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e empirically explore the accuracy of the simple stationary peak hour approximation 
V v (SPHA) for estimating peak hour performance in multiserver queuing systems with 

exponential service times and periodic (sinusoidal) Poisson arrival processes. We show that the 
SPHA is very good for a range of parameter values corresponding to a reasonably broad spectrum 
of real systems. However, we do find and document that there are many situations in which 
this approximation will be very inaccurate. 

We postulate and then support empirically a set of hypotheses that link the accuracy of the 
SPHA and the related point-wise stationary approximation (PSA) to key parameter values and 
model characteristics. We also present results on the time-dependent behavior of these systems 
as a function of key parameters. 

Finally we present results which indicate that our findings, developed for models with si- 
nusoidal input streams, may apply to a much broader range of Markovian models with more 
general cyclic inputs. 
(Qlueties; Nonistatiotiarity; Approximlationis) 

1. Introduction 
From the earliest developments of mathematical 
queuing models for the design and management of sto- 
chastic service systems, it was recognized that many 
real world systems have nonstationary (often cyclic) 
customer demand streams. Figure 1 illustrates this phe- 
nomenon with data from four sources: calls into the 
911 emergency phone system in Boston (Larson 1972); 
customer arrivals at a bank of automatic teller machines 
(Kolesar 1984); landings of aircraft at La Guardia Air- 
port in New York (Koopman 1972); and traffic at toll 
booths on the George Washington Bridge (Edie 1954). 
In each case the time dependence is clearly a dominant 
feature of the environment and must be considered in 
making design and operating decisions. In the types of 
situations illustrated in Figure 1, managing the quality 
of the system performance during periods of peak 
congestion is often a primary concern. 

Word-of-mouth within the queuing community has 
it that a standard practice in such situations is for the 
analyst to determine the average arrival rate during the 

"peak" or 'rush" hour (assuming a 24-hour cycle), plug 
that value into a stationary queuing model of the system 
and then use the resulting estimates of queue sizes, de- 
lays and the like as if they predict average performance 
during the peak hour. We call this procedure the simple 
peak hour approximiationi, or SPHA for brevity. This 
practice is apparently quite common. In particular, it is 
the traditional method in telecommunications applica- 
tions where busy hour rates are high and the system 
tends to approach steady-state in minutes; e.g., see Bear 
(1980). However, the SPHA is rarely discussed in the 
queuing literature or in standard queuing texts. When 
it is mentioned, the discussion is typically terse and no 
guidance is offered on the consequences of this type of 
approximation. The purpose of this paper is to deter- 
mine the conditions under which the SPHA is a good 
or bad approximation and make recommendations con- 
cerning its use. We will show that there are some clear 
conditions under which the SPHA is quite good indeed 
and, conversely, some clear conditions under which it 
is very risky to use. Not surprisingly, some of these are 
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related to the issue of the rate of approach to steady- 
state. 

Though most of the discussion and computations in 
this paper focus on the peak hour as described above, 
the choice of a one-hour interval is not as limiting or 
particular as it may at first appear. Our actual interest 
is in the more general issue of peak period performance 
where the duration of the period need not be arbitrarily 
taken to be an hour, but rather should be defined in 
the context of the managerial or design issues at hand. 

In many practical contexts this apparently is an hour- 
perhaps by default, habit or convention-but there are 
examples in the literature of other choices. For example, 
15- and 30-minute time segments have been the rele- 
vant time period in studies by Segal (1974) and Holloran 
(1986), respectively. An extreme view would be to focus 
on the peak epoch, that instant at which congestion or 
delay is maximum. In this paper we study peak epochs 
as well as peak hours and find that our results for both 
are so similar that our major conclusions appear to apply 
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to any peak period of reasonably short duration-from 
about an hour down to minutes or less. Though we 
adopt the language of a 24-hour cycle and the peak 
hour as a matter of convenience, our concern is more 
generally with estimating performance during relatively 
short intervals of highest congestion in systems having 
periodic arrival rates. 

As the models we wish to study are not solvable an- 
alytically in closed form, we have based our investi- 
gations on a numerical solution approach. Moreover, 
as it is not possible to take such an approach for a com- 
pletely general class of models, we have limited our 
computations to Markovian queuing models with si- 
nusoidal Poisson input streams. These models are simple 
to parameterize, and we would argue that sinusoidal 
inputs capture the essence of the cyclic phenomena with 
which we are concerned. (In a large number of actual 
cases the arrival process has a single dominant peak 
and a single valley.) In the final section of the paper we 
will, however, display some results for nonsinusoidal 
cyclic inputs. Our solution method is to numerically 
compute the steady-state solution to the system differ- 
ential equations describing the model. The output of 
this procedure is a time-dependent vector of state prob- 
abilities from which we then calculate particular per- 
formance measures of interest. 

In this paper we will focus attention on three per- 
formance measures-the expected number of customers 
waiting in queue, the expected customer waiting time 
prior to service, and the probability that a customer is 
delayed and has to wait for service. Since we are dealing 
with models in which time-dependent results are the 
central issue, we will look at the above three measures 
from three vantage points: 

(1) Long-run average performance: the average of 
the measures over the entire (24-hour) cycle. 

(2) Peak hour performance: the average of the mea- 
sures over that hour that gives the maximum such av- 
erage. 

(3) Peak epoch performance: the maximum instan- 
taneous value of the measures over the cycle. 

The work presented in this paper is part of an ongoing 
study on the behavior of nonstationary queuing systems 
and the use of stationary models to estimate their per- 
formance (see Green et al. 1991 and Green and Kolesar 
1991). This problem of cyclic arrival processes is alluded 

to elliptically in the early works of Erlang circa 1909 
(see Brockmeyer 1948). Reviews of related literature 
are given in Massey and Whitt (1992), Eick et al. (1993a 
and 1993b), Green et al. (1991), and Green and Kolesar 
(1991). A few other papers are directly relevant to our 
work. Koopman's (1972) study of air traffic control was 
the first to recommend and use numerical solutions of 
the differential equations of a nonstationary Markovian 
queue to achieve insights about system behavior. His 
methods are explained fully in Chapter 8 of Giffin 
(1978) in which sensitivity to exponential service times 
is explored. The idea of integrating the steady-state so- 
lution at each epoch of time-what we call the poinitwise 
stationzary approxiniationi or PSA-to provide an upper 
bound on queue length can be found in Grassman 
(1983) and Rolski (1986 and 1987) proves its upper 
bounding property for the single server case and ex- 
plores some other related issues. Whitt (1991) proves 
that a pointwise version as well as the average version 
of the PSA is asymptotically correct as the arrival and 
service rates increases. He also introduces an average 
statiolary approximlationi which is related to both the 
PSA and the SPHA. 

