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Motivated by the recent adoption of tactical pricing strategies in manufacturing settings, this paper studies a problem of
dynamic pricing for a multiproduct make-to-order system. Specifically, for a multiclass Mn/M/1 queue with controllable
arrival rates, general demand curves, and linear holding costs, we study the problem of maximizing the expected revenues
minus holding costs by selecting a pair of dynamic pricing and sequencing policies. Using a deterministic and continuous
(fluid model) relaxation of this problem, which can be justified asymptotically as the capacity and the potential demand grow
large, we show the following: (i) greedy sequencing (i.e., the c�-rule) is optimal, (ii) the optimal pricing and sequencing
decisions decouple in finite time, after which (iii) the system evolution and thus the optimal prices depend only on the
total workload. Building on (i)–(iii), we propose a one-dimensional workload relaxation to the fluid pricing problem that is
simpler to analyze, and leads to intuitive and implementable pricing heuristics. Numerical results illustrate the near-optimal
performance of the fluid heuristics and the benefits from dynamic pricing.
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1. Introduction
The last decade has been marked by a growing interest in
the adoption of dynamic pricing strategies in such diverse
areas as the airline, hotel, and retail industries. In most of
these cases, the firm controls a fixed capacity of resources
(e.g., the number of seats in a flight) that have to be sold up
to a deadline (e.g., the flight departure time). By dynamic
pricing, we refer to the tactical optimization of the price of
a product or service (e.g., of an airline ticket) as a func-
tion of the remaining capacity and time-to-go to maximize
the expected revenues extracted from these fixed resources.
This practice, often referred to as revenue management, is
supported by sophisticated information systems processing
large amounts of demand data, and relies on an implicit
assumption that the firm can apply such price changes in a
relatively efficient manner.
More recently, manufacturing firms have also started eval-

uating the use of such tactical economic optimization tools,
with one notable example coming from the automotive
industry in the context of its effort to market and produce
custom cars in a make-to-order fashion. Broadly speak-
ing, automobile manufacturers try to dynamically adjust the
price, target lead time, rebate, etc., for a new order as a func-
tion of the existing outstanding orders, and simultaneously
select the appropriate production schedule to optimize their
profitability. Joint use of economic and operational con-
trols allows the manufacturer to be more responsive to
changes in the market conditions and fluctuations in the
operating environment due to randomness of the demand

and production functions. Operationally, this raises sev-
eral interesting questions. For example, in what ways are
the economic and operational decisions coupled? What are
the benefits of dynamic pricing in a production setting?
And what are practical and efficient pricing and sequenc-
ing heuristics for such problems? With this motivation,
this paper studies the problem of jointly optimizing over
the dynamic pricing and sequencing policies for the mul-
tiproduct, single-server queuing system. Broadly speaking,
this problem lies in the interface of stochastic network
theory and revenue management, and the approach taken
in this paper combines modelling and analysis techniques
from these two areas. Its results illustrate the potential
benefits of jointly optimizing pricing and production deci-
sions, and offer some insight on how to practically integrate
these two functions that tend to operate separately in many
organizations.
We consider a make-to-order firm that produces multi-

ple products, that is modelled as a single-server multiclass
Mn/M/1 queue. The firm is assumed to operate in a mar-
ket with imperfect competition, and has power to influence
the demand for the various products by varying its price
menu. Assuming a general demand curve, linear holding
costs incurred by the firm,1 and convex capacity costs, we
study the problem of finding the optimal state-dependent
pricing and sequencing strategy as well as a static vec-
tor of production rates to optimize the system’s long-run
expected profit rate. A natural starting point would be to
formulate an appropriate control problem for a multiclass
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queue within the framework of Markov decision processes
(MDPs). While MDPs provide detailed descriptions of the
system dynamics and the optimal control problem, they
are—with the exception of very restricted examples—not
amenable to exact analysis. This paper studies an approx-
imate formulation of the profit maximization problem of
interest, posed in the context of the associated determin-
istic and continuous “fluid model” approximation to the
underlying stochastic production system. This can be rigor-
ously justified through a strong-law-of-large-numbers type
of scaling in settings where the production rate and poten-
tial demand grow proportionally large. Such models have
been used successfully in the literature both in revenue
management settings that lack production dynamics, and in
production systems that do not include the tactical pricing
decisions.
The main findings of this paper are the following.
(1) Capacity choice. We show that the long-run average

profit maximization problem for the fluid model reduces
to a static problem of choosing a vector of target demand
rates and the service rate vector that maximize profits in
the absence of holding costs (Theorem 1). The optimal
service rate vector makes the capacity constraint binding
(Corollary 1). This problem determines the optimal capac-
ity, but is too coarse to specify good pricing and sequencing
policies.
(2) Structural analysis of the joint pricing and sequenc-

ing problem. Fixing the capacity at the value prescribed
above, we then focus on the infinite horizon total profit
criterion to determine the optimal sequencing and pric-
ing policies. We show that “reasonable” policies eventually
drain the queues (Proposition 1), characterize the proper-
ties of the associated value function (Proposition 2), and
construct an optimality verification result for this prob-
lem and through the associated Bellman equation (Propo-
sition 3). We finally show that sequencing decisions are
made according to the c�-rule (Proposition 4) and that
the demand rates are nonincreasing functions of the queue
length (Proposition 5).
(3) State-space collapse and workload relaxation. A con-

sequence of the fluid model optimal sequencing and
demand controls is that after a finite time the queue length
is always in a (efficient) configuration where all of the
workload is held at the “cheapest” product class (Theo-
rem 2). This state-space collapse result simplifies the solu-
tion of the control problem from then onwards. It also
suggests formulating a workload relaxation for our opti-
mal pricing problem, which focuses on the evolution of the
workload process, and uses an aggregated demand model
and an appropriate holding cost rate. This one-dimensional
formulation is simpler to analyze than the multiproduct one
(Theorem 3), leads to intuitive and implementable heuris-
tics, and is often solvable in closed form (§4.3 studies the
linear demand case).
(4) Managerial insights. The key insights gleaned from

our analysis are the following: (a) the policy that maximizes

the time-average profits in the deterministic fluid model
invests in scarce capacity and operates the system at almost
full utilization, increasing prices and reducing demands if
backlogs grow large; (b) orders are sequenced according
to the greedy (c�) rule to minimize instantaneous holding
costs irrespective of the pricing decisions; (c) the sequenc-
ing and pricing decisions are decoupled after an initial tran-
sient period whose length is characterized, in the sense that
thereafter pricing decisions are made as a function of the
aggregate system workload, which does not depend on the
sequencing rule. The last two insights are characteristics
of the optimal policies in the fluid model formulation of
the joint pricing and sequencing problem. Together they
suggest a heuristic that sequences jobs according to the
c�-rule and prices according to the solution of a fluid con-
trol problem formulated in terms of the aggregate system
workload. The latter is simpler to solve and leads to intu-
itive policy recommendations. It also minimizes the amount
of information sharing between the production and pric-
ing functions of an organization, which is appealing from
the viewpoint of operationalizing these joint decisions. The
numerical results of §5.2 illustrate the effectiveness of these
heuristics when compared to the solution to the original
MDP formulation.
The remainder of this paper is structured as follows: This

section concludes with a brief literature review. Section 2
describes the model, §3 studies the associated fluid control
problem, and §4 studies its workload relaxation. Section 5
summarizes the key insights of our analysis and reports
some numerical results.

Literature Review. Our work is related to two bodies
of literature focusing on stochastic processing network the-
ory and revenue management, respectively. Standard text-
books on queuing networks provide some background on
single-server queues, and standard dynamic programming
textbooks, such as Bertsekas (1995), provide the necessary
background for the solution of the underlying MDP prob-
lem formulations. An early paper from Low (1974) stud-
ied a single-product, multiserver problem, and showed the
monotonicity of the optimal price policy and proposed an
iterative algorithm for computing it. This paper also con-
sidered linear holding costs as a surrogate for waiting-time
penalties incurred by the firm. The analysis in this paper
uses fluid model approximations for queues with state-
dependent parameters that were developed by Mandelbaum
and Pats (1995) for the case of exponential service times
and Poisson arrival streams. In part, this paper extends
their results by adding a control dimension to some of
their models. The use of fluid models for dynamic pricing
in manufacturing systems has been discussed in Kleywegt
(2001), while the literature on fluid models for purposes
of sequencing and routing control is large; see, e.g., Chen
and Yao (1993), Avram et al. (1995), Maglaras (2000),
and the references therein. Workload formulations arise in
stochastic network control problems that are considered in
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the context of their approximate Brownian model formula-
tions. This idea and its consequences in policy design have
been pioneered by the work of Harrison (1988, 2000) and
Harrison and Van Mieghem (1996). Workload fluid mod-
els were first introduced in Harrison (1995), while the use
of workload relaxations of fluid model control problems
involving sequencing, routing, and admission control were
proposed in Meyn (2001).
The work by Gallego and van Ryzin (1994, 1997), the

review papers by McGill and van Ryzin (1999), Bitran
and Caldentey (2003), and Elmaghraby and Keskinocak
(2003), and the book by Talluri and van Ryzin (2004)
provide background on pricing and revenue management.
Biller et al. (2002) discuss the dynamic pricing problem
in the context of the automotive industry, and provide a
deterministic, finite horizon analysis of the single-product
case. Some of the results in Maglaras and Meissner (2006)
that studied multiproduct revenue management problems
are used in §4. There are many papers that are tangen-
tially related to ours insofar as they too combine some
form of pricing with the analysis of production or inventory
systems. Mendelson and Whang (1990) and a stream of
related papers have focused on static pricing and sequenc-
ing control for social welfare optimization in a multiproduct
M/M/1 queue facing a market of heterogeneous price- and
delay-sensitive users. Afeche (2004) looks at a simplified
form of this model under a revenue-maximizing objective,
and provides a thorough review of static pricing papers in
queues, mostly under an atomistic customer demand model
(cf. comment at the end of §2). Chen and Frank (2000)
look at dynamic pricing for a single-productM/M/1 queue
using dynamic programming arguments, and Kalish (1983),
Kachani and Perakis (2002), and Kleywegt (2001) are
examples of papers that study dynamic pricing issues using
some form of fluid or diffusion model. Examples of papers
that include inventory control with some element of pricing
control decisions are Federgruen and Heching (1999) and
Chen and Simchi-Levi (2004a, b).

