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COMPARING OPERATING CHARACTERISTICS OF 
QUEUES IN WHICH CUSTOMERS REQUIRE A RANDOM 

NUMBER OF SERVERS* 

LINDA GREENt 

We examine the relative effects of several service order disciplines on important operating 
characteristics of queues in which customers request a random number of servers. This class of 
queues is characterized by customers who cannot begin service until all required servers are 
available. We show that for many systems in this class, it is possible to define a new service 
order discipline which is more efficient than FIFO with respect to one or more measures such 
as expected waiting time, probability of delay, etc. 
(QUEUES; MULTI-SERVER; CUSTOMERS SERVED BY SEVERAL SERVERS SIMUL- 
TANEOUSLY) 

1. Introduction 

There exist many queueing situations in which it is sometimes necessary to provide 
simultaneous service from several servers in order to perform the requested task. If 
servers are identical and the number required by each customer is constant, the system 
is equivalent to one which provides a single server per customer. Therefore, consider 
the class of queues which is characterized by customers who require simultaneous 
service from a random number of servers. 

The most crucial attribute of these systems which provide a random number of 
servers per customer is that a customer cannot begin service until all required servers 
are available. This has two significant implications: 

(1) These systems are not members of the class of traditional batch arrival models. 
Although an arrival who requests i servers can be thought of as a batch of i customers 
who each need one server, in a batch arrival system, these customers may enter service 
singly. 

(2) Servers may be idle even when there are customers waiting to enter service. 
Queueing systems belonging to this class are found in a variety of contexts. In 

computer systems, buffers and other temporary storage devices are used for programs 
and data of varying dimensions. A loss, system situation of this type was studied by 
Arthurs and Kaufman (see [4]). Communications systems provide many examples. 
Gimpelson [1] examined a system in which a single wide-band facility is used to carry 
traffic of different bandwidths, and Wolman [7] studied a problem in which data 
traffic is directed to two or more destinations (and cannot be transmitted until all 
required receivers are free). Emergency systems such as firefighting, police and rescue 
units, also exhibit this characteristic. The number of servers (people and/or equip- 
ment) that must be dispatched in order to be effective, varies with the type and 
severity of the situation. Other applications, some of which will be mentioned later, are 
prevalent. See Green [2] for a general discussion of this class of queues as well as 
results for various models. 
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Since it is possible in these systems to have idle servers when customers are in queue, 
it is of interest to consider alternative service order disciplines to FIFO that use some 
of these servers sooner. One might guess that using such a discipline would result in 
greater efficiency with respect to one or more measures such as expected waiting time, 
probability of delay and server utilization. 

This paper explores this issue for three categories of models in this class of queueing 
systems. Under the assumption of Poisson arrivals and exponentially distributed server 
completion times, we confirm that in most systems considered, an alternative discipline 
performs "better" than FIFO with respect to one or more measures of efficiency. 

2. Categorization of Models 

Apart from the usual variations in arrival and service distributions, total number of 
servers, and waiting room capacities, these systems can be categorized by the degree of 
independence or dependence among servers. Although in all the systems under 
consideration, servers associated with the same customer begin service together, they 
do not necessarily end service together. Models in which individual server completion 
times are independent once work is begun will be referred to as models with 
independent servers. Situations which are best represented by this type of model include 
the previously mentioned emergency contexts. The major firefighting effort, for in- 
stance, cannot begin until all required units are present, but at various stages of 
control, individual units will free up and leave the scene of the fire. Another 
application is in jury selection. Before a trial can begin, a jury panel of specified size 
(determined by the judge according to the type of trial) must be available from the 
pool of jurors. Most of the impanelled jurors will be released one at a time after 
questioning by the judge and/or lawyers. Analytic results for these queues can be 
found in Green [3]. 

Those models in which servers free up together will be called joint service models. A 
simple example is a loading dock where the number of people needed to lift an item 
varies according to the size and weight. Many communications systems and computer 
systems also fall into this category. See Kim [5] for some numerical and approximation 
methods for these systems. 

