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The increased complexity of modern manufacturing has led to uncertainties in production
processes. Factors such as unplanned machine maintenance, tool unavailability, and com-

plex process adjustments make it difficult to maintain a predictable level of output. To be effec-
tive, an appropriate production model must incorporate these uncertainties into the represen-
tation of the production process. This paper considers a one-time production of an application-
specific product which must follow a fixed routing through the manufacturing system. The flow
of items can be modeled as a multi-stage serial production line. The productive capacity is
uncertain at each stage and the decision to produce at any stage incurs a significant setup cost.
Semifinished products have little value and inability to satisfy the demand incurs a penalty for
each unit of unmet demand. We show that the optimal production policy for this system can be
characterized by two critical numbers, which can be computed apriori based on the cost param-
eters and distributional information for all downstream stages. Sensitivity of the critical numbers
is also explored.
(Multi-stage Systems; Random Yield; Dynamic Programming Application; Production Decision; Setup
Cost; Capacity Uncertainty)

1. Introduction
The increased sophistication of modern manufactur-
ing processes in many high-tech industries has lead
to an increase in internal uncertainties in these man-
ufacturing systems. The use of state-of-the-art tech-
nology, intricate equipment, complex tooling require-
ments, involved process control, reliance on special-
ized operator skills and greater adherence to
performance specifications are all factors that make it
difficult to maintain a predictable level of output. Of-
ten, the newer, more profitable products face even
greater uncertainty because the organization has not
yet accumulated enough learning experience with the
equipment and processes to reduce the variance. Nev-
ertheless, production needs to be carried out in an

economic manner, despite the inherent variabilities in
the system.

We present a model for planning production in a
multi-stage serial production system where the aggre-
gate productive capacity at each stage is uncertain. That
is, the output quantity at any stage is the minimum of
the input quantity and the realized productive capacity,
which is random. Production is carried out to satisfy an
uncertain one-time demand for the final product. Each
unit of unsatisfied demand incurs a penalty; so does the
disposal of any unused material. A decision to produce
at any stage incurs a setup cost plus a processing cost
for each unit produced. Due to limited time until ship-
ment, there is only one opportunity to produce at any
stage, i.e., a production shortfall cannot be compensated
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by another production run. Production control must de-
cide, for each stage, how much to produce after the out-
put from the immediately preceding stage becomes
available. One must take into account capacity uncer-
tainties at all downstream stages, together with the de-
mand uncertainties and costs, to arrive at an economic
production decision.

The motivation for this model comes from the pro-
duction planning problem faced by many semiconduc-
tor foundries. These foundries manufacture application
specific integrated circuit (ASIC) chips used in
thousands of different devices from computers and mo-
bile phones to microwave ovens and door chimes. The
rising ubiquity of chips in consumer goods, automotive
parts and telecommunication devices has assured a
booming demand for foundries such as Taiwan Semi-
conductor Manufacturing and Singapore’s Chartered
Semiconductor Manufacturing. Unfortunately, it has
also led to a greater variety of one-time orders and ca-
pacity problems. Because of multiple production stages
and long lead-time in wafer fabrication, foundries often
get only one chance to satisfy a time-sensitive order. The
next order is likely to have a new design or may pos-
sibly be for a different product. The single-period multi-
stage model presented here tries to address the produc-
tion control problems in such environments.

Our analysis shows that the optimal production pol-
icy for each stage can be characterized simply by two
critical numbers. If the available input exceeds the lower
critical number, one tries to produce as much as possi-
ble, but no more than the upper critical number. If, on
the other hand, available input is less than the lower
critical number, one chooses not to produce. The inter-
relationship among critical numbers and their sensitiv-
ity to various cost parameters as well as capacities and
demand distributions are also explored.

There are two fundamentally different models in the
literature to represent internal uncertainties. Yield mod-
els focus on output loss due to process imperfections
while capacity models deal with production loss due to
resource unavailability. In random yield models, one
identifies the defective units after processing the entire
input quantity and incurring the production cost. In un-
certain capacity models, one may not be able to process
the entire input material due to resource constraints; un-

used input incurs no production cost. For most yield
models, including the binomial and proportional yield
models, increasing the input batch size increases the ex-
pected output. This is not true for the uncertain capacity
model where, no matter how large the input batch size,
the expected output cannot exceed the average produc-
tive capacity.

