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This paper describes efforts to validate a multiple car dispatch queueing (MCD) model of police 
patrol operations using New York City data. The MCD model was designed for use in a computer 
system that has been disseminated to many police departments in the U.S. to help planners 
allocate patrol cars among precincts. It has also been used to evaluate specific changes in patrol 
policy in New York. We define validation as a series of hierarchical procedures ranging from tests 
of mathematical correctness to evaluations of model robustness. We discuss the difficulties and 
limitations of assessing the validity of a model of a loosely managed system in which human 
behavior is central and in which controlled experiments cannot be performed. Focusing on specific 
uses, we conclude that the MCD model is a good although imperfect description of patrol operations 
in New York and is a potentially useful planning tool for many other urban police departments. 
(QUEUEING; VALIDATION; POLICE PATROL) 

1. Introduction 

This paper reports on our efforts to test the validity of the multiple car dispatch (MCD) 
queueing model of police patrol car operations that was developed by Green (1984). 
The MCD model was used to test the feasibility of changing from two to one police 
officers per patrol car in New York City (Green and Kolesar 1984a), and has been 
implemented in a revised version of the widely used Patrol Car Allocation Model (PCAM) 
(see Chaiken and Dormont 1978). 

The development and testing of this queueing model originated with a request from 
the New York City Police Department (NYCPD) for a review of its own queueing based 
patrol car allocation system which had been significantly underestimating delays. The 
NYCPD had routinely relied on its model in creating allocation plans, and the model 
played a role during the financial crisis of the 1970's when difficult decisions had to be 
made about cutbacks on patrol resources. The seriousness of the actual and potential 
applications of the MCD model led us to an extensive validation effort for which we 
have not found parallels in the queueing literature. Though there have been several 
papers in the computer performance literature on the application and validation of analytic 
queueing models (see e.g. Chandy and Reiser 1977), there is no treatment in the Man- 
agement Science/ Operations Research literature of the validity of queueing models of 
systems in which human behavior plays an important role. Such validations are clearly 
harder to perform and are less likely to be definitive than those of purely mechanistic 
systems such as computers, or automated production systems. While the question of 
what constitutes adequate validation of such models is ambiguous, we strongly agree 
with Gass (1983) that knowledgeable and confident use of these models requires more 
thorough validation efforts than have been reported to date. 

Since there were few guides in the queueing literature itself, we took the several fine 
discussions of validation issues and approaches for simulation models as our starting 
point. We were particularly influenced by the papers of Van Horn (1971), Naylor and 
Finger (1968), Fishman (1973), and Sargent (1979). 

* Accepted by Arnold Barnett; received July 1986. This paper has been with the authors 5 months for 2 
revisions. 
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Our approach to model validation is through a hierarchical multistage process in which 
at each stage, tests of the model are performed which, if failed, obviate the need to 
continue. The stages are: 

1. Model Verification: An extensive effort to assure that the equations defining system 
performance and their implementation via a computer program are correct. 

2. Model Significance: A determination of whether the estimates produced by the 
model differ substantially from those produced by the model it is intended to replace- 
in this case, the Cobham M/M/s priority model (1954). 

3. Output Validity: A determination of whether given reasonable estimates of system 
parameters, the model produces reasonable estimates of system performance. We do not 
question here why or how the model works-it is viewed as a black box and judged only 
on its performance. 

4. Structural Validity: An examination of the validity of its key structural assump- 
tions-asking, in effect, why it works. 

5. Sensitivity Testing: Testing the sensitivity of the model to violations of its key 
assumptions. Of particular concern are those assumptions which were identified as being 
suspect in stage 4, and those assumptions that might be violated in future applications. 

This paper addresses the validity issues of stages 3, 4 and 5. Stage 1 is a trivial yet 
time-consuming exercise. The issue raised in stage 2 was explored in Green and Kolesar 
(1 984b). The results showed that the MCD model generally produces significantly higher 
estimates of delay than several versions of the Cobham (1954) model which it was a 
candidate to replace, and hence it results in more reasonable citywide allocations. 

Stage 3 is crucial since it examines the model's ability to predict actual system per- 
formance on the precinct level. Indeed, this is what is usually thought of as the standard 
validation method. The ideal would be a controlled experiment in which each input 
parameter would be known precisely and could be varied to test the model's accuracy 
under broadly different conditions. For many reasons, detailed later, this was impossible. 
?3 describes an alternative which, though admittedly problematic, gave important insight 
about the model's validity. 

To some extent, stages 4 and 5, presented in ??4 and 5, compensated for the incom- 
pleteness of our procedure in stage 3. These tests are, of course, important in their own 
right for the better understanding of the phenomena modeled and of the circumstances 
under which the model is useful. 

Our validation effort was guided by and premised on the use of the MCD model as a 
tool for patrol car allocations as done by PCAM and for analyses of policy decisions such 
as in the feasibility study reported in Green and Kolesar (1984a). In these "macro" 
applications, the model determines the number of patrol cars required in each police 
command (precinct) for a specified service level, e.g. to keep expected delay less than 
five minutes. Since queueing delay is very sensitive to the number of servers in the 
system, a model may produce estimates of delay that are significantly off (in percentage 
error) yet accurately enough identify desirable patrol car allocations. Thus, our primary 
concern was whether the MCD model's estimates of delay are, in general, of the right 
order of magnitude to produce good estimates of adequate resource levels, and under 
what circumstances its estimates may have to be modified. 

2. Background 

2.1. The NYCPD Patrol System 

The interest of the NYCPD in the MCD model and our proximity to and familiarity 
with its operations led to our use of New York City for our test. The City has 73 police 
commands called precincts, which on average have a population of nearly 100,000, are 
about four square miles in area, and receive about 35,000 police emergency calls per 
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year. Each precinct's patrol cars operate independently-that is, cars neither patrol 
outside their precinct nor are typically dispatched across precinct boundaries.' Approx- 
imately 1,200 police patrol cars-each with two officers-are fielded each day. These 
cars, called radio motor patrols (RMPs), serve on three nonoverlapping tours of duty: 
Tour 1 from midnight to 8 AM, Tour 2 from 8 AM to 4 PM and Tour 3 from 4 PM to 
midnight. 

