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e consider the problem of simultaneously allocating servers and demands in a service 
system with independent multiple facilities. We assume a fixed number of facilities and 

total servers which must service a given Poisson arrival stream. We also assume that service 
times are identically distributed and independent of the server or facility. The allocation decision 
is one of simultaneously determining the number of servers and the fraction of the total arrival 
stream for each facility in order to optimize a given performance measure. Several performance 
measures are considered including minimizing expected system delay and equalizing delays 
across facilities. Our findings demonstrate that the overall system performance improves as the 
individual facilities become more unbalanced in the number of allocated servers. More formally, 
we show that if there is a server allocation that is maximal under the partial order of majorization, 
then it is optimal. 
(Queues: Multi-Facility; Multiserver; Queues: Optimization; Service System Design) 

Introduction 
It is well known from both experience and theory (Smith 
and Whitt 1981) that the performance of a service sys- 
tem can be improved when separate facilities serving 
distinct arrival streams are combined to serve all the 
streams together. However, there are many situations 
in which it is undesirable or infeasible to combine fa- 
cilities. One case arises from the need to locate service 
facilities reasonably near their respective arrival sources. 
Examples include consumer businesses such as banks, 
retail stores, and fast food restaurants where geographic 
proximity is an important dimension of customer ser- 
vice. A variation of this is in systems in which servers 
must travel to customers, such as in emergency systems 
and many repair operations, so that travel time is part 
of the service time and thus cannot get too large. The 
combination of facilities may also be restricted by phys- 
ical size and/or manageability limitations. A critical 
characteristic in designing such multi-facility systems is 
that performance will depend on both the allocation of 
servers and the allocation of work to the respective fa- 
cilities. A related situation arises when the service needs 
of the arrivals and hence the types of servers needed 

to meet them may differ. This occurs, for example, in 
manufacturing and repair systems where individual 
workers and/or machines are trained or designed to 
deal with specific and different demand types. Thus 
certain arrivals must be directed to certain servers and 
resource combination is infeasible. An important issue 
in such a situation is the degree of flexibility that should 
be designed into certain servers so that the total work- 
load of the system can be handled optimally with respect 
to a given performance criterion. Again, this must be 
decided in conjunction with the allocation of workload 
among the different server types. See Guha (1990) for 
a discussion of this case. 

In this paper we will deal with the first class of multi- 
facility service systems. That is, we will assume that the 
demand stream is homogeneous and has the same ser- 
vice time distribution independent of the server or fa- 
cility. Thus workload can be allocated in a continuous 
fashion rather than by distinct groupings. We will also 
assume that the total numbers of facilities and servers 
are fixed, but each facility can vary in the number of 
assigned servers and its associated arrival population. 
In such systems, the allocation decision is one of 
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simultaneously determining the number of servers and 
the fraction of the total arrival stream for each facility 
in order to achieve a given overall performance objec- 
tive. Once these determinations are made, we assume 
that facilities operate independently of one another. It 
is important to note that these allocations of both servers 
and customers are static and not determined by dynamic 
control rules. 

The purpose of this paper is to provide evidence based 
on simple approximations and numerical results that 
the overall efficiency of a multi-facility system with 
Poisson arrivals increases as the individual facilities be- 
come more unbalanced, i.e. the number of servers as- 
signed to each becomes more "uneven." So, for ex- 
ample, in the two facility case (where each facility must 
have at least one server) with a total of s servers, the 
optimal allocation of servers would be 1 and s - 1 as- 
suming, of course, an associated optimal allocation of 
demand. More formally, we show that for any given 
number of facilities and a fixed total number of servers, 
if there is a server allocation that is maximal under the 
partial order of majorization, then it is optimal. We show 
that this is true for several performance measures in- 
cluding, perhaps counterintuitively, equalizing delays 
across facilities. 

To our knowledge, no previous work has addressed 
the central issue of this paper-the simultaneous as- 
signment of servers and work in a service system with 
independent multiple facilities. The server allocation 
problem and the work allocation problem for such sys- 
tems have been studied separately. Allocating a fixed 
budget of servers to a given number of facilities, each 
with given demand, was first considered by Rolfe ( 1971 ) 
who showed that a marginal allocation procedure is 
optimal assuming Poisson arrivals and constant service 
times. Dyer and Proll (1977) extended this to the case 
of exponential service. Lee and Cohen (1985) consid- 
ered the problem of dynamically allocating incoming 
demands of different classes to facilities, each with a 
given number of servers. 