Yield models have been studied rather extensively in
recent years. Interested readers are referred to Yano and
Lee (1995) for an excellent survey. We discuss here only
those works which are most closely related to the pres-
ent paper. Lee and Yano (1988) analyze a single-period,
single-product, serial production system, similar to the
one considered here, but without set-up cost. The de-
mand is known and the yield at each stage is a random
multiple of the input batch size. The optimal production
policy for each stage is characterized by a single critical
number representing the target input quantity. The pol-
icy stipulates that one should input the target quantity,
if enough is available; otherwise one should input what-
ever is available. An identical result for the random ca-
pacity case can be obtained from our model by setting
the setup costs at all stages to zero. Yano (1986) attempts
an extension of the Lee and Yano (1988) model by in-
corporating a setup cost at each stage of production. For
a single-stage problem, she demonstrates that a two-
critical-number policy, similar to that proposed in this
paper, is optimal. She also demonstrates the optimality
of a similar policy for a two-stage system, but only un-
der certain restrictive conditions. The form of the opti-
mal policy for general serial production systems with
random yield and setup costs remains an open research
problem worthy of investigation. This paper addresses
the same problem for the case where production stages
are subjected to, not yield, but capacity uncertainties.
Single stage random yield models with setup cost have
been a subject of great interest in another context—
when a rigid demand has to be satisfied by (possibly)
multiple production runs, each incurring a setup cost
(see, among others, Klein 1966, White 1967, Grosfeld-
Nir and Gerchak 1994). Since our interest here is pri-
marily in the multi-stage systems, interested readers are
referred to Yano and Lee (1995) for a discussion of these
single-stage models. The analysis of multi-stage multi-
period random yield problems is quite involved even
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without setup cost and is unlikely to yield a structurally
simple policy. In fact, the dynamic problem is quite
complex even for a single-stage problem with no setup
cost, as discussed in Gerchak et al. (1988) and Henig
and Gerchak (1990). As a result, recent research efforts
have been focussed on the study of such systems under
suboptimal but tractable operating policies (Tang 1990;
Akella, Rajagopalan, and Singh 1992).

Clark and Scarf (1960) consider a multi-period prob-
lem where a serial system tries to meet stochastic de-
mand at the lowest installation. A linear ordering and
shipping cost is incurred at all stages, except at the high-
est installation, where a setup cost is also incurred. The
optimal ordering policy is characterized by a single crit-
ical number at all stages except at the highest installa-
tion, where it is characterized by two critical numbers.
For stochastic production/inventory systems with
setup cost, this is the only work to our knowledge where
a structured policy is shown to be optimal in a multi-
stage multi-period scenario. It should be emphasized
that in the Clark and Scarf model adding a setup cost at
any other stage except at the highest installation de-
stroys the structured nature of the optimal policy. In-
corporating setup cost at multiple stages has been a
long-standing challenge for researchers in inventory
theory and their success has been limited only to deter-
ministic systems (Zangwill 1966).

The aggregate capacity model used in this paper cap-
tures parsimoniously the cumulative impact of varying
availabilities of numerous productive resources. Hopp
et al. (1993) have used this representation to model the
total amount of regular-time capacity available in any
period. They demonstrate that the distribution of ag-
gregate capacity plays a central role in setting produc-
tion quotas for a pull manufacturing system. Ciarallo et
al. (1994) consider finite and infinite-horizon models for
a single-stage production system with uncertain capac-
ity and uncertain demand. They show that a single crit-
ical number, which represents the order-up-to point, is
sufficient to characterize the optimal policy in a multi-
period setting. This is in contrast to yield models where,
under similar circumstances, the optimal policy is
known to have no structurally simple form (Henig and
Gerchak 1990); the best one can do to characterize the
optimal policy is to state when not to order. Finally,

when yield and capacity uncertainties are simulta-
neously present, the optimal policy retains the com-
plexity of yield model, as shown recently by Wang and
Gerchak (1996).

The mathematical instrument used to model the un-
certainty in aggregate capacity here is identical to those
in Ciarallo et al. In contrast to their single-stage, multi-
period model, we analyze a multi-stage, single-period
model with setup cost at each stage of production. In
Ciarallo et al., order-up-to policies are derived from the
analysis of a cost function which is quasi-convex. In
spite of this nonconvexity, the cost-to-go is shown to be
convex. The presence of setup cost in our model de-
stroys the quasi-convex unimodal structure of the cost
function so effectively utilized by Ciarallo et al. in their
analysis. We derive the two-critical-number policy from
the analysis of a cost function which is neither unimodal
nor quasi-convex. In fact, the nature of this cost function
changes from concave-increasing, to convex-decreasing,
convex-increasing, simply increasing, and finally to
concave-increasing.

The contribution of this paper is threefold. First, the
optimality of a simple two-critical-number policy is es-
tablished for an important class of manufacturing prob-
lems. Considering the unusual behavior of the cost
function involved, our proof of optimality is somewhat
novel. Second, the sensitivity of the critical numbers to
cost parameters is explored, which reveal many inter-
esting structural properties of the system. Finally, the
impact of uncertainties on the production line is studied
by changing the demand distribution and the capacity
distribution stochastically. The interaction between in-
ternal uncertainties and demand uncertainty is also re-
vealed by the recursive equation used for the compu-
tation of critical numbers.