There are only a few references dealing with peak 
period performance. The books of Lee (1968) and Bear 
(1980) and the notes of Farber (1979) contain some 
discussion of SPHA-like approaches but without much 
concrete advice to the would-be user. Newell (1968, 
1982) studies a rush-hour phenomenon in a single 
server system in which the total load on the system 
approaches complete congestion (traffic intensity = 1) 
from below using diffusion approximation methods. 
This work is also described in Kleinrock (1976) and is 
extended by Massey (1985). More recently, Eick et al. 
(1993a and 1993b) explore peak behavior for infinite 
server systems. 

In the following section we give a more detailed de- 
scription and definition of the model studied, of the 
solution method employed and of the various perfor- 
mance measures we use. In ?3 we develop some un- 
derlying concepts, and we also illustrate graphically 
certain key interrelationships and characteristics of the 
time-dependent and peak period performance of these 
models. In ?4 we propose and then confirm numerically 
a set of hypotheses on the accuracy of the SPHA and 
the forces that drive it to be good or bad. In ?5 we 
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provide a practical answer to the question, "When is 
the simple peak hour approximation good enough?" 
We close with some final observations in ?6, and with 
some examples of the behavior of systems with cyclical 
nonsinusoidal input streams. 

2. Model, Methodology and 
Definitions 

Our analysis is based on M (t) / M / s systems with X (t), 
the arrival rate at time t given by 

X(t) = X + A cos(2wrt/T), (1 

where X is the average arrival rate over the period T 
and A (>O) is the amplitude; ,u the service rate and s 
the number of servers. We assume that X < s,u, and so 
the system will develop a periodic steady-state behavior 
(see Heyman and Whitt 1984 and Koopman 1972). 

Let p, (t) be the periodic steady-state probability that 
ii customers are in the system at time t. These functions 
are the foundation of our results and are obtained by 
numerically solving the following standard set of dif- 
ferential equations that describe the system, see Gross 
and Harris (1985): 

p,0(t) = -X(t)poM + ,upi(t), 

p(t) = X(t)p?1_<(t) + (n +-1 1)gp?1(t) 

- (X(t) + nA)p7,(t), 1 < n < s, 

pt?(t) = X(t)p71(t) + Sup?+ (t) 

- (X(t) + sA)p,,(t), n > s. (2) 

Let Lq(t), Wq(t) and pl,(t) be the instantaneous expected 
queue length at epoch t, the instantaneous expected 
virtual delay at epoch t and the instantaneous proba- 
bility of all servers busy at epoch t, respectively. Note 
that p1,(t) is also the delay that would be experienced 
were a customer to arrive at t. Specifically, 

Lq(t) = I (n - s)p,,(t). (3) 
fl =s 

Wq(t) = , (n - s + 1)p,,(t)/st, (4) 
?I=S 

and 
s-1 

pil(t) I pl(t). (5) 
?1=0 

For T = 24 hours, the peak epoch values of these mea- 
sures are: 

Lq(peak) = max Lq(t), 
O't'24 

Wq(peak) = max Wq(t), 
O't'24 

and 

pi,(peak) = max pi,(t). (6) 
O't'24 

We also define the peak hour average measures as: 

(t+1 
Lq(peak hr.) = max Lq(t)dt, 

O0t-244t 

(t+l l t+1 

Wq(peak hr.) = max J X(t)Wq(t)dt J X(t)dt, 
O't'2 t -/ 2t 

and 
pD(peak hr.) 

rt+1 lt+1 
= max J X(t)pi, (t)dt J X(t)dt. (7) 

0-t-24 t/ t 

Note that pD(peak hr.) is the average probability of delay 
during the peak hour. We will also consider the times 
at which these peak values are attained. Clearly, the 
time of the peak epoch for any measure is simply the 
instant at which it occurs. We define the time of a peak 
hour performance measure as the midpoint of the hour 
for which the maximum defined in equation (7) is 
achieved. 

The numerical integration of the equations in (2) is 
performed using the International Math-Science Library 
subroutine DVERK which recursively uses fifth- and 
sixth-order Runge-Kutta methods. The length of the re- 
cursion interval is determined internally so that a user 
specified global error is not exceeded. Our integrations 
were usually initialized using the steady-state M/M/s 
solution obtained with X(O) as the stationary arrival 
rate. 

In order to obtain an accurate solution for the infinite 
capacity system, we truncated the number of equations 
by following a method suggested in Odoni and Roth 
(1983). A maximum dimension of N is used by DVERK 
as the number of equations to be solved on the first 
call. After each subsequent call of DVERK (having 
solved N' < N equations) the probability PN'(t) of a 
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saturated system is compared to a specified small num- 
ber, E (e.g., e = 10-8). If PN'(t) is larger than E, the 
number of equations solved at the next call is increased 
by nm (e.g., n = 5). Conversely, if both PN'(t) and 

PN'-,,(t) are less than 6, N' is reduced by ni for the next 
call. 

Recalling that for ease of discussion we are assuming 
that the period length is 24 hours, DVERK is called every 
five minutes on the simulated clock and the solution 
vector of state probabilities produced is used to calculate 
the probability of all servers busy and the expected 
number in queue. Thus, each cycle is divided into 288 
five-minute segments, and our performance measures 
(3), (4), and (5) are obtained at the end of each seg- 
ment. Thus, in computing the measures defined in 
equations (7) above, the integrals are replaced by the 
equivalent summations over the appropriate grid points. 