The problems of server and workload allocation in 
the context of queueing networks has been addressed 
in several papers including Stecke and Solberg (1985), 
Shanthikumar and Yao (1988) and Dallery and Stecke 
( 1990) which considered closed queueing networks. Of 
these, the results in Stecke and Solberg are most similar 

to those reported in this paper. They include findings 
for some special cases that unbalanced configurations 
of servers are superior to balanced ones and unbalanced 
workloads are better than unbalanced ones. Hillier and 
So (1991) examined the issue of simultaneous allocation 
of servers and workload in the context of a production 
line. Their major finding, based on numerical results, 
parallels ours. That is, they found that when simulta- 
neously optimizing the server and work allocations, the 
optimal server allocation is one in which every station 
receives just a single server except for one of the two 
end stations which receives all the other servers. They 
call this the " L phenomenon." Most recently, Calabrese 
(1992) examined workload allocation in an open Jack- 
son network and found that server pooling-combining 
servers into fewer but larger groups-always improves 
performance. In all of these network models, the mea- 
sure of performance used is throughput. 

In ?1 we describe the model formulation and define 
the concept of majorization. Section 2 first examines the 
case of two facilities for which we present numerical 
results to support our conjectures. We then prove that 
if the result holds for two facilities, it holds for any fixed 
number of facilities. We end this paper in ?3 with our 
conclusions. 

1. Assumptions and Definitions 
Let M equal the total number of facilities and N the total 
number of servers, where N > M. We assume that ser- 
vice times are identically distributed and are indepen- 
dent of each other and the facility at which the service 
is performed. Let the service rate of each server be 1, 
which corresponds to measuring time in the scale of 
mean service times. We assume that the total arrival 
stream is Poisson with rate X. 

Our problem can then be expressed as finding a server 
allocation vector (s1, . . . , SM) and an associated arrival 
rate vector (X1, . . . , XM) so that some total system cost 
which may be 

F = maxi [f(Xi,,Si)] 

or 

M 

F = f (XSi, Si ) 
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is minimized and 

M 

E Ai =X 

and 
N 

si =N 

where f (Xi, si) is some performance measure or cost 
for facility i which depends on the arrival rate and server 
allocation to i. This function f may be, for instance, the 
mean queue size, the expected delay, the probability of 
delay, or the demand-weighted probability of delay. To 
avoid trivial solutions (e.g. all servers and customers 
are allocated to a single facility) and to allow for real 
size constraints, we assume that the number of servers 
at each facility i has both an upper and lower bound, 
ui and 1i with 1i > 0 and ui < N for all i. Again, it is 
important to note that each Xi represents a fraction of 
the total arrival stream that is sent to facility i with fixed 
probability independent of the state of the system. Thus, 
each new demand is immediately routed to its prede- 
termined facility and is served in a first-come, first- 
served discipline. 

The major result we want to establish is that if there 
is a server allocation that is maximal under the partial 
order of majorization, then there is an associated arrival 
stream allocation such that system performance is op- 
timized. 

We now define majorization. For any (x1, XM) 

C Rm, let x[lj 2X[2] > . . . 2 X[MJ. 

DEFINITION 1. For x, y E RM, x -< y if 

k k 

Ex[j) c y[i), for k = 1, ... .,m M-1 
i=l = 

and 

M M 

il i=l 

When x < y, x is said to be majorized by y. 
The definition of majorization, introduced by Hardy, 

Littlewood, and Polya (1952) is a formalization of the 
idea of unevenness of the components of a vector. We 
will also need the following definitions. 

DEFINITION 2. A real-valued function f defined on 
a set A E R... is said to be Shur-concave on A if 

x -< y on A==f(x) 2f(y). 

DEFINITION 3. If x = (x1, . . . , XM) and x' = (x1, * . 

XM ) are vectors with integer arguments, then if xi > Xj 
for given i, jand x' = xi- 1, x] = xj+ 1 andxk=xk 
for all k # i, j, then the vector x' is said to be obtained 
from x by a transfer. 

For any two vectors x, y with integer arguments, if x 
is majorized by y, then x can be obtained from y by a 
finite number of transfers (Marshall and Olkin 1979). 
This leads to the following: 

LEMMA 1. A function f of integer arguments is Schur- 
concave if and only if for any x, f(x') 2 f(x) where x' is 
obtained from x by a transfer, 

2. Conjectures and Results 
We first examine the case of two facilities. We will con- 
sider the measures of expected delay and probability of 
delay. We will also consider two system objectives: 
minimizing the average system performance and min- 
imizing the maximum delay. Note that under our as- 
sumptions, the latter objective is equivalent to equalizing 
delays at each facility and may be more appropriate 
when issues of equity are important. 