Another type of dependence between servers will also be considered. Constant service 
rate models are defined by the following characteristic: under the assumption that at 
least one server is busy, the expected time until the next server becomes free is 
independent of the number of servers who are busy. For example, consider a 
maintenance system in which component failures are viewed as "customers" which are 
"served" by a bank of spare parts. The service time for each spare is defined to be the 
time until that spare (or its equivalent) again becomes available. This is therefore 
equivalent to the time it takes to repair the failed item. So if repairs are performed by a 
single repair facility, the rate of repairs, and thus the expected time until the next spare 
part becomes available, is constant whenever the number of failed items is positive. 

The following results assume that there exists a steady-state probability distribution 
{7Ti} for the number of customers in the system. A sufficient condition for the model 
with independent servers and the constant total service rate model is XE(B) < 1 (see 
[2], [3]), where X is the arrival rate and E(B) is the expected interservice time defined 
in ?3. For the joint service model, the sufficient condition must be computed 
numerically for each particular problem (see [5]). 
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3. Definitions 

Before proceeding with the analysis, we define some random variables. 
Since servers can be idle when a queue exists, the traditional concept of a busy 

period does not apply in these models. Therefore we define an analogous random 
variable, the queue period, generically denoted as Q, which is the period of time 
beginning when a customer arrives to an empty queue and must wait for service, and 
ending when the queue next becomes empty. Similarly, the nonqueue period, Q, begins 
when the preceding queue period ends and ends when a queue next forms. The 
queueing cycle is the sum of Q and Q. 

The following definitions are for those models in which servers free one at a time. 
Let { t,1 n = 1, 2, . . . } be the times when the customers in a queue period enter service 
and define Bn + I = til + l-tn, n > 1. We call Bn the interservice time of the nth customer 
in the queue period. Bn is the time it takes for the nth customer of the queue period to 
enter service, measured from the time he becomes first in queue. Similarly, define the 
initial delay random variable, D, as the delay in entering service encountered by a 
customer who initiates a queue period. If a customer arrives to an empty queue at time 
to and enters service at t1, then D = t1 - to. Note that the initial delay is precisely the 
ordinary delay random variable (time spent in the queue) for the first customer of the 
queue period. However, the interservice time is only one component of the delay of all 
other customers in the queue period. 

4. Constant Total Service Rate Model 

We consider a queueing system with s identical servers with completion times that 
are exponentially distributed with rate tt/i when i servers are busy. Thus the service 
rate of the entire system is held constant at y (unless, of course, the system is empty). 
Customers arrive according to a Poisson process and request simultaneous service 
from i servers with probability ci, 1 < i < s. The numbers of servers requested by 
successive customers are independent. Without loss of generality, we assume c0 = 0. 

We define SNOS (Smallest Number of Servers) to be the service order discipline 
under which the customer in queue needing the fewest number of servers goes into 
service first. That is, each time a server becomes free, the queue is scanned to see if 
there is a customer who can enter service because there are now enough available 
servers. In addition, an arriving customer who finds enough free servers goes into 
service immediately. In case of ties, the customer nearest to the head of the line enters 
service first. 

The following proposition and corollary will be used extensively in obtaining 
subsequent results. Proofs for the FIFO system are identical to the ones for the model 
with independent servers which appear in Green [3]. Similar proofs can be constructed 
for the SNOS discipline. 

PROPOSITION 1. Under either the FIFO or SNOS service order discipline, all s servers 
are busy at every epoch at which a customer with positive delay enters service during the 
queue period. 

COROLLARY 1. The sequence of queueing cycles forms a renewal process and the 
queue-length process is regenerative. 

Define Q as the length of a generic queue period and L as the number of customers 
who enter service during Q under FIFO, and Q' and L' as the corresponding random 
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variables under SNOS. We now prove 

THEOREM 1. Pr(L = n) = Pr(L' = n) for n = 1,2,.... and 
Pr(Q < x) = Pr(Q' < x) for all x > 0. 