2. Model Formulation
Consider a single-server production facility (the firm) that
offers multiple products, indexed by i= 1� � � � � I , to a mar-
ket of price-sensitive users. It operates in a market with
imperfect competition, and has power to influence its vector
of demand rates by varying its price menu p. The demand
process is assumed to be an I-dimensional nonhomoge-
neous Poisson process with rate vector ��p
 determined
through a demand function that maps the price vector
into a vector of instantaneous demand rates, �� � → �,
where � ⊆ �I is the set of feasible price vectors, and
� = �x � 0� x = ��p
� p ∈ �� ⊆ �I+ is the set of achiev-
able demand rate vectors. Note that ��·
 only depends on
the time t through the price posted at that instance. We
assume that � is a convex set, the demand function ��·
 is
continuously differentiable and bounded, and (a) for each

product i, �i�p
 is strictly decreasing in pi, (b) for each
p−i = �p1� � � � � pi−1� pi+1� � � � � pI 
, there exists a null price
p	i �p−i
 ∈ � such that limpi→p	i �p−i
 �i�pi� p−i
 = 0, and
(c) the revenue rate p ·��p
=∑

i pi�i�p
 is bounded for all
p ∈� and has a finite maximizer. (For any two n-vectors,
x · y will denote their inner product.)
Under these assumptions, there exists an inverse demand

function p��
, p� � →�, that maps an achievable vector
of demand rates � into a corresponding vector of prices
p��
. Although, in general, this inverse mapping need not
be unique, it turns out that it is for common examples of
demand relations; see Talluri and van Ryzin (2004, §7.3.2).
Following a standard practice from revenue management,
we may then view the demand rate vector as the firm’s
control, and once this is determined derive the correspond-
ing prices using the inverse demand function. In this case,
the expected revenue rate will be denoted by r��
, where
r��
 = � · p��
� We will assume that r��
 is continuous,
bounded, and strictly concave, and denote its maximizer by
�† = argmax�r��
� � ∈��.
Infinite capacity buffers are associated with each product,

and Qi�t
 will denote the number of product i jobs in the
system (i.e., in queue or in service) at time t. Their service
times are i.i.d. exponentially distributed with mean mi (or
rate �i �= 1/mi). The load or traffic intensity of the system
when the demand vector is � is defined as � �=m · �� For
future use, we define the aggregate revenue function as the
maximum achievable revenue rate when all products jointly
consume capacity at rate �,

R����
=max
{
r��
� � ∈��

∑
i

�i/�i = �
}
� (1)

and denote by �r��
 the corresponding maximizer. We will
assume that �ri is nondecreasing in � for all products i. This
appears to be a mild assumption that is satisfied by many
commonly used demand models such as the linear, exponen-
tial, pareto, and multinomial logit, to list but a few examples.
From the properties of r�·
 it follows that R� · ��
 is con-
cave, bounded, and has a finite maximizer that we denote by
�† �= argmax�R����
� � = m · �� � ∈ �� = m ·�†. When
�† � 1, capacity is scarce in the sense that the revenue-
maximizing demand rates would make the system unstable,
whereas if �† < 1, the capacity is ample.

Example. The linear demand model is given by

�i�p
=�i− biipi−
∑
j 
=i
bijpj�

or in vector form ��p
 = � − Bp, where �i is the mar-
ket potential for product i and bii, bij are the price and
cross-price sensitivity parameters. The inverse demand and
revenue functions are p��
 = B−1�� − �
 and r��
 =
� · B−1��− �
, respectively. To ensure that these expres-
sions are well defined and satisfy our assumptions, we will
require that bii > 0, and either bii >

∑
j 
=i �bji� or bii >∑

j 
=i �bij � for all i. Both conditions relate to the marginal
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effect of price changes to individual and total demand, and
guarantee that B−1 exists and has eigenvalues with posi-
tive real parts (Horn and Johnson 1994, Theorem 6.1.10).
Finally, the aggregate revenue function defined through
(1) is

R��
=−!i�2 +"i�+#i for � ∈ $ri−1� ri
�
with 0 = r0 � r1 � r2 � · · · � rI , and the constants
�!i�"i� #i
 and ri depend on the model parameters �, B, �,
and are such that R��
 is continuous, almost everywhere
differentiable, and increasing for all �� �†. (The calcula-
tion of these constants is given in the appendix.)
The firm has discretion with respect to the sequenc-

ing of jobs at the server, and pricing decisions for each
product. Within each product, orders are processed in first-
in-first-out (FIFO), the server can only work on one job
at any given time, and preemptive-resume type of service
is allowed. Under these assumptions, a sequencing policy
takes the form of the I-dimensional cumulative allocation
process �T �t
� t � 0
 with T �0
= 0, where Ti�t
 denotes
the cumulative time that the server has allocated to class i
jobs up to time t. In addition, T �t
 is continuous and non-
decreasing, and satisfies the capacity constraint∑
i

Ti�t
−
∑
i

Ti�s
� t− s for 0� s � t <	� (2)

Let p�t
 be the vector of prices posted at time t and ��t

be the corresponding vector of demand rates. As mentioned
above, we will treat the demand rate vector as the control,
and infer the corresponding price vector via the inverse
demand function. The demand policy is the I-dimensional
process ���t
� t � 0
. Both T and � are restricted to be
nonanticipating controls; i.e., decisions at time t can only
depend on information that is available up to that time.
Finally, the firm incurs two types of cost. The first is a

linear congestion cost given by
∑
i ciQi�t
, where ci > 0

for all products. It either captures the weighted delay costs
incurred by all outstanding orders or—if appropriate—
some notion of cost associated with work-in-progress
inventory involved in production. The second is the cost
of operating a facility with processing capabilities equal
to �, which is h��
 per unit time, where h� �I+ → �+ is
a convex, strictly increasing in each of its arguments, dif-
ferentiable function. The processing capability vector � is
static, i.e., selected at time t = 0 and fixed thereafter.
The firm’s problem is to select the (static) capacity vec-

tor �, the sequencing policy T �·
, and the demand rates
��·
 to maximize the long-run average profit rate, viz

maximize lim
t→	

1
t
Ɛ

[∫ t

0
�r���s

− c ·Q�s

ds

]
−h��
� (3)

Remark 1. Let Ai�t
 be the number of product i orders
that have arrived up to time t. The firm’s problem is to
choose �, p�·
, T �·
 to maximize limt↑	�1/t
Ɛ$

∫ t
0 p�s
 ·

dA�s
− ∫ t
0 c ·Q�s
ds*− h��
. Using a standard result for

intensity control problems (see Brémaud 1980, §II.2), this
can be rewritten as (3). For stable, stationary Markov poli-
cies, i.e., demand rates that can be expressed in the form
��·
 = ��Q�·

, (3) reduces to the steady-state expected
profit criterion. We will not rigorously justify these points
because our subsequent analysis will not address (3) dir-
ectly but instead rely on the use of deterministic and con-
tinuous fluid model approximations.

Discussion of Modelling Assumptions. In terms of
probabilistic assumptions, the one regarding the Poisson
nature of the demand processes is important to be able to
justify the deterministic fluid models used in this paper as
rigorous limits under dynamic pricing policies; this uses the
results from Mandelbaum and Pats (1995). The assumption
on exponential service times could be extended to allow
for general distributions at little additional cost, by eas-
ily adjusting the asymptotic results in Mandelbaum and
Pats (1995). (The exponential service time assumption in
Mandelbaum and Pats was imposed because the service rate
was allowed to be state dependent; with constant service
rates—as in this paper—one can get the strong-law type
of limit for the service processes using renewal theory.)
Because we make use of the exponential assumption in the
numerical experiments, where we compare the performance
of our derived heuristics against the solution of the dynamic
program associated with (3), we will proceed under that
simplifying assumption. In any case, allowing for general
service time distributions would have no effect on the fluid
model analysis that disregards the second moment informa-
tion. As in most papers on pricing in queues and revenue
management, our model assumes that self-interested cus-
tomers decide whether to place an order based solely on the
price vector at the time of their arrival; i.e., they are strate-
gic in making purchase selections by explicitly or implicitly
optimizing some form of a personal utility function, but
they are not strategic in selecting the timing of their arrival
in response to the firm’s pricing strategy. This allows one to
address the firm’s pricing problem as an optimal intensity
control problem not involving a game-theoretic analysis;
see Lariviere and Van Mieghem (2004) for a discussion of
this point and a justification of the Poisson arrival process
assumption as the solution of such a game-theoretic anal-
ysis for a related model. Also, in our model the demand
relationship � captures the aggregate behavior of all poten-
tial customers. This is in contrast to more detailed models,
such as the one used by Mendelson (1985), Mendelson
and Whang (1990), and Van Mieghem (2000), that obtain
the demand rates through a customer-by-customer analysis
based on more primitive model elements such as personal
utility functions and price and delay sensitivity parameters.
Finally, because fluid models best capture the transient

behavior of the underlying system, it seems more natural to
consider an undiscounted criterion in the fluid model for-
mulation, which motivated the objective given above. An
alternate formulation could consider an infinite horizon dis-
counted profit criterion. Numerical tests showed that the
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fluid heuristics obtained for the undiscounted criterion in
§3–§4 performed well even when compared to the stochas-
tic dynamic programming solution for a discounted objec-
tive provided that the discount factors were moderate, i.e.,
where the time scale for discounting is long compared to
job service and interarrival times.

3. Analysis of the Associated Fluid
Model Control Problem

The control problem posed above could be addressed using
the theory of MDPs (if one restricts attention to exponen-
tially distributed service times), but this is both analyti-
cally and computationally hard due to the multidimensional
nature of the state space. The approach taken in this paper
relies on the associated fluid control problem that will be
developed below and studied over the next two sections.