We first state our two major conjectures. 

CONJECTURE 1. For any si > S2 and X1, X2 such that 
f (Xl, s -1 ) = f (X2, S2 + 1) with X1 + X2 = X < S1 + S2 

there is a X', X' with X' + X2 = X such that 

f(X, Si) = f (X, S2) < 
f(X1 Si-1) 

= f(X2, S2 + 1). 

This conjecture then states that when the objective is 
equalizing probability of delay or expected delay, a more 
uneven server allocation will result in lower delays. 

For the case of minimizing total system performance, 
we have the following conjecture. 

CONJECTURE 2. For any s5> s2 and X < s + S2, for 
every Xl, X2 with X1 + X2 = X there is a X', X' with X' 

+ 2X = X such that 

f(xi, S1) + f(X2, S2) <f(Xl, Si - 1) + f(X2, S2 + 1) 
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This implies that 

min [f(X', sl) + f(X, S2)] 

< min [f(Xi, s1 - 1) + f(X2, S2 + 1)]. 
Xl 

The left hand side of this inequality is the minimum 
cost of serving the total demand X at two facilities with 
S1, S2 servers and the right hand side is the minimum 
cost of serving the same demand with s, - 1 and S2 + 1 
servers. If we assume that f is the expected queue length, 
then this conjecture states that the average system ex- 
pected queue length or, equivalently by Little's formula, 
the expected system delay will be reduced by a more 

uneven server allocation. Similarly, f may be the de- 
mand-weighted probability of delay. 

Tables 1 and 2 present the results of numerical ex- 
periments which support these conjectures where f is 
the expected queue length or the weighted probability 
of delay. We consider two-facility systems with a total 
number of servers ranging from 5 to 14. We assume 
that service times are exponential. For each we solve 
for the demand allocations which optimize the system 
performance measure for all possible server allocations 
and a range of feasible total demands corresponding to 
various total traffic intensities (rho) X/N. In each case, 
as the imbalance (i.e. the difference between servers in 
the two facilities) increases, the system performance 
improves. 

Table 1 System Measures for Objective of Equalizing Delays (Imbalance = Difference in No. of Servers Between Facilities) 

Total Number of Servers = 5 
Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

3 0.0018 0.0626 0.2312 0.4823 0.6346 
1 0.0070 0.0937 0.2743 0.5260 0.8289 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

3 0.0003 0.0408 0.3923 2.0261 13.1887 
1 0.0015 0.0785 0.5410 2.4329 14.8113 

Total Number of Servers = 8 
Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

6 0.0000 0.0120 0.1119 0.3506 0.4745 
4 0.0002 0.0244 0.1474 0.3961 0.5756 
2 0.0006 0.0337 0.1674 0.4208 0.7799 
0 0.0008 0.0370 0.1739 0.4287 0.7878 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

6 0.0000 0.0065 0.1638 1.3445 11.2306 
4 0.0000 0.0177 0.2671 1.7349 13.0115 
2 0.0001 0.0279 0.3279 1.9368 13.9044 
0 0.0002 0.0317 0.3478 2.0004 14.1824 
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Table 1 Continued 

Total Number of Servers = 11 

Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

9 0.0000 0.0023 0.0561 0.2649 0.3906 
7 0.0000 0.0057 0.0794 0.3042 0.4805 
5 0.0000 0.0097 0.0964 0.3305 0.7233 
3 0.0000 0.0130 0.1074 0.3470 0.7412 
1 0.0001 0.0147 0.1128 0.3549 0.7498 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

9 0.0000 0.0011 0.0740 0.9477 9.9176 
7 0.0000 0.0036 0.1323 1.2647 11.5716 
5 0.0000 0.0073 0.1786 1.4684 12.5820 
3 0.0000 0.0107 0.2096 1.5935 13.1886 
1 0.0000 0.0126 0.2251 1.6535 13.4763 

Total Number of Servers = 14 

Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

12 0.0000 0.0004 0.0286 0.2048 0.1789 
10 0.0000 0.0013 0.0431 0.2380 0.2059 
8 0.0000 0.0025 0.0551 0.2621 0.2254 
6 0.0000 0.0039 0.0644 0.2795 0.2396 
4 0.0000 0.0052 0.0710 0.2914 0.2492 
2 0.0000 0.0060 0.0749 0.2984 0.2549 
0 0.0000 0.0062 0.0762 0.3007 0.2567 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