In this paper we will examine two approaches for 
estimating the peak epoch and peak hour performance 
measures. We first define L * (X), W * (X), and p D (X) to 
be the expected queue length, expected delay, and 
probability of delay in a stationary M/M/ s system with 
arrival rate X and given Alt and s (see Gross and Harris 
1985, p. 84-92). For example, 

Lq(X) - (s - 1)!(SA - X)2 PO' 

where 

F S-I ( /)1 5( X 8)S 
s 

_ 

PO [ ( + s!(s- 

Then the stationiary approxim?ationi over any interval I 
= (a, b) is given by L (X, ), W *(X,1) and pD(Xai,) for 
the expected queue length, expected delay, and prob- 
ability of delay, respectively where Xa,, the average ar- 
rival rate over the interval a to b, is given by 

Xa, 7 - (b ) j' X(t)dt. 

We denote the poinitwise stationiary approximations 
(PSAs) for Lq, Wq and PD in the interval (a, b) by 
L0- (a, b), W - (a, b), pD- (a, b) and define them: 

1 rC7 
L' (a, b) = - L*(X(t))dt, (6) 

qb - a J q 

1 1 

W s(a, b) = A b- J X(t)W q(X(t))dt, (7) 

and 

1 
p "(a, b) XX(b ) Ja X(t)p*(X(t))dt. (8) 

For the peak epoch, the stationary approximation and 
PSA are identical and equal to the stationary measure 
with X equalling the maximum instantaneous arrival 
rate. For the SPHA and peak hour PSA, the interval 
(a, b) is the hour surrounding the epoch at which this 
maximum occurs. 

Our earlier papers, Green and Kolesar (1991) and 
Green et al. (1991), study both these approximations 
for estimating the long-run daily average performance 
in queues with cyclic arrivals. In Green and Kolesar 
(1991) we showed that the PSA provides good estimates 
for the above measures for many Markovian service 
systems with sinusoidal input. In particular, the PSA 
performs quite well when the service rate is 2 or higher 
and the maximum traffic intensity is less than 0.83. 
When the service rate is considerably higher, e.g., ,u 
= 20, the estimates will be good at even higher maxi- 
mum intensities. Indeed, Whitt (1991) proves that the 
PSA for the cycle averages are asymptotically correct 
as the rates increase. He also establishes this for a point- 
wise version which implies that the stationary peak 
epoch approximation is asymptotically correct. These 
results lead us to suspect that a similar approximation 
approach might be useful in estimating peak perfor- 
mance measures in nonstationary systems. 

We base our conclusions on the examination of com- 
putational results for over 250 model instances. We 
confine our study to systems in which the nmaximurum 

traffic inztenisity is strictly less than one, that is, when 

Pmax - SUp < 1. (7) 

We adopt this constraint because neither the simple sta- 
tionary approximation for the peak epoch nor the PSA 
are generally defined when P,ax (rhomax) is greater or 
equal to one. (The PSA for PD is defined.) We also re- 
stricted our choice of parameter values to be such that 
the relative amplitude, RA = A/X < 1, so that X(t) ? 0 
for all t. Aside from these constraints, our choices of 
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experimental models were based on three major con- 
siderations: correspondence to some actual service sys- 
tems of particular interest to us, a desire to be as general 
as possible, and computational feasibility. More details 
on our experimental strategy are given in ?4. 

3. Initial Findings 
3.1. The Timing and Magnitude of the Peak 

Congestion 
Before looking at any approximation of peak period 
performance, it is important to understand the behavior 
of a nonstationary system with sinusoidal input. We 
note that the time at which congestion peaks depends 
upon several factors. Our first observation is that peak 
conigestioni genierally lags the peak of the arrival funictionz 
X ( t). Figure 2 illustrates this for the probability of delay 
for a situation in which this lag is quite substantial- 
about four hours. (The peak arrival epoch in this ex- 
ample is at time 0.) The magnitude of such lags is pri- 
marily a function of event frequency, i.e., the average 
number of arrivals and service completions per period. 
Figures 2, 3, and 4 show the probability of delay curves 
for a set of cases in which the number of servers, the 
traffic intensity at any time t, and the relative amplitude 
are constant, but X(t) and , (event frequency) are in- 
creasing. (In these and all subsequent figures, lambda 
denotes the average arrival rate.) We can see in the fig- 
ures that as the evenit frequenicy inzcreases, the time lag 
betzweeni the epoch of the peak arrival rate anzd the peak 
epoch probability of delay decreases. We found this to be 

Figure 2 Probability Delay (Lambda 0.6; Mu = 0.2; Amplitude 
0.2; S 7) 
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Figure 3 Probability Delay (Lambda 1.2; Mu 0.4; Amplitude 
0.4; S 7) 
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true for all the performance measures we considered 
and in all the cases we studied. The other finding illus- 
trated in these figures is that the peak con gestionz level 
inicreases as the evenit frequenicy inicreases. Furthermore, 
the enitire probability of delay curve approaches the PSA 
curve as evenit frequenicy iuicreases. This is also true for 
expected delay and expected queue length. These results 
parallel those in Eick et al. (1993a) for the number of 
busy servers in the infinite server case. They are also 
consistent with Whitt's (1991) result that the PSA is 
asymptotically correct as the arrival and service rates 
increase. 

The other factor which consistently affects the lag in 
peak delay is the relative amplitude. This is illustrated 
in Figures 5, 6, and 7 for a set of cases in which all 

Figure 4 Probability Delay (Lambda 6.0; Mu = 2.0; Amplitude 
2.0; S = 7) 
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Figure 5 Expected Delay (Lambda = 6.0; Mu = 2.5; Amplitude 6.0; 
S 6) 
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system parameters except relative amplitude are held 
constant. (Note: The reader should be alert to the fact 
that the ordinates of these figures are, of necessity, plot- 
ted on different scales.) As relative amlplituide decreases, 
the peak epochl for expected delay mloves closer to the epoch 
of the peak arrival rate. Not surprisingly, the entire curve 
approachles the PSA curve as the RA decreases. (For RA 
= 0, the actual system and the PSA both reduce to the 
stationary system.) This phenomenon of movement of 
the peak towards time 0 with decreasing RA holds for 
expected queue length and expected delay. It does not 
consistently hold for probability of delay. This leads to 
another significant observation: for anzy giveni systen, 
thze shiape of the performiianlce curve is differenit for eachz 
mieasure an1d, in particilar, the timle of the peak epochi nmay 