3.1. Formulation of the Associated Fluid
Control Problem

The fluid model is derived by replacing the discrete and
stochastic demand and production processes by continu-
ous flows with the corresponding deterministic rates. It is
rigorously derived as a limit under a strong-law-of-large-
numbers type of scaling when we let the production rate
and demand grow proportionally large. This amounts to
embedding our problem in a sequence of systems with
model primitives that scale according to

�n�·
= n��·
� cn = c� and hn�n·
= nh�·
� (4)

These scaling relations imply that it is reasonable to also
grow the capacity proportionally to n according to �n =
n�, and would result in a problem where the various rev-
enue and cost contributions are all of the same order of
magnitude that is itself proportional to n. Scaling the ini-
tial condition according to Qn�0
 = nz, and studying the
limit of qn�t
 �=Qn�t
/n as the scaling parameter n grows
large, we get that qn�t
 converges to a continuous fluid
limit process denoted by q�t
.2

In the sequel, let M = diag��1� � � � ��I 
, and ui�t
 denote
the fraction of the server capacity dedicated to process-
ing an order of product i at time t; in the fluid model the
server is allowed to split its effort across different product
classes. The fluid model equations (see Mandelbaum and
Pats 1995) are

q�t
= z+
∫ t

0
��s
ds−M

∫ t

0
u�s
ds� q�0
= z� (5)

q�t
� 0� 0� ui�t
� 1�
∑
i

ui�t
� 1� ��t
 ∈�� (6)

Two other quantities of interest are the traffic intensity at
time t defined as ��t
 �=m ·��t
, and the server workload
w�t
 �=m ·q�t
, which is the amount of time needed for the

server to clear the current backlog disregarding any future
arrivals. For future reference, we note that

w�t
=w�0
+
∫ t

0
��s
ds− t+ I�t
� (7)

where w�0
 = m · z and I�t
 �= t − ∑
i

∫ t
0 ui�s
ds is the

cumulative server idleness up to time t.
In the spirit of (3), it is natural to consider maximizing

the time-average profit criterion

lim
t→	

1
t

[∫ t

0
�r���s

− c · q�s

ds

]
−h��
� (8)

In considering this problem, we will also restrict attention
to controls �, u that are right-continuous functions with
left limits (RCLL) and are nonanticipating, i.e., decisions at
time t can only use information that has been made avail-
able up to that time, which we summarize below:

��t
� u�t
 are nonanticipating and RCLL for t � 0� (9)

The next theorem shows that this criterion is useful in
selecting the optimal capacity vector �, but, as its proof
highlights, is too coarse to identify “good” pricing and
sequencing policies. The latter is addressed in a more
“refined” formulation given in (13).

Theorem 1. Consider the problem of maximizing (8) over
�, ��·
 and u�·
 subject to the fluid model equations (5)–(6)
and (9). Then, the optimal time-average profit rate is �/
defined by

�/ �=max
���

{
r��
−h��
� �∈��∑

i

�i

/
�i�1� �>0

}
� (10)

while the optimal capacity vector 
� is the associated opti-
mizer, which is unique.

Proof. Step 1. We demonstrate a feasible control for this
problem with finite average profit rate. Pick any vector �
and consider the policy: ��t
= 0 and u�t
 is any nonidling
rule (i.e.,

∑
i ui�t
= 1) for t �w�0
; and,

��t
= �̂��
 �= argmax
�

{
r��
� � ∈��

∑
i

�i/�i � 1
}
�

and u�t
=M−1��t
 for all t > w�0
. From (5), it follows
that under that policy q�t
 = 0 for all t � w�0
, and that
limt→	�1/t


∫ t
0 �r���s

− c · q�s

ds − h��
= r��̂��

−

h��
, which is finite.
Step 2. We show that any optimal control must satisfy

the stability condition

lim sup
t→	

1
t

∫ t

0
��s
ds � 1� (11)

Suppose for some converging subsequence,

lim sup
t→	

�1/t

∫ t

0
��s
ds > 1�

Then, from (7) we get that w�t
 → 	 and q�t
 → 	
as t → 	. Because r��
 is bounded, it follows that
lim supt→	�1/t


∫ t
0 �r���s

− c · q�s

ds = −	, which is

suboptimal. By contradiction, we establish (11).
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Step 3. Assume � > 0 (because otherwise ��t
 = 0 for
all t � 0) such that ��·
 is well defined. Recall the definition
of R��
 in (1) and note that

1
t

∫ t

0
�r���s

− c · q�s

ds−h��


�
1
t

∫ t

0
r���s

ds−h��


�
1
t

∫ t

0
R���s

ds−h��


�R

(
1
t

∫ t

0
��s
ds

)
−h��


� �/�

The first inequality follows the fact that q�t
 � 0, the
second from the definition of R�·
, the third from Jensen’s
inequality, and the last one by noting that (10) can be
rewritten as max������R��
 − h��
� � ∈ ��

∑
i �i/�i =

�� �� 1� �� 0�, where the constraint �� 1 is needed due
to (11), and

∑
i �i/�i � 1 is convex in ����
 for ���� 0.

The control specified in Step 1 for �= 
� achieves the upper
bound �/. Finally, the concavity of r��
−h��
 implies the
uniqueness of 
�, which completes the proof. �

Hereafter we will fix the capacity vector to 
� defined via
(10), but to simplify notation we will denote it by � and
use �̂ in place of �̂� 
�
. We also relabel the products such
that

c1�1 � c2�2 � · · ·� cI�I � (12)

The structure of (10) and the assumptions on r�·
 and h�·

imply the following:

Corollary 1. The capacity is scarce in the sense that
(i) m · �̂= 1 and (ii) �̂� �†.

It is worth remarking that this fluid model analysis will
invest in zero processing capacity if the marginal revenue
rate at �= 0 is smaller than the marginal cost of capacity
at �= 0. This was also observed in the numerical results
of §5.
While this criterion is useful in optimizing over the opti-

mal level of production capacity, it is too coarse to use in
the fluid model to construct good pricing and sequencing
policies for the underlying multiproduct revenue manage-
ment problem. Indeed, any control ���u
 that drains the
queue and then uses ��̂� 
u
 thereafter is optimal for the
time-average criterion because the transient phase until
the queue is emptied is washed out of the objective. Instead,
we will consider the total profit criterion∫ 	

0
�r̃���t

− c · q�t

dt� (13)

where r̃ ��
 = r��
 − r��̂
. (The capacity has been opti-
mized via the time-average problem, and its associated cost

need not be included in this formulation. Note that includ-
ing it in the total profit criterion could result in a different
optimum for �, but this would no longer be optimal for
the higher-order criterion given in (8).) Total profit criteria
are common in fluid model control problems in the litera-
ture because they emphasize the transient system behavior,
which is well captured through the fluid equations. The
remainder of this section will study the problem of maxi-
mizing (13) over ���u
 subject to the fluid model equations
(5)–(6) and (9).

3.2. Characterization of the Fluid Optimal
Controls

I. Preliminary Structural Results. The first result estab-
lishes that good control policies must be “stable” in that
they eventually empty the queue-length vector, and that
there exists an optimal solution. Restricting attention to
such policies, we can then characterize the optimal one as
the solution to the associated Bellman equation.

Proposition 1. Consider the problem of maximizing (13)
over ��·
 and u�·
 subject to (5)–(6) and (9). Then: (i) it
suffices to restrict attention to controls under which q�t
→
0 as t→	, and (ii) there exists an optimal pair ��∗� u∗

and an associated trajectory q∗ in the sense that

∫ 	

0
�r̃��∗�t

− c · q∗�t

dt �

∫ 	

0
�r̃���t

− c · q�t

dt�

where ���u
 is any other feasible control and q is the asso-
ciated trajectory.

The proof is relegated to the appendix. To facilitate anal-
ysis and the numerical computations that will follow, we
will restrict attention to queue lengths that lie in a large but
bounded domain. In detail, assuming that each queue is no
greater than a large constant N , we will express the set of
possible queue-length vectors by � �= �q � 0� m · q �Nw�,
where Nw = m · N . That is, we express the domain as a
function of the aggregate workload m · q as opposed to
the individual queue lengths, because as it will turn out
the workload is nonincreasing, whereas the queue lengths
are not. For concreteness, we will enforce this condition
by imposing the constraint that ��t
� �̂ if m · q�t
= Nw;
we will show at the end of this subsection that this con-
dition is never invoked, and therefore does not change the
structure of the optimal policy; see the remark following
Proposition 5.
Next, we proceed with an informal derivation of the

Bellman equation associated with (13) that characterizes
the optimal policy. Let V �q
 denote the optimal profit
extracted under (13) starting from q ∈ �. The existence of
this function follows from Proposition 1. The next proposi-
tion summarizes the main structural properties of the value
function that are used in subsequent analysis. The proof is
given in the appendix.



Maglaras: Revenue Management for a Multiclass Single-Server Queue via a Fluid Model Analysis
920 Operations Research 54(5), pp. 914–932, © 2006 INFORMS

Proposition 2. Let V �q
 denote the optimal profit ex-
tracted under (13) starting from q ∈ �. Then: (i) for all
q ∈ �, −	<V �q
� 0, and V �0
= 0; (ii) V �·
 is Lipschitz
continuous, and therefore it is almost everywhere (a.e.) dif-
ferentiable; (iii) V �·
 is concave; and (iv) 2V �z
� 2V �0

for all z� 0 (componentwise).

Using the definition of V �·
 and its a.e. differentiability,
a standard dynamic programming argument gives that

V �q�t

= max
�∈�� u∈��q


$�r̃��
− c · q�t

3t+V �q�t


+2V �q�t

 · ��−Mu
3t*+ o�3t
�

which leads to the Bellman equation

c · q = max
�∈�� u∈��q


$r̃��
+2V �q
 · ��−Mu
*
∀q ∈ � and V �0
= 0� (14)

where ��q
 = �u� 0 � u � 1,
∑
i ui � 1, �j − �juj � 0

∀ j s.t. qj = 0�. (The last set of constraints ensures that
q�t
� 0.) Let �∗, u∗ denote the maximizers in (14).

Proposition 3. Consider the problem of maximizing (13)
subject to (5)–(6) and (9). Let q∗�t
 denote the queue-
length trajectory under ��∗� u∗
 defined through (14).
Then, ��∗� u∗
 is optimal in the sense that for any q�0
=
z ∈ � and any feasible ���u
 under which q�t
→ 0 as
t→	,

V �z
=
∫ 	

0

(
r̃ ��∗�t

− c · q∗�t
)dt

�

∫ 	

0

(
r̃ ���t

− c · q�t
)dt�

Proof. From (5), we have that dq�t
/dt = ��t
−Mu�t

a.e., and the definition of the Bellman equation gives that

0� r̃ ���t

− c · q�t
+2V �q�t

 · ���t
−Mu�t


∀ t � 0� (15)

Integrating (15) over t, we get that∫ t

0

(
r̃ ���s

− c · q�s
)ds �−

∫ t

0
dV �q�s



= V �z
−V �q�t

� (16)

Letting t→	 and using the facts that q�t
→ 0, V �0
= 0,
and V �·
 is continuous, we conclude that for all z � 0,
V �z
 �

∫ 	
0 �r̃���t

 − c · q�t

dt. To complete the proof

we need to show that V �z
 is indeed the total profit under
��∗� u∗
. Because (16) holds with equality under �∗� u∗, it
suffices to show that q∗�t
→ 0 as t→ 	. We argue by
contradiction. Suppose that lim supt q

∗�t
= q	 
= 0. Then,
this implies that lim supt V �q

∗�t

= V �q	
 < 0, and there-
fore that

∫ 	
0 �r̃��

∗�t

− c · q∗�t

dt > V �z
 >−	. On the
other hand, from Proposition 1, if q∗�t
 
→ 0 as t→	, then∫ 	
0 �r̃���t

− c · q�t

dt = −	, which leads to a contra-
diction. Hence, q∗�t
→ 0 and consequently V �q∗�t

→ 0
as t→	, which completes the proof. �

II. Characterization of Optimal Sequencing and Pricing
Policies. Using the characterization of the optimal controls
in terms of the Bellman equation given in (14), we will
next show the following properties for the optimal policies:
(a) sequencing decisions are made according to the c�-rule,
and (b) the demand vector is bounded above by �̂.