12 0.0000 0.0002 0.0352 0.6930 0.8252 
10 0.0000 0.0007 0.0666 0.9453 1.1084 
8 0.0000 0.0017 0.0964 1.1235 1.3066 
6 0.0000 0.0030 0.1206 1.2506 1.4473 
4 0.0000 0.0042 0.1382 1.3367 1.5423 
2 0.0000 0.0051 0.1489 1.3867 1.5975 
0 0.0000 0.0054 0.1524 1.4031 1.6156 

These results were obtained by discretizing the total 
arrival rate X by taking A = X/ 10,000 and using mar- 
ginal allocation. For Table 1, each unit A was allocated 
to the facility with the smaller cost. For Table 2, this 

meant iteratively allocating each unit A to the facility 
where it would result in the smallest increase in cost. 
Since the performance measures we are considering are 
convex in X, Lee and Cohen (1983) and Fox (1966) 
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have shown that the optimal solution can be found in 
this way. 

Though these results were obtained assuming an ex- 
ponential service time distribution, it is reasonable to 
expect that they will hold for more general service dis- 
tributions since the widely known and used approxi- 
mations for M/G/c queues (see, e.g. Hokstad 1978) 
indicate that for a given service distribution, the ex- 
pected queue size, etc. is a constant times the same 
measure for the comparable M/M/ c system. 

Now we consider a service system with M indepen- 
dent facilities. First consider the case of minimizing the 
total system cost. Then the total cost incurred in the 
system is 

M 

F f f(xi, Si). 

For a given feasible server allocation vector, s = (s1, 
. .. , SM), let 4IM(s) be the cost of the system where the 
demand has been optimally allocated. That is, 

M 

IM(S) = min(x1,. *xM) 

' f (Xi, si) 

with Xi < si for all i. For the case M = 2 we write 4b2(s) 
in the form 4(s1, S2) with s1 2 S2. 

We wish to show that if the cost function f has the 
property that the total cost for a two facility system is 

Table 2 System Measures for Objective of Minimizing Overall Delay (Imbalance = Difference in No. of Servers Between Facilities) 

Total Number of Servers = 5 
Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

3 0.0018 0.0652 0.2438 0.5084 0.8290 
1 0.0070 0.0952 0.2784 0.5322 0.8370 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

3 0.0003 0.0419 0.4172 2.2146 14.8292 
1 0.0015 0.0799 0.5521 2.4841 15.2806 

Total Number of Servers = 8 

Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

6 0.0000 0.0122 0.1192 0.3802 0.7713 
4 0.0002 0.0255 0.1542 0.4132 0.7838 
2 0.0006 0.0345 0.1705 0.4268 0.7890 
0 0.0008 0.0376 0.1752 0.4308 0.7906 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

6 0.0000 0.0065 0.1704 1.4836 13.2858 
4 0.0000 0.0184 0.2809 1.8452 14.0484 
2 0.0001 0.0286 0.3354 1.9791 14.2995 
0 0.0002 0.0322 0.3511 2.0167 14.3693 
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Table 2 Continued 

Total Number of Servers = 11 
Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

9 0.0000 0.0023 0.0591 0.2905 0.7241 
7 0.0000 0.0060 0.0846 0.3251 0.7393 
5 0.0000 0.0101 0.1005 0.3427 0.7469 
3 0.0000 0.0133 0.1095 0.3525 0.7511 
1 0.0001 0.0149 0.1137 0.3569 0.7530 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

9 0.0000 0.0011 0.0755 1.0274 11.9878 
7 0.0000 0.0037 0.1401 1.3720 12.9742 
5 0.0000 0.0076 0.1867 1.5403 13.3631 
3 0.0000 0.0110 0.2144 1.6282 13.5585 
1 0.0000 0.0128 0.2273 1.6673 13.6431 

Total Number of Servers = 14 
Overall Probability of Delay 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

12 0.0000 0.0004 0.0297 0.2248 0.6827 
10 0.0000 0.0013 0.0461 0.2573 0.6989 
8 0.0000 0.0027 0.0581 0.2759 0.7080 
6 0.0000 0.0041 0.0664 0.2878 0.7138 
4 0.0000 0.0052 0.0720 0.2952 0.7174 
2 0.0000 0.0060 0.0752 0.2994 0.7194 
0 0.0000 0.0062 0.0762 0.3007 0.7200 

