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W A 7 e propose using a modification of the simple peak hour approximation (SPHA) for estimating 
peak congestion in multiserver queueing systems with exponential service times and 

time-varying periodic Poisson arrivals. This lagged pointwise stationary approximation (lagged 
PSA) is obtained by first estimating the time of the actual peak congestion by the time of 
peak congestion in an infinite server model and then substituting the arrival rate at this time 
in the corresponding stationary finite server model. We show that the lagged PSA is always 
more accurate than the SPHA and results in dramatically smaller errors when average service 
times are greater than a half an hour (based on a 24 hour period). More importantly, the 
lagged PSA reliably identifies proper staffing levels to meet targeted performance levels to 
keep congestion low. 
(Queues; Nonstationarity; Approximations) 

1. Introduction 
There has been a longstanding practice among analysts 
of service systems with cyclic customer arrival pro- 
cesses to estimate peak congestion by using peak arrival 
rates in stationary queueing models. Here we identify 
the conditions under which this intuitive procedure 
which we call the simple peak hour approximation (SPHA) 
makes sense. This work is part of our continuing re- 
search in identifying simple approximations for queues 
with cyclic arrivals which are found in many real con- 
texts (see e.g. Edie 1954, Segal 1974, Koopman 1972, 
Kolesar et al. 1975, Kolesar 1984, Holloran and Byrne 
1986, Green and Kolesar 1989), but are generally too 
complex to solve analytically. 

In an earlier paper (Green and Kolesar 1994), we 
tested the accuracy of the SPHA for multiple server 
Markovian queues with sinusoidal arrival rates. We 
found that the service rate ,u is the major determinant 
of the accuracy of the SPHA and that for most practical 
purposes the SPHA is good enough whenever ,u 2 2 in 
systems with a period of 24 hours. In a more recent 

paper (Green and Kolesar 1996) we have shown that for 
the Mt / G / oo queue with sinusoidal customer arrivals, 
the SPHA for the number of customers in the system is 
very good whenever , 2 1. 

In this paper we show that a relatively simple modi- 
fication of the SPHA extends its utility for finite server 
systems well into the range of ,u < 2. Our approach is 
based on the fact that the epoch of peak congestion in a 
cyclic queueing system lags the epoch of peak customer 
arrivals and that estimating this lag is the key to im- 
proving the SPHA. 

The accuracy of the SPHA is related to the accu- 
racy of what we have called the pointwise stationary 
approximation or PSA (Green and Kolesar 1991). The 
PSA models the behavior of the system at each point 
in time using a stationary model with the arrival rate 
at that epoch. The peak of the PSA curve is what we 
have called the simple peak epoch approximation 
(SPEA). When the PSA curve is close to the actual 
system performance curve, the SPHA and will be 
close to the actual peak hour performance and the 
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SPEA will be close to the actual peak epoch perfor- 
mance. 

During our earlier empirical studies, we observed 
that the PSA and actual curves intersect at the epoch 
of actual peak congestion; see Figure 1 for an illustra- 
tion. This occurs for the probability of delay, the ex- 
pected delay and the expected number of customers 
in the system. Indeed, this result was proven to be 
true for the infinite server model with exponential ser- 
vice times (Eick et al. 1993a). Thus, if we knew the 
point of peak congestion (or equivalently the lag be- 
tween the peak arrival rate and the peak congestion), 
we would only need to substitute the value of the ar- 
rival rate at that point into the PSA model, i.e. the 
simple stationary model, to get an exact solution for 
peak epoch behavior. Since, as shown in our earlier 
work, peak hour performance measures are almost 
identical to peak epoch measures for sinusoidal arri- 
val rates (or any other arrival rate function which is 
relatively flat around the peak), this would also result 
in an excellent approximation for the peak hour or 
any other short interval of time. Clearly, this time lag 
is unknown but estimates can be obtained from re- 
sults for the infinite server model developed by Eick, 
Massey and Whitt (1993a, 1993b). In this paper we 
show that this approach, which we call the lagged 
PSA, is simple to calculate and is always better than 
the SPHA when ,u - 2. 