RMPs respond to 911 calls, perform preventive patrol, and react to incidents they 
encounter. While official NYCPD policy dispatches one RMP per job, dispatchers often 
assign back-ups if deemed appropriate. Moreover, a "primary" car may itself request 
one or more "back-up" cars, and cars often "assign themselves" to back-up based on 
the radio transmission they hear between the dispatcher and the primary car. Thus, the 
number of cars that respond to a call may be greater than the number dispatched. Con- 
sequently, approximately 30% of calls get a multiple car response. To make matters more 
complex, when not patrolling or responding to jobs, RMPs often go "out-of-service" for 
activities such as precinct assignments, getting gas, car repairs, and meal breaks. 

2.2. The Multiple Car Dispatch Queueing Model 

The key aspects of the MCD queueing model (which is used here to depict a single 
precinct-tour) are:2 

* There is a fixed number, S, of identical cars (servers) on patrol duty throughout 
the tour. 

* Emergency calls arrive one at a time according to a stationary Poisson process at 
rate X. 

* There are K priority classes of calls, labeled k = 1, 2,. . . , K, and Pk is the probability 
that a particular call has priority k. Priority 1 is highest and there is no preemption. 

* Calls in priority class k require the services of j patrol cars with probability Ckj, 
k 1, 2, ... ,K,j= 1, 2, ... , S. 

* If a call requiring j servers arrives to find sufficient cars free, service begins at once. 
All the required cars begin serving simultaneously. 

* If not enough cars are available, the call enters the queue according to its priority 
except that it cannot take the first position in queue if the call in first position already 
has any cars assigned to it. 

* A call in first position in queue has cars assigned to it as they free up and these cars 
are held for that call until the required number of cars are assigned. At this point the 
cars begin serving simultaneously. 

* Service times of the various cars at each call are independent, identically distributed 
exponential random variables with mean 1 /,u regardless of the priority or of the number 
of cars needed by the call. 
(In what follows we use the terms "server" and "car" interchangeably without implying 
any distinction.) 

2.3. Data Sources 

The NYCPD agreed to provide data to test the MCD model. Our initial plans were 
influenced by the validity testing reported by Crabill et al. (1975) in which observers 
rode in patrol cars and kept detailed logs of all activities while data were simultaneously 
extracted from the 91 1 computer system. However, the cost of such a detailed experiment 

' Our analysis showed advantages to interprecinct dispatching and NYCPD is currently moving in that direction. 
2 Detailed derivation of such operating characteristics as expected delay, probability of delay, and expected 

number of cars available may be found in Green (1984) which also contains an extension of the MCD model 
in which the number of patrol cars dispatched may depend on how many are available at the moment that the 
call arrives. 
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was prohibitive. Thus, we used only data gathered via the police computer system (ac- 
ronymed SPRINT), which provides the real-time support for patrol car dispatching. 

SPRINT creates detailed records for every call for police service. From these we were 
able to obtain data on arrival times, service times (including travel) and "dispatch 
queueing delays"-the interval between the call's entry into the SPRINT system by a 
telephone operator and dispatch of the patrol cars. Dispatch queueing delay is the major 
performance measure used by the NYCPD in its planning. 

Although SPRINT maintains the real-time status of each patrol car in the field, it does 
not create historical files on patrol car availability. Thus, we could not determine from 
these records when cars actually began and ended their tour of duty or when they were 
out-of-service. To extract data on the crucial issue of patrol car availability, we had to 
intervene manually and consult SPRINT "status reports" that were only maintained in 
real time. Each precinct was sampled every 15 minutes. Limited by personnel and one 
slow teletype terminal, we were able to extract the relevant data during only one tour of 
duty for two weeks (excluding weekends) for three precincts. 

In addition to formal data collection, we spent many hours observing police telephone 
operators and dispatchers, and riding in RMPs. This first-hand experience was essential 
for assessing the importance of the various assumptions of the model and in understanding 
the computer-generated data. 

2.4. Selection of Test Precincts and Time Period 

The three test precincts, chosen in collaboration with the NYCPD, cover a broad range 
of conditions. Selection criteria included the amount and severity of 91 1 calls as well as 
the authors' familiarity with the areas. (Two are the home precincts of the authors and 
the third was studied extensively by one of the authors while working with the NYC- 
Rand Institute.) 

* The 50th Precinct in the Riverdale section of the Bronx is a largely upper middle 
class residential neighborhood. It is 5.2 square miles in area, and has an emergency call 
rate of about 2.7 calls per hour of which about 19% are "high priority-crime related." 
This precinct was chosen as an example of what we loosely term a "light" precinct. 

* The 26th Precinct is on the upper west side of Manhattan and includes several 
educational institutions (including Columbia University) surrounded by some elegant 
housing in its south and abandoned tenements in Harlem in its north. The precinct is 
0.94 square miles in area, and has an emergency call rate of about 3 calls per hour, of 
which about 23% are high priority-crime related. This precinct was chosen as an example 
of a "moderate" precinct. 

* The 77th Precinct in central Brooklyn fits the stereotype of a ghetto area with run- 
down housing and many abandoned buildings. The precinct is 1.7 square miles in area, 
has an emergency call rate of about 7 calls per hour of which about 28% are high priority- 
crime related. This precinct was chosen as an example of a "heavy" precinct. 