Proposition 4. Fix any demand rate trajectory ��t
 for
t � 0. Then, the c�-rule defined by

u∗�t
= argmax
{∑

i

�ci�i
ui� u� 0�
∑
i

ui � 1�

�j�t
−�juj�0 ∀j s.t. qj�t
=0
}
� (17)

is pathwise optimal in that c · q∗�t
� c · q�t
 for all t � 0,
where q∗�t
 and q�t
 denote the queue-length trajecto-
ries under u∗�t
 and any other feasible allocation u�t
,
respectively.

Sketch of Proof. The proof follows along the lines of
Avram et al. (1995, §4.1) using the associated Hamilto-
nian formulation; the extension to an infinite horizon is
done along the lines of Seierstad and Sydsaeter (1987,
§§6.5–6.6). See also Chen and Yao (1993, §3). �

A consequence of Proposition 4 is that 2V �0
i�i is non-
increasing in i. This is established as follows. For zi =
ei ·�w�i
, where ei is the ith unit vector and w > 0 is small,
let �i�·
 be the optimal demand vector trajectory starting
from that initial condition and qi�t
 be the corresponding
queue-length trajectory under �i and the c�-rule. Then, for
j < i,

V �zj
�
∫ 	

0
�r̃��i�t

− c · qj�t

dt

�

∫ 	

0
�r̃��i�t

− c · qi�t

dt = V �zi
�

where the first inequality follows because �i�·
 need not be
optimal starting from zj , and the second can be established
using the properties of the c�-rule (e.g., using an induction
argument on the number of classes). For small w, we also
have that V �zi
 = V �0
 + 2V �0
i�w�i
 + O�w2
, which
together with the above inequality can be used to obtain
the desired result.
The next result establishes that the optimal demand rate

is upper bounded by �∗�0
= �̂. The proof is given in the
appendix.

Proposition 5. The optimal demand rates �∗�q
 defined
via (14) satisfy �∗�q
� �̂ for all q � 0.

A consequence of this last result is that the aggregate
load into the system at any time t is �∗�t
=m ·�∗�t
� 1.
Using (7), this implies that the workload in the system is
nonincreasing in time, and, in turn, that if q�0
 ∈ �, then
q�t
 ∈ � for all t � 0. As a result, the solution of the fluid
optimal control problem enforces the exogenous constraint
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imposed on the behavior of the system when it reaches
the boundary of �, and moreover the optimal control does
not depend on the size of the set �, as measured by the
parameter Nw.
Both of the properties derived in the last two proposi-

tions are exploited in the next section to characterize the
evolution of an optimally controlled system, and to propose
an appropriately constructed one-dimensional relaxation to
the fluid control problem. They are also helpful in numeri-
cally computing the optimal demand rates �∗�q
.
III. Comments on Computing the Optimal Pricing Policy.

Despite the simple structure of this fluid control problem,
it is still not solvable in closed form, and one has to resort
to numerical optimization techniques to compute the opti-
mal pricing strategy. The simplest way to do so would be
to discretize over time and solve a tractable concave max-
imization problem. Specifically, the objective comprises of
the concave revenue term minus the linear holding cost
for each time period. The fluid model dynamics are cap-
tured through a set of linear equality constraints of the form
q�t + 1
 = q�t
 + ��t
 − Mu�t
, where t is now a dis-
crete index. Additional constraints for the allocation rule
are that u�t
� 0 and

∑
i u�t
� 1, for the demand rates that

��t
 ∈�, and for the state that q�t
 � 0. The complexity
of this problem grows with the number of products and the
number of time periods. Instances of modest size with tens
of products and a few hundred time periods that result in
a few thousand variables and constraints can be computa-
tionally tractable for commonly used demand models such
as the linear, exponential, and isoelastic ones.

4. State-Space Collapse and a One-
Dimensional Workload Relaxation of
the Fluid Model Profit Maximization
Problem

The structural properties of the fluid optimal sequenc-
ing and pricing policies have one important implication
about the optimal system behavior that we show in The-
orem 2: The optimal queue-length trajectory couples in
finite time with a trajectory that holds all of its workload
in the “cheapest” product class, and subsequently evolves
as the optimal solution to an appropriately defined single-
product problem. Motivated by this state-space collapse
property, we subsequently propose and analyze a relaxation
to the fluid pricing problem that is based on its one-
dimensional workload rather than the I-dimensional queue-
length vector.

4.1. Fluid-Scale State-Space Collapse

We first introduce some useful notation. For any workload
position w� 0, we define

7�w
= argmin�c · q� q � 0� m · q =w�
= $w�1�0� � � � �0* (18)

to be the queue-length vector that holds workload w and
has minimum cost. For the linear holding cost structure of
our model, this corresponds to keeping all the workload
into the “cheapest” and lowest-priority class, which by our
labelling convention is Class 1; i.e., c ·7�w
= c1�1w.

Theorem 2. Let q∗�t
 denote the optimal trajectory for
the problem of maximizing (13) subject to (5)–(6). Then,
for any z � 0, q∗�t
 = 7�m · q∗�t

 for all t � T �z
 �=
�1�

∑
i>1mizi
/�̂1.

Proof. From Propositions 4 and 5, we know that q∗�t
 is
the trajectory under the c�-rule with �∗�t
 � �̂ for all t.
Consider any z� 0 with initial workload w�0
=m · z, and
note that the lowest priority class is not served until all
high-priority classes have been drained, i.e., u∗1�t
= 0 for
all t � 8 , where 8 = inf�t � 0� qi�t
 = 0 ∀ i > 1�. Now,
the high-priority class queue lengths q∗i �t
 for i= 2� � � � � I
are upper bounded by the queue length of an �I − 1
-
class queue with initial condition q̄�0
= $z2� z3� � � � � zI * and
��t
= �̂. The latter system has traffic intensity 1− �̂1/�1,
and drains its initial workload in T �z
=�1�

∑
i>1mizi
/�̂1

time under any nonidling sequencing rule (i.e.,
∑
i ui�t
= 1

if q̄�t
 
= 0). Moreover, q̄�t
= 0 for all t � T �z
. It follows
that 8 � T �z
 and q∗i �t
= 0 for all i > 1 and t � T �z
. This
completes the proof. �

The dynamics of the optimally controlled multiclass fluid
queue for t � 8 are given by

ẇ∗�t
=−1+�∗�t
 and q∗�t
=7�w∗�t

 (19)

with �∗�t
=m ·�∗�t
. That is, the queue length evolves on
the hyperplane defined through q = 7�m · q
, or in other
words, the state space has effectively “collapsed” to that of
the one-dimensional workload process. Given Theorem 2
and the definition of R��
, it is easy to see that for all
t � 8 , the profit maximization problem posed through (13)
reduces to that of maximizing

∫ 	

8
$ �R���t

− c1�1w�t
*dt�

subject to (19) and where �R��
 �=R��
−R�1
 is analogous
to the definition of r̃ �·
. The state of this problem is the
one-dimensional workload w�t
, and the control is the one-
dimensional aggregate capacity consumption rate ��t
. The
aggregate control is mapped to product level demand rates
(and thus prices) using the mapping �r defined through (1),
which selects the demand rate vector that maximizes the
instantaneous revenue rate subject to the constraint m ·�=
��t
. The workload is mapped to a queue-length vector
through the mapping 7�w
. Optimizing the total system
profits for t � 8 is a one-dimensional control problem,
which is much simpler analytically and computationally
than the multidimensional (queue-length) formulation that
one started with.
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4.2. The Workload Relaxation of the Fluid
Pricing Problem

Workload formulations of network control problems have
been used extensively in the context of heavy-traffic theory,
where they emerge naturally as equivalent formulations to
the approximating Brownian control problem formulations;
see Harrison (1988, 2000) and Harrison and Van Mieghem
(1996). Roughly speaking, Brownian approximations are
derived in a way that involves a compression of time that
makes the initial transient period of length T �z
 negligible,
and where the queue length can be shown to always evolve
on that minimum cost manifold, q = 7�m · q
. Motivated
by these results, Meyn (2001) recently proposed to use
such workload relaxations to fluid model network control
problems involving sequencing and routing control, implic-
itly disregarding this short initial transient period where the
queue length is not on that efficient configuration. In this
paper, we extend Meyn’s idea to incorporate the dynamic
pricing element, and propose a workload relaxation to our
profit maximization problem. The sequencing decisions are
greedy (as shown in Proposition 4), and are suppressed in
this model posed directly in terms of the aggregate work-
load process for the appropriate cost parameter. The latter
is partially justified by Theorem 2.
Specifically, we propose the following relaxation to the

fluid control problem posed through (13) and (5)–(6):
Choose the load ��t
 for t � 0 to

maximize
∫ 	

0
� �R���t

− 9w�t

dt (20)

subject to (7), which describes the workload dynamics, the
control constraint

0� ��t
� �max� where

�max �=max��� �=m ·�� � ∈���
(21)

and 9 �= mini ci�i. This is equivalent to the queue-length
formulation of (13) and (5)–(6) if the queue starts at a min-
imum cost configuration z=7�m · z
, because in that case
q∗�·
= 7�m · q∗�·

. On the contrary, if z 
= 7�m · z
, (20)
is only an approximation to (13) for some initial transient
period of length no more than T �z
, where the queue length
reaches a minimum cost state. Maximizing (20) subject to
(7) and (21) is a single-product problem for the revenue
function R��
 and the holding cost rate 9 . It is much easier
to analyze, often in closed form, and the numerical results
of the next section will illustrate that it generates heuristics
with very good performance. Moreover, its solution trans-
lates into easily implementable policies for the underlying
multiproduct profit maximization problem by: (a) orders
are sequenced according to the c�-rule, and (b) products
are priced to induce the demand rates ��t
= �r���t

.
The remainder of this section studies the single-product

workload relaxation. We use the notation �V for the associ-
ated value function and �̄�w
 for its optimal control. Our
first result specializes the findings of Propositions 2 and 5
to the single-product case.