The proposed lagged PSA method is closely re- 
lated to the modified offered load (MOL) approxima- 
tion proposed by Jagerman (1975) to estimate block- 
ing probabilities in the nonstationary Erlang loss 
model (see also Massey and Whitt 1994 and refer- 
ences therein). The MOL method estimates perfor- 
mance in the nonstationary system at time t by sub- 
stituting the expected number of busy servers at time 
t obtained from the nonstationary infinite server 
model for the offered load (arrival rate times mean 
service time) at time t in the corresponding station- 
ary finite server model. MOL has been shown to be 
quite accurate in estimating blocking probabilities 
in nonstationary Erlang loss models (Davis et al. 
1995). 

Jennings et al. (1996) suggest that the MOL could be 
used to estimate delay probabilities for determining 
server staffing in nonstationary finite server queues. 

Figure 1 Probability Delay 
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The peak value produced by MOL in this case coin- 
cides with the lagged PSA estimate. Since MOL cal- 
culates congestion over time, it is more general than 
the lagged PSA but consequently requires more com- 
putation. In addition, for our focus of approximating 
peak congestion, the lagged PSA gives us insight as to 
how the accuracy of the approximation will be affected 
as a function of the system parameters by exploiting 
our knowledge about the behavior of the lag (see ??3 
and 4). In a very recent paper, Massey and Whitt (1995) 
empirically test the MOL as a function of the number 
of servers for a specific example in which the arrival 
rate is changing slowly. We discuss their findings in 
light of our own in ?4. 

In ?2, we describe the model and methodology we 
use in our analysis. In ?3, we discuss the factors that 
affect lags in multiserver systems and the use of the 
infinite server model for estimating these lags. Section 
4 contains numerical results on the accuracy of the 
lagged PSA for estimating peak epoch probability of de- 
lay and its usefulness for identifying appropriate server 
staffing levels under a broad range of conditions. As 
explained above, our results imply that this approach 
will also be good in these cases for the peak hour or any 
other short interval of time. We compare these results 
to those obtained using the PSA and another approxi- 
mation based on the normal distribution recently pro- 
posed by Jennings et al. (1996). We end with a brief 
summary in ?5. 
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2. Model and Methodology 
Our analysis is based on M(t)/M/s systems with X(t), 
the arrival rate at time t given by 

X(t) = A + A sin(27rt/T) (1) 

where X is the average arrival rate over the period T and 
A (>0) is the amplitude. The other model parameters 
are [u, the service rate and s, the number of servers. We 
assume that X < s,u and so the system will develop a 
periodic steady-state behavior (see Heyman and Whitt 
1984 and Koopman 1972). Without loss of generality, 
we will assume that the period T = 24 hours. 

Let p,,(t) be the periodic steady-state probability that 
n customers are in the system at time t. These functions 
are the foundation of our results and are obtained by 
numerically solving the following standard set of dif- 
ferential equations that describe the system, see Gross 
and Harris (1985): 

po(t) = -X(t)po(t) + ptpl (t), 

p1(t) = X(t)p1-_(t) + (n + l)ftp1+1(t) 

- ((t) + n,u)p,(t), 1 ' n < s, 

p' (t) = X(t)p11_(t) + s,up17+1(t) 

- (A(t) + s,u)p1(t), n ' s. (2) 

In this paper we focus on the probability of delay. Let 

PD(t) be the instantaneous probability that a customer 
arriving at time t is delayed. This is also the probability 
that all servers are busy at epoch t and is given by 

s-1 

PD(t) = 1 - p (t). (3) 
11=0 

The peak epoch probability of delay is: 

peak PD = max PD(t). (4) 
O0t-24 

The conclusions that follow are based on the exami- 
nation of computational results for 169 model instances. 
We confine our study to systems in which the maximum 
traffic intensity is strictly less than one, that is, when 