3. A Comparison of MCD Model Estimates to Actual Precinct Performance 

A cornerstone of the validation was to determine whether, given accurate estimates of 
the parameters of a precinct, the MCD model produces reasonably accurate estimates of 
observed dispatch queueing delays. Ideally, this would be done by running a series of 
experiments in several precincts during which all operations would be carefully controlled 
and monitored. However, this was impossible for several reasons: First, as mentioned 
previously, limited resources and access allowed for only one test period of ten days. 
Second, the scarcity of patrol officers and cars and the potentially dangerous consequences 
of manipulating them for test purposes ruled out significant deviations from current 
operations. (Political considerations, as well, made the NYCPD management very re- 
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TABLE 1 

Counts of Calls for Police Service by Priority and Number of Patrol Cars Dispatched-Ten-Day Experiment 

26th Precinct 50th Precinct 77th Precinct 
No. of 

Responding High Low High Low High Low 
Cars Priority Priority Priority Priority Priority Priority 

1 Count 62 131 54 114 149 265 
Percent 63.9% 85.6% 75.0% 86.3% 68.7% 85.2% 

2 Count 23 20 16 14 51 38 
Percent 23.7% 13.1% 22.2% 10.6% 23.5% 12.2% 

3 Count 7 1 1 3 10 6 
Percent 7.2% 0.6% 1.4% 2.3% 4.6% 1.9% 

4 Count 3 1 5 2 
Percent 3.1% 1.4% 2.3% 0.6% 

5 Count 2 1 1 2 
Percent 2.1% 0.6% 0.7% 0.9% 

Total 97 153 72 132 217 311 

luctant to add or subtract even a single car.) Third, tighter management of patrol car 
operations could only be achieved with the cooperation and knowledge of the patrol 
officers themselves, and might possibly introduce reporting and behavioral bias. 

We also ruled out using a detailed simulation as a "laboratory" in which we could 
control all operating conditions since: (1) the loose management of the system and the 
lack of precise data on major parameters made it impossible to define rules which such 
a simulation could follow; and (2) a simulation model itself would have to be validated, 
raising the very same problems we were addressing for the analytic model. Thus, we were 
limited to monitoring existing operations as carefully as possible without control. We 
attempted to compensate for this lack of control by selecting three precincts with different 
environments and different levels of congestion. As economists often do, we thereby 
substituted a "cross-sectional" analysis for a more satisfactory but infeasible "longitudinal" 
analysis. 

Since patrol car allocations are typically done bi-monthly, the queueing model is used 
to predict long-run average behavior. Thus, we aggregated our data over the ten days to 

TABLE 2 

Input Parameters for MCD Model 

Precinct 26 Precinct 50 Precinct 77 

Average No. Calls/ Hr. (X) 3.125 2.550 6.600 
Average Service Time (Mins.) 

(1/M) 28.04 37.33 30.06 
Proportion of High Priority 

Calls pH 0.388 0.353 0.411 

Dispatch Probabilities 
p(l IH) 0.639 0.750 0.687 
p(21H) 0.237 0.222 0.235 
p(31H) 0.124 0.028 0.078 
p(1 IL) 0.856 0.864 0.852 
p(21L) 0.144 0.136 0.148 

Average No. of Effective Cars 
on Duty (if) 3.30 4.21 5.95 
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better approximate steady-state conditions. This yielded six data points-two for each 
precinct-consisting of statistical estimates of average delay of the first responding car 
to high priority calls and the average delay of the first responding car to all calls regardless 
of priority. Such statistics are central in NYCPD's planning of car allocations, and are 
key features of the PCAM system. 

We now discuss how the parameters of the MCD model were estimated from the 
empirical data. 

3. 1. Estimation of Call Rates and Proportions of Call Types 

Table I shows the number of calls for service and the numbers of responding cars 
between 8 AM and 4 PM by priority class and precinct. (Though the 144 "incident 
codes" used to characterize calls are nominally grouped into five priority classes, NYCPD 
planning and operations were primarily based on two priorities.) Although Table I shows 
that a small fraction of jobs actually received more cars, our test of the model assumed 
that high priority jobs never needed more than three cars and that low priority jobs never 
needed more than two cars. We had several reasons for this modeling assumption. From 
our field observations, we knew that when more cars are available, more are likely to 
respond, (through self-assignment ) to a job, though they do not all actually work. (They 
are available for a subsequent call.) Moreover, the maximum number of cars per job in 
the model is bounded by the total number of cars. Since the ten-day average of the 
number of cars on duty (see Table 2 ) was less than four for one of the precincts, it was 
impossible for the model to assume that jobs "needed" more than three cars. Thus, the 
model nresumed five call tvnes ( number of nriorities X numbher of responding cars ) nd 
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included in the high priority (H) 3-car category statistics, those Hjobs that received three 
or more patrol cars, and in the low priority (L) 2-car category statistics, all L jobs that 
received two or more cars. Although, as can be seen in the table, the proportions of cars 
needed by job type did not vary significantly by precinct, we used the precinct specific 
proportions in our analysis. 

3.2. Estimating the Average Service Time per Patrol Car 

We computed for each precinct the average service time for all responses during the 
ten-day period. Service time, the interval between the dispatcher's assignment of the car 
and the time when the car radios in its final disposition, incorporates travel time and 
(possibly) time spent writing reports after "actual servicing" has ended. The average 
service times for each precinct are given in Table 2. 

3.3. Estimating the Number of Patrol Cars on Duty 

The number of patrol cars on duty, a parameter that one would suppose to be the 
simplest of the model's inputs to estimate, was in fact, quite difficult to obtain since: 

1. Patrol cars come on and go off duty at different times. For example, although in 
the three precincts studied, the day tour runs from about 7:30 AM to 3:30 PM, some 
cars come on duty "around" 9 AM and end patrol "around" 2 PM for another type of 
assignment. Furthermore, actual "start" and "stop" times are not officially recorded, and 
vary from day to day. 

2. As mentioned previously, a car is not available to patrol and respond to calls for 
service at all times during its tour of duty, but may go out-of-service for some intervals 
during its tour. 

3. In New York City, police cars in the field are not all "ordinary" RMPs. There are 
a variety of "special" cars and supervisors' cars that may respond to certain types of 911 
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calls or even occasionally behave exactly as an RMP. No fixed rules govern these cars' 
behavior and there isn't a straightforward way to equate them to RMPs. 