This paper is organized as follows. Section 2 presents
a mathematical description of the problem and its for-
mulation as a dynamic optimization model. Section 3
analyzes a single-stage problem and shows that a two-
critical-number policy is optimal. This result is extended
in §4 to a multi-stage problem. The sensitivity of the
critical numbers to cost parameters, as well as to capac-
ity and demand uncertainties, is explored in §§5 and 6,
respectively. A numerical example is presented in §7.
The paper concludes with some final remarks in §8.
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Figure 1 A Serial Production System

2. Problem Description and
Formulation

Consider an N-stage serial production system as shown
in Figure 1. Let the stages be numbered such that the
final stage of production is denoted as stage 1 while the
stage of production to be performed first is denoted as
stage N. The production is aimed towards satisfying a
single uncertain requirement or demand for a product
at the final stage. Let Z be the demand random variable
with c.d.f. Q(z) and p.d.f. q(z).

At any stage, the productive capacity may be uncer-
tain due to a number of factors such as machine failures,
tool unavailability, time spent in process, parameter re-
adjustments, etc. Let the random variable Yn represent
the available productive capacity at stage n with c.d.f.
Fn(yn) and p.d.f. fn(yn). We assume that all the random
variables are mutually independent and their c.d.f.’s are
continuous and twice differentiable.

The problem is to determine a planned production
quantity, un, at each stage of production such that the
expected total cost is minimized. The actual produc-
tion output from a stage may be less than the planned
production quantity. This will occur whenever the ca-
pacity realization, yn, falls below the production tar-
get, un. Otherwise, the complete production target is
accomplished successfully. In general, the production
output of stage n, xn, is given by min{un, yn}.

We assume that the initial inventory of all semi-
finished items is zero; the analysis can be extended
to accommodate positive initial inventories. The
planned production quantity at stage n is obviously
constrained by the actual production output from
stage n / 1, which, in turn, depends upon the
planned production quantity at stage n / 1, etc. That

is, un° xn/1Åmin{un/1, yn/1}. We solve this problem
dynamically by delaying the specification of the
planned input quantity at a stage until the produc-
tion output from the stage before becomes known. In
other words, uN , uN01, . . . , u1 must be determined
sequentially after receiving the output from the stage
before.

The following costs are considered in this model. The
decision to produce at stage n incurs an ‘‘out-of-pocket’’
setup cost Kn independent of the production quantity.
In addition, each unit of item actually produced at stage
n incurs a cost wn. Each unit of unsatisfied demand in-
curs a penalty p. There is a cost hn for disposing of a
unit of item processed at stage n but not used by stage
n 0 1. The disposal cost for leftover raw material is rep-
resented by hN/1. Since this model is especially appli-
cable to one-time production of unique products, it is
assumed that semi-finished items have little salvage
value. Disposal of raw material and finished product,
on the other hand, may bring a net cash inflow; this is
modeled by allowing h1 and hN/1 to be negative. All
other parameters and costs are assumed to be nonneg-
ative.

The following two cost conditions are necessary to
ensure that it is profitable to produce and that produc-
tion is motivated only by the desire to satisfy the de-
mand.

CONDITION 1. h2 / p ú w1.

If Condition 1 did not hold, one would simply dis-
pose of the input material at cost h2 and incur a penalty
p for not meeting the demand, rather than process an
item at a higher cost w1. Clearly, this makes it unprof-
itable to produce anything at the final stage.

CONDITION 2. wn / hn ú hn/1 for n Å 1, . . . , N.

This states that it is less expensive to dispose of an
item at one stage than to process it and then dispose of
it at the next stage.

Let Cn(xn/1) be the expected cost of operating an n-
stage system with available input xn/1, assuming that
the best input decision is used at stage n through stage
1. Then, CN(xN/1) represents the minimum expected
cost to operate the whole system, where the available
raw material is xN/1 at stage N. A dynamic program-
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ming formulation for the problem can now be given
as

C (x )å E {h max{0, x 0 Z}/ p max{0, Z0 x }}, (1)0 1 Z 1 1 1

and

C (x )n n/1

Å min E {h (x 0 min{u , Y }) / K d(u )Y n/1 n/1 n n n nn
0°u °xn n/1

/ w min{u , Y } / C (min{u , Y })},n n n n01 n n

n Å 1, . . . , N

where

1 if u ú 0,n
d(u ) Ån H

0 otherwise,

and EZ{·} signifies the expectation over random vari-
able Z.