X(t) 
Pmax = max <1. (5) 

t S/i 

We adopt this constraint because neither the SPHA nor 
the PSA are generally defined when Pmax (rhomax) is 

greater or equal to one and because of computational 
difficulties which arise in solving (2) when system con- 
gestion is very high. Note, however, that the PSA for PD 

is defined for any value of p (see Green and Kolesar 
1991) and therefore the lagged PSA approach for esti- 
mating peak probability of delay can be used more gen- 
erally. We also restrict our choice of parameter values 
so that the relative amplitude, RA = AIX ? 1, which 
makes X(t) 2 0 for all t. Since our previous research 
revealed that the SPHA is good for systems with service 
rates greater than 2, our choices of experimental models 
in this study focused on low service rates, i.e. ,u < 2, 
where the SPHA is not a useful approximation. We con- 
sider models with service rates as low as 0.125, that is 
with average service times as long as 8 hours, and with 
a broad range of average arrival rates. For each ,u and 
X, we varied the number of servers from the minimum 
needed to satisfy (5) to the number which resulted in a 
peak probability of delay less than or equal to 0.01. 
Otherwise, our choice of parameters was limited only 
by computational feasibility. More details on our ex- 
perimental strategy are given in ?4. 

3. Estimating the Lag in the Peak 
In Green and Kolesar (1994) we showed that for mul- 
tiserver systems, the magnitude of the lag in peak con- 
gestion relative to the peak in the arrival rate depends 
on several factors. The primary determinant is the event 
frequency, i.e. the average number of arrivals and ser- 
vice completions per period. As the event frequency in- 
creases, the lag decreases. This is consistent with Whitt's 
(1991) result that the PSA is asymptotically correct as 
the arrival and service rates increase. 

The lagged PSA uses the lag from the infinite server 
model to estimate the lag in the finite server system. It 
is important to note that in an infinite server model 
there is no queue and the usual performance measure 
is the expected number of busy servers. This measure 
most closely corresponds to the expected number of 
customers in system for finite server models. However, 
we propose the use of the infinite model lag for the ex- 
pected number of busy servers to estimate the lags of 
probability of delay and expected delay as well as ex- 
pected number in system in the finite server system. 
Though, as we showed in Green and Kolesar (1994), 
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each of the several performance curves peaks at a some- 
what different time, these differences are small partic- 
ularly when peak probability of delay is not high. And, 
our principle aim is to identify staffing levels for such 
systems so that delays are not high. 

For the infinite server model, the lag is solely a func- 
tion of the service rate. The time of the peak of the mean 
number of busy servers for the case of sinusoidal arrival 
rates is given by (Eick et al. 1993b): 

tl = t\ + co't (,/y) /'Y, (6) 

where -y = 27 /24 and t\ is the time of the peak arrival 
rate. Thus the time lag of the peak is given (in hours) 
by 

tiag = (cotr'(Q/ y))/-y. (7) 

In finite server systems, the time lag also increases as 
the peak probability of delay increases. So, for a given 
service rate, the lag predicted by the infinite server 
model which has no delays underestimates the actual 
lag in the finite server system. Therefore, the accuracy 
of Eq. (7) as a predictor of the lag in the finite system 
decreases as the peak probability of delay increases. 
This can be seen from the last column of Table 1 which 
illustrates the case of ,u = 0.25 for which the actual in- 
finite model lag is 3.08 hours. 

The lag can also be estimated for systems with non- 
sinusoidal arrival rates. Eick et al. (1993a) show that if 
X(t) is approximately quadratic before the peak, then 
the lag will be approximately equal to the expected ser- 
vice time when the service time is exponential. They 
also develop explicit formulas for m(t) when X(t) is pol- 
ynomial or a step function and propose several approx- 
imations for general arrival rate functions. Using simple 
calculus, these can be used to obtain estimates for the 
time of the extreme value and thus, the lag. 