PROOF. We will show that the amount of time that each arrival contributes to the 
queue period is the same under both disciplines. 

Let Ci represent the ith arrival during the queue period. The queue period begins 
with the arrival of a customer C0 to an empty queue, who needs more servers than are 
available. Let Ki be the number of servers required by Ci and let Ni be the number of 
idle servers at Ci's arrival epoch. Note that Proposition 1 implies that the nonqueue 
period for both FIFO and SNOS begins with all servers busy. Since the number of 
busy servers throughout the nonqueue period is affected only by server completion 
epochs and the arrival process, and is therefore independent of the service order 
discipline, the distribution of busy servers during the nonqueue period is independent 
of the service order discipline. In particular, No has the same distribution under both 
disciplines. So C0's contribution to the queue period (the length of the queue period if 
there are no arrivals before he enters service) is his delay D which is distributed as the 
sum of Ko - No server completion times in both systems. Note that the assumption of 
a constant total service rate implies that completion times are independent and 
identically distributed (i.i.d.). Assume there is another arrival C1 during D. Under 
FIFO, C1 joins the end of the line and therefore adds his interservice time B1 to the 
length of the queue period. By Proposition 1, B1 is distributed as the sum of K1 
completion times. Under SNOS, there are three possibilities: 

CASE 1. N1 < K1 < Ko. C1 becomes first in queue and enters service (if he's not 
"bumped") after K1 - N1 completion times, causing all servers to become busy. After 
an additional N1 completion times, C0 has the same remaining delay as he would have 
had without Cl's arrival. Therefore Cl's contribution to Q' has the same distribution as 
B1. 

CASE 2. K1 > Ko. Cl joins the end of the queue and adds K, completion times to 
Q'. This is true even if he is bumped out of the first position in queue by a subsequent 
arrival C, As illustrated in Case 1, the number of completions before Cl is bumped 
can be considered part of Cs's contribution, and C,'s contribution is his ultimate 
waiting time as first in queue. 

CASE 3. K1 < N1 < Ko. C1 enters service immediately causing N1 + K1 servers to 
be busy. He adds K1 completion times to C0's wait in queue and thus, to Q'. 

So in each case, C1 adds K1 server completion times to the time during which the 
first queue position is occupied. Since all subsequent arrivals to the queue period are 
faced with the same three possible situations, it is clear that Ci has a contribution to Q' 
which is distributed as Bi. Let Bi = 0 for all customers who arrive subsequent to the 
queue period. Then from above, Q = Q' = D + E I Bi. Let Lo and Li be the number 
of arrivals during D and Bi, respectively. Since the arrival process is unaffected by 
service discipline, L = L'= 2 oLi + 1 thus completing the proof. Q.E.D. 

Now let pq and pq be the stationary probabilities of having a queue under FIFO and 
SNOS, respectively. Then 

COROLLARY 2. Pq = Ppq 

PROOF. From Theorem 1, E( Q) = E( Q') and from Proposition 1 and the fact that 
the arrival process is independent of the service order discipline, E( Q) = E(Q'). 
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Using Corollary 1 we can write (see e.g. [6, Chapter 5]) 

Pq = E(Q)/[E( Q )+ E( Q)g p,= E( Q )/[E( Q )+ E(Q T) 

and the result follows. Q.E.D. 

COROLLARY 3. Pr(positive delay under SNOS) < Pr(positive delay under FIFO). 

PROOF. Let NB be the number of busy servers during a FIFO queue period, and 
NB be the number of busy servers during a FIFO nonqueue period. Let N, and NB be 
the same measures in the SNOS system. 