To deal with these problems, we defined the concept of the number of "effective" 
patrol cars on a tour-the average number of cars servicing or available to service calls. 
To compute this number, we first estimated the average number of RMPs out-of-service 
each day from our sampling of the SPRINT status reports. We next estimated by precinct, 
by day, an "RMP equivalency" for all "special" (including supervisors') cars from the 
ratio of the total number of jobs worked by these cars to the number of jobs worked by 
an average RMP that day. The out-of-service factor for the day (the average ratio of out- 
of-service time to total tour time) was then applied to obtain the number of "effective 
special cars" for the day. The total number of effective cars was thus the number of RMPs 
fielded minus the average number of RMPs out-of-service plus the number of effective 
special cars. This number varied between 2.65 and 4.01 in Precinct 26, 3.63 and 5.33 in 
Precinct 50, and 4.80 and 7.60 in Precinct 77. Averages are presented in Table 2. 

3.4. Results 

The estimates of the model's input parameters appear in Table 2. Notice that although 
the model requires an integer number of cars, the actual average numbers of effective 
cars are fractional. In fact, the number of effective cars was nonstationary and it is not 
clear how to estimate the resulting delays in such circumstances. We looked at two 
heuristic methods. 

One method is to draw the expected delay vs. numbers of servers curves generated by 
the MCD model and read off the expected delay corresponding to the (fractional) average 
number of effective cars. These curves together with the observed delay-average number 
of effective cars point are shown in Figures 1 through 6. We believe that this estimation 
method should produce a lower bound of the actual average delay (all else being equal) 
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because of the analogy with results for nonstationary arrival processes (see Rolski 1981 
and Green and Kolesar 1987) which indicate that stationary models using the average 
arrival rate produce a lower bound on the actual delays. These numbers are referred to 
as stationary estimates in Table 3. (The missing entry for Precinct 26 indicates a value 
that was off the plotted graph.) 

Another estimation method is to interpolate linearly between the MCD delays generated 
by the integer numbers of cars that bracket the average. Were the actual system operated 
for long periods of time at each of the two integer points, this method would accurately 
estimate the actual delays. Unfortunately, the patrol system in each sample precinct was 
operated at many staffing levels which changed frequently. The delays at both the integer 
values and the interpolated estimates are given in Table 3. 

It was striking that the numbers of effective patrol cars in the 26th and 77th precincts 
were so low relative to the precinct load that both the actual and theoretical queueing 
delays were much longer than the 1 minute standard desired by the NYCPD for high 
priority jobs. At such low staffing levels the model predicts very large changes in expected 
delays from the addition or deletion of even a single patrol car. Thus, the linear inter- 
polation of the MCD delays produces high estimates. 

The general indication is that the MCD estimates are "in the right ballpark," and are 
consistent with the usefulness of the model as a planning tool. However, it is clear that 
this experiment was not an adequate test for several reasons: 

1. The limited amount of data resulted in high levels of variability in the performance 
measures (see the high standard errors in Table 3). 

2. We were not able to test a full range of operating conditions in each precinct, and 
the cross-sectional approach didn't yield the degree of diversity we would have liked. 

3. Due to marginally adequate actual levels of patrol car staffing, the traffic intensities 
in the sample precincts were in a range where delay is extremely sensitive to small changes 
in the number of effective cars. 
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TABLE 3 

Comparisons of Observed and Estimated Delays (Minutes) 

Stationary** Observed Delay 
Precinct Call Category MCD Delay Estimates Estimate (Standard Error) 

26 All Calls 3 Cars 33.61 
3.30 Cars* 24.89 NA 8.28 
4 Cars 4.54 (1.19) 

High Priority 3 Cars 13.63 
3.30 Cars* 10.41 9.20 7.53 
4 Cars 2.89 (2.00) 

50 All Calls 4 Cars 4.82 
4.21 Cars* 4.05 3.50 5.60 
5 Cars 1.14 (0.51) 

High Priority 4 Cars 2.94 
4.21 Cars* 2.49 2.20 4.78 
5 Cars 0.81 (0.76) 

77 All Calls 5 Cars 50.33 
5.95 Cars* 48.30 13.20 13.31 
6 Cars 9.73 (1.39) 

High Priority 5 Cars 10.22 
5.95 Cars* 9.91 4.20 5.91 
6 Cars 3.99 (0.86) 

* Obtained from linear interpolation. 
** Obtained from graph. 

4. The data on the number of effective cars were not highly reliable. 
In addition, the nonstationarity in the number of effective cars raised the issue of how 

to predict delays from the model-a problem that we had not anticipated before the 
experiment. (Variability in the number of cars on patrol is not considered a problem for 
planners since it is assumed that precinct management keeps the number of effective 
cars virtually constant.) 

In the concluding section of the paper, we discuss the insights we gained about con- 
ducting this kind of test in the future. 

4. The Validity of the Structural Components of the MCD Model 

We now consider in turn the validity of the key structural assumptions of the MCD 
model: 

* The call arrival process is a mixture of stationary Poisson processes. 
* Service times of individual cars are independent exponentially distributed random 

variables. 
* The queueing discipline is that all required cars start service together, that calls are 

served on a first-come-first-served basis within priority class without preemption and 
that cars are assigned to waiting calls as soon as they become available. 

4.1. The Call Arrival Process 
The assumption of a Poisson input process has often been used to model the occurrence 

of emergency events (see, for example, Larson 1972, Chaiken and Larson 1972, Chelst 
1981 and Kolesar 1981) but its validity has not been extensively examined in the literature. 
(For analyses supporting the Poisson nature of fire alarms see Finnerty 1977 and Carter 
and Rolph 1979.) We knew that call rates diffiered by season, and between weekends and 
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weekdays, so we focused our analysis of this question on weekdays in a single season. 
Our data base was calls for police service during the 39 weekdays (excluding also the 4th 
of July) for June and July of 1980. 

We also knew that the arrival process was highly nonstationary. Plots of the number 
of calls received in 15-minute intervals (as shown in Figure 7 for Precinct 77 with an 
SAS Cubic Spline smoothing 1981) clearly supports the existence of a strong temporal 
pattern. The effect of this nonstationarity on the model's utility, which is discussed in 
the next section, was a major concern to us. 