4. The Accuracy of the Lagged PSA 
Our method consists of estimating t... using (6), calcu- 
lating the value of X at t,, using (1) and approximating 
the peak PD by using X(t,1,) in the stationary MIMIs 
equation. Our results are based on a study of four values 
of p: 0.125, 0.25, 0.5, and 1, with X and s varying over a 
broad range of values and RA fixed at a "worst case" 
value of 1. In all of these cases, the PD computed from 

this lagged PSA approach is an upper bound to the ac- 
tual peak probability of delay. This is because the pre- 
dicted lag is a lower bound of the true lag and the true 
lag is less than 12 hours. (The maximum actual lag we 
observed was 4.5 hours. This occurred, of course, for 
the smallest ,u we examined, ,u = 0.125 which is a mean 
service time of 8 hours.) Since the X(t) curve decreases 
for 12 hours after the peak, the value of X(t) that we use 
in the approximation is an upper bound of X(t.), the 
arrival rate at the point where the PSA and actual curves 
intersect. (Of course, if ,u is sufficiently small, the lag 
may be greater than 12 hours and thus the lagged PSA 
might not result in an upper bound. Given our results, 
it appears that this is unlikely to occur for expected ser- 
vice times shorter than 24 hours and thus is not an issue 
for most real systems.) Because of convergence prob- 
lems with our numerical solution algorithm, we were 
unable to explore systems with such long expected ser- 
vice times. 

How good is the lagged PSA? We consider 2 criteria: 
estimating system performance and identifying the 
minimum staffing levels needed to achieve a perfor- 
mance target. For each of these, we compare the accu- 
racy of the lagged PSA with alternative approximations, 
particularly the SPHA. 

4.1. Estimating Performance 
Table 1 displays our results for pt = 0.25. The relative 
errors for this value of ,u are representative of the ac- 
curacy of the lagged PSA for all of the values of ,u which 
we considered. (Of course, for larger values of p,, the lag 
approaches zero and thus the errors for the lagged PSA 
will go to zero.) 

Since the lag is never negative, the lagged PSA is al- 
ways smaller than the peak PSA (also called the simple 
peak epoch approximation or SPEA) and is thus a better 
approximation. This is illustrated in Table 1 for pt = 0.25. 
Here, the SPEA is clearly awful with relatives errors 
starting at about 35% and going up to 545%. In contrast, 
the largest relative errors for the lagged PSA are about 
27% and in many cases fall below the 10% level. Notice 
that for systems with small PD the lagged PSA is quite 
good. This is consistent with the observation made by 
Massey and Whitt (1995) that the MOL improves as the 
number of servers increases. For all the 169 cases we 
examined across the four cited values of ,u, the relative 
error of the lagged PSA was always below 35%. 
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Table 1 Comparison of pD Approximations 

Mu = 0.25 

pD Approximations Errors (%) Lag (Hrs.) 

Rho Lagged Infinite Lagged Infinite 
Lambda s Max Actual pD PSA SPEA Normal PSA SPEA Normal 

0.0625 1 0.50 0.372 0.423 0.500 0.859 13.53 34.30 130.68 3.50 
2 0.25 0.070 0.074 0.100 0.060 4.81 42.14 -14.36 3.25 
3 0.17 0.009 0.010 0.015 0.001 1.89 60.90 -91.96 3.17 
4 0.13 0.001 0.001 0.002 0.000 0.83 86.85 -99.88 3.08 

0.125 2 0.50 0.223 0.251 0.333 0.363 12.63 49.50 62.96 3.42 
3 0.33 0.057 0.060 0.091 0.044 5.43 60.21 -23.27 3.25 
4 0.25 0.011 0.012 0.020 0.002 2.54 80.78 -81.06 3.17 
5 0.20 0.002 0.002 0.004 0.000 1.36 108.89 -97.97 3.17 

0.25 3 0.67 0.262 0.309 0.444 0.419 18.07 69.64 59.79 3.50 
4 0.50 0.098 0.107 0.174 0.106 9.19 77.63 8.29 3.33 
5 0.40 0.030 0.032 0.060 0.018 4.88 95.86 -41.46 3.25 
6 0.33 0.008 0.008 0.018 0.002 2.73 122.42 -77.01 3.17 
7 0.29 0.002 0.002 0.005 0.000 1.66 156.86 -93.84 3.17 

0.5 5 0.80 0.277 0.341 0.554 0.428 23.20 100.20 54.60 3.50 
6 0.67 0.137 0.156 0.285 0.169 13.82 107.37 23.20 3.33 
7 0.57 0.060 0.065 0.135 0.055 8.39 124.17 -8.38 3.25 
8 0.50 0.024 0.025 0.059 0.014 5.24 149.60 -38.84 3.17 
9 0.44 0.008 0.009 0.024 0.003 3.35 183.37 -64.52 3.17 