Pr (positive delay under FIFO) = pq + (1 - Pq) c c, Pr(NB > s-i) 

and 

Pr (positive delay under SNOS) = pq ci Pr( NB > s -i) 

+(I 1-p',) 
Ei 

rN' > s - i) q i Pr( 

since a customer who arrives during a SNOS queue period will enter service immedi- 
ately if there is a sufficient number of idle servers. By Proposition 1, NB has the same 
distribution as NB and from Corollary 2, Pq = p,. Therefore the result is obtained. 
Q.E.D. 

Now define W and W' as the steady-state waiting time in queue for the FIFO and 
SNOS systems, respectively. We are now prepared to prove 

THEOREM 2. E(W') < E(W). 

PROOF. The two systems are clearly the same when there is no queue. Suppose 
there are two customers in queue. Customer C, needs i servers and C2 needs j servers. 
If i < j, there is the same order of service under both disciplines. So suppose i > j. 
Under both FIFO and SNOS, both customers must wait until at leastj servers are free. 
Call the time at which this first occurs T. Under FIFO, C, waits another i -j 
completion times until entering service and C2 waits i - j + j = i completion times, 
measured from T. Under SNOS, C2 goes into service at T and C, waits j + i -j = i 
completion times from T. So under SNOS, C, waits j completion times more than in 
the FIFO system and C2 saves i completion times of waiting. So the net saving in total 
waiting time using SNOS is i -j completion times. In general, when the m + 1st 
customer in queue needs j servers and the first m customers need K1, K2, . . . Km 
servers, and j < K,, K2, . . , Km, then the total waiting time saved by SNOS is 

En= lK- mj > 0 completion times. 
When there is only one person in queue needing i servers, and a second customer 

arrives needing j servers and the number of free servers at his arrival is k, j < k < i, 
then in the FIFO system, customer 2 waits for i - k + j completions. Under SNOS, 
customer 2 does not wait at all and customer 1 waits an additionalj completion times. 
So again there is a net savings in total waiting time using SNOS equal to i - k > 0 
completion times. In general, if this customer arrives to find m customers who need 
K1 K2, . . . , Km servers with j < k < K1, K2, . . . , Km, then the net savings in waiting 
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time under SNOS is F K, - mk > 0 completion times. Since Pq = p$ and Pr(L = n) 
- Pr(L' = n), n = 1, 2, . . . the theorem is proved. Q.E.D. 

THEOREM 3. Let D= {service order disciplines for which the expected length of the 
queue period is E( Q) and the expected number of customers entering service during a 
queue period is E(L) }. Then no other discipline in set D results in a smaller expected 
waiting time than SNOS. 

PROOF. From Theorem 1, SNOS and FIFO are members of D and it can be shown 
that LIFO is also in this set. Assume do E D minimizes expected waiting time in queue 
and do is not SNOS. Consider an arbitrary queue period under do. If using SNOS 
would result in the same service order of customers, the result is trivial. Therefore, 
assume there is a time T at which customer C1, who requires the fewest servers Kf, 
would enter service under SNOS but is not the next to start service under do. Suppose 
there are m customers who precede Cf into service under do at times x,.... 
respectively, and who require KI, . . . Kt, servers. If T is not Cf's arrival epoch, then 
by the same arguments as in the proof of Theorem 1, under do, each of these 
customers will add his interservice time to Cf's waiting time in queue. So Cf enters 
service at xm+ = T + B. where B. is distributed as the sum of Ki completion 
times. However, if Cf starts service at T, the m customers can enter service at (or 
possibly before for a customer not in queue at T) xi + Bf, X2 + Bf, . .. , xnl + Bf. Since 
arrival epochs are unaffected by service order discipline, the total waiting time of these 
m + 1 customers will be reduced by at least I Bi - Bin) where B"X is the m-fold 
convolution of Bf. Since Kf < Ki, i = 1, . . ., m, the total expected wating time for the 
queue period will be reduced by at least ( I7. Ki - mKf)/fl > 0. If Cf arrives at T and 
sees k > Kf idle servers, by the second half of the proof of Theorem 2, the total 
expected waiting time will decrease by ( I7L Ki - mk)/p (or more if any of the m 
customers arrives after T) if Cf enters service at T. So in both cases, the expected 
waiting time using do can be reduced by letting Cf enter service at T. Therefore do does 
not minimize expected waiting time for D, thus proving the result. Q.E.D. 