Let be the optimal value of un. In our analysis weu*n
will often utilize the following representation for
Cn(xn/1):

C (x ) Å min {h x / K d(u ) / g (u )},n n/1 n/1 n/1 n n n n
0°u °xn n/1

n Å 1, . . . , N, (2)

where gn(un) is a function only of un and is given by

un

Ug (u )Å [(w 0 h )y / C (y )]dF (y )/ F (u )n n n n/1 n n01 n n n n n*
0

1 [(w 0 h )u / C (u )],n n/1 n n01 n (3)

where

UF (u ) Å 1 0 F (u ).n n n n

The function gn(un) plays a central role in defining
the structure of the optimal policy for this problem. The
following observation follows directly from (2).

LEMMA 1. If gn(0) õ gn(un) / Kn for all un, then it is
not worthwhile to produce at stage n. Thus, Å 0.u*n

The following lemma points to another intuitive re-
sult. If no input material is available at stage n, then the
minimum expected cost for stage n through stage 1 is

simply the expected penalty for not meeting the de-
mand.

LEMMA 2. Cn(0) Å gn(0) Å pE[Z] for all n.

PROOF. From (2), Cn(0) Å gn(0) and from (3), gn(0)
Å Cn01(0). The result follows by induction, since C0(0)
Å pE[Z] from (1). Q.E.D.

These observations will be utilized during the anal-
ysis in coming sections.

3. The Single-Stage Problem
In this section we analyze the single-stage problem for
the model introduced in §2. This analysis will provide
important insights in understanding the multi-stage
problem. We begin by rewriting (2) as

C (x ) Å min {h x / K d(u ) / g (u )}. (4)1 2 2 2 1 1 1 1
0°u °x1 2

We first investigate the nature of g1(·) since it plays
a central role in the minimization in (4). By using (1)
and (3), we obtain the first two derivatives of g1(u1) as
follows:

dg1
Ug*(u ) Å Å F (u )g (u ), (5)1 1 1 1 1 1du1

2d g1
Ug9(u )Å Å F (u )(h / p)q(u )0 f (u )g (u ), (6)1 1 1 1 1 1 1 1 1 12du1

where

g (u ) Å (h / p)Q(u ) / w 0 h 0 p. (7)1 1 1 1 1 2

g1(u1) is nondecreasing since Conditions 1 and 2 to-
gether imply that (h1/ p)ú 0. Define S1 such that g1(S1)
Å 0, i.e.,

h / p 0 w2 101S Å Q . (8)1 S Dh / p1

S1 is nonnegative and finite because (h2 / p 0 w1) ú 0
and (h2 / p 0 w1) õ (h1 / p) from Conditions 1 and 2.
Then, g1(u1) is negative in (0, S1) and positive in (S1, `).
The nature of g1(·) can now be characterized using (5)
and (6):

(1) For u1 √ (0, S1), ° 0 and ¢ 0, henceg*(u ) g9(u )1 1 1 1

g1 is decreasing and convex.
(2) For u1 √ (S1, `), ¢ 0 and hence g1 isg*(u )1 1
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Figure 2 The Form of g1(u1)

increasing. Nothing further can be concluded about the
nature of g1 since may alternate its sign in differentg91
sub-intervals.

From these observations, it is clear that g1(u1) attains
its global minimum at u1 Å S1. The behavior of g1(u1)
is shown graphically in Figure 2.

Whenever S1 Å 0, the problem is trivial since it is op-
timal not to produce. Note that from (8), S1 ú 0 iff

h / p 0 w ú (h / p)Q(0),2 1 1

or

w / h 0 h õ (h / p) Pr{Z ú 0}.1 1 2 1

That is, if the effective cost of processing a unit, (w1

/ h1 0 h2), exceeds the expected marginal saving de-
rived from making a unit available, one is better off not
processing anything.

Now consider the minimization in (4), in particular
the term (K1d(u1) / g1(u1)). The nature of (K1 / g1(u1))
is identical to that of g1(u1) and it attains its global min-
imum at S1 with value K1 / g1(S1). If g1(0) õ K1

/ g1(S1), it is not worthwhile to produce, as per Lemma
1. An excessively high setup cost makes the problem
trivial, since one always chooses not to produce. If, on
the other hand, g1(0)ú K1 / g1(S1), since g1 is decreas-
ing in (0, S1), there exists a unique s1 √ (0, S1) such that

g (0) Å K / g (s ). (9)1 1 1 1

It follows (see Figure 2) from the definition of s1 and the
decreasing nature of g1(u1) over (0, S1) that

g (0) ° K / g (u ) for u ° s , (10)1 1 1 1 1 1

and

g (0) ú K / g (u ) for s õ u ° S . (11)1 1 1 1 1 1 1

Based upon the available input material x2, the opti-
mal policy can now be characterized in terms of the two
critical numbers s1 and S1. For x2 ° s1, it is not worth-
while to produce because the setup cost, K1, will offset
the expected savings, (g1(0) 0 g1(u1)), derived from
production. This follows from (10), since u1 ° x2 ° s1.
For s1 õ x2 ° S1, the advantage gained by producing,
(g1(0) 0 g1(u1)), can offset the setup cost, K1, provided
one plans to produce more than s1. This follows from
(11). In fact, since g1 is decreasing in (s1, S1), it pays to
set the production target as high as possible; the optimal
policy simply inputs all the available material. Finally,
for x2ú S1, one sets the production target at S1, the point
where (K1 / g1(u1)) attains its global minimum.

