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We consider a queueing system with two types of servers and two types of 
customers. General-use servers can provide service to either customer type 
while limited-use servers can be used only for one of the two. Though the 
apparent Markovian state space of this system is five-dimensional, we show 
that an aggregation results in an exact two-dimensional representation that is 
also Markovian. Matrix geometric theory is used to obtain approximations for 
the mean delay times and other measures of interest for each customer type. 
We illustrate the methodology by applying it to analyze a token discount policy 
used by the Triborough Bridge and Tunnel Authority. 

M ANY SERVICE facilities have two kinds of servers-general serv- 
ers who can be used for any kind of customer and specialized 

servers who can provide service only to a specific subset of the customer 
population. A common example is a toll plaza with automatic exact 
change lanes as well as manned booths. Another example is a repair 
facility in which some of the technicians have limited expertise while the 
others can handle jobs of any difficulty. 

These systems belong to a class of models that Schwartz [1974] called 
lane selecting (LS) models. These LS models are characterized by mul- 
tiple customer types and a server hierarchy such that the higher the 
level, the more types of customers the server can handle. Schwartz studied 
systems with one server of each type, each with its own queue, and with 
a set of rules that governed which "lane" a given customer type would 
choose upon arrival. (Roque [1980] subsequently pointed out an error in 
this analysis.) 

The queueing system studied in this paper is an LS type model with 
two levels of servers, two customer types, and one queue that all cus- 
tomers join upon arrival if an appropriate server is not available. In 
developing the methodology, we will assume an arbitrary number of each 
server type, although numerical solution will clearly limit the size of 
problems that can practically be solved. The general servers, called type 
G, can serve either customer type while the restricted-use servers, called 
type R, can be used only by what we will call the type R customers. The 
customers who must use a type G server will also be called type G. A type 
R customer can use either kind of server, but we will assume that he 
Subject classification: 802 two levels of servers. 
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"prefers" a type R server (so if both types are available he will choose a 
type R). 

Examples of this kind of queueing system are found in a variety of 
contexts. Many police precincts in New York City, for example, use two 
types of patrol cars. The usual patrol cars, called radio motor patrols, 
have two police officers and can respond to any kind of police emergency. 
The other cars, referred to as "specials," are often manned by only one 
officer and can respond to only low danger incidents such as past 
burglaries. Other kinds of emergency systems also have two levels of 
vehicles-some ambulances carry special cardiac-care devices for coro- 
nary victims, and some firetrucks have extra-long ladders for hi-rise fires. 
Such a queueing situation also arises in a bank that has tellers, who can 
perform any ordinary banking service, and machines, that can be used 
only for certain kinds of transactions such as check-cashing. Another 
commonplace example is a restaurant with booths or tables that can seat 
four people and smaller tables for two. 

The service order discipline will be assumed to be first-come first- 
served (FCFS) with the exception that a type R customer will be allowed 
to pass a type G customer into service if a type G server is unavailable 
but a type R server is free. This discipline is reasonable in many single 
queue situations and, as we discuss in Section 4, can also be used to 
approximate a multiple queue situation. 

The performance measures of most interest for this system are the 
expected delay and probability of delay for each customer type. The 
standard approach for obtaining these would be to try to derive the 
steady-state distribution of the number of each type of customer in the 
system. As we describe in Section 1, even under the assumption of 
Poisson arrivals and exponential service times, the state space necessary 
to obtain this distribution would be five-dimensional. The major objec- 
tives of this paper are to (i) define an aggregation of this five-dimensional 
state space into a two-dimensional Markovian state space from which 
the performance measures of interest can be calculated, and (ii) design a 
method for obtaining a good approximation for the steady-state distri- 
bution for this new state space. (This approach was also successfully 
used in Green [1982] to analyze another queueing system with two server 
types.) 

In Section 1, we formulate the model as a bivariate Markov process. 
In Section 2, we show that approximations for the steady-state probabil- 
ities can be obtained using matrix-geometric theory introduced by Neuts 
[1978, 1980]. Section 3 gives numerical results, and illustrates the model's 
use for decision making. 