Figure 6 Expected Delay (Lambda = 6.0; Mu = 2.5; Amplitude 3.0; 
S = 6) 
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Figure 7 Expected Delay (Lambda = 6.0; Mu = 2.5; Amplitude 2.0; 
S 6) 
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be differenit. This is illustrated in Figure 8 where the 
peak in expected delay occurs about 15 minutes after 
the peak in probability of delay occurs and about 15 
minutes before the peak in expected queue length. 
3.2. Comparison of Approximations 
Now we discuss and compare several possible approx- 
imations for peak period delays. In order to better un- 
derstand the implication of focusing on approximating 
the peak hour, we looked at the peak epoch performance 
as well. In each of the cases we considered, the differ- 
ence between the magnitude of the peak epoch delays 
and the peak hour delays was very small. We also com- 
pared the relative error of the stationary approximation 
to the peak epoch delay with the SPHA. The results, as 
shown in Figures 9 and 10 for those cases in which the 

Figure 8 Time-dependent Performance Measures (Lambda 0.15; 
Mu 0.2; Amplitude = 0.2; S = 3) 

0.35- 

0.30- 
Expected Delay 

a~~~~ 

0.20- 

E Probability Delay 
G 0.15 

E 
0 

0.10- 

EL 

0.05- Expected 
Queue 

0 2 4 6 8 10 12 14 16 18 20 22 24 

Time (hours) 

MANAGEMENT SCIENCE/VOL. 41, No. 8, August 1995 1359 



GREEN AND KOLESAR 
Oni the Accutracy of the Simple Peak Hour Approximationi for Markovian Quieuies 

Figure 9 Comparing Relative Errors (Peak Hour vs. Peak Point Ap- 

proximations) 
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relative error is less than 10%, indicate that our conclu- 
sions on the peak hour approximation will also apply 
to the peak epoch approximation and most likely to any 
other interval of relatively short duration as well. 

In addition to examining the SPHA, we also computed 
the PSA for each peak hour performance measure. In 
all of our cases, these two measures were identical to 
two decimal places for expected queue length and ex- 
pected delay and to three decimal places for probability 
of delay. We also found that in all but a few cases, both 
of these approximations were overestimates of the true 
measure. This is not surprising given that the stationary 
peak epoch approximation is an upper bound for the 
actual peak epoch performance and the observation that 
the peak hour approximation is generally close to the 
peak epoch approximation (due to the relative flatness 
of the sinusoid around the peak). Since the PSA is al- 
ways greater than the SPHA and both generally over- 
estimate actual performance it follows that the SPHA 
is almost always a better approximation to the actual 
peak hour performance. Since the SPHA is also easier 
to compute, these observations led us to the conclusion 
that there is no advantage to using the PSA for esti- 
mating peak behavior. 

4. Accuracy of the Simple Peak 
Hour Approximation 

In this section, we test and confirm a number of hy- 
potheses about how the accuracy of the SPHA is af- 

Figure 10 Comparing Relative Errors (Peak Hour vs. Peak Point Ap- 
proximations) 
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fected by changes in the parameters of the system. This 
will lead us to some conclusions, discussed more fully 
in the next section, about when the SPHA will be useful 
in making decisions about the design and management 
of nonstationary queuing systems. We define a relative 
error measure as follows: 

Relative error 
= [(SPHA - Actual Value)/Actual Value] X 100. 

Since the SPHA is usually larger than the actual value, 
the relative error will usually be positive. 

Most of the hypotheses we test here correspond to 
similar conjectures that were confirmed for 24-hour 
measures and the PSA in Green and Kolesar (1991). 
Our thinking was so directed because our initial obser- 
vations indicated that the SPHA measures are very close 
to the corresponding peak hour PSA measures, and we 
further expected the accuracy of the peak hour PSA to 
be affected by the same system characteristics as the 
24-hour PSA. This proved to be true as described below. 

Our experimental strategy was to confirm each con- 
jecture first for a "central case" and, if confirmed there, 
then to determine its validity in a region surrounding 
the central case by perturbing each of the key param- 
eters. The resulting models span a fairly broad spectrum 
of parameter values: the number of servers ranges from 
1 to 18, the service rate varies from 0.1 to 200, average 
traffic intensities range between 0.25 and 0.75 and rel- 
ative amplitudes between 0.1 and 1.0. Yet in some 
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specific tests of hypotheses, we were constrained in the 
range and combination of parameter values due to 
theoretical constraints or to computational considera- 
tions. 

We explored each of our hypotheses for all four per- 
formance measures-expected delay, expected queue 
length, and probability of delay. In the following dis- 
cussion we will illustrate our results for expected delay. 

4.1. The Effect of Event Frequency 
Since as seen previously, the actual time-varying be- 
havior of the system asymptotically approaches the PSA 
as the event frequency increases, it is not surprising that 
thle relative error of each of our three perfornmance mea- 
sures-expected queue length, expected delay and prob- 
ability of delay-decreases as evenit frequenicy inicreases. 
To formally test this, we examined cases in which we 
fixed the number of servers and simultaneously in- 
creased both X(t) and ,u so that the time-varying traffic 
intensity p(t) and the relative amplitude (RA) remain 
constant. The confirmation of this phenomenon for our 
central case of seven servers, average traffic intensity 
(rhobar) equal to 0.43 and RA of 3 is shown in Figure 
11 for expected delay. This result was confirmed for all 
of our surrounding cases which included systems with 
the number of servers ranging from 1 to 12, rhobar 
from 0.25 to 0.75 and RA from 0.1 to 1.0, and for each 
of the other two measures of performance. 

4.2. The Effect of Service Rate 
Again starting from our results for the 24-hour PSA, 
we reasoned that increasing the service rate alone would 

Figure 11 Relative Error in SPHA-Expected Delay 
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Figure 12 Relative Error in SPHA-Expected Delay 
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increase the accuracy of the SPHA. The concept is that 
faster clearing of customers from the system should 
cause consecutive time intervals to be more independent 
of each other, and thus peak hour performance should 
be better approximated by the peak hour PSA and also 
by the SPHA. Our experiments confirmed that the rel- 
ative error of each of the three performanice nmeasures de- 
creases as ,t increases. This is illustrated in Figure 12 for 
expected delay. In these tests, X(t) remained constant 
(and hence the RA) and the number of servers was 
decreased as ,t was increased so that s,u remained con- 
stant and hence the traffic intensity remained fixed. As 
with our trials changing the event frequency, we also 
found in this series of experiments that the lag in the 
time of the maximum of each performance measure rel- 
ative to the time of the maximum arrival rate decreased 
as the service rate increased. As in our previous tests 
for the 24-hour PSA, we found that holding the service 
rate constant while increasing the arrival rate and pro- 
portionally increasing the number of servers did not 
have a consistent effect on SPHA accuracy. 