The optimal policy for stage 1 and the nature of g1(u1)
are now summarized in the following theorem.

THEOREM 1. For the model stated in §2, if it is worth-
while to produce, then

(1) the optimal policy for stage 1 is

0 if x √ (0, s ),2 1

*u (x ) Å x if x √ (s , S ), (12)1 2 2 2 1 15
S if x √ (S , `),1 2 1

where critical numbers S1 and s1 are solutions to Eqs. (8) and
(9), respectively, and satisfy the relationship, 0 ° s1 ° S1

õ `;
(2)

decreasing and convex in range (0, S ),1
g (u ) is1 1 H

increasing in range (S , `).1

The upper critical number, S1 is the production target,
i.e., the largest quantity one would ever process at stage
1. The lower critical number, s1, represents the smallest
input quantity one is willing to process at stage 1. Note
that S1, given by (8), is the same newsboy solution one
would expect if the problem were formulated without
any capacity constraint. This observation is consistent
with that in Ciarallo et al. regarding the order-up-to
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point in a single-stage single-period model with capac-
ity uncertainty. The lower critical number, s1, however,
does depend on the capacity distribution. In effect, given
an input quantity, the decision as to whether one should
produce is intrinsically linked to capacity uncertainty.
However, the production target is independent of ca-
pacity. Once a decision is made to produce, one simply
hopes that enough capacity will be available.

The cost-to-go, C1(x2), is obtained by substituting *u1

from (12) into (4):

h x / g (0) if x √ (0, s ),2 2 1 2 1

C (x ) Å h x / K / g (x ) if x √ (s , S ),1 2 2 2 1 1 2 2 1 15
h x / K / g (S ) if x √ (S , `).2 2 1 1 1 2 1

One can easily show that, unlike C0(·), C1(·) is
not convex. As a result, the mathematical structure
of the multi-stage problem presented in the next sec-
tion is quite different than that for a single-stage
problem.

4. The Multi-Stage Problem
The analysis of the single-stage problem, presented in
the last section, was considerably simplified because
the terminal cost-to-go, C0(x1), is convex. This is no
longer true for the multi-stage problem that we ana-
lyze in this section. The key results of this paper are
contained in

THEOREM 2. For the model stated in §2, if it is worth-
while to produce, then

(1) the optimal policy for stage n is

0 if x √ (0, s ),n/1 n

u*(x ) Å x if x √ (s , S ),n n/1 n/1 n/1 n n5
S if x √ (S , `),n n/1 n

where critical numbers sn and Sn are solutions to equations

g (s ) / K Å g (0), (13)n n n n

and

g*(S ) Å 0,n n

respectively, and satisfy the relationship: 0 ° sn01 ° sn

° Sn ° Sn01 ° `;

(2)

increasing and concave in range (0, s ),n01

decreasing and convex in range (s , S ),n01 n
g (·) isn

increasing in range (S , S ),n n015
increasing and concave in range (S , `).n01

PROOF. The proof will be by induction on n. Define
s0 å 0 and S0 å `. Then, for stage 1 all the properties
are true from §3. To prove that these properties hold for
the general case, suppose Theorem 2 is true for stage n
0 1. Then, the following properties must hold:

0 if x √ (0, s ),n n01

u* (x ) Å x if x √ (s , S ), (14)n01 n n n n01 n015
S if x √ (S , `),n01 n n01

where critical numbers sn01 and Sn01 satisfy

g (s ) / K Å g (0), (15)n01 n01 n01 n01

g* (S ) Å 0, (16)n01 n01

s ° s ° S ° S , (17)n02 n01 n01 n02

and

increasing and concave

in range (0, s ),n02

decreasing and convex

g (·) is in range (s , S ), (18)n01 n02 n01

increasing in range (S , S ),n01 n02

increasing and concave

in range (S , `).n02

Figure 3(a) illustrates the nature of gn01(un01) and the
relationship among critical numbers as indicated in the
induction hypotheses (15)–(18).