1. MODEL DESCRIPTION 
We consider a queueing system with m restricted-use servers and n 

general-use servers. Arrivals occur according to a Poisson process with 



170 Green 

rate X and all service times are exponentially distributed. Type G cus- 
tomers arrive at rate XG = qX and must be served by a type G server. 
Type R customers arrive at rate XR pX and "prefer" receiving service 
from a type R customer; i.e., if servers of both types are idle at a type R 
arrival epoch, the customer enters service with a type R server. Service 
times are exponentially distributed with rate I.G for type G servers and 
rate 1R for type R servers. Customers of either type who arrive and find 
all servers busy wait in queue in the order of their arrival. In addition, a 
type G arrival must wait in line if a type R server is idle but all type G 
servers are busy; while a type R arrival in this case can enter service 
immediately even when the system has a queue (of type G customers). 
The service order discipline is FCFS except that in the case when a type 
R server frees and the first customer in queue is of type G, the first type 
R customer in line, if any, will enter service next. This operational policy 
decreases the delay of the type R customer (and hence subsequent 
customers) without increasing the delay of the type G customers ahead 
of him. 

In order to obtain the steady-state distribution of the number of 
customers of each type in the system, it would be necessary to have state 
variables corresponding to the number of type R customers waiting in 
queue, the number of type G customers waiting in queue, the number of 
busy type R servers, the number of busy type G servers, and the number 
of type G customers who have been passed into service by a type P 
customer. This state space, of course, would lead to an intractable model. 

Fortunately, there is an alternate formulation. Note that the system 
has two queues of waiting customers-one consisting of both type R and 
type G customers in FCFS order, and one consisting only of type G 
customers who have been passed by a type R customer. We will call these 
queues the restricted queue and the general queue, respectively. We define 
the rules of movement for customers as follows: 

* All customers initially arrive to the restricted queue and enter service 
immediately if an appropriate server is available. Type G customers 
who arrive to an empty restricted queue and find a type R server 
available, but all type G servers busy, immediately move to the general 
queue. 

* When a type G server becomes free, the first customer in the general 
queue is taken into service. If there is no general queue, the first 
customer in the restricted queue starts service. 

* When a type R server becomes free and there is a restricted queue, 
(note that this alternative implies all type G servers are busy), the first 
customer in the restricted queue is examined: 
a. If that customer is a type R, he starts service at once; 
b. If that customer is a type G, he is instantly moved to the general 
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queue, the next customer in the restricted queue is then examined, 
and the process continues until either a type R customer is found 
or the queue is empty. 

The system as described above can be represented as a bivariate 
Markov process with states (i, j), i-, j ,> 0 where i is the number of 
type R customers in service plus the number of customers (of either type) 
in the restricted queue, and j is the number of type G customers in service 
plus the number of customers in the general queue. Note, however, that 
since there can be no queue if a type G server is free, there are no states 
(i, j) where i > m and j < n. To see that the process is Markovian, note 
that (i) for any state (i, j), the number of busy type R servers is given by 
NR = min i, m }, and the number of busy type G servers is given by 
NG = minlj, n}, and (ii) the probability that any customer in the 
restricted queue is of a given type is just the probability that an arbitrary 
arrival is of this type. Thus, this two-dimensional state space con- 
tains all the information necessary to probabilistically describe the 
future of the system. 

For any given starting state (i, j), the set of possible successor states 
and the associated formulae for the transition rates depend on the state 
of the overall system as follows: 

* For states (i, j), i < m, j < n, all arrivals start service immediately 
with their associated server type. So transitions will be to state (i + 1, 
j ) with rate XR, to (i, j + 1) with rate XG, to (i - 1, j) with rate iIR (for 
i> 0), and to (i,j - 1) with rate IUIG (for j > 0). 

* States (m, j)j < n are those states in which all type R servers are busy, 
but at least 1 type G server is idle. Consequently, an arrival of either 
type will immediately start service with a type G server causing a 
transition to state (m, j + 1) at rate X. Transitions corresponding to 
departures take the system to state (m - 1, j) and occur at rate muR, 
and transitions to state (m, j - 1) occur at rate jUG. 

* For states (i, j), i < m, j - n, an arrival will cause a transition to state 
(i + 1, j) with rate AR, or to state (i, j + 1) with rate XG. These 
transition rates apply because a type R customer can immediately enter 
service with a type R server, while a type G arrival must join the 
general queue. A departure will cause a transition to state (i - 1, j) 
with rate it/R (for i > 0), or to state (i, j - 1) with rate nfG. 