Expected Total Queue Size 

Imbalance RHO = 0.1 RHO = 0.3 RHO = 0.5 RHO = 0.7 RHO = 0.9 

12 0.0000 0.0002 0.0355 0.7365 10.8396 
10 0.0000 0.0007 0.0701 1.0272 11.9219 
8 0.0000 0.0018 0.1013 1.1927 12.4099 
6 0.0000 0.0031 0.1246 1.2945 12.6835 
4 0.0000 0.0043 0.1403 1.3575 12.8493 
2 0.0000 0.0051 0.1495 1.3920 12.9345 
0 0.0000 0.0054 0.1524 1.4031 12.9613 

minimized by the most uneven server allocation (in the 
sense of majorization) then the cost of an M facility 
system for any fixed M > 2 is also minimized by the 
most uneven server allocation. 

PROPOSITION 1. Assume that f is such that )(Si, S2) 

< (Sl - 1, S2 + 1)with s1> S2. Then for anyM> 2 and 
feasible server allocation vectors s' and s such that s' is 
majorized by s, we have bM(s) < bM(s'). 
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PROOF. Assume that for any real valued function b 

defined on integer vectors, if for any integer vectors a, 
a' such that a' is obtained from a by a transfer, the in- 
equality b(a) < b(a') holds. Then for any integer vectors 
b, b' such that b' is majorized by b, the inequality cb(b) 
< b(b') must hold since b' can be obtained from b by 
a finite number of transfers and the inequality holds for 
each. Hence it suffices to assume that s' is obtained from 
s by a single transfer. Suppose that 

M 

4bM(S) = I f(Xk, Sk) 
k= 1 

and 

M 

bM(S ) = f (XS, Sk) 
k=1 

with 

M M 

Lxi = LA'= x 
i=l i=l 

where st = Si-1, s sj + 1 and s'k = sk for k i, j. 
Consider the terms f (Xi, Si) + f (Xj, sj) in the first sum 

and f (X, si - 1) + f (Xj, sj + 1) in the second sum. By 
assumption, for the system consisting of only facilities 
i and j, 12(Si, sj) < (12(Si - 1, sj + 1) for any feasible 
total arrival rate. This implies that there exists a y such 
that 

f(y, Si) + f (X + X - y, sj) < f (X', S) + f(xj, S). 

Consider the feasible demand allocation vector ae de- 
fined as follows: 

a-k = Xk for k * i,j 

ai = y a, = + X-y. 

Then f (ck, Sk) = f (X, sk) for k + i, j and f(ai, Si) 
+f(caj, sj) < f(XM, s') + f(Xj, sj). Adding, we have 

M M 

(ak, Sk) < I f (k Sk) 
k=1 k=1 

The right-hand side is bM(s') and since bM(s) is the 
cost of the optimal demand allocation for s we have 

M 

bM(S) < I f (ak, Sk 
k=1 

so that 4bM(s) < bM(s'). From Lemma 1, we get 

PROPOSITION 2. Given the assumption in Proposition 
1, then 4bM(s) is Schur-concave and hence if there is a 
server allocation that is maximal under the partial order 
of majorization then it is optimal. 

Now consider the objective of equalizing delays. We 
have 

PROPOSITION 3. Given the objective 4b is to minimize 
the maximum delay, then under the assumption of Prop- 
osition 1, 4M(mS) is Schur-concave. 

PROOF. Define 

'bM(s) = min(Xl,...,XM) maxi [f (Xi, si)], 

and our proof is the same by replacing each sum by a 
maximum operation. 

4. Conclusions 
We have studied a service system with independent 
multiple facilities where the problem is to simulta- 
neously allocate servers and demands in order to op- 
timize a system performance measure. Under the as- 
sumption of homogeneous demands that can be con- 
tinuously allocated, we have shown that if there is a 
server allocation that is maximal under the partial order 
of majorization, then it is optimal. This result is consis- 
tent with some previous observations and results for 
queueing networks and with the concept that queueing 
systems become more efficient as the number of servers 
increases (see, e.g., Whitt 1992). From an applications 
perspective, it implies that service territories should be 
designed to achieve unequal population sizes, particu- 
larly if geographic areas can be kept about the same. 

We have assumed that service times are identically 
distributed and independent of the facility and the al- 
located demand at that facility. An important and in- 
teresting extension of this work would be to examine 
the problem of simultaneous allocation of servers and 
demands when service times increase as the fraction of 
the customer population assigned to a facility increases. 
This occurs, for example, when enlarging the arrival 
allocation to a facility means increasing travel times to 
customers as in many emergency and repair systems. 
For some discussion on this, see Guha (1990). 
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