Since the nature of gn(·) plays a fundamental role in
determining the form of the optimal policy, we first ex-
plore its behavior. To this end, we first differentiate
gn(un) in (3) to get

Ug*(u ) Å F (u )[w 0 h / C* (u )]. (19)n n n n n n/1 n01 n
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Figure 3 (a) The Form of gn01(un01) and (b) Its DerivativeThe term can be obtained by first substitutingC* (·)n01

from (14) into (2) to getu*n01

h x / g (0) if x √ (0, s ),n n n01 n n01

h x / K / g (x )n n n01 n01 n

C (x ) Å if x √ (s , S ), (20)n01 n n n01 n01

h x / K / g (S )n n n01 n01 n01

if x √ (S , `),n n01

which can be differentiated and then substituted into
(19) to yield

UF (u )g (u ) if u √ (s , S ),n n n n n n01 n01
g*(u ) Ån n H

UF (u )[w / h 0 h ] otherwise,n n n n n/1

(21)

where

g (u ) Å w / h 0 h / g* (u ). (22)n n n n n/1 n01 n

Differentiating one readily obtainsg*(u ),n n

UF (u )g9 (u ) 0 f (u )g (u )n n n01 n n n n n

g9(u ) Å if u √ (s , S ), (23)n n n n01 n015
0 f (u )[w / h 0 h ] otherwise.n n n n n/1

We first investigate the behavior of gn(un) for un

(sn01, Sn01). From Condition 2, the term (wn / hn√/
0 hn/1) is always positive. Equations (21) and (23) then
imply that ú 0 and õ 0, and hence gn is increasingg* g9n n

and concave outside the interval (sn01, Sn01).
To explore the behavior of gn in (sn01, Sn01), we need first

to understand the behavior of since it controls the be-g*n01

havior of gn. From the properties of gn01 indicated in (18),
it can be inferred that (i) for un √ (sn02, Sn01), õg* (u )n01 n

0, ú 0, and (ii) for unú Sn01, ú 0. Theseg9 (u ) g* (u )n01 n n01 n

imply that is negative and increasing in (sn02, Sn01),g* (·)n01

crosses zero from below at Sn01 and remains positive for un

ú Sn01, as illustrated in Figure 3(b).
Now consider the behavior of gn(un) over the interval

of interest, (sn01, Sn01). From (22), gn(un)Å positive con-
stant / But is increasing in (sn02, Sn01).g* (u ). g*n01 n n01

From (17), (sn01, Sn01) is a subinterval of (sn02, Sn01).
Hence, gn is increasing over (sn01, Sn01). Let g*(s/) be

the right-hand derivative of g at s. Also, let g(s/) be the
value of g as one approaches s from right. The zero-
crossing property of gn(un) is of fundamental interest.
But before we explore that, we propose the following
lemma which rules out the circumstances under which
the problem is trivial. The proof can be found in the
Appendix.

LEMMA 3. If (wn / hn 0 hn/1) ú then it/0g* (s ),n01 n01

is not worthwhile to produce at stage n. That is, Å 0.u*n

An economic interpretation for Lemma 3 can be given
as follows. Recall that for the single-stage problem, an
equivalent condition is (w1 / h1 0 h2) ú (p / h1) Pr{Z
ú 0} or g1(0) ú 0, which implies that S1 Å 0. Condition
2 and Lemma 3 together specify lower and upper
bounds on quantity (wn / hn 0 hn/1) which can be ex-
plained as follows. If (wn / hn 0 hn/1) õ 0, one has an
unnecessary incentive to process the input at stage n,
just for the sake of disposing the output at the next
stage. On the other hand, as (wn / hn 0 hn/1) increases,
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it provides an increasing disincentive for production,
and beyond a point, it may well become totally unecon-
omical to carry out production at stage n. In general, if
the effective cost of processing a unit, (wn / hn 0 hn/1),
exceeds the maximum marginal benefit derived
from making the unit available at the next stage,

one simply chooses not to produce./0g* (s ),n01 n01

Consider gn(un) now. It is increasing over (sn01,
Sn01). From Lemma 3 and (22), õ 0. Also,/g (s )n n01

gn(Sn01) ú 0 by substituting (16) in (22) and using
Condition 2. Hence, there exists an Sn, sn01 ° Sn

° Sn01, such that

g (S ) Å 0. (24)n n

Clearly, gn(un) õ 0 for un √ (sn01, Sn) and gn(un)ú 0 for
un √ (Sn, Sn01). Also, from (18), ú 0 for ung9 (u )n01 n

√ (sn02, Sn01) ⊇ (sn01, Sn01). It follows from (21) and (23)
that (i) Å 0, (ii) for un√ (sn01, Sn), õ 0 andg*(S ) g*(u )n n n n

ú 0, and (iii) for un √ (Sn, Sn01), ú 0, butg9(u ) g*(u )n n n n

may be positive or negative. Together, theseg9(u )n n

properties imply that gn(·) (i) has a local minimum at
Sn, (ii) is decreasing and concave over (sn01, Sn), and
(iii) is increasing over (Sn, Sn01). Recall thatgn is increas-
ing and concave for un ° sn01 and un ¢ Sn01. This com-
pletes the characterization of gn(·).

