completion epochs with absorbing state s + 1. Using 
standard algebraic methods (see Kemeny and Snell [1960] Chapter 3), 
we obtain the matrix (Vi>) of the expected number of visits to transient 
state j starting in transient state i before absorption from 

V= (I- T)-1 (11) 

where T is the matrix of transient states, 

0 1 2 .. s 
O O CC C2 Cs 

I p/(A + It) O cJA/\(A + I) (cs8A)/(X + ) (12) 

T = 2 0 2y/(A + 2t) 0 (c_2XA)/(X + 2ti) 

* o o*J 
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Since the expected time per visit spent in state j is 1/(A + j,u), we obtain 

THEOREM 3. 

E(Q) = ,=o V8j/(A + j,i). (13) 

Let L and L denote the number of customers who arrive during a 
queueing period, and a non-queue period, respectively. Using Wald's 
Theorem (Ross, Chapter 3), the following results can be obtained. 

THEOREM 4. 

E(L) = NE(Q) (14) 

E(L) = NE(Q). (15) 

The probability that an arrival to an empty queue has a positive delay, 

Pd, was used in (1). Since Poisson arrivals see time averages (see Stidham) 
Pd iS the fraction of all customers arriving to an empty queue who must 
wait for service. Therefore 

COROLLARY 5. 

Pd = I/E(L). (16) 

6. THE DISTRIBUTION OF BUSY SERVERS 

We will derive the distribution of busy servers during a non-queue 
period, {ji}, and the distribution of busy servers during a queueing period, 
{qi}. Using the expression for pq obtained from (7), (8) and (13), the 

distribution at an arbitrary epoch can be easily obtained. 

THEOREM 5. 

4i= V8i/(\ + iu)E(Q), i = 0, 1, ***, s (17) 

where the matrix V is obtained from (11) and E(Q) from (13). 

Proof. Let NB(t) be defined as in (10). Then 

di = E(time NB(t) = i in 1 queueing cycle)/E(Q) 

and the result follows from the analysis of the previous section. 

We now use (15), (16) and (17) to obtain {qi}. 

THEOREM 6. 

qi = [E(L) ks=s-i+1 Ck + qji k1 Dk=s-i+i Ck]/iyE(Q)pd (18) 

where E (Q) is given by (8). 

Proof Define 

NB (t) number of busy servers at t if IQ(t) = 1 
NBt 

0 Oif Ikt) = 0 
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where IQ(t) is the indicator function defined in (15). Clearly, 

qi = E(time NB(t) = i in 1 queueing period)/E(Q). (19) 

Let Vi be the number of visits to state i in one queueing period. Then 

E(time NB(t) = i during 1 period) = E(Vi) * 1/4iu. (20) 

Let Cn be the nth customer of the queueing period and define 

Jn 1 if Cn sees i servers busy while first in queue 
{ 0 otherwise. 

Then 

Vi n=>21 Ji (21) 

Note that the customer that initiates the queueing period arrives during 
a nonqueue period. 

Consider a customer who arrives to a queue and requires S servers. By 
Proposition 1, he waits for S server completion times from the time he 
becomes first in queue, and the number of busy servers during these 
completion times is s, s - 1, * * s - S + 1. The probabilitv that there are 
exactly i servers busy for some part of the time during which this 
customer is first in queue is the probability that S - s - i + 1. Now 
consider C1. The number of busy servers while he is waiting will be K, 
K - 1, ... K - S1 + 1 where K is the number of servers busy when he 
arrives and Si is the number of servers he requires. The probability that 
there are i servers busy while C1 is first in queue is the joint probability 
of K ?-i and Si - s - i + 1. From (21): 

E(V)i = E(L) Ek=s-i+1 Ck + D]=i j Esk=s-i+1 Ck/Pd (22) 

and the result follows from (19), (20) and (22). 

7. EXISTENCE OF A STEADY-STATE SOLUTION 

In the previous sections we have derived steady-state results for a 
queueing system which allows a random number of servers per customer. 
Implicit in these derivations is the assumption that sufficient conditions 
exist for a steady-state probability distribution {rTi) of the number of 
customers in the system. We will now find a number p such that when 
p < 1, such a steady-state solution exists. 

THEOREM 7. If p = X/,i Ek j0 Ck/(S - j) < 1, there exists a steady 
state probability distribution {t7i}. 

Proof. A limiting distribution exists if the expected length of a queueing 
cycle is finite. Since V = (1 - T)-1 is a nonsingular matrix, (13) implies 
E(Q) < oo. From (8) we have 

E(Q) = E(D)/[1 - XE(B)] 
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where E(D) is given by (A6) and is clearly finite. Therefore E(Q) will be 
finite if NE(B) < 1 and the result follows from (A5). 

APPENDIX-DISTRIBUTIONS OF INTERSERVICE TIME AND 
INITIAL DELAY 

Define Fki(t) as the probability that k or more servers become free in 
the interval (to, to + t) given that i servers are busy at to. The probability 
of a server becoming free within a time period of length t is clearly 1 - 

e-t. The probability that k out of i servers will complete service by time 
t is binomially distributed; therefore 

Fki(t) = .)(--)(-)-, k c< i. (Al) 

Since all servers are busy just after an interservice time commences, 

B(t) = Yk=i Fk,(t)ck. (A2) 

To obtain D(t), we must consider the number of busy servers found by 
the initiating customer as well as the number of servers he requires. 
Define H(i, j) as the joint probability that an initiating customer finds i 
busy servers at his arrival epoch and needs j servers. From Bayes' 
Theorem, 

H(i, j) - {)iCi/Pd (A3) 

where {qi, given by (14), is the stationary distribution of the number of 
busy servers during a non-queue period, and Pd, given by (15), is the 
probability of an arrival to an empty queue having a positive delay. 
Therefore 

D(t) = x==1 Ek=l Fki(t)4c8C-i+k/pd- (A4) 

We now proceed to get the expected values for B and D. When i servers 
are busy, the mean time for a server to become free is 1/iiu. Thus 

E(B) = >k=l [1/(st) + 1/((s -1)y) 

+ . . . + l/((s - k + l)t)lck (AS) 

Similarly, 

E(D) = =1 E?k=1 [1/(it) + 1/((i -1) 

+ *- + l/((i- k + l)f)]cis-i+k/pd (A6) 
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