Though the arrival process was clearly nonstationary, it might still be Poisson. The 
nonstationary Poisson process is a counting process { N( t), t _ 0 }, obeying the standard 
Poisson process assumptions of "independent increments" and "orderliness" but with 
arrival rate X(t) an explicit function of time, that is 

X(t) elim P{N(t + At) - N(t) > 0} 
At 0 At 

For such a process the integral of X(t) 

rt2 
A(t1, t2) = X(t)dt 

is the expected number of events in the interval t,- t - t2 and the number of arrivals 
in such intervals has a Poisson distribution with parameter A(tl, t2). Moreover, the time 
transformation r(t) = A(0, t) converts the original process into a stationary Poisson 
process (see Heyman and Sobel 1982, or Cox and Lewis 1968). 

These properties suggest two approaches to testing the validity of the nonstationary 
Poisson process model: (1) observe call counts in certain fixed intervals during the day 
and determine if they follow patterns consistent with the Poisson distribution; (2) estimate 
A(t), transform time and observe if interarrival times on the rescaled axis are independent 
and exponentially distributed. Both procedures have major heuristic aspects. The first, 
since the theory states that counts in any interval are Poisson but we analyze counts for 
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only certain intervals, and the second, since in our application no explicit function is 
specified, A(t) itself must be estimated heuristically. 

Analysis of Call Counts. We examined call counts in the 96 15-minute intervals, and 
in the 24 1-hour intervals that comprise the day. (In each case the first interval starts at 
midnight.) Rather than attempt to analyze 96 or 24 histograms, each containing 39 
observations we focused on the relationship between the mean and variance of each of 
the data sets by doing linear regression. The summary of the regression results given in 
Table 4A shows a good correspondence to the mean/variance relation predicted by the 
Poisson model: the regression estimates of the parameters of the model S2 = a + bxi (xk 
is the sample mean and S2 the sample variance) consistently show that d is nearly zero 
and that b is nearly one; and that the model fit measured by r2, the square of the correlation 
coefficient, is higher than 0.925. We refit a model S2 = cx& and again ci was nearly one in 
all cases. Plots of residuals supported the hypothesis of linearity. We must remark, however, 
that the estimates of b and c were consistently slightly larger than one and formal tests 
of the hypotheses that b = 1 or c = 1 sometimes failed. 

Analyses of Call Interarrival Times. Ai(0, t), the average cumulative count of calls 
received up to time t, was used to estimate A(O, t) and to rescale time. Figure 8 is a 
histogram of the transformed interarrival times from Precinct 26. As shown, the corre- 
spondence between actual and predicted values is very close-certainly close enough to 
justify employing a nonstationary Poisson model-yet with 6256 observations the Chi- 

TABLE 4 

Test of the Poisson Model 
A. Call Counts-Summary of Regressions of Sample Variances vs. Sample Means 

Precinct 26 Precinct 50 Precinct 77 

Interval = 15 min. 
a* 0.049 -0.017 -0.0105 
b* 1.048 1.116 1.106 
Ct 1.083 1.096 1.100 
Std. Errort 0.026 0.032 0.024 
r2t 0.949 0.926 0.958 

Interval = 1 hour 
a* -0.031 0.109 0.095 
b* 1.122 1.005 1.013 
Ct 1.160 1.039 1.131 
Std. Errort 0.048 0.045 0.061 
r2t 0.958 0.958 0.936 

B. Transformed Interarrival Times-Summary Statistics 

Coef. of Variation s/x 1.050 1.025 1.033 

Sample Mode 0.026 0.026 0.026 
Mean/Median Ratio x/x 0.648 0.678 0.619 

Auto Correlations (Lag of) 
1 0.008 0.004 0.021 
2 0.015 0.004 -0.003 
3 -0.012 -0.004 0.002 

Sample Size n 6256 3438 9039 

* Parameters of the model S2 
= a + bx. 

t Parameters of the models2 = CX. 
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square test has such high power that the hypothesis of exponentiality would be rejected. 
Plots for the other two precincts showed similar good fits. 

We also examined other statistics on the adjusted interarrival times for correspondence 
to the exponential model. From Table 4B we observe that for each precinct 

* the coefficient of variation is nearly one, consistent with an exponential model, 
* the sample mode is 0.026 = 3, essentially the smallest possible interarrival time 

save zero, 
* the ratio of the sample mean to the sample median is close to the theoretical value 

0.693 predicted by an exponential model, 
* consistent with the assumption of independence of successive interarrivals, the lag 

auto-correlations are nearly zero-and do not differ significantly from this value at the 
usual 5% level. 

We therefore conclude that a nonstationary Poisson model gives an adequate description 
of the overall statistical pattern of calls for service. 

4.2. Service Times 

Overall, service times (per car) were well approximated by the exponential distribution. 
Figure 9, a histogram of service times to all calls in Precinct 50, shows a very close 
correspondence to frequencies predicted by an exponential model. This plot is typical of 
our results for other precincts. 

Other analyses further supported exponentially by showing that for each precinct-tour: 
* the sample standard deviation divided by the sample mean was close to one (the 

range was 0.98 to 1 .30 with an average of about 1. 10), 
* the sample mode in all cases but two was 0 or 1 (the data as recorded by the SPRINT 

program were truncated to the nearest minute). 
* the sample median divided by the sample mean was usually close to the 0.69 predicted 

by the exponential probability law. 
We next examined the assumption that service times are identically (and exponentially) 

distributed by priority class. Histograms of service times within priority classes (not 
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shown here) always displayed the characteristic exponential shape so it sufficed to examine 
the differences in mean service times by priority class. The results across precincts were 
quite similar and showed that service times for high priority calls which go to the head 
of the queue (both in practice and in the model) were only 6.7% lower on average than 
service times to low priority calls. Since the model uses the overall average, actual expected 
delays assuming all else the same will be somewhat lower than predicted by the model. 
To this extent the error introduced by assuming that average service times are equal 
across priority classes is conservative. 