Since our investigation of SNOS was first prompted by the question of server 
utilization, we will now look at how this factor differs between the two disciplines. Let 
N be the number of busy servers in steady-state in the FIFO system and N' be the 
same measure under SNOS. 

THEOREM 4. N > StN' where > St denotes stochastic order. 

PROOF. Let N(t) be the number of busy servers at time t. 

Pr(N > n) = lim Pr(N(t) > n) 

= lim Pr(N(t) ? n ItE Q)(l-pq)+ limPr(N(t)? n ItE Q)p. 

Since the distribution of busy servers during the nonqueue period is identical under 
FIFO and SNOS (see proof of Theorem 1), 

lim Pr(N(t) > n |t Ez Qa) = lim Pr(N'(t) > n I t EzQ') 

and since pq = pq from Corollary 2, it is sufficient to prove that 

lim Pr(N(t) > n t & Q) > lim Pr(N'(t) > n I t & Q'). (1) 
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Let Ci be the ith arrival during the queue period. As shown in the proof of Theorem 1, 
the queue period under both disciplines has a decomposition given by 

L - L' 

Q= Q= ZQf=Q' (2) 
1.= 0 1.= 0 

where Q is Ci's contribution to the length of the queue period and is distributed as D 
for i = 0 and as B for i > 1. Recall that L and L' have the same distribution. We will 
show that 

lim P(N(t) > n I t Ez Qi ) > lim P(N'(t) > n I t Ez Q' ). i = 0, I... (3) 

Under FIFO, Q. is exactly the interservice time of Ci (initial delay if i= 0). Let Ki be 
the number of servers required by Ci, and let N. and Ni' be the number of idle servers 
at C,'s arrival epoch under FIFO and SNOS, respectively. Q0 will consist of exactly 
Ko - No server completion times during which s - No,s - No - 1, . . , s - Ko + 1 
servers will be busy, respectively. For Ci, i > 1, Q will consist of Ki completion times 
during which s,s - 1. s - K, + I servers will be busy. Under SNOS, C0 will find 
N' (distributed as No) idle servers at his arrival epoch. As shown in Case 1 of Theorem 
l's proof, Q' will consist of Ko - No server completion times during which s - No, s - 

N - 1, . s - Ko + 1 servers will be busy, regardless of whether or not C0 is 
"bumped" out of first position by a subsequent arrival. For Ci, i > 1, there are three 
possibilities under SNOS: 

CASE 1. Ci becomes first in queue upon his arrival and enters service next. Then as 
shown in Case 1 of Theorem 1, Ci can be considered as "inheriting" the N.' completion 
times from the customer who he bumped out of first position, and therefore Q' 
consists of Ki completion times with s, s -1, ..., s-Ki + 1 servers busy, respectively. 

CASE 2. C, has a positive waiting time until he becomes first in queue (for the last 
time before entering service). As shown in Case 2 of Theorem 1, Q' is Ci's ultimate 
waiting time in the first queue position and therefore again consists of K. completion 
times during which s,s - 1, . . . , s - Ki + 1 servers are busy. 

CASE 3. N,' > K1 and so Ci enters service immediately upon his arrival. As shown 
in Case 3 of Theorem 1, Q' consists of the Ki completion times associated with the 
servers he occupies. However, there is a positive probability thatj = Ni' - Ki > 0 thus 
causing s -j,s -j - 1, . . . , s-j - Ki + 1 to be busy during Q', instead of the 
s,s - 1, ..., s - Ki + 1 that would be busy during Qi under FIFO. 

So for any i > 0, Ci will belong to one of the three cases above and for each it is 
clear that (3) will hold. (1) then follows from (2) and (3), thus proving the theorem. 
Q.E.D. 