4.3. The Effect of the Maximum Traffic Intensity 
As the maximum traffic intensity increases, the average 
X for the peak hour will become closer to s,u and we 
therefore would expect that the SPHA for expected de- 
lay and expected queue length will eventually become 
very large and significantly overestimate the actual peak 
hour performance. (Of course, in the case where the 
peak hour average traffic intensity exceeds one, the 
SPHA is infinite for these measures.) We performed 
three sets of tests for our hypotheses that the relative 
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error of expected delay and expected queue length increases 
as mlaximluml traffic intensity increases. In the first series, 
we increased the RA while keeping all other parameters 
fixed. Figure 13 is an illustration of our general finding 
that these relative errors increase as the relative ampli- 
tude increases. Figure 14 shows our central case for the 
second set of tests in which RA was held constant while 
the average arrival rate for the cycle was increased. 
Thus, in the cases in this figure, both the average and 
maximum traffic intensities increase. Again, the results 
show that the SPHA becomes less accurate. Finally, we 
examined the situation in which the number of servers 
increases while all other parameters are held constant. 
Increasing the number of servers also clears customers 
from the system faster (as was the case when increasing 
the service rate) and hence system behavior becomes 
more independent in consecutive time intervals and the 
PSA should become more accurate. We found, as in the 
case of the 24-hour PSA, that the SPHA is increasingly 
accurate at higher staffing levels. The central case of 
this situation is shown in Figure 15. 

For probability of delay, our analysis shows a con- 
sistent but not uniform relationship between the SPHA 
accuracy and the maximum traffic intensity. In most 
cases, and in particular, for relatively high service rates, 
i.e., ,t 2 2, the relative error of the SPHA decreases as 
the maximum traffic intensity decreases. However, since 
probability of delay approaches one as traffic intensity 
approaches one, it is reasonable to suspect that the rel- 
ative error of the SPHA would go to 0 at high maximum 
traffic intensities for all service rates. 

Figure 13 Relative Error in SPHA-Expected Delay 
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Figure 14 Relative Error in SPHA-Expected Delay 
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5. When is the SPHA Accurate 
Enough? 

We now go beyond the qualitative and directional re- 
sults of the preceding sections and determine some spe- 
cific conditions and situations when the SPHA is in fact 
accurate enough for use in managing or designing real 
systems. Overall, our data base of nearly 300 cases con- 
tains a great number of instances when the SPHA is 
incredibly accurate, but unfortunately it also contains 
a large number of instances when the SPHA is very 
inaccurate. The work of this section draws on that data- 
base to draw some general recommendations for prac- 
titioners. We start out with a detailed discussion of a 
particular class of models of some interest in its own 
right. We then build on these particulars to develop 
more general findings and advice to practitioners. 

Figure 15 Relative Error in SPHA-Expected Delay 
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5.1. Models of Emergency Services: The Case 
,u = 2, RA = 1 

We have a particular interest in the family of Markovian 
sinusoidal queues with service rate A = 2 and relative 
amplitude RA = 1 because we, and other researchers, 
have encountered numerous actual situations in the 
management of emergency services such as police pa- 
trol, firefighting, and ambulances that are, to a first ap- 
proximation, described by models with similar structure 
and parameter values. Indeed, our original motivation 
for this line of research on cyclic nonstationary queues 
arose to a large extent from our work on management 
of such emergency service systems. The applications 
described in Kolesar et al. (1975) and Green and Kolesar 
(1984) deal explicitly with staffing and scheduling issues 
arising in part from the cyclicality of demand. 

Why these particular parameter values? A service rate 
of two equals a half hour average service time per call- 
an order of magnitude frequently experienced in both 
police patrol and firefighting. A sinusoid with a relative 
amplitude of 1 models a situation in which the minimum 
call rate of the day is nearly zero and there is a single 
maximum, occurring about 12 hours later, that is about 
twice the daily average. This is a little more extreme, 
but reasonably close to demand patterns seen frequently 
in practice-as is illustrated in Figure 16, which is a 
smoothed version of the raw police demand data from 
Boston that appear in our Figure 1. (The original data 
is from Larson 1972, p. 168.) Arrival processes for 
emergency services are, of course, unscheduled and are 

Figure 16 Boston Calls for Police Service-Actual and Smoothed Data 
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roughly time-varying Poisson processes, while service 
times are often roughly exponential. A documentation 
of this for police patrol in New York City is given in 
Green and Kolesar (1989). For other specific emergency 
service situations in which this range of parameters and 
conditions has been documented, see Savas (1969), 
Larson (1972), Kolesar et al. (1975), Walker et al. 
(1979), and Green and Kolesar (1984). 

So, all in all, this model appears to be broadly de- 
scriptive of such phenomena, and it also seems reason- 
able to conjecture that if the SPHA approximates this 
set of models well, it will also approximate well other 
models of such environments in which our assumptions 
and parameter values are only approximately met. For 
example, our work in New York City involved use of a 
Markovian multiple-car dispatch model of Green 
(1984), and we would conjecture that the results cited 
here will predict when an SPHA approach will work 
there as well. Indeed, the Patrol Car Allocation Model 
widely disseminated across the United States by the 
RAND Corporation and described in Chaiken and 
Walker (1985) incorporates the Green multiple-car dis- 
patch model and implicitly uses an SPHA style of per- 
formance estimation. For further background on models 
of emergency services see the books of Larson (1972) 
and Walker et al. (1979) and the survey papers of Chai- 
ken and Larson (1979) and Kolesar and Swersey (1982). 