* States (i, j), i >inm, j - n, correspond to all servers busy. Since all 
arrivals join the restricted queue, transitions to state (i + 1, j) are at 
rate X. Departure transitions fall into three cases: 

Case 1. i = m. The system has no restricted queue and a departure 
from state (i, j) causes a transition to state (i - 1, j) at rate M,uR or to 
state (i,j - 1) at rate nfG. 

Case 2. i > m, j = n. The system has a restricted queue, but no 
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general queue. When a type G server becomes free, the first customer 
in the queue, regardless of type, will enter service and, therefore, move 
from the restricted system into the general system. Hence, the transi- 
tion is to state (i - 1, n) at rate nfUG. If a type R server becomes free 
and the first customer in queue is type R, the transition is again to 
state (i - 1, n). The rate of the transition in this case will be m,uRp 

and, therefore, the total rate of transition to state (i - 1, n) is m,uRp 
+ nfUlG. Finally, if a type R server frees and the first customer in queue 
is type G the transition will be to state (i - k - 1, j + k) where k is the 
number of consecutive type G's who are ahead of the first type R, if 
any, in queue. If there are no type R's in queue, k = i - m is the queue 
length. The transition rate from (i, j) to (i-k- 1, j + k) is mMRkp 
for k < i - m and mAR/qk for k = i - m. 

Case 3. i > m, j > n. The system has both a general and a restricted 
queue. So when a type G server becomes free, the type G customer at 
the head of the general queue enters service according to the previously 
defined rules. The resulting transition is to state (i, j - 1) at rate nfG. 
Transitions that occur when a type R server becomes free are the same 
as in the previous case: to state (i - 1, j) with rate mMRp and to state 
(i-k-1, ] + k) at rate M,Rqk for k < i-m and at rate m8Rqk 

for k = i - m. 

Note that the rules of movement guarantee that at any arrival epoch, 
the time spent in the restricted queue will be identical for both customer 
types. So the expected total waiting time in queue for a type G customer 
is simply the sum of the expected time spent by an arbitrary customer in 
the restricted queue plus the expected wait in the general queue. There- 
fore, all of the usual performance measures of interest could be obtained 
from the steady-state distribution for this formulation of the model. 
However, the resulting balance equations are quite complex and there 
are no analytic nor numerical methods currently available for efficiently 
calculating exact solutions. In the next section, we describe an efficient 
methodology for obtaining approximate steady-state probabilities. Nu- 
merical results, described in Section 3, indicate that the approximation 
can yield accurate results for reasonably large systems. 

Before proceeding with the development and solution of the approxi- 
mate model, it is important to determine conditions for the existence of 
a steady-state solution for the actual model. Necessary conditions can be 
obtained by considering special cases. For example, if all customers are 
of type G, the system reduces to MIMIn and, therefore, it is necessary 
that XG < nAG. Similarly, if all customers are of type R, the service rate 
when all servers are busy is mAR + nliG, which is also the maximum 
departure rate when the system has both customer types. Therefore, we 
must have X < mAIR + nAG. Numerical results indicate that when these 
two conditions are met, a limiting distribution will exist. 
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2. APPROXIMATION OF THE STEADY-STATE DISTRIBUTION 

The state space of the model described in the last section is infinite in 
both dimensions. In this section, we show how this system can be 
approximated by a two-dimensional Markov process with a finite second 
state variable, and with a steady-state distribution of the matrix-geo- 
metric form investigated by Neuts [1978]. This approximation allows us 
to develop a simple computational procedure for obtaining the steady- 
state probabilities. 

The standard method of truncation would assume that there exists an 
integer K > n such that at an arrival or departure epoch any type G 
customer who would cause a transition to state (., K + 1) is instead 
"lost." This truncation would lead to a matrix-geometric model in which 
the maximum decrease in the first state variable is bounded only by the 
length of the restricted queue. Two computational difficulties would 
result: 

(i) The number of customers simultaneously lost at a departure epoch 
could be as large as the number of customers in the restricted queue. 
Since lost customers do not contribute to the workload in the system, 
this loss could lead to significant errors unless the truncation param- 
eter is quite large. 

(ii) The matrix polynomial equation that must be solved would be of 
infinite degree. The solution could be obtained by successive substi- 
tutions. However, this procedure would require another truncation 
and introduce another source of error. 