Next, we examined whether service times are independent and identically distributed 
regardless of the number of patrol cars working. Statistics in Table 5 show that although 
there are precinct to precinct differences that may require individual service time models, 
broad patterns apply across the precincts. We focus attention on the rightmost column 
containing the aggregate pattern for all three precincts and observe that: 

1. Mean service times per car vary with the number of cars working at a job: the mean 
service time of cars working alone is about 10% higher than the overall mean service 
time while the mean service times of cars working in pairs are about 15% lower than the 
overall mean. (About 60% of responses are made alone and about 75% of jobs are one- 
car jobs while about 25% of responses are made in pairs and 16% of jobs are two-car 
jobs.) The mean service times at three-car jobs (about 10% of responses and 4% of jobs) 
are about 20% lower than the overall mean service time. 

2. For two-car jobs, the joint distribution of service times follows a pattern similar to 
that predicted by an independent exponential model: The average service time of the 
shorter working car U is 59% of the average of both cars X. The average service time of 
the longest working car Vis 146% of the average of both cars working together. (Under 
the model of independent identically distributed exponential service times, the theoretical 
value of these ratios are 50% and 150% respectively for U and V.) The correlation between 
X, and X2 is 0.30 implying about a 10% improvement in prediction of say X, given X2 
or vice versa-not very strong. 
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TABLE 5 

Statistical Summary of the Analysis of the Independence of Service Times 
of Patrol Cars Working at the Same Jobs 

Pct. 06 Pct. 50 Pct. 77 All Pcts 

All Jobs, All Cars X 21.32 27.53 25.53 24.49 

One-Car Jobs 
Mean Time X 23.11 29.52 29.17 27.22 

Two-Car Jobs 
Mean Time (both cars) X 19.01 22.56 20.95 20.58 
Mean Shorter Time U 10.73 13.53 12.71 12.18 
Mean Longer Time V 27.29 31.59 29.20 28.98 

Correlation XI, X2 p 0.26 0.34 0.31 0.30 

Three-Car Jobs 
Mean Time (all cars) X 17.51 23.42 19.40 19.29 
Mean Shortest Time U 7.69 11.61 9.15 8.97 
Mean Median Time W 15.65 21.92 17.26 17.34 
Mean Longest Time V 29.19 36.73 31.78 31.55 

Average Correlation Xi, Xj p 0.29 0.63 0.39 0.41 

3. For three-car jobs the joint distribution of service times follows a pattern similar 
to that predicted by an independent exponential model: The ratio of the average service 
time of the shortest working car, U, the median working car, W, and longest working 
car Vto the average of all three cars X are respectively 47%, 90%, and 163% as compared 
to theoretical values of 33%, 83%, and 183%. 

Overall, we conclude that the i.i.d. exponential model is quite good for two-car jobs 
and reasonable for three-car jobs. 

4.3. The Queueing Discipline 

Start Times. Is it true that, as assumed by the model, patrol cars assigned to the same 
job start work together? To explore this we determined whether the times at which cars 
are assigned are close, relative to their service times and end times. 

Consider two-car jobs and define variables As and 4f as the difference between the 
start times and the finish times of the two cars, respectively. If both cars start together 
and if their service times are independent and identically distributed exponential random 
variables with mean 0, we should have As = 0, and E( AJ) = 0. The observed data 
aggregated over all precincts show that the sample averages are Ais = 6.40 minutes, Af 
= 16.86 minutes, and 0 = 20.58 minutes. Thus Alf is of the same order of magnitude as 
O as predicted by the model, and Ais is much smaller than 0 or Alf, but is clearly 
not zero. 

What are the reasons for and implications of as being six minutes? A frequency his- 
togram of As shows that over 50% of the time As is less than one minute. Yet, the same 
histogram shows some values of As are as large as three hours and that about 10% of As 
values are more than 20 minutes. Scatterplots of As vs. Af show that when As is large, 
Af is also usually large. This implies that, on such jobs, very long service is given by cars 
that do not work together, but on the contrary, that work consecutively. Conversations 
with NYCPD managers confirm that these jobs are actually very, very long one-car jobs 
instead of long two-car jobs, as would be implied by the average service time data alone. 
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To be consistent with the model's assumptions, As should not be included in the 
service time of the first car. To the extent that it is part of the empirical service time 
data, the model will tend to overestimate delays. This effect will be most pronounced at 
high traffic intensity. 

Priority Behavior. Discussions with dispatchers and detailed examination of SPRINT 
records confirmed that, in general, calls are served on a first-come first-served basis within 
priority class. Exceptions are that certain "super-H calls," which are crimes in progress 
with potential for personal injury, are usually handled before other less urgent jobs in 
the H priority class. 

The model assumes no preemption, and in fact, preemption is very rare for many 
reasons. One is that leaving a job in progress would create a confusing situation. Another 
is that when patrol officers are working at a job, they frequently cannot listen to their 
radios and therefore cannot be reached for reassignment. 

Other Sources of Delay. The MCD model assumes that cars are assigned to incoming 
or waiting jobs as soon as they are available. In reality, some delay may occur in the 
dispatch process itself, mostly since each dispatcher is responsible for keeping track of 
RMP status and assigning cars to incoming calls in some two to four adjacent precincts. 
To estimate the extent of such dispatching delays, we simultaneously examined the status 
reports and the SPRINT records for our two-week test period for each precinct, and 
identified "super-H" jobs that appeared to arrive when at least one RMP was available. 
These jobs should not have been delayed. (RMP availability was estimated by examining 
the status report that immediately preceded the job's arrival and checking the assignment 
of other jobs that arrived in the interim.) Of these jobs, we counted those that were 
delayed for at least two minutes as suffering a dispatch processing delay. (We used two 
minutes as our benchmark since SPRINT truncates clock time to minutes, and delays 
recorded as one minute could actually have been only a few seconds long.) Table 6, 
containing counts and average delays for these jobs, shows that almost half of all super- 
H jobs that arrived when a car is available had dispatch processing delays and the average 
delay for calls delayed more than our benchmark was over four minutes. Thus, dispatcher 
processing delay was a real factor in the operation of these precincts. 