Theorem 3. Consider the problem of maximizing (20)
subject to (7) and (21), and let �V �w
 denote the associ-
ated value function starting from an initial workload posi-
tion w. Then: (i) �V �·
 is concave and nonincreasing in w,
and (ii) �̄�w
 is nonincreasing in w.

Proof. The concavity follows from Proposition 2. Con-
sider two initial conditions w1 >w2, and denote by �w1�t
,
�w2�t
 the associated optimal trajectories. Let 8 = inf�t � 0:
�w1�t
 = �w2�0
�, which is well defined and finite because
from Proposition 1, �w1�t
→ 0 as t→	. Then,

�V �w1
=
∫ 8

0
� �R���t

− 9w�t

dt+ �V �w2
�

Because w1 > w2, it follows that
∫ 8
0 �

∗�s
ds < 8 , which
implies from the concavity of �R that

∫ 8

0

�R���s

ds � 8 �R
(
1
8

∫ 8

0
��s
ds

)
� 0�

and therefore that �V �w1
� �V �w2
. This proves property (i).
To prove part (ii), we note that from Proposition 2 we get

that �V is Lipschitz continuous, and therefore a.e. differen-
tiable. This implies that part (i) can be restated as �V ′�w
�
0 and is nonincreasing in w. Adapting (14), we get that the
Bellman equation for the workload control problem is

9w=max
�� y
$ �R��
+ �V ′�w
��− y
*� (22)

where the maximization is over � ∈ $0� �max* and y ∈ $0�1*;
y�t
 is interpreted as the total effort exerted by the server
on all product classes, i.e., y�t
=∑

i ui�t
. As in Proposi-
tion 2, it is easy to show that �̄�0
 = 
� = m · �̂, and that
y�w
= 1 for all w � 0. Using the properties of �R and the
nonincreasing nature of �V ′�w
, we readily conclude that
�̄�w
 is nonincreasing in w and complete the proof. �

An interesting issue that arises is to compare the time it
takes until state-space collapse is achieved, with the time
it takes for the entire system to drain, which itself fol-
lows from Proposition 1. We have been unable to get a
crisp characterization or bound for the relation between
the two, however, a back-of-the-envelope analysis shows
that the difference can be significant. Specifically, the rate
at which the system is drifting towards the state-space
collapse position is 1 − �−1�t
 � �̂1/�1, where �−1�t
 =
��t
− �r1���t

/�1 is the aggregate load due to products
i = 2� � � � � I . Similarly, the rate at which the system is
drained is 1− ��t
. The time taken to reach each of these
two states is inversely proportional to these loads. Sup-
pose, for example, that the average values along the optimal
workload trajectory for ��t
 and �−1�t
 are 0�95 and 0�75,
respectively (i.e., Product 1 demand consumed 20% of the
system’s processing capacity). Then, the time required to
drain the system would be five times longer than the time
needed to achieve state-space collapse. This simple exam-
ple illustrates that the relative difference between these two
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quantities is likely to be significant when it is optimal to
price in a way that Product 1 consumes a significant portion
of the system’s processing capacity, and where the hold-
ing cost parameters are such that the average load over the
optimal trajectory is high.
The monotonicity of �̄�w
 implies that the product-level

demands have a nested structure.

Corollary 2. Let ��w
 = �i� �ri ��̄�w

 > 0� be the set
of products offered when the workload is w � 0. Then,
��w
⊇��w+ x
 for all w�x� 0.

Proof. This is a direct consequence of the fact that �̄�w

is nonincreasing in w and (by assumption) �ri ��
 is nonde-
creasing in �. �

The last result has important practical implications in
terms of the optimal set of product offerings at increas-
ing levels of congestion as measured by the aggregate sys-
tem workload. Specifically, according to the solution to the
workload fluid model pricing problem, the firm will offer
products in a nested structure, by tactically removing the
ones that become not profitable as congestion increases and
the target aggregate capacity consumption �̄�w
 decreases;
once a product is removed, it is never reintroduced at higher
levels of congestion.
Finally, R′��̄�w

 is interpreted as the marginal—or

opportunity—cost of additional work arriving when the
workload is equal to w. Often the simple structure of the
workload formulation can be exploited to solve this pricing
problem in closed form. Even if that is not possible depend-
ing on the form of the demand model, this one-dimensional
problem is much simpler to tackle numerically using the
discretization approach mentioned earlier in comparison to
the multiproduct formulation.

4.3. Closed-Form Solution of Workload
Formulation for the Linear Demand Model

The linear demand model is often used in practice due to its
simple and intuitive structure, its tractability when embed-
ded in mathematical optimization formulations of revenue
management problems, and the fact that its parametric form
is suitable for statistical estimation. This subsection pro-
vides a closed-form solution to the workload relaxation for
the case of the linear demand model.
Recall from the description in §2 that the linear demand

model is of the form ��p
=�−Bp, and its revenue func-
tion is r��
= � ·B−1��−�
. Its associated aggregate rev-
enue function R��
 is defined through (1) and is shown in
the appendix that it can be expressed as

R��
=−!i�2 +"i�+#i for � ∈ $ri−1� ri


for 0 = r0 � r1 � r2 � · · · � rI , and constants �!i�"i� #i

and ri that depend on the model parameters �, B, �, and
are such that R��
 is continuous, almost everywhere dif-
ferentiable, and increasing for all �� �†. The value of ri−1

is that of the smallest aggregate capacity consumption rate
above which it is optimal to start offering the i most prof-
itable products.
Recall that 9 �= mini ci�i. Starting with the Bellman

equation in (22) and expanding �R��
 into R��
−R�1
, we
get that for all w� 0,

�̄�w
= argmax
�

�R��
+ �V ′�w
�� 0� �� �max� (23)

and

R�1
+ 9w=R��̄�w

+ �V ′�w
��̄�w
− 1
� (24)

We will use the first expression to express �V ′�w
 in terms
of �̄�w
, and the second one to pointwise solve for �̄�w
 for
all w � 0. Specifically, the first-order optimality condition
for �̄�w
 is that R′��
=−�V ′�w
� which gives that at the
optimum and for some i ∈ $1�2� � � � � I*,
�V ′�w
= 2!i�̄�w
−"i� (25)

Using (24) and (25), we get that the optimal drift �̄�w

satisfies a quadratic equation of the form

!i�
2 − 2!i�+"i+#i−R�1
− 9w= 0�

the solution of which is that

��w
= 1−
√
9w

!i
+ 3i�

where 3i = �R�1
+!i−"i−#i
/!i�

The value of the index i above is implicitly determined such
that the solution ��w
 ∈ $ri−1� ri
. It is straightforward but
tedious to show that there is a unique value of i for which
this expression is consistent; i.e., if one computes ��w

through the above expression, taking the value of i as given,
then ��w
 is indeed in the interval $ri−1� ri
. This is cap-
tured in the following definition. First, for i= 1� � � � � I − 1,
define wi = !i!i+1�3i − 3i+1
/��!i − !i+1
9
 and w0 =
inf�w� 0� �̄�w
= 0�. Second, set

�̄�w
=
[
1−

√
9w

!i
+ 3i

]+
�

whenever w ∈ $wi�wi−1
� (26)

where this last expression has incorporated the implicit con-
straint that �� 0. Note that the wis are such that �̄�w
 is
continuous and decreasing in w, 0=wI �wI−1 � · · ·�w0,
and that 1 −√

9wi−1/!i+ 3i = ri. The optimality of this
control is established using the verification result of Propo-
sition 3 for the function

�V ′�w
=
{
2!i�̄�w
−"i� w ∈ $wi�wi−1
�
−R�1
− 9w� w�w0�
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Finally, �̄�w
 is disaggregated into product demands via the
mapping �r as follows:

�ri ��̄�w

=
�i
2

−:mibii
2

for i� î��̄�w

 and

�ri ��̄�w

= 0 otherwise�

where î��̄�w

 = max�i� �̄�w
 � ri−1� defines the set of
products the firm will offer, and

:=
( ∑
j�î��̄�w



mj�j − 2�̄�w

)( ∑

j�î��̄�w



m2
j bjj

)−1
�

a derivation of these expressions is given at the end of the
appendix. Finally, prices are inferred through the inverse
demand function.

5. Discussion and Numerical Results
The first part of this section offers a short summary of the
key insights gleaned from our analysis regarding the struc-
ture of the optimal pricing and sequencing policies. The
second part reports on a set of numerical results that com-
pare the pricing and sequencing heuristics extracted from
the fluid model analysis to the solution of the underlying
dynamic program, as well as the best static pricing policy.

5.1. Main Insights

The analysis of the two preceding sections leads to several
insights briefly discussed below.
(1) Invest in scarce capacity. If one assumes that the

demand model is known and it is stationary (as consid-
ered in this paper), then it is optimal in the fluid model
to invest in production capacity that is scarce. That is,
the demand vector that would maximize the instantaneous
revenues in the absence of the capacity constraint would
make the system unstable. This is intuitive because the rev-
enue function is concave and the capacity cost is convex,
making marginal revenue contribution close to the revenue-
maximizing demand vector small compared to the marginal
cost of the extra capacity needed to cope with that demand.
(2) High resource utilization and congestion pricing.

Operationally, this choice of capacity vector induces the
firm to operate its processing resources at close to full uti-
lization, moderating excess backlogs through a (dynamic)
increase in one or more prices. This behavior was estab-
lished under the optimal fluid control policy, but was
numerically observed to also hold under the optimal con-
trol of the MDP formulation associated with the original
problem of §2.
(3) Nested pricing policy. As the system backlog grows

large, under the fluid optimal pricing policy the firm
increases prices in a way that effectively removes prod-
ucts from the market in a nested fashion, according to their
marginal revenue contribution.