Instead, we assume there exists an integer K > n such that at an epoch 
at which a type G customer would otherwise join the general queue and 
cause the second state variable to increase from K to K + 1, he changes 
his identity to type R, and, therefore, enters service with a type R server. 
This truncation method preserves the Markovian integrity of the model 
and overcomes both problems of the "lost" customer method: 

(i) At any epoch, at most one customer will change identity. Further- 
more, this customer still contributes to the workload of the system 
(though in a different way). 

(ii) The number of customers who can simultaneously move from the 
restricted queue to the general queue will never be larger than K - 
n. Thus, the resulting matrix polynomial equation is finite. 

The queueing model under consideration is represented by a continu- 
ous-time Markov process on the state space {(i, j): i > 0, 0 c j c K}. In 
general, its generator Q can be partitioned into blocks Hi = {(i j), 0 ' j 
< Kl and takes the following form when the states are in lexicographic 
order: 
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The B blocks represent transitions from boundary states while the A 
blocks give the transition rates for nonboundary states. Boundary states 
for this model are defined as {(i, j), i < m + K - n), though some 
nonboundary behavior is present beginning at i = m. The A blocks are 
(K - n + 1) x (K - n + 1) and Ak gives the transition rates from (i, *) 
to (i - k + 1, *), k 2 0. Bki is the array of transition rates from (i, *) 
to (i - k + 1, *) and has dimensions (K + 1) x (K + 1) for i ' m and 
(K - n + 1) x (K + 1) for i > m. This difference in array size is due to 
the fact that this system has no states (i, j ), i > m, j < n. The Boi matrices 
are identical for i = 0, *. . , m - 1 and so Boo is used to indicate them all. 
Let .kj = kgR + jAG and ak = pqk. Then for the case m = 2, n = 2 and K 
= 5, the blocks are defined as follows: 

XR 

AR 

Boo= XR 
R 

R 

-(X+ iAR) XG 

AG -(A + Ail) AG 
Bli 2AG -(AX+gi2) AG 

=0, I) 2AG -(A + yi2) ING 

2AG -(AN + Ai2) ING 

1 ~~~ ~ ~~~~~~~2AG -(A + Ai2) 

-(A + 2AR) 

) 
I 

/1G -(A + Au21) A O + 
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0 2ttG -(X + A22) 0 0 
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- . * 2ARa2 2 2 2AR q0 
A4= ? 2AR q A5 

Let matrix A = Eij-n+2 Ai. In general, it is given by 

-mARq muRal mALRa2 MR qK-n 

nIG _-mARq - nG M mARajl * MIRqK-n- 
0 -mnRq - n8G 

A = 0 0 nflG 

0 mARq 

nAG -nAG 

Neuts [1980] shows that Q is positive recurrent if 

rA0o < EK-n+2 (i -1)wrAi (1) 

where wr is the unique solution to 

rA = 0 re= 1. (2) 

In this case, the stationary probability vector x = [o, xi, -I.] of Q 
satisfies the matrix-geometric form 

xi = xi-R, i > m (3) 

where R is the minimal solution to 

fK-n+2 RAi = 0. (4) 

The vector [xo, X1, *, Xm] is obtained by solving: 

Xo T -Blo Boo 0 0 T 
-X I B21 Bil Boo 0 0 
. 0 B22 B12 Boo 

_ _ O * * O X y Z _ ? _ (5) 

L L 0 0 X Z 0 o 

.xoe + xie + 0 -+ xm(I -R)-le =1, 

where x = E >Kn RiBi+2,m+i, 

y = K-ln RtBi+i,m+i + RK-n+lAK-n+2, 

z = zK-n+2 Ri-Ai; 
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(Ai and R denote the A and R matrices "padded" with n columns of zeros 
to make the resulting dimension (K - n + 1) x (K + 1)). R can be solved 
by iterative substitution. 

3. NUMERICAL RESULTS AND EXAMPLES 

Computer runs were performed on an IBM 4341, for varying propor- 
tions of restricted to general servers and restricted to general customers 
under several levels of overall system congestion. (We define system 
congestion here to be p = X/(m,R + nAG).) The total number of servers 
ranged from 6 to 10. One of the primary issues examined was the effect 
of the truncation parameter K on solution accuracy. This issue was 
studied by finding the minimum K, denoted by K, necessary to obtain a 
specified level of numerical stability in the mean number of customers 
in each part of the system. In particular, let L(R)(K) be the mean number 
of customers in the restricted system as computed when the truncation 
parameter is K, and let L(G)(K) be the analogous measure for the general 
system, i.e., 

L(R)(K) = Emo EKo ipij + Zo=m+i >2-n ipjj 

L (G)(K) = Emo v Kj * Zoo v K L(G)K J i=o j=o JP + i=m+l 4j=n JPij 

and define 

K(R) = minK>m+l IK: I L(R)(K) - L(R)(K - 1) I/L(R)(K) < 0.021 

K(G) = minK>m+1 IK: I L(G)(K) - L(G)(K - 1) /L(G)(K) < 0.02}. 