Estimating Performance Measures. Probability of 
Delay: In emergency service system management the 
peak hour probability of delay, PD, is often the perfor- 
mance measure of most interest to operators and de- 
signers, and so we focus on it first. Table 1 displays 
summary results for 21 cases with A = 2 and RA = 1 
ranging over a broad set of the other parameter values, 
s (2 to 18) and X (1 to 10), that cover a gamut of sit- 
uations that we have experienced in urban police patrol. 
We specifically wanted to study, and the table contains, 
models of police precincts or departments with low and 
high call rates, and with low to high peak hour conges- 
tion. The table shows that there is a wide range of peak 
hour PD values for these 21 model instances. Maximum 
traffic intensity, which we call rhomax, is along with 
the number of servers, clearly a dominant factor in pre- 
dicting peak hour PD for this class of models. Figure 17 
displays the relative error of the SPHA for peak hour 
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Table 1 

Probability of Delay Expected Delay Expected Queue 
Rho 

Lambda S Max Actual Approx % Error Actual Approx % Error Actual Approx % Error 

1 2 0.5000 0.3212 0.3323 3.48 0.1548 0.1659 7.16 0.2957 0.3312 12.01 
3 0.3333 0.0890 0.0905 1.70 0.0221 0.0226 2.25 0.0435 0.0451 3.69 
4 0.2500 0.0200 0.0203 1.61 0.0033 0.0034 1.75 0.0066 0.0067 2.60 

3 4 0.7500 0.4665 0.5072 8.73 0.1969 0.2522 28.08 1.1128 1.5108 35.77 
5 0.6000 0.2256 0.2348 4.08 0.0541 0.0586 8.14 0.3171 0.3507 10.60 
6 0.5000 0.0958 0.0985 2.77 0.0157 0.0164 4.15 0.0931 0.0981 5.42 
7 0.4286 0.0364 0.0373 2.48 0.0045 0.0047 3.14 0.0268 0.0279 4.00 

6 7 0.8571 0.5358 0.6102 13.89 0.1910 0.3019 58.02 2.1539 3.6160 67.88 
8 0.7500 0.3297 0.3545 7.50 0.0741 0.0882 18.97 0.8617 1.0559 22.54 
9 0.6667 0.1854 0.1944 4.84 0.0296 0.0323 9.21 0.3482 0.3867 11.06 

10 0.6000 0.0967 0.1003 3.77 0.0118 0.0125 5.86 0.1400 0.1498 7.03 
11 0.5455 0.0471 0.0487 3.40 0.0046 0.0049 4.56 0.0552 0.0582 5.45 
12 0.5000 0.0215 0.0222 3.41 0.0018 0.0018 4.12 0.0211 0.0221 4.84 

10 11 0.9091 0.5720 0.6770 18.36 0.1720 0.3326 93.35 3.2400 6.6400 104.94 
12 0.8333 0.4006 0.4456 11.24 0.0825 0.1104 33.76 1.5931 2.2043 38.36 
13 0.7692 0.2627 0.2825 7.54 0.0400 0.0468 17.01 0.7822 0.9346 19.48 
14 0.7143 0.1630 0.1723 5.65 0.0194 0.0214 10.39 0.3822 0.4280 11.97 
15 0.6667 0.0963 0.1008 4.73 0.0094 0.0100 7.42 0.1847 0.2005 8.55 
16 0.6250 0.0542 0.0566 4.32 0.0044 0.0047 6.07 0.0877 0.0938 6.94 
17 0.5882 0.0292 0.0304 4.24 0.0021 0.0022 5.40 0.0407 0.0433 6.18 

PD as a function of rhomax for the same 21 cases in 
Table 1. We can see that the relative errors in peak hour 
PD also increase "exponentially" with rhomax. 

What is a satisfactory approximation? Any definition 
will necessarily be somewhat subjective and dependent 
on the problem context. We propose one that makes 
sense in the context of the types of applications we have 
just been discussing. It is consistent with the accuracy 
with which parameter values can be estimated in such 
environments, with the approximate nature of the 
models, and with the types of broad system manage- 
ment and design issues for which such models are used 
to adopt a relative error of 10% or less as the benchmark 
standard for a satisfactory approximation. By this stan- 
dard, peak hour PD is satisfactorily approximated for all 
cases in our set of models that have a rhomax of 0.8 or 
less-a very broad range of presented peak loads. Other 
operational considerations such as, for example, a desire 
to have reasonable availability of the police units to 
actually patrol or to initiate spontaneous public services, 
or a desire to control the stress level on firefighters of 

too frequent response, would in most cases drive man- 
agers to want run their systems in this range of loads. 
In fact, it has been policy in the New York City Police 
Department to achieve an average load factor of about 
0.6 for radio patrol cars (Brown 1990). We also note 

Figure 17 SPHA for Probability Delay-Relative Error vs. Rhomax 
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that the maximum relative error in Figure 17, which 
occurs at a peak load of 0.91 was still only 18%. Figure 
18 displays, for the same cases, the relative error in the 
SPHA for PD versus peak hour PD, itself. It shows that 
systems with low peak hour PD are quite well approx- 
imated. In particular, all cases with peak hour PD of 0.4 
or less have relative errors of 10% or less. We can rec- 
ommend use of the SPHA for modelling emergency 
service systems operating in this range. 

Expected Queue Size and Expected Delay: Both the 
expected queue size, L,1 and the expected delay, Wq dur- 
ing the peak hour are more difficult to approximate with 
the SPHA then is PD, as we shall now show. Since the 
magnitudes and patterns of the relative errors are similar 
for these two measures, we show here only Figure 19 
which displays the relative error in the SPHA for Lq 
versus rhomax. As we saw for the SPHA for PD, the 
relative error for the SPHA for peak hour Lq increases 
exponentially in rhomax, but now the magnitudes of 
the errors are higher. While most of the cases shown in 
Figure 19 with rhomax of 0.7 or below have relative 
errors that are less than our benchmark of 10%, there 
is one case with rhomax of 0.5 that has a relative error 
of 12%. Note also that the relative error at rhomax of 
0.91 is now 105%. 