(4) Sequencing and pricing decisions decouple. These
two elements of control are essentially decoupled in the
fluid control formulation insofar as sequencing is done
according to the greedy c�-rule independent of the pric-
ing decisions, and pricing eventually depends only on the
system workload rather than the individual queue lengths,
which are themselves insensitive to the choice of the
sequencing rule.
(5) Pricing as function of workload. A reasonable relax-

ation to the original problem is to sequence jobs using
the greedy policy and price according to the solution of a
fluid control problem formulated in terms of the aggregate
system workload, which is simpler to solve and leads to
intuitively appealing policies. It is also practical to imple-
ment because it only requires modest information sharing
between the pricing and production functions of an organi-
zation. The numerical results that follow illustrate the effec-
tiveness of this heuristic when compared to the solution to
the original MDP formulation, as well as to the optimal
static pricing policies.
(6) Workload relaxations of revenue management prob-

lems. A generalization of the last few remarks suggests the
use of workload relaxations for revenue management of
make-to-order systems. While workload fluid models are
essentially heuristically derived because fluid-scale state-
space collapse results similar to that of Theorem 2 offer
only partial support for their validity, they seem to capture
some of the essential elements of the underlying pricing
and operational control problems while maintaining a fair
amount of tractability. (Further justification can be obtained
through a diffusion analysis, by adopting the arguments of
Harrison and Van Mieghem 1996 to systems with dynamic
pricing (drift) control capability.) Finally, workload fluid
model relaxations lead to practically implementable solu-
tions with modest coordination requirements between the
pricing and production functions based on the aggregated
workload information.

5.2. Implementable Heuristics and Numerical
Results

We conclude with a numerical study of the performance of
the capacity choice, pricing, and sequencing policies that are
extracted via the fluid model analysis. Conceptually, this can
be separated into two issues: (a) How good are the heuristics
that are derived from analysis of fluid model profit max-
imization formulations, and (b) what is the impact of the
workload relaxation on the performance of these heuristics.
This subsection is split into two parts, focusing on single-
product and two-product problems, respectively, that effec-
tively address these issues in sequence.

Implementation of the Fluid Heuristics. The preced-
ing analysis has culminated in two heuristics that are based
on the solution of the (multidimensional) fluid control profit
maximization problem of §3 and its workload relaxation of
§4, respectively. This section studies the performance of the
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pricing rule extracted from the workload relaxation, which
is summarized through the aggregate control �̄�w
 and is
mapped to a vector of demand rates through �r��̄�w

.
Instead of selecting the price vector that maps into this vec-
tor of demands, we propose to introduce a small tunable
parameter ; ∈� and price to induce the demand vector

��w
= �r��̄�w
+ ;
� (27)

i.e., we propose to use the state-dependent control as
extracted from the workload fluid model formulation, but
perturb its aggregate decision �̄�w
 by a constant shift
; that tries to correct for some of the idealizations of
the deterministic fluid model. This leaves the shape and
structure of the proposed control unchanged, as computed
through the fluid model analysis. Its use is fairly econom-
ical in the sense that it uses a single parameter to perturb
the aggregated control decision, and use the mapping from
� to �s to disaggregate its effect to the multiple products
in a way that exploits the structure of the proposed pol-
icy. Finally, the magnitude of this adjustment is “small”
in comparison to the dynamic component �̄�w
, and one
would expect that in the asymptotic regime sketched in
§3.1 it is of order o�1
—i.e., ;n→ 0 as n→	 in the con-
text of (4), making the resulting shifts to the demand rates
to be of order o�n
, while the demand rates themselves
are of order n. Similar adjustments to static fluid prices
have appeared in other papers, and were either heuristi-
cally proposed as in Gallego and van Ryzin (1994) for the
perishable, single-product revenue maximization problem,
or analytically derived as in Maglaras and Zeevi (2003) in
the context of optimal static pricing for a single-product
stochastic service system.
This tunable parameter is selected either numerically or

through simulation. For example, for the single-product
problem with Markovian assumptions, it is straightforward
to compute the steady-state profit rate under the state-
dependent demand policy ��Q
 defined through (27) and
numerically optimize over ;. A similar calculation is pos-
sible but tedious for the multiproduct case, where a simu-
lation-based optimization approach may be more suitable.
The latter can also be used if the service times follow gen-
eral distributions.

Single-Product Problems. This first part studies the cap-
acity investment decision under different policies, as well

Table 1. Profit rate and capacity investment under a linear demand model: ��p
= 20− 4 ·p.
MDP FM FM(;∗) Static Static+Adm.

c�h Ɛ/ � Gap (%) � Gap (%) � Gap (%) � Gap (%) �

0�1�0�5 19�1 9�7 1.6 9.0 0�04 9�7 0.8 10�1 0.8 10�1
0�5�0�5 17�5 11�0 3.7 9.0 0�50 10�6 1.3 11�7 1.2 11�5
0�1�1 14�6 8�2 3.8 8.0 0�10 8�2 2.6 8�6 2.4 8�6
0�5�1 12�6 8�6 5.2 8.0 0�10 8�8 4.5 9�4 3.9 9�2

as the relative performance of the fluid pricing heuris-
tics against the solution of the “MDP” formulation associ-
ated with the problem of maximizing (3) described in §2.
“FM(0)” refers to a direct implementation of the fluid con-
trol law �f �Q
, i.e., with ;= 0, while “FM(;∗)” is the fluid
policy with the optimally tuned parameter ;∗. These three
dynamic pricing policies will also be compared to “Static,”
the optimal static pricing policy without admission con-
trol, and “Static+Adm.,” which refers to the optimal static
price with admission control. The two static-price systems
behave like M/M/1 and M/M/1/K queues, respectively.
(1) Performance with optimized capacity. Table 1 com-

pares the capacity choices and profit rates under these five
candidate policies in a single-product model with a linear
demand function and linear cost of capacity.3 We make a
few observations:

(a) The fluid pricing heuristics outperform the static
pricing policies by 0.5%–5%, while admission control adds
up to 1% to the profit rate achieved under a static pricing
policy. Such performance gains have significant impact to
the firm’s profitability.

(b) The capacity under the FM(0) policy is computed
through (10), and seems to systematically underestimate the
ones under the MDP and FM(;∗) policies that were both
computed through a numerical search.

(c) The suboptimality gaps increased as the holding
cost parameter c grew larger, and the optimal capacity
level � decreased as a function of its cost parameter h.
Note that for large h, it may become unprofitable to oper-
ate the firm, i.e., the optimal capacity investment is �= 0.
For example, according to (10), the firm would not invest
in processing capacity if r ′�0
� h.

(d) The expected traffic intensity in all these test cases
ranged from 0.70 to 0.95 (see also Table 2).
(2) Performance comparison with common capacity.

Table 2 compares the profit rate under these policies operat-
ing under a common value of processing capacity that was
computed based on our fluid model analysis using (10).
This isolates the performance effect of the pricing deci-
sion under each candidate policy. Our results show that
the relative advantage of the fluid heuristics over the static
pricing policies increases when considered under a com-
mon capacity choice. In addition, as the price sensitivity
parameter gets large (in the lower half of this table), the
performance gain due to dynamic pricing increases and the
gaps between the fluid and static heuristics widen, and also



Maglaras: Revenue Management for a Multiclass Single-Server Queue via a Fluid Model Analysis
926 Operations Research 54(5), pp. 914–932, © 2006 INFORMS

Table 2. Performance comparison with common capacity selected using (10).

MDP FM(0) FM(;∗) Static Static+Adm.

��b c�h Ɛ/ � Gap (%) � Gap (%) � Gap (%) � Gap (%) �

20�4 0�1�0�5 19�0 0.93 1�2 0.87 0�04 0.93 1�5 0.90 1�4 0.90
0�5�0�5 17�3 0.86 1�6 0.79 0�20 0.85 3�4 0.80 2�8 0.83
0�1�1 14�6 0.96 3�8 0.86 0�10 0.95 3�1 0.90 2�8 0.92
0�5�1 12�5 0.88 4�7 0.78 0�30 0.86 6�3 0.81 4�8 0.86

20�8 0�1�0�5 7�0 0.93 4�2 0.83 0�20 0.92 4�2 0.87 3�6 0.90
0�5�0�5 5�5 0.83 5�0 0.73 0�50 0.82 9�2 0.75 6�3 0.81
0�1�1 3�5 0.96 19�7 0.80 5�80 0.88 13�7 0.88 9�6 0.96
0�5�1 1�9 0.87 33�1 0.69 11�80 0.77 37�5 0.75 21�9 0.84

the gap between the MDP policy and all other heuristics
grows larger. This is due to the fact that as the price sensi-
tivity parameter increases, the revenue rates decrease sub-
stantially (c.f., r��
= ���− �
/b), indirectly making the
holding cost term more significant. Indeed, close inspec-
tion of the optimal policy shows that in such cases the firm
operates the system with very few jobs in the queue, where
the nature of the static heuristics and the idealizations of the
fluid approximations become more pronounced. In general,
the accuracy of the fluid heuristics improved as the “size”
of the system as measured by the potential demand � and
processing capacity � grew larger, which is consistent with
the scaling given in (4). Intuitively, this says that pricing
heuristics extracted from fluid approximations are expected
to perform well in settings where the actual processing time
of each order is much smaller than the actual time it takes
for this order to go through the system.
(3) General demand model. Table 3 reports on a small

set of results for a model with an exponential demand
model. We note that in this case the fluid policy was com-
puted numerically by solving the Bellman equation (14) at
each queue-length position Q. For the exponential demand
model, the fluid pricing policies outperformed the static
ones by about 1%–3%, while similar optimality gaps were
observed under the isoelastic demand model.
To recapitulate, the main insights extracted from our

numerical results of the single-product model are the fol-
lowing:
(1) The dynamic heuristics FM(0) and FM(;∗) outper-

form the static pricing policies by 0.5%–5%, which is
significant. Admission control adds about 1% of profits to
static pricing.
(2) The effect of dynamic pricing and the overall per-

formance gaps increases as functions of the holding cost

Table 3. Single-product, exponential demand ��p
= 20e−b·p with common capacity selected using (10).

MDP FM(0) FM(;∗) Static Static+Adm.

b c�h Ɛ/ � Gap (%) � Gap (%) � Gap (%) � Gap (%) �

1 0�1�1 6.2 0.76 0.1 0.78 0.1 0.69 0.6 0.74 0.6 0.74
0�5�1 5.6 0.56 1.5 0.63 0.2 0.55 4.2 0.65 4.0 0.65

2 0�1�1 2.6 0.76 0.4 0.76 0.4 0.66 1.9 0.72 1.8 0.72
0�5�1 2.0 0.55 2.0 0.62 1.9 0.55 4.2 0.55 3.6 0.55

and price sensitivity parameters. In both of these cases,
the static policies price conservatively to control congestion
costs when queues build up.
(3) The fluid model analysis sets capacity according to

(10), which tends to underestimate the optimal choices
under both MDP and FM(;∗), albeit by relatively small mar-
gins. Its effect on the maximum achievable profit rate under
the MDP policy ranged from 0.1%–1.4% in the experiments
that we ran. In settings where capacity is difficult to change
while demand models and competitive effects may vary sub-
stantially over time, it may be practical to adopt the fluid
model solution as a way to set capacity, and use pricing to
fine-tune the firm’s performance. Under all candidate poli-
cies it is optimal to invest in scarce capacity unless the firm
is operating in an environment with very small capacity
costs and very large congestion (holding) costs.