1 9 0.89 0.263 0.333 0.653 0.390 26.44 148.10 47.99 3.42 
10 0.80 0.159 0.187 0.409 0.203 18.06 157.79 28.03 3.33 
11 0.73 0.089 0.100 0.245 0.097 12.43 175.97 8.77 3.25 
12 0.67 0.046 0.050 0.140 0.041 8.66 202.52 -10.54 3.25 
13 0.62 0.023 0.024 0.076 0.016 6.11 237.74 -29.69 3.17 
14 0.57 0.010 0.011 0.039 0.005 4.36 282.32 -47.78 3.17 
15 0.53 0.004 0.005 0.019 0.002 3.17 337.37 -63.68 3.17 

2 17 0.94 0.222 0.282 0.737 0.310 26.70 231.68 39.55 3.33 
18 0.89 0.152 0.183 0.531 0.193 20.32 248.99 26.85 3.25 
19 0.84 0.100 0.115 0.374 0.115 15.50 273.99 14.80 3.25 
20 0.80 0.063 0.070 0.256 0.065 11.90 307.39 2.98 3.25 
21 0.76 0.038 0.041 0.171 0.035 9.18 349.95 -8.86 3.17 
22 0.73 0.022 0.024 0.111 0.017 7.11 402.76 -20.76 3.17 
24 0.67 0.007 0.007 0.043 0.004 4.39 545.49 -44.03 3.17 

We also considered the infinite server approximation 
used in Jennings et al. (1996). The probability of delay 
at t is estimated by 

PD(t) 1 - P(Q(t) -c s - 1 ) (8) 

where Q(t) is the number of busy servers at t in the 
infinite server model. For the case of exponential service 
times, the distribution of Q(t) at the peak is approxi- 

mated by a normal distribution with mean m(t) and 
variance v(t) given by 

v(t) = m(t) =-+. (9) - + 
+ 2_ 

_ 

I' I Hu+ (7/H)2) 

Thus, incorporating the standard continuity correction 
of +0.5, the peak probability of delay may be estimated 
from 
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Table 2 Staffing Requirements to Meet Target Peak pD 

Mu = 0.125 Mu = 0.25 Mu = 0.5 

Target Lagged Lagged Lagged 
Lambda pD Actual PSA SPEA Actual PSA SPEA Actual PSA SPEA 

0.125 0.2 3 4 4 3 3 3 2 2 2 
0.1 4 4 5 3 3 3 2 2 2 
0.05 5 5 6 4 4 4 3 3 3 
0.01 6 6 7 4 4 5 3 3 4 

0.25 0.2 5 5 7 4 4 4 3 3 3 
0.1 6 6 8 4 5 5 3 3 3 
0.05 7 7 9 5 5 6 4 4 4 
0.01 8 8 10 6 6 7 5 5 5 

0.5 0.2 9 9 12 6 6 7 4 4 4 
0.1 10 10 13 7 7 8 5 5 5 
0.05 11 11 14 8 8 9 5 5 6 
0.01 13 13 16 9 9 10 6 6 7 

1 0.2 17 17 21 10 10 12 7 7 7 
0.1 17 17 23 11 11 13 7 8 8 
0.05 18 18 24 12 12 14 8 8 9 
0.01 20 21 27 14 14 16 10 10 10 

s -1 + 0.5 - m(t)) (10) 
vm(t) 

where 4( ) is the standard normal probability func- 
tion. A better approximation can then be obtained by a 
refinement suggested in ?4 of Jennings et al. (1995) to 
account for using an infinite server approximation for a 
finite server system. 

The results, contained in the column labeled "Infinite 
Normal" in Table 1, indicate that this method is gen- 
erally far less accurate than the lagged PSA, particularly 
for staffing levels which result in a low probability of 
delay. 

The maximum traffic intensity, rhomax, and the num- 
ber of servers are the dominant factors affecting the size 
of the errors from using the lagged PSA. Using the stan- 
dard of a relative error of 10% or less, PD is satisfactorily 
approximated for all cases in our set that have a rhomax 
of less than or equal to 0.5. For larger numbers of servers 
(s > 2), the 10% standard holds for higher rhomax. 