5. Model with Independent Servers 

We now consider the system characterized by identical and independent servers with 
completion times that are exponentially distributed with mean 1/ . As before, arrivals 
are Poisson and customers request service from i servers with probability cj, 1 < i < s. 

Since this system is similar to the one with constant total service rate in that both 
have the characteristic that servers free one at a time, it seems likely that SNOS would 
again minimize expected waiting time. However, in the general case of s servers, it is 
not clear whether or not this is the case. This ambiguity is due to the following result. 
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Letpq be the steady-state probability that a queue exists in the s-server FIFO system 
and pq be the corresponding probability in the s-server SNOS system. 

THEOREM 5. Pq 6 pq- 

PROOF. From Corollary 1, 

pq =E( Q)l E( )+ E( Q), pq' = E( Q )/[E( a ) + E( Q )] (4) 

where Q, Q', Q and Q' are the same random variables which were defined in the last 
section, but for the systems with independent servers. As mentioned in the previous 
section, Proposition 1 is also true in the case of independent servers and therefore 
E( Q) = E( Q'). We will show that E( Q) < E( Q') which from (4) is sufficient to 
prove the theorem. 

Let Ci represent the ith arrival during the queue period, Ki be the number of servers 
required by Ci, and Ni be the number of idle servers at Ci's arrival epoch. As in the 
proof of Theorem 1, C0's contribution to the queue period is distributed as the initial 
delay random variable D under both disciplines. Also, as in Theorem 1, under FIFO 
each subsequent C, adds his interservice time Bi to Q. Under SNOS however, there is a 
positive probability for each C, that Nj > Ki, resulting in his entering service immedi- 
ately and causing fewer than s servers to be busy. Therefore he adds an expected time 
to Q' of 

1 F 1 + 
1++...+ 

1 
1~ t s s- Nj+ Kj s - Nj+ Kj-1I s- Nj+ I 

> lLs s 1 s Kj+l =E(Bi). (5) 

If C, has a positive delay, he causes all servers to be busy when he enters service and so 
contributes an expected time of E(Bj). Therefore from (5) 

E( Q) < E(Q') 

thus proving the theorem. Q.E.D. 
If the length of the queue period were the same under both disciplines, the expected 

waiting time would be smaller under SNOS than under FIFO, as it is in the constant 
total service rate case. However, the greater probability in the SNOS system of an 
arrival seeing a queue may cause significantly greater waiting times for some customers 
(those requiring a large number of servers) who would be arriving during a nonqueue 
period under FIFO but who encounter a queue under SNOS. We can eliminate this 
problem by modifying the SNOS discipline as follows: 

Let SNOS* be the service order discipline which, at a server-freeing or arrival epoch, 
selects for service the customer, if any, that causes all servers to be busy. This 
discipline is identical to SNOS except when an arrival to a queue needs fewer than the 
number of servers that are idle. In this case, the customer who next enters service 
under SNOS* is the one who would have been next exclusive of the new arrival. 

SNOS* eliminates the arrivals to a queue who enter service immediately and cause 
fewer than s servers to be busy. Since it is this possibility that increases the expected 
length of the queue period under SNOS relative to FIFO, we get the same results with 
SNOS* for the model with independent servers as we did with SNOS for the constant 
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service rate model, with one exception. The proofs of the following are almost identical 
to those in the previous section and are therefore omitted. 

Let the non-primed letters represent the same measures as before for the FIFO 
model with independent servers, and the primed letters be the corresponding measures 
under SNOS*. 

THEOREM 6. Pr(L = n) = Pr(L' =n), n = 1,2, ... and Pr( Q < x) = Pr( Q' < x), 
x > 0. 

COROLLARY 4. Pq = P,> 

COROLLARY 5. Pr(positive delay under SNOS*) < Pr(positive delay under FIFO). 

THEOREM 7. E(W') < E(W). 