Multiproduct Problems. The last results look at a
two-product system under a linear demand model. They
focus on the performance of the policy extracted via the
workload relaxation of §4, which sequences jobs according
to the c�-rule and prices as a function of the system work-
load. The examples tested below have two nonsubstitutable
products that follow a linear demand relationship, that is,
bij = 0 for all i 
= j . The fluid policy that we tested was
the one specified through (27) extracted from the workload
relaxation with an optimized parameter ;. For the linear
demand model, the expression for �f �Q
 becomes

�f �Q
=
[
1+ ;−

√
9w

!i
+ 3i

]+
�

where w = m · Q, 3i = �R�1
 + !i − "i − #i
/!i, !, ", #
were as defined in the appendix in (32)–(34), 9 =min�c1�1�
c2�2
, andR�1
=max�r��
� m ·�= 1� 0� ����.
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Table 4. The two-product model with linear demand.

MDP FM-work Static+Adm.

�1��2 b1� b2 c1, c2 Ɛ/ Ɛ�1 Ɛ�2 Gap (%) Ɛ�1 Ɛ�2 Gap (%) Ɛ�1 Ɛ�2

16�8 1�1 0�2�0�4 44�6 3.8 0.2 1.0 3.8 0.1 2.7 3.7 0.2
12�8 1�1 0�2�0�4 30�4 3.0 0.9 0.6 2.9 0.9 2.3 2.9 0.9
8�16 43�6 0.3 3.6 3.3 0.1 3.8 5.8 0.3 3.4
8,8 20�9 2.0 1.9 0.6 1.9 1.9 3.4 1.9 1.9

8�8 2�1 0�2�0�4 15�7 1.3 2.5 0.7 1.2 2.6 6.1 1.2 2.4
1�2 15�9 2.6 1.2 0.9 2.6 1.2 5.6 2.5 1.0

8�8 1�1 0�1�0�4 21�5 2.0 1.9 0.2 2.1 1.9 1.7 2.0 1.9
0�4�0�8 19�6 2.0 1.8 0.6 1.9 1.9 7.1 1.9 1.6

Notes. Fluid policy was computed using the workload relaxation with an optimized � parameter (cf. (27)). In all experiments, �1 =�2 = 4 and
h1 = h2 = 0�1.

The test cases reported in Table 4 correspond to rela-
tively small problem instances that kept the numerical solu-
tion of the two-dimensional dynamic program associated
with the stochastic formulation of §2 tractable. The selected
parameters tested a range of scenarios for the relative rev-
enue and holding cost contribution of each product. The
primary observation from the results of Table 4 is that the
policy extracted via the workload relaxation had similar
performance gaps to those observed for the single-product
models for a wide range of parameters, while the optimal-
ity gaps of the static pricing policy with admission control

Figure 1. MDP controls as functions of the system workload for a two-product model with a linear demand function
with B= $1�0�0�1*, �1 =�2 = 4, c1 = 0�2, c2 = 0�4, and h1 = h2 = 0�1.
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degraded in this multiproduct setting. This suggests that
the restriction of the workload relaxation that forces prices
to be functions of the workload had little impact on the
performance of the fluid heuristics, and plausibly that the
pricing decisions under the MDP policy may also mostly
depend on the total workload and not the individual queue
lengths. This is explored graphically in Figure 1.
Specifically, the plots in Figure 1 explore the form of

the MDP demand policy as a function of the system work-
load, and to a large extent illustrate that the MDP con-
trols indeed resemble those extracted via the fluid workload
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Figure 2. Steady-state probability distribution under MDP controls for a two-product model with a linear demand func-
tion with B= $1�0�0�1*, �1 =�2 = 4, c1 = 0�2, c2 = 0�4, and h1 = h2 = 0�1.
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relaxation of the previous section. The top two panels focus
on a problem with a symmetric demand model for two
products, while the lower panels are for problems where
Product 1 contributes higher revenues than Product 2. In
all cases, Product 2 incurred higher holding costs. Figure 1
plots the MDP controls as functions of the total workload.
The multiple values for �∗i for each w reflect the fact that
the MDP solution depends on the two-dimensional queue-
length vector �Q1�Q2
, and thus the controls at different
queue-length configurations that hold the same workload
may differ. The relatively narrow spread of �∗ values at
each w lends credibility to the proposed approximation of
the MDP controls with state-dependent functions of the
workload. Moreover, plots of the two-dimensional steady-
state distributions shown in Figure 1 reveal that most of
the probability is concentrated in states where (a) the sys-
tem workload is held in the cheaper queue (here Product 1)
or, stated differently, where the queue is in an “efficient”
configuration; and (b) the aggregate workload is modest
(w� 4 and w� 4, respectively), allowing the system man-
ager to effectively modulate the traffic intensity into the
system by mostly adjusting the demand of Product 2, which
contributes less revenue. (We plotted the distributions for
the first two parameter sets in Figure 2. The third set with
�1 = 16 and �2 = 8 is similar, although in that case the
system operates almost like a single-product system.)
These observations, of course, depend on the magnitude

of the holding cost parameters and the variability of the ser-
vice time distributions. We tested the former and observed
similar behavior for a wide range of holding cost vectors,
but did not check for the dependence of these results on the
service time distribution, as this would render the underly-
ing problem of §2 intractable. Partial evidence in support
of using a pricing policy that depends on the workload
rather than the queue-length vector even in the presence
of general service times can be obtained using an analysis
of a second-order refinement of our formulation based on

a diffusion control problem; see, e.g., Çelik and Maglaras
(2005).
The above results demonstrate that the pricing and se-

quencing policies extracted from the fluid model workload
formulation perform well in a variety of parameter set-
tings. An interesting direction for future work would be to
extend this analysis to multiproduct stochastic processing
networks.

Appendix. Proofs
Proof of Proposition 1. Part (i): We start by noting that
the control specified in Step 1 of the proof of Theorem 1
can be employed here as well to establish that there exists
a pair of feasible control policies � and u that result in a
finite objective function. (Details are omitted.) We will first
show that

∫ 	
0 ���s
−1
ds � 0, and then deduce the desired

result.
Step 1. (a) Suppose that

∫ 	
0 ���t
− 1
dt = +	. From

(7), it follows that w�t
→ 	 and q�t
→ 	 as t→	.
Because r̃ ��
 � ! �= r��†
 − r��̂
,

∫ 	
0 �r̃���t

 − c ·

q�t

dt �
∫ 	
0 �!− c · q�t

dt = −	. This is suboptimal,

and by contradiction,
∫ 	
0 ���t
− 1
dt <	.

(b) Similarly, if limt→	
∫ t
0 ���s
 − 1
ds = N for some

N > 0, then there exists T > 0 such that for t � T , N/2�∫ t
0 ���s
 − 1
ds � 3N/2, or equivalently, 1 + N/�2t
 �
�1/t


∫ t
0 ��s
ds � 1+3N/�2t
. Using the definition of R�·


and Jensen’s inequality, we get that for any t � T ,∫ t

0
r���s

ds �

∫ t

0
R���s

ds

� tR

(
1
t

∫ t

0
��s
ds

)

� t

(
R�1
+R′�1


3N
2t

+ o�1/t

)
�

where R′�1
 = dR��
/d���=1 > 0. Letting t→	, we get
that

∫ 	
0 r̃ ���s

ds � �3N/2
R

′�1
. In addition, from (7),
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we get that w�t
 � N/2 for all t � T , which, in turn,
implies that c · q�t
� c1�1w�t
� c1�1N/2 (follows from
the product labelling of (12)). This implies that

∫ 	

0
�r̃���t

−c ·q�t

dt� 3N

2
R′�1
−

∫ 	

T
c ·q�t
dt=−	�

Arguing by contradiction, we conclude that
∫ 	
0 ���s
 −

1
ds � 0, and as a side result that
∫ 	
0 r̃ ���t

dt � 0.

Step 2. Suppose that lim supt→	 qi�t
 > > > 0 for some
product i. Then, lim supt→	

∫ t
0 c · q�s
ds = +	. Because∫ 	

0 r̃ ���t

dt � 0, it follows that lim inf t→	
∫ t
0 �r̃���s

−

c ·q�s

ds =−	, which is again suboptimal. We conclude
that it suffices to restrict attention to controls under which
q�t
→ 0 as t→	.
Part (ii) of the proof follows from Seierstad and Sydsae-

ter (1987, Theorem 6.10). �

Proof of Proposition 2. Part (i): From Part 1(b) of
Proposition 1, we have that starting from any z � 0 and
under any candidate optimal control,

∫ 	
0 r̃ ���t

dt � 0.

Because
∫ 	
0 c · q�t
dt � 0, this implies that

∫ 	
0 �r̃���t

−

c · q�t

dt � 0 and V �z
� 0. For z= 0, the static control
��̂�M−1�̂
 is feasible, it keeps q�t
= 0 for all t � 0, and∫ 	
0 �r̃���t

− c · q�t

dt = 0.
Part (ii): Consider two initial conditions z1, z2 with z1 
=

z2, and let 7 �= V �z1
−V �z2
. We wish to bound �V �z1
−
V �z2
� = �7�. Suppose that 7> 0 and consider any feasible
trajectory from z2 to z1, and let 821 be the first time that this
trajectory reaches z1. Then, using the optimality of V �z2
,
we have that

V �z2
�
∫ 821

0
�r̃���s

− c · q�s

ds+V �z1
�

which implies that

7�−
∫ 821

0
�r̃���s

− c · q�s

ds �

∫ 821

0
c · q�s
ds � 821K ′

for N ′ �=maxi ciNw. To get a bound on 821, we will con-
struct a control that takes the state from z2 to z1 as follows:
(a) the system manager will produce �z2i − z1i 
+ orders of
class i= 1� � � � � I ; and (b) price in a way such that �i�t
=
�̂i for all t � �z

1
i − z2i 
+/�̂i. Step (a) will be completed in

no longer than
∑
k�z

2
k− z1k
+/�k time units, while Step (b)

will be completed in no longer than maxi�z
1
i − z2i 
+/�̂i.