Although our work has focused on systems with rel- 
ative amplitudes of 1, which we consider a worst case 

and a realistic model for many systems, we also looked 
at the effects of relative amplitude. Like the SPHA, the 
lagged PSA is significantly better for smaller values of 
RA. As an example, the errors for ,t = 1 and RA = 1 
range up to 30% while for RA = .5 the maximum error 
is just above 5%. 

4.2. Capacity Planning 
Queueing models are often used to help identify system 
capacity or staffing levels necessary to achieve desirable 
performance. Much of our work in nonstationary sys- 
tems has been motivated by our efforts in supporting 
such decisions for managing emergency services such 
as police patrol, firefighting and ambulances (e.g. Ko- 
lesar et al. 1975 and Green and Kolesar 1984). In these 
systems, it is desirable to keep peak PD low. This goal 
of keeping delays small is, of course, becoming more 
prevalent in many service systems due to competitive 
pressures. We consider target peak PD levels of 20%, 
10%, 5% and 1%. 

Our database again consists of all the 169 cases we 
examined for service rates ranging from 0.125 to 2. For 
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each case examined, we compared the actual number of 
servers needed to meet each of the four target values 
with the number suggested by using the lagged PSA. 
This staffing level was determined by taking the small- 
est number of servers that resulted in a peak PD 

(rounded to 2 decimal places) that was less than or 
equal to the target. In almost every case, the lagged PSA 
identified the same number of servers as the actual 
model-that is, made the correct resource allocation. In 
the few cases in which the lagged PSA was off, it was 
off by only one server. These results are illustrated in 
Table 2 for ,t = 0.125, 0.25 and 0.5 which also shows the 
values suggested by the SPEA. As can be easily seen, 
the SPEA often suggests the wrong number of servers 
and is consistently off for small ,t such as ,t = 0.125. For 
such a low service rate, the error in the SPEA can be 
significant as shown by the case of X = 1 and a targeted 
peak PD of 0.1. Here, the actual model and the lagged 
PSA both identify 17 servers as being needed while the 
SPEA suggests 23. 

Figure 2 plots the lagged PSA, the SPEA and the ac- 
tual peak PD versus the number of servers for one of the 
cases in Table 1. The accuracy of the lagged PSA for low 

PD is apparent as is its superiority to the SPEA. 
Although we have used the lagged PSA to estimate 

peak epoch performance, it is likely to be as accurate for 
estimating peak hour performance as well-as long as 
the arrival rate is relatively flat around its peak. As 
shown in our previous work (Green and Kolesar 1994), 
the difference in the magnitude of the peak epoch delay 
and peak hour delay is very small for models with si- 
nusoidal arrival rates. Also, the relative errors using the 
SPHA for estimating peak hour delays are almost iden- 
tical to those using the SPEA for estimating peak epoch 
delays. Thus, the above results clearly indicate that the 
lagged PSA will always be better than the SPHA when 
service rates are low. 

5. Conclusion 
Previous work has shown that the SPEA and SPHA are 
good approximations for peak congestion in finite 
server systems for large service rates, but can be very 
inaccurate when ,t < 2. The work reported in this paper 
shows that the lagged PSA is far more accurate than the 
SPEA and the SPHA in these cases and is very reliable 

Figure 2 Approximating Peak Point pD 
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in identifying staffing levels to meet a targeted small 
probability of delay in the range of 0.125 ? ,t - 2. Fur- 
thermore, because at ,t = 0.125 the lag occurs at the 

steepest part of the A(t) curve and hence the error in 
estimating X(t,,) is most sensitive to an error in estimat- 
ing tlag, the errors are likely to be greatest for such values 
of ,u. Hence, this method is likely to be good for smaller 
service rates as well. 

From a practical perspective, the lagged PSA is a sim- 
ple modification of the often used SPHA or SPEA and 
thus is easy to understand and use. We propose that it 
be used for supporting capacity decisions for achieving 
targeted low peak probability of delay when mean ser- 
vice times are longer than half an hour. 
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