THEOREM 8. Let D= {service order disciplines for which the expected length of the 
queue period is E( Q) and the expected number of customers entering service during a 
queue period is E(L) }. Then no other discipline in set D results in a smaller expected 
waiting time than SNOS*. 

Since all servers become busy whenever a customer enters service during a queue 
period under SNOS*, the next theorem follows from Theorem 6. 

THEOREM 9. Pr(N = n) = Pr(N' = n), n = 0, 1,2, * * - 

6. Joint Service Model 

Recall that the distinguishing feature of the joint service model is the assumption 
that servers who work on the same customer free up simultaneously. Assume that 
regardless of the number of servers required, all customers have an exponential service 
time with mean l/t. From this assumption, it is clear that the instantaneous customer 
departure rate is proportional to the number of customers in service. Since the SNOS 
discipline usually results in more customers in service earlier in -the queue period, it 
again appears as though SNOS would be more efficient than FIFO. In general, this is 
not the case. Consider the following example: 

EXAMPLE 1. Assume a system with 7 servers and C3 > 0,C4 > 0,C; = 0, i #f 3,4, 
C3 + C4 = 1. Using the SNOS discipline in this case results in 3-server customers being 
served first and therefore, the accumulation of 4-server customers at the end of the 
queue. Since only one 4-server customer can be in service at a time, this will clearly 
result in longer expected queue periods and waiting times than if they are interspersed 
with the 3-server customers. Since servers don't free up one at a time as in the other 
systems, allowing a 3-server customer to precede a 4-server customer into service won't 
always result in having a customer enter service earlier. In fact, in this system, the 
expected length of the queue period will be shorter than with FIFO or SNOS if when 4 
servers are available, the next 4-server customer in queue enters service, and if exactly 
3 servers are free, the next 3-server customer is selected. 

This leads to consideration of disciplines which will use more servers sooner. The 
obvious candidate is one that scans the queue at every service completion and arrival 
epoch for a set of customers which by next entering service, will maximize the number 
of busy servers. However, this doesn't necessarily produce a discipline with smaller 
expected waiting times than FIFO, as illustrated by the next example: 
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EXAMPLE 2. Assume a system with 4 servers and cl > 0, c2 > 0, C3 = 0, C4 > O, 

cl + C2 + C4 = 1. Suppose at a service completion epoch, 4 servers become idle and the 
customers in queue are, in order of arrival, a 1-server, a 2-server, and a 4-server 
customer. Then by choosing the 4-server customer as next to enter service, his expected 
wait in queue is reduced by 1/2jt + 1/j- = 3/2jt over FIFO, while each of the other 2 
customers will have his expected wait increased by 1 /y. Therefore there will be a net 
increase in total expected waiting time of 1/2y in this case and in general, it is not 
likely that the overall expected waiting time in steady state will be better than under 
FIFO. 

Using a discipline which selects customers so as to maximize the number of busy 
servers may not always result in an improved expected waiting time, but it does appear 
to result in a decrease in the expected length of the queue period. More specifically, 
consider the following discipline. Define MXMN (maximize servers, minimize custom- 
ers) to be the discipline which at every service completion and arrival epoch selects the 
set of customers to next enter service as follows: first identify those sets of customers 
which would maximize the number of busy servers and among those, select any set 
which minimizes the number of customers in service. Note that the secondary criterion 
will favor customers who require more servers. This results in the "smaller" customers 
accumulating at the end of the queue where they have more opportunity to enter 
service with other smaller customers. This becomes clearer in the 2 server system where 
MXMN results in first serving the 2-server customers until there are none left in queue, 
at which time the 1-server customers will all be served until there are none of them left, 
etc. In this system, MXMN can be shown to result in a shorter expected queue period 
than under FIFO. It is not clear, however, even in this small system, whether or not it 
is better with respect to expected waiting time.' 

I am very grateful to Daniel P. Heyman for his valuable comments. I also thank J. G. Shantikumar for 
his suggestions regarding ?5. 
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