Capacity Planning. Queuing models are often used 
in environments like emergency services to assist man- 
agers in making staffing and capacity decisions, so it is 
pertinent to ask if use of the SPHA would lead to sen- 
sible staffing decisions. Our analysis of this issue is car- 
ried out under the premise that high delays are intolera- 

Figure 18 SPHA for Probability Delay-Relative Error vs. Probability 
Delay 
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Figure 19 SPHA for Expected Queue-Relative Error vs. Rhomax 
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ble in such environments, and we therefore particularly 
want to determine if the SPHA correctly suggests the 

minimum number of servers needed to achieve a tar- 

geted low level of peak hour service delay. Of course, 
the targeted service characteristic and the specified value 
of the service delay benchmark would vary from one 

application to another. Somewhat arbitrarily, but not 
we feel unreasonably, we take as our benchmark service 

standard for this discussion a 10% peak hour PD. Our 

database is again the 21 cases in Table 1. These models 
cover four demand situations (X = 1, 3, 6, and 10). For 

each X we ran all cases starting with the smallest feasible 
number of servers and increasing the number of servers 

by one until we reached a model where the peak hour 

PD was below five percent. The table shows that in each 
case the SPHA would lead to the same staffing decision 

as the actual model. Moreover, the table also shows 

that at the staffing and performance level suggested by 

using the SPHA to achieve the benchmark on peak hour 

PD, the SPHA accurately predicts performance on the 
two other service measures, peak hour Lq and peak 
hour Wq. 

Figures 20 and 21 are plots of the SPHA and actual 

peak hour PD and peak hour Lq versus the number of 

servers, respectively, for one of the models contained 
in Table 1, namely that with X = 6. The accuracy of the 

SPHA, particularly in the range of desirable peak hour 

PD, is evident. Results for the other cases in the table 
are similar. 

In summary, the SPHA does a very useful job of es- 

timating performance in this class of models, particularly 
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Figure 20 SPHA for Probability Delay (Mu 2; RA 1; Lambda 
= 6) 
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Figure 21 SPHA for Expected Queue (Mu 2; RA 1; Lambda 6) 
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Figure 22 Relative Error in SPHA-Probability Delay 
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if the target performance criterion is low peak hour PD, 

or if there is a management commitment to operate the 
system at a reasonable peak hour presented load. Its 
use could be recommended. 

5.2. More General Findings on SPHA Accuracy 
We now move from the consideration of the specific 
case of u = 2 and RA = 1 to a broader discussion of 
SPHA accuracy. The models with service rate of 2 pro- 
vide a useful point of separation between "high" and 
"low" service rates. Indeed, we take A = 2 as an "in- 
termediate" case for which the accuracy of the SPHA 
is dependent on a number of factors-as our discussion 
of the family of models with A = 2 and RA = 1 revealed. 
Figure 22 is a plot of relative error in peak hour PD 

versus rhomax for all 118 cases that we ran with mu 
= 2, and it shows that while the SPHA is generally 
accurate within this set, there are instances at high rho- 
max when it is not-when the relative error exceeds 
10 %. Overall, the average and maximum relative errors 
for peak hour PD for these 118 cases were 4.7% and 
18.8%, respectively. 

Table 2 summarizes the results of all our 263 model 
instances, all those with rhomax less than 1, used in 
this analysis. The table shows that for each peak hour 
performance measure, Lq, PD, and Wq, both the average 
and the maximum relative errors of the SPHA tend to 
decrease with service rate. The decrease does not, how- 
ever, appear uniform, as these sets of runs were not 
laid out in advance to permit balanced comparisons 

across these service rate groupings. The trenid of de- 
creasing relative error with increasing ,u is illustrated by 
Figure 23, a log-log plot of average relative error in the 
SPHA for peak hour Wq versus service rate for these 
same 263 cases. 

For service rates well below 2, our findings, illustrated 
by the table, are that the SPHA is generally not reliable. 
This parallels our conclusion regarding the use of the 
24-hour PSA documented in Green and Kolesar (1991). 
For service rates well above 2 the situation depends 
upon the performance measure of interest. We will use 
three specific service rates above 2 to make a more de- 
tailed and revealing analysis. Figures 24, 25, and 26 are 
plots of the relative error in the SPHA to the peak hour 
probability of delay for models with ,u 4, 20, and 200, 
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Table 2 Relative Error in SPHA Estimates (Percent) 

Expected Delay Expected Queue Probability of Delay 

Mu n Average Maximum Average Maximum Average Maximum 

0.1 2 516.3 548.4 927.7 1016.7 247.6 270.4 
0.2 30 133.2 806.4 257.9 1265.5 84.2 422.4 
0.4 1 39.8 39.8 53.4 53.4 26.5 26.5 
0.5 3 71.8 128.5 91.5 163.0 27.9 41.5 
1.0 8 24.0 64.1 32.3 86.7 9.4 19.7 
1.8 1 58.5 58.5 73.6 73.6 13.6 13.6 
2.0 105 16.8 152.8 21.2 172.0 4.7 18.8 
2.5 9 7.8 27.8 9.3 33.0 2.8 8.2 
3.0 8 17.0 78.9 20.0 91.0 2.9 8.9 
4.0 10 23.4 98.5 26.6 109.3 3.2 10.2 
5.0 4 8.1 23.7 9.5 27.5 1.9 4.8 
7.0 1 1.2 1.2 1.6 1.6 0.4 0.4 

10.0 2 3.2 6.3 4.0 7.8 0.7 1.3 
14.0 1 0.9 0.9 1.3 1.3 0.2 0.2 
20.0 42 2.8 46.5 3.1 53.3 0.3 3.1 

200.0 10 0.0* 0.0* 0.0* 0.7 0.0* 0.0* 

* These values are less than 0.001. 

respectively. Comparing results across the three graphs 
shows a dramatic drop in the relative error as ,u in- 
creases. For the cases A = 4 and = 20, comparison 
within the plots shows a distinctive exponential-like in- 
crease in relative error as rhomax increases. Moreover, 
the largest relative errors are still quite reasonable for 
most applications-even when rhomax is greater than 
0.80. The graph for , = 200 shows very small relative 
errors-always below 0.1 percent, regardless of the 

value of rhomax. However, the distinctive exponential 
pattern is missing, most likely, we believe, because at 
such small relative errors much of the case-to-case vari- 
ation in results is probably a consequence of deviations 
in the numerical accuracy in the differential equations 
solution method. 