Then K =defmax IK(R), K(G)}. (The calculation of the probability vector 
xi is carried out until each element of xi c 10-.) 

Table I illustrates how K fluctuates under varying system parameters. 
In the examples given, AUR = ,UG although the results are almost identical 
for A R = 2/AG. The most significant observation is that although K tends 
to increase somewhat as the overall system congestion increases, it is 
most sensitive to the general customer traffic intensity PG = XG/nl/G. For 
the cases examined, a K of 14 was found to be the maximum necessary 
truncation parameter whenever PG < 0.75. This truncation value re- 
mained valid even when the overall system congestion p was 0.9. The 
CPU time involved for this size problem is approximately 10 seconds. 
This CPU time increases dramatically as K becomes larger-for K = 18, 
it is approximately 47 seconds and for K = 22, about 100 seconds. Table 
I also shows PK, the probability that the waiting room is full, for each K. 
Since the approximation affects only transitions from this state, the 
small magnitude of these numbers confirms that the K's are large enough 
to keep the approximation errors small. 

As an illustration of how the model could be used for decision making, 
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we studied a situation involving toll booths on the section of the Tribor- 
ough Bridge which connects the boroughs of Queens and the Bronx in 
New York City. Although a toll plaza is a multiple queue situation, the 
model presented in this paper can be used as an approximation since the 
service order discipline does not permit the blocking of restricted cus- 
tomers (in this case, cars with exact change or tokens) by general 
customers (cars which need change) when a restricted server (automatic 
booth) is available. The use of a single queue model to approximate a 
multiple queue system is not uncommon and was, in fact, the method 
used by Edie [1954] in his classical study of toll booth delays at the 
Lincoln Tunnel. The resulting delays will, of course, underestimate the 

TABLE I 
K FOR VARIOUS SYSTEM CONFIGURATIONS (n = 5 TYPE G SERVERS) 

m=1 m=3 m=5 

PG K PK PG K PK PG K PK 

p = 0.4 
0.2 0.38 8 0.0016 0.51 9 0.0047 0.64 11 0.0072 
0.4 0.29 8 0.0004 0.38 8 0.0021 0.48 8 0.0067 
0.6 0.19 8 0.0001 0.26 8 0.0003 0.32 8 0.0008 
0.8 0.10 8 0.0000 0.13 7 0.0000 0.16 8 0.0000 

p = 0.6 
0.2 0.58 11 0.0027 0.77 14 0.0110 0.96 >25 
0.4 0.43 8 0.0049 0.57 9 0.0120 0.72 13 0.0088 
0.6 0.29 8 0.0013 0.38 8 0.0051 0.48 8 0.0115 
0.8 0.14 8 0.0001 0.19 8 0.0006 0.24 8 0.0011 

p = 0.8 
0.2 0.77 13 0.0110 Unstable Unstable 
0.4 0.57 8 0.0191 0.77 14 0.0129 0.96 >25 
0.6 0.38 8 0.0058 0.51 8 0.9246 0.64 11 0.0129 
0.8 0.19 8 0.0007 0.26 8 0.0033 0.32 8 0.0075 

delays of an equivalent multiple queue system where customers may be 
waiting in one lane while a server in another lane is available. (Edie's 
study found, however, that the error due to this underestimation com- 
pensated for the overestimation due to the assumption of exponential 
service times for toll booth transactions which are, in reality, more nearly 
deterministic.) 

This toll plaza of the Triborough Bridge has 8 toll booths in each 
direction, 4 of which are automatic exact change lanes that can be used 
as manual lanes, if necessary. Since automatic booths are cheaper to 
operate, and the use of exact change reduces transaction times, the 
Triborough Bridge and Tunnel Authority (TBTA) sells tokens to cus- 
tomers at a discount to encourage their use. Thus, the TBTA is interested 
in determining the tradeoffs between the size of the discount and the 
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number of automatic booths that can be effectively used. That is, when 
traffic is heavy, they would like to be able to operate all 4 of the exact 
change lanes automatically and have p, the proportion of cars using 
tokens, large enough so that disproportionately long queues do not build 
up in the manual lanes. 