5. Sensitivity of the MCD Model 

The next stage of our validation deals with the model's robustness and generalizability. 
We ask "Which of the model's major assumptions would, if significantly violated, render 
it inappropriate as a planning tool?" Here, we examine only those components of the 
patrol system that can be explicitly modeled, since our objective is to evaluate the MCD 
model relative to possible alternative models, including simulation. Thus, even though 
we know that both the "out-of-service" phenomenon and the existence of special cars 
can significantly affect system performance, the lack of any well-defined rules that govern 
car behavior makes these characteristics impossible to treat explicitly by any alterna- 
tive model. 

TABLE 6 

Dispatch Processing Delays to Super-H Calls- Ten-Day Experiment 

Pct. 26 Pct. 50 Pct. 77 

No. of Super-H Calls 44 37 118 

No. Arrived When RMP Available 20 24 40 
No. with Dispatch Delay ' 2 Mins. 12 9 18 
Avg. Dispatch Processing Delay for 

Calls with Dispatch Delay ' 2 Mins. 4.58 3.1 1 4.67 
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5.1. Exponentiality of Service Times 

Although our data show that the exponential distribution gives a close fit to the service 
times in New York, Larson (1972) points out that it is only a very crude fit in some 
other cities. An approximate (but accurate) version of the MCD model without priorities 
but with general service time distribution (see Federgruen and Green 1983) was used to 
compare expected delays for exponential and nonexponential service times. We set the 
coefficient of variation of the service time to values lower or higher than 1 and using the 
mean service time per car from the SPRINT data, we fitted either an Erlang (k) (for 
coefficient of variation less than 1) or a hyperexponential distribution (for coefficient of 
variation greater than 1). The coefficients of variation chosen represent extremes reported 
from actual patrol car service times. We used the SPRINT data to obtain the arrival rate, 
and the distribution of dispatched cars per job. Expected delays for two precinct tours 
with the lowest and highest proportion of multiple car dispatches at several levels of 
congestion are shown in Table 7. 

Note from ?4 that the actual coefficients of variation in our sample precincts were 
usually slightly higher than 1, so that the exponential model might slightly underestimate 
delays (excluding other factors). But observe that for both tours the exponential model 
correctly shows that with three servers delays are excessive, with four servers they are in 
the marginally tolerable range, and with five servers delays are acceptable. Since the range 
of variation in delays between the hyperexponential and Erlang 2 models is 40% or more 
and the delays with the exponential model fall approximately halfway between the ex- 
tremes, individual percentage errors may be large. Yet, we believe that the key observation 
is that the exponential MCD model gives the right order of magnitude for expected delays 
and would thus lead to making proper patrol car allocations. 

5.2. Stationarity of the Call Arrival Process 

To test the effect of nonstationarity of the call process, we developed a simulation 
model and simulated each of the three sample precincts using the actual arrival times, 
numbers of responding cars, and service times as recorded on the SPRINT tapes for the 
39 days of our sample. The system was simulated continuously around the clock with 
the number of cars on duty held constant throughout a tour, but changed from tour to 
tour. In a series of experiments to represent varying levels of congestion, we selected 
staffing levels for each tour that would keep the magnitude of expected delay (as predicted 
by the queueing model) relatively balanced throughout the day. The resulting delays for 
each tour were compared to those generated by the MCD model with input parameters 
equal to tour averages. 

TABLE 7 

Comparison of Expected Delays for Several Service Time 
Distributions in Precinct 26 

Tour 1 
cv=0.71 cv=1.00 cv= 1.25 

# Servers (Erlang 2) (Exponential) (Hyperexponential) 

3 16.0 21.7 29.3 
4 2.7 3.4 4.3 
5 0.7 0.9 1.0 

Tour 2 
3 53.4 69.1 88.8 
4 6.2 7.9 10.0 
5 1.7 2.0 2.4 

cv = coefficient of variation. 
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TABLE 8 

Comparison of Expected Delays for Simulation of 39 Test Days and MCD Model 

Tour 1 Tour 2 Tour 3 

No. of No. of No. of 
Precinct Servers Sim MCD Servers Sim MCD Servers Sim MCD 

26 
Experiment 1 3 51.7 21.7 3 31.4 69.1 4 42.2 30.3 

(19.3) (16.9) (15.0) 
2 4 6.9 3.4 5 2.2 2.0 6 2.2 1.8 

(3.0) (1.4) (1.2) 
3 5 2.3 0.9 6 0.6 0.6 7 0.9 0.6 

(1.3) (0.5) (0.7) 
50 

Experiment 1 3 5.8 3.4 4 2.1 3.7 5 2.6 3.1 
(5.2) (1.2) (1.8) 

2 4 0.9 0.6 5 0.6 0.2 6 0.6 0.9 
(1.0) (0.6) (0.3) 

3 5 0.2 0.1 6 0.1 0.2 7 0.1 0.3 
(0.3) (0.2) (0. 1) 

77 
Experiment 1 4 47.5 16.2 6 8.0 13.0 7 15.5 15.5 

(14.3) (2.8) (7.1) 
2 5 10.8 3.9 7 3.0 4.2 8 6.7 5.2 

(4.8) (1.3) (2.7) 
3 6 3.3 1.2 8 1.3 1.6 9 2.9 2.1 

(1.7) (0.6) (1.2) 
4 7 1.1 0.4 9 0.6 0.6 10 1.5 0.9 

(0.9) (0.3) (0.7) 

Note: Figures in brackets are half-widths of 90% Confidence intervals; thus, for example, 51.7 (19.3) 
means that a 90% Confidence interval for the expected delay in the 26th Precinct on Tour 1 with 3 servers is 
32.4 to 7 1.0. 