We now characterize the form of the optimal policy.
Note that gn(un) for un √ (0, sn01) achieves its mini-
mum at gn(0) while gn(un), un √ (sn01, `), achieves its
minimum at gn(Sn). If gn(0)° gn(Sn), it is optimal not
to produce at stage n. If, on the other hand, gn(Sn)
° gn(0), i.e., Sn is the global minimum of gn(·), then
it may be worthwhile to produce. The answer depends
on the setup cost, Kn. If Kn ¢ gn(0) 0 gn(Sn), i.e., the
setup is more expensive than the maximum benefit
achievable from production, then one chooses simply
not to produce, irrespective of the available input ma-
terial xn/1. If, on the other hand, Kn õ gn(0) 0 gn(Sn),
there exists a unique sn √ (sn01, Sn) such that

g (0) Å K / g (s ). (25)n n n n

Note that a point sn satisfying (25) cannot lie in (0, sn01)
since gn is increasing over this interval and gn(sn)
õ gn(0). It follows from the definition of sn and the de-
creasing nature of gn(un) over (sn01, Sn) that

g (0) ° K / g (u ) for all u ° s , (26)n n n n n n

and

g (0) ú K / g (u ) for all s õ u ° S . (27)n n n n n n n

Based on the available input material (the reasoning is
similar to that in the single-stage problem), the optimal
policy for the multiple-stage model can be summarized
by (13). Q.E.D.

The lower critical number, sn, represents the smallest
input quantity one is willing to process at stage n. In
this sense, sn is a measure of the effective setup cost at
stage n. The upper critical number, Sn, is the maximum
desired output from stage n. The interrelationship
among critical numbers is of significance for their effi-
cient computation and for understanding how the sys-
tem operates. An immediate corollary of Theorem 2 is

COROLLARY 1. For the model stated in §2, the optimal
operating policy is characterized by a sequence of critical
numbers, {sn, Sn}, such that

0 ° s ° s ° ··· ° s ° S ° ··· ° S ° S õ `.1 2 N N 2 1

This relationship has many intuitive implications for
the operation of the serial system under study:

(1) The lower critical number is zero at a stage only
if it is zero at all downstream stages.

(2) The lower critical number increases as one moves
upstream.

(3) The upper critical number decreases as one
moves upstream. As a result, for n Å N 0 1, . . . , 2, 1,
one has a binary choice: (i) input everything if xn/1

ú sn, or (ii) input nothing if xn/1 õ sn. In effect, the
system has a single-critical-number policy for all stages
except stage N, which must follow a two-critical-
number policy.

(4) The upper critical number at any stage is greater
than the lower critical number for all stages. That is, the
largest lower critical number is smaller than the smallest
upper critical number.

(5) The sequence of intervals {(sn, Sn)} is imbedded,
i.e.,

(s , S ) ⊆ (s , S ) ⊆ ··· ⊆ (s , S ) ⊆ (s , S ) ⊆ (0, `).N N N01 N01 2 2 1 1

(28)
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5. Sensitivity Analysis
This section explores how the critical numbers, sn and
Sn, change as the cost parameters are varied. Whenever
possible, we have tried to characterize the sensitivity
quantitatively, but in many instances we could only
give a qualitative characterization.

5.1. Sensitivity Analysis for the Upper Critical
Number, Sn

The upper critical number, Sn, was defined in §4 as the
zero of the recursive function in (sn01, Sn01). Theg*(·)n

following lemma states that the upper critical number
for any stage can be computed directly from model pa-
rameters in a non-recursive fashion. The proof can be
found in the Appendix.

LEMMA 4. The upper critical number, Sn, satisfies

n n

UF (S )(w / h 0 h )∑ ∏ j n k k k/1
kÅ1 jÅk

n

U U0 F (S )Q(S )(p / h ) Å 0, ∀n. (29)∏ j n n 1

jÅ1

Note that Sn is independent of the capacity distribu-
tion for stage n, but it does depend on the capacity dis-
tributions for all the downstream stages. Also, the ab-
sence of the setup cost parameters, Kis, in (29) implies
that the upper critical numbers do not depend on setup
cost. The following theorem characterizes the sensitivity
of upper critical numbers to changes in cost parameters
(proof given in the Appendix).