To determine what this discount should be, we first must determine 
the effect of the resulting p on system performance. We used the model 
to obtain queueing statistics for several situations, using an arrival rate 
to reflect a moderate rush hour. The mean transaction time for manual 
lanes (W/1AG) is approximately 10 seconds, and for automatic lanes (1/1uR) 
is approximately 8 seconds. X was chosen so that the traffic intensity of 
the system operating with all manual lanes would be p = X18AG = 0.95. 

Using this level of system congestion, we looked at the effects of 
operating 3 of the 4 exact change booths automatically and 1 manually 
versus all 4 automatically, assuming a p value of either 0.52 or 0.75. (For 
the system with 4 exact change lanes, the system is unstable for p < 
0.48.) For each set of system parameters, we computed the expected 
number of cars in queue, the overall expected delay, and the expected 
delays for each customer type, as well as the blocking probabilities for 
each customer type and the probability a that a car needing change is 
delayed while an automatic booth is available. This probability, given by 
a = Li<m j,n pij, is a good measure for assessing whether there is an 
adequate number of manual booths for the proportion of customers who 
require them. 

The steady-state number of customers waiting in queue is given by 
Lq L(R) + L(G) 

-q q 

where 

L( R) - im+1 t (i - m)pij 

is the steady-state number of customers in the "restricted queue" and 

Lq ) - i=0 =n+l (j - n)pij 

is the number in the "general queue." 
By the rules of movement, we see that the amount of time spent 

waiting in the restricted queue is identical for both customer types and 
so the arrival rate to this queue is X. Therefore, the mean delay for the 
cars with exact change is given by W(R) - LIR)/X and for cars requiring 
change is given by W(G) = L(R)/X + L(G/XG. 

The probability that a type R customer has a positive delay is the 
probability that all servers are busy and is given by p}) = X im E jln Pij 
The corresponding probability for a type G customer is the probability 
that all type G servers are busy and is given by plG) = =% n Pi; - 

The results are shown in Table II. We observe that when only 52% of 
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cars have exact change, using all 4 automatic lanes results in significantly 
worse performance than using one of them as a manual booth. This 
result changes, however, when p increases to 0.75. With this proportion 
of exact change customers, operating all 4 exact change booths automat- 
ically results in improved system performance. Thus, for all 4 exact 
change booths to be used effectively, the discount would have to be large 
enough to result in close to 75% of cars having exact change. 

Another interesting observation is that when only 3 lanes are being 
operated automatically, and the proportion of cars with exact change 
increases from 0.52 to 0.75, the overall system performance does not 

TABLE II 
COMPARISON OF SYSTEM PERFORMANCE FOR 8 LANES USING 3 OR 4 

AUTOMATIC BOOTHS 

3 Automatic Lanes 4 Automatic Lanes 

p = 0.52 
E (No. cars in queue) 5.13 11.09 
E (overall delay) 6.75 sec 14.59 sec 
W q 8.62 26.53 
W (R) 4.97 3.52 

pEG) 0.77 0.83 

pvR) 0.58 0.48 
a 0.14 0.32 

p = 0.75 
E (No. cars in queue) 4.21 3.31 
E (overall delay) 5.53 4.36 

q 6.35 5.94 

WqR) 5.25 3.83 
PM ) 0.68 0.68 

pyR) 0.61 0.54 
a 0.03 0.07 

improve very much. This result, at first glance, is counterintuitive. 
However, it becomes more understandable if one considers that the exact 
change customers have smaller delays when there is a larger percentage 
of cars without exact change since these other customers do not block 
them. Thus, increasing the percentage of exact change cars when there 
are not "enough" automatic lanes causes slightly greater delays for the 
exact change customers, somewhat smaller delays for the other cars, with 
the total effect resulting in only a small overall improvement. 

This example, as well as others we have looked at, demonstrates the 
complexity of the dynamics in this type of queueing system and the 
resulting difficulty in predicting the effects of proposed policies. Thus, it 
appears to be particularly important to use a model that captures the 
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essential characteristics of such a system. For this reason, the model 
presented in this paper should be a valuable tool for the analysis of these 
systems. 
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