Table 8 shows the results for several levels of system congestion for each of the three 
precincts. (The notation 6.9 (3.0) means that the 90% confidence interval of the simulated 
value is 3.9-9.9.) (Confidence levels were generated using batch means, see Law and 
Kelton 1982.) The confidence levels for the simulated delays are quite large due to the 
variability of delays. In spite of this, the results for Tours 2 and 3 indicate a correspondence 
between the expected delays for the nonstationary case and those generated by the (sta- 
tionary) MCD model. Of course, the correspondence is better for higher staffing levels. 
The worst case is Tour 1 where the simulated expected delay is significantly larger than 
that predicted by the queueing model. This occurs because in each precinct, the call 
arrival rate has its maximum near the end of Tour 3 (see Figure 1) and if Tour 3 is 
staffed to handle the average load, large queues occur at the beginning of Tour 1. Worse, 
at the start of Tour 1, the call arrival rate is still near the daily maximum while only four 
hours later, it's at the daily minimum. A staffing level appropriate to the Tour 1 average 
call rate is therefore inadequate for the first several hours of the tour when substantial 
queues build Up.3 

In summary, the existence of nonstationarity may lead to model predictions which 
significantly underestimate true delays and hence to inadequate allocations of cars. This 
appears to be particularly true for a tour that begins during a peak arrival time. 

3 This is in part a reflection on the inappropriateness of the traditional (12 X 8), (8 X 4), (4 X 12) tour 
structure in the face of significant nonstationarity with a peak near the end of one of the tours. 
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6. Conclusions 

In conducting this study, we not only learned about the validity of the MCD model 
for allocating patrol cars, but we also gained some important insights about how to 
evaluate the usefulness of analytic queueing models of man-machine systems. We first 
present our conclusions for the MCD model. 

Overall, we conclude from this study that the MCD model is a valid tool for its intended 
purpose: the allocation of patrol cars across precincts and tours. The provisos to this 
conclusion are: First, since our testing was done in New York City, our results may be 
particular to that locale. Second, the goal of patrol car allocation models is to indicate 
staffing levels that will result in a speedy response to emergency calls, and the model 
works best as a predictor when the actual system is so staffed. Third, nonstationarity of 
the call arrival process may distort the predictions and therefore the MCD model should 
be used in a manner that better reflects the changing load on the system (see below). 
Last, but not least of our provisos is that the actual patrol system be reasonably tightly 
managed-that is, patrol cars and dispatchers will follow to a reasonable approximation 
the car assignment and work protocols being modeled. It is our strong feeling when these 
conditions are met, the MCD model will indicate patrol car allocations that achieve 
desired response performance and that appropriately balance forces among different pre- 
cincts and tours. 

From this validation effort we recommend that future use of the MCD model explicitly 
take into account two major factors. The first is the nonstationarity of the call arrivals. 
We have seen here and in our ongoing research on the issue of nonstationarity that delay 
estimates generated by a stationary queueing model using average arrival rates may differ 
sharply from the actual delays in a nonstationary system. However, our findings indicate 
that it is possible to correct for this to a great extent by using a series of stationary models 
on a partition of the time interval (tour) under consideration and estimating the overall 
delay from the average delay over such a partition. In fact, the current version of PCAM 
uses this sort of approach (Walker 1983). 

The second factor is the dispatching process. Significant dispatcher processing delays 
ought not to occur! Changes in the way data are handled and displayed on the dispatcher's 
terminal screen and a change to increased digital reporting that reduces voice commu- 
nications would drastically reduce or eliminate them. Moreover, at least from the dis- 
patching delay point of view, having interprecinct dispatches of patrol cars that are handled 
by the same dispatcher would be advantageous. Such improvements are clearly cost 
effective relative to adding patrol cars. It is not necessary (or possible) we believe to build 
a single model that incorporates dispatcher processing and patrol car operations. 

What about the validation process itself? We have several conclusions. First, we believe 
that it is essential to perform a multiple facet type of validation for models of systems of 
this sort. Though the "black box" approach of stage 3 is the usual kind of validation test 
performed for models of more mechanistic systems (see e.g. Lazowska 1984), it is not 
adequate in a system which has a significant human component. There are several reasons: 
(1) it's harder to perform a truly controlled experiment; (2) it's more difficult to test the 
model under all important conditions, e.g., in the patrol system case it would have been 
extremely difficult to gather the real-time data needed for the midnight to 8 AM tour; 
and (3) there are parts of the system which are poorly understood and/or cannot be 
modelled at all (even by a simulation). 

So, even if the results of our stage 3 testing yielded virtually perfect model predictions, 
we would not be confident that they would be equally good in other precincts, for other 
tours, or for different seasons. We would also be at a loss to identify under what circum- 
stances the model's predictions should be modified. Similarly, the testing of stage 4 or 5 
alone would be inadequate since the system is more than the sum of its components. 
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Of course, if at all possible, even a partially controlled field experiment is important. 
Given the somewhat inconclusive outcome of our stage 3 test, we now realize that we 
should have tried harder to get the NYCPD to consent to a longer experiment in which 
the numbers of cars in the precincts was controlled. Another limitation to our findings 
was due to the high workload in 2 of the 3 test precincts which resulted in extreme 
sensitivity of the MCD estimates. Some future tests should be conducted under more 
moderate workload conditions. 

We also observe that field experience is crucial for conducting any validation test in 
a complex environment. Without the first-hand knowledge we had gained about the 
entire police patrol system, we would have been at a loss as to how to gather or interpret 
the data. Furthermore, we would have been totally unaware of the existence of dispatcher 
processing delays. 

Finally, the definition of model validity has to be modified when modelling systems 
in which human behavior plays an important role. The correspondence between the 
model and the system is likely to be significantly less tight than for mechanistic systems. 
This is tolerable if the model still captures the essential dynamics of the system and is 
used as a first step in the decision process. It is also important for the model users to 
understand that the more loosely managed and adaptive the system, the less accurate the 
model will be. Even in such situations, the model may still help identify poor management 
and perverse behavior from the performance benchmarks it establishes. 

4 This work was supported by a grant from the National Institute of Justice and by the Faculty Research 
Fund of the Graduate School of Business, Columbia University. 
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