We conclude that at high service rates, say in the 
hundreds, the SPHA for peak hour PD is very good in- 
deed, regardless of the other parameter values. Com- 
putational constraints kept us from running models with 

Figure 23 SPHA for Expected Delay-Average Relative Error vs. Service 
Rate 

1 0 0 0 ....................................... 

; ...................................... ..... ...................... ........................... ........................................ 

.U-. 
- -., 

0 1 ~~~~~~~~~~~~~~....... . .. ..:..E . ... .... . .. . . ..... 

............................................................................................. ........ .................... 

......................................................... I - I ............. ..................... - .......... .................. ........... .................................................. 

. ............................. ...................................................................... ............................................................................................................................ 

1 0 ................................................ I....................... _.......................... 

w ........................................... ........... . .... _ ........................................... 

W 

. 
.................................. 

.. . . . ...... ................ ... . . ... . . 

w ..................................................................................... .................. ............ -.................... ............................ ............. 

.... ........ I.......... ............ ............. ............ .................... I.. . .................... .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

O 1 0 ....... . 0.0. 
b-S.R..............................................)............... .... .............. - 

I, .......... ....... .... ................ ........ :.................. . .................. ........................ 

........... S ...... .. .... ..... 

. . . 

.... ....... 

.. . .. . .. . . .............. . . .......... A+v~f * w** 

O .1 -! I I I I I I I I] I i I i I I I fI I I I i I I i , I !. 
0.1 1 10 100 

Service Rate (Mu) 

Figure 24 SPHA for Probability Delay-Relative Error vs. Rhomax 
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Figure 25 SPHA for Probability Delay-Relative Error vs. Rhomax 
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Figure 27 SPHA for Expected Delay-Relative Error vs. Rhomax 
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both ,u and rhomax very high. At intermediate service 
rates, say in the tens of customers per hour, the SPHA 
for probability of delay is quite good indeed, with rel- 
ative errors well below our 10% benchmark. (See Figure 
25, for example.) 

As we have noted earlier, the expected peak hour 
queue and the expected peak hour delay are not as well 
estimated by the SPHA as is the probability of delay. 
We can see from our results that serious estimation 
problems are likely only at high congestion, that is at 
high rhomax. Estimation of both peak hour Lq and Wq 
are of concern, but since the results are so similar for 
them we discuss only Wq here. Take, for example, the 
case of models with service rate 20. We have run 50 
such models over a broad range of other parameter val- 
ues: rhomax, relative amplitudes, arrival rates, and the 
like. Figure 27 shows the relative error in the SPHA for 

Figure 26 SPHA for Probability Delay-Relative Error vs. Rhomax 
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peak hour Wq versus rhomax for all such models run. 
The plot shows the distinctive exponential pattern of 
relative error versus rhomax, and all models with rho- 
max less than 0.80 have relative errors less than 10 per- 
cent. Above rhomax equal 0.80 the relative errors appear 
to increase very steeply, and there is one case with a 
relative error of 46% at rhomax of 0.90 and another 
with relative error of 26% at rhomax of 0.94. Thus, we 
have concluded that at rhomax values below say 0.80 
the SPHA for peak hour Lq and Wq can be useful. 

6. Conclusion 
In this paper we have clarified the conditions under 
which the accuracy of the simple peak hour approxi- 
mation increases. We have also determined a range of 
situations and a criterion under which the SPHA pro- 
duces satisfactory results from a practical point of view. 
These conditions are quite broad, but we have also de- 
termined a number of situations in which the SPHA is 
clearly not appropriate. 

Of practical significance for many applications are 
our findings that for systems with high service rates- 
in the hundreds of customers per hour-the SPHA will 
be very accurate almost without regard for the values 
of other system parameters. Thus for service systems 
such as telecommunications, information processing, 
banking, and toll booths, the SPHA can be used with 
confidence particularly to identify operating conditions 
that will keep congestion at reasonably low levels. Fur- 
thermore, our results-though focused on a "peak 
hour"-indicate that simple stationary approximations 
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are likely to be accurate for other intervals of short du- 
ration. 

It is important to note that although our findings are 
based on experimentation with models having sinusoi- 
dal arrival rates and exponential service times we see 
no indications that our conclusions are not broadly ap- 
plicable to situations in which these restrictions are re- 
laxed. 

We have begun a stream of research to explore the 
robustness of our results. Preliminary results are illus- 
trated in Figure 28 which plots the actual and SPHA 
for peak hour probability of delay as a function of staff- 
ing levels for a model where the input stream is the 
smoothed Boston Police calls data shown in Figure 16. 
For comparison purposes, all other model settings are 
as assumed for the runs shown in Figure 20 which also 
correspond to a police application. The reader will ob- 
serve that as in Figure 20, the SPHA and actual curves 
get closer and closer as the number of servers increases 
and as probability delay is decreased. If the operating 
criterion is to keep probability of delay below our 10% 
benchmark, the SPHA model leads to the correct staffing 
assignments. We note that an examination of the input 
stream shown in Figure 16 indicates that the arrival 
pattern is more peaked-that is, less flat-than a si- 
nusoidal stream, yet the SPHA is still good. 

From this example, and based on our accumulated 
theoretically and numerically based knowledge, we be- 
lieve that there are four major factors which will de- 
termine how accurate the SPHA is in actual contexts: 

Figure 28 SPHA for Probability Delay (Mu = 2; RA = 1; Lambda 
= 6) 
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( 1 ) the steepness of the arrival rate prior to the peak 
hour-the steeper this is, the more likely the SPHA will 
overestimate the actual delay in the peak hour; 

(2) the evenness of the arrival rate during the peak 
hour-this affects the extent to which the implicit as- 
sumption of steady-state behavior of the SPHA is good; 

(3) the magnitude of the service rate which similarly 
is related to steady-state behavior; and 

(4) the maximum traffic intensity which affects the 
likelihood of the SPHA for the expected delay or ex- 
pected queue length becoming extremely large. 

We are also embarking on another line of research to 
determine under what conditions an SPHA will work 
well when the system capacity changes over time. In 
police patrol, in toll booth operations and in many other 
contexts, the staffing levels change frequently during 
the day (Kolesar et al. 1975, Segal 1974). Our research 
will explore whether the SPHA behaves qualitatively 
in such situations as it does here when the staffing levels 
are constant over time. 
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