Combining the two gives the bound

821 �N
′′�z2 − z1��

where N ′′ =maxi 1/�̂i and for any vector x, �x� =∑
i �xi�.

A similar bound can be constructed in the case where 7< 0
to show that �7�< �N ′N ′′
�z2−z1� for all z1� z2 ∈ �. That is,
V is Lipschitz continuous with constant �N ′N ′′
.
Part (iii): Suppose that ��i� ui
 are the optimal controls

starting from initial conditions zi for i = 1�2, and qi�t

are the corresponding queue-length trajectories. Let z =
:z1 + �1 − :
z2 and define ��t
 = :�1�t
 + �1 − :
�2�t


and u�t
= :u1�t
+ �1−:
u2�t
. Then, it is easy to check
that because � is convex, ��t
 ∈�, and that 0� u�t
� 1
and

∑
i ui�t
� 1. Moreover, under �, u,

q�t
= z+
∫ t

0
��s
ds−M

∫ t

0
u�s
ds

= :q1�t
+ �1−:
q2�t
� 0 ∀ t � 0�

Hence, the policy ���u
 is feasible. The concavity of V is
established by noting that

V �z
�
∫ 	

0

(
r̃ �:�1�t
+ �1−:
�2�t


− c · �:q1�t
+ �1−:
q2�t

)dt

� :
∫ 	

0
�r̃��1�t

− c · q1�t

dt

+ �1−:

∫ 	

0
�r̃��2�t

− c · q2�t

dt

= :V �z1
+ �1−:
V �z2
�
where the first inequality follows from V ’s optimality and
the second from the concavity of r̃ .
Part (iv): Pick any > > 0 and let #�>
 = inf��z�� z � 0,

2V �z
k � 2V �0
k + > for some k�, and denote by z> a
limiting vector along any subsequence that achieves the
infimum. If z> = 0, the property we wish to prove holds
automatically.
(a) Suppose that z>k > 0. Pick 3 > 0 small and note that

the concavity of V implies that

V �z>
� V �z>− 3ek
+ 32V �z>− 3ek
k and

V �z>− 3ek
� V �z>
− 32V �z>
k�
where ek is the kth unit vector. Adding these expres-
sions and dividing by 3 gives that 2V �z>
k � 2V �z

> −
3ek
k. From the definition of z>, it follows that 2V �z>
k �
2V �0
k+ > and 2V �z>−3ek
k < 2V �0
k+ >, which leads
to a contradiction. Therefore, z>k = 0.
(b) Suppose that z>k = 0 and z>j 
= 0 for some j 
= k. A

first-order Taylor expansion gives that

V �z>+ 3ek
= V �z>
+ 32V �z>
k+ o�3
�
where we say that f �x
 is o�x
 if limx→0 f �x
/x= 0. From
the concavity of V , we also get that

V �z>+ 3ek
� V �z>− 3ej
+ 32V �z>− 3ej
j
+ 32V �z>− 3ej
k�

Combining the last two expressions, we get that

0�
[
�V �z>− 3ej
+ 32V �z>− 3ej
j
−V �z>


]
+ 3[2V �z>− 3ej
k−2V �z>
k]+ o�3
�

where the first term is o�3
. Divide by 3 and let 3 ↓ 0
to get that 2V �z>
k � 2V �0
k + >, which again leads to a
contradiction. Letting > ↓ 0 gives that 2V �z
� 2V �0
 for
all z� 0, which completes the proof of part (iv). �
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Proof of Proposition 5. The proof is by induction on
k�q
 = max�i� qi > 0�. If k�q
 = 0, q = 0 and �∗�0
 =
�̂ (from Propositions 1 and 2). Assume that the property
holds if k�q
= i and consider the case k�q
= i+ 1. In the
remainder of this proof, u���q
 will denote the solution to
(17) as a function of the variable � and the queue-length
vector q. The proof of the induction step uses the following
result.

Lemma 1. For any y ∈ �I−, let ��q� y
 = argmax�r̃��
+
y ·��−Mu���q

� � ∈��, and recall that 2V �q
� 2V �0

for all q � 0. Then, ��q�2V �q

� ��q�2V �0

.

From Lemma 1, it suffices to show that ��q� y
 � �̂;
where we use the shorthand notation y = 2V �0
. Using the
definition of the c�-rule, we first obtain an expression for
the allocation control u���q
:

uj��� q
=




�j

�j
∧
(
1−∑

i>j

�i
�i

)+
� j > k�q
�

(
1−∑

i>j

�i
�i

)+
� j = k�q
�

0� j < k�q
�

(28)

which depends on q through k�q
= i+ 1, the index of the
highest-priority nonempty class. Letting f i+1��
 �= r̃ ��
+
y · �� −Mu���q

 and �i+1 �= argmax�f i+1��
� � ∈ ��,
the induction step reduces to showing that �i+1 � �̂. Using
(28), we get that f i+1��
= f i��
+ gi+1��
, where

f i��
= r̃ ��
+ y ·�− ∑
j�i+1

yj

[
�j

(
1−∑

l>j

�l/�l

)+
∧�j

]

− yi�i
(
1−∑

l>i

�l/�l

)+
�

gi+1��
= yi�i
(
1−∑

l>i

�l/�l

)+
− yi+1�i+1

(
1− ∑

l>i+1
�l/�l

)+

+ yi+1
[
�i+1

(
1− ∑

l>i+1
�l/�l

)+∧
�i+1

]
�

These expressions will allow us to make use of the induc-
tion hypothesis, i.e., that �i = argmax�f i��
� � ∈��� �̂.
Note that f i+1��
 is the sum of concave functions, and thus
it is concave itself. Simple algebraic manipulations give
that gi+1��
 = 0 if 1 − ∑

l�i+1 �l/�l � 0, and gi+1��
 =
�yi�i − yi+1�i+1
�1 − ∑

l�i+1 �l/�l
 � 0, otherwise. (The
last assertion used the fact that 2V �0
i�i is decreasing in i;
cf. the comment after Proposition 4.) It follows that first,

max�f i+1��
� � ∈��

=max
{
f i+1��
� � ∈�� 1− ∑

l�i+1
�l/�l � 0

}
�

and second, from the properties of �i and the functional
form of gi+1��
, that Bf i+1��
/B�j ��i � 0 for all j . This
establishes the induction hypothesis �i+1 � �i � �̂, and
completes the proof. �

Sketch of Proof of Lemma 1. Similarly to the proof of
Proposition 5, this lemma can be proved by induction on
k�q
=max�i� qi > 0�. Expression (28) still gives u���q
,
which only depends on q through the index k�q
. This
implies that ��q� y
 is also a function of the queue length
through k�q
. Denoting ��q� y
 by �i�y
, when k�q
 = i,
the induction step that one would wish to show is that
�i�y
 � �i�y − x
 for any x ∈ �I+. The arguments used
above can be adapted in this setting to establish the desired
result. Details are omitted. �

Derivation of Aggregate Revenue Function Associ-
ated with the Linear Demand Model. The linear de-
mand model is given by

�i�p
=�i− biipi−
∑
j 
=i
bijpj�

where �i is the market potential for product i and bii, bij
are the price and cross-price sensitivity parameters. This is
expressed in vector form as ��p
=�−Bp for the obvious
choice of �, B. Under the assumptions listed in §2, the
revenue function r��
 = � · B−1��− �
, which is a con-
cave quadratic. The aggregate revenue function is defined
through (1) (reproduced here):

R��
=max�r��
� m ·�= �� �� 0��

which can be written as a concave, piecewise quadratic
function in � of the form

R��
=−!i�2 +"i�+#i for � ∈ $ri−1� ri
�
The derivation given below demonstrates how to compute
the constants �!�"�#� r
 given the model parameters �,
B, �. This is done for the special case where there are
no product substitution and/or complementarity effects; i.e.,
bij = 0 for all i 
= j , and B = diag�b11� � � � � bII 
. For con-
venience, we assume that products are labelled such that
�1/m1b11 ��2/m2b22 � · · ·��I/mIbII . Then, r0 = 0 and
the remaining constants !i, "i, #i, ri are defined recursively
as follows. First,

r1 =min
{
�� 0� �=m1l1�

�1 − 2l1
m1b11

= �2

m2b22

}
� (29)

r2 =min
{
�� 0� �=m1l1 +m2l2�

�1 − 2l1
m1b11

= �2 − 2l2
m2b22

= �3

m3b33

}
� (30)

and so on. Second, the product-level demand rates that cor-
respond to some � are given by

�ri ��
=
�i
2

−:mibii
2

for i� î��
 and

�ri ��
= 0 otherwise�
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where

:=
( ∑
j�î��


mj�j − 2�
)( ∑

j�î��


m2
j bjj

)−1

for î��
=max�i� �� ri−1�� (31)

the last expressions used our labelling convention. Note
that : is decreasing and î��
 is increasing in �, respec-
tively. Intuitively, the firm starts by offering the most “prof-
itable” product when � is very small, and then sequentially
introduces more products as the target consumption rate
increases. Finally, R��
 = ∑

j�î��
 �
r
j ��
��j − �rj ��

/bjj ,

which gives that

!î��
 =
( ∑
j�î��


m2
j bjj

)−1
� (32)

"î��
 =
( ∑
j�î��


mj�j

)( ∑
j�î��


m2
j bjj

)−1
� (33)

#î��
=
( ∑
j�î��


�2
j

4bjj

)
−
( ∑
j�î��


mj�j

2

)2( ∑
j�î��


m2
j bjj

)−1
� (34)

For example, when � < r1, we have that î��
 = 1, i.e.,
only Product 1 is offered, and therefore we should get that
R��
 = ��/m1
��1 − ��/m1

/b11, which agrees with the
constants !1 = 1/�m2

1b11
, "1 = �1/�m1b11
, and #1 = 0
given by the above expressions. A similar argument can
be applied when the cross-price sensitivity parameters are
nonzero. �

Endnotes
1. These capture variable production and work-in-process
inventory costs.
2. A detailed derivation of these equations under the
assumptions that �n/n → � and the state-dependent
demand rate satisfies �n�n·
/n→ ��·
 as n→ 	 can be
found in Mandelbaum and Pats (1995), which focused
on performance analysis of queues with state-dependent
parameters in the absence of any economic considerations.
3. The model parameters are not selected to match any par-
ticular business application, but rather to be representative
of the many test cases that we tried in terms of their subop-
timality gaps, traffic intensities, and relative difference of
their optimal capacities.
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