THEOREM 3. The sensitivity of the upper critical number,
Sn, with respect to

(1) disposal cost, hi , is

n01

U0Q(S ) F (S )/g9 (S ) if i Å 1,∏n j n n01 n

jÅ1
n01

U0F (S ) F (S )/g9 (S ) if 1 õ i õ n,∏i01 n j n n01 nÌSn Å jÅiÌhi 0F (S )/g9 (S ) if i Å n,n01 n n01 n

1/g9 (S ) if i Å n / 1,n01 n

0 otherwise;

(2) unit production cost, wi , is

n01

U0 F (S )/g9 (S ) if i õ n,∏ j n n01 n
ÌS jÅin ÅÌw 01/g9 (S ) if i Å n,i n01 n5

0 otherwise;

(3) penalty for not satisfying the demand, p, is
n01ÌSn

U UÅ Q(S ) F (S )/g9 (S );∏n j n n01 nÌp
jÅ1

(4) setup cost, Ki , is

ÌSn Å 0.ÌKi

Note that ú 0 since gn01(un) is convex in (sn01,g9 (S )n01 n

Sn01) and Sn √ (sn01, Sn01) by Theorem 2. We make the
following observations based on Theorem 3:

(1) The upper critical number at a stage (i) decreases
with an increase in disposal cost at a downstream in-
ventory location, (ii) increases with an increase in dis-
posal cost at the inventory location immediately up-
stream, and (iii) remains unaffected by changes in dis-
posal cost at all other upstream inventory locations.
The sensitivity of the upper critical number at stage n,
with respect to changes in disposal cost at a down-
stream inventory location i, ÌSn/Ìhi , is directly propor-
tional to the probability that the entire input Sn gets
through all the production stages following stage n, up
to and including stage i, and is stopped at location i (due
to insufficient capacity at stage i 0 1, or insufficient de-
mand, if i Å 1). That is,

ÌSn
} Pr{Y ú S ; Y ú S ; . . . ;n01 n n02 nÌhi

Y ú S ; Y õ S } for 1 õ i ° n,i n i01 n

and

ÌSn
} Pr{Y ú S ; Y ú S ; . . . ; Y ú S ; Z õ S }.n01 n n02 n 1 n nÌh1

Clearly, the farther the inventory location i from stage
n, the smaller the likelihood that the entire input Sn

reaches location i, and hence the weaker the depen-
dence of Sn on hi .

(2) The upper critical number at a stage decreases with
an increase in production cost at that stage or at any
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other downstream stages, but it remains unaffected by
the changes in production costs at all upstream stages.
Moreover, ÌSn/Ìwi is proportional to the probability
that input Sn is successfully processed at all stages fol-
lowing stage n, up to and including stage i. Based on
observation 1,

Pr{Y õ S }ÌS /Ìw if 1 õ i ° n,i01 n n iÌSn Å HÌhi Pr{Z õ S }ÌS /Ìw if i Å 1,n n 1

also, for i õ j ° n,

ÌS ÌS ÌSn n nÅ Pr{Y ú S ; Y ú S ; . . . ; Y ú S } õ ,i n i/1 n j01 nÌw Ìw Ìwi j j

i.e., the upper critical number at a stage is far more sen-
sitive to the changes in production cost at a nearby
downstream stage than those at a stage farther down-
stream.

(3) The upper critical number at a stage increases as
the penalty for not satisfying the demand increases.
Moreover, the sensitivity ÌSn/Ìp is proportional to the
probability that input Sn is successfully processed at all
downstream stages, and still falls short of satisfying the
demand. Based on observation 1, we have

ÌS ÌSn nÅ 0Pr{Z ú S } ,nÌp Ìw1

i.e., the upper critical number is less sensitive to changes
in stockout penalty than to changes in production cost;
the negative sign signifies that their effects are in op-
posite direction.

(4) The upper critical number is equally sensitive to
changes in disposal cost at the immediately preceding
inventory location and to the production cost at the
stage under consideration. In fact the changes in either
of these parameters affects the upper critical number the
most, as can be seen from,

ÌS ÌS 1n nÅ 0 Å 0Ìw Ìh g9 (S )n n/1 n01 n

Å Constant of proportionality.

5.2. Sensitivity Analysis for Lower Critical Number, sn

The following lemma will be helpful for exploring sen-
sitivity results for the lower critical numbers (proof

given in the Appendix). It expresses the relationship be-
tween the lower critical numbers for a stage, n, and its
immediately following stage using parameters of the
stage n and function g*.n

LEMMA 5. For each stage n,
sn01

UF (u )[w / h 0 h ]dun n n n n/1 n*
0

sn

/ g*(u )du Å 0K . (30)n n n n*
sn01

The first term of (30) is the area under between 0g*n
and sn01. This area is always positive due to Condition
2 (see Figure 3). Similarly, the second term of (30) is the
area under between sn01 and sn. This area is alwaysg*n
negative since gn is decreasing in (sn01, Sn) by Theorem
2. The difference between the two areas always equals
0Kn, a fact that will prove indispensable while explor-
ing sensitivity results for lower critical numbers. We
summarize below these sensitivity results; the proofs
are somewhat involved and are relegated to the Ap-
pendix.

THEOREM 4. The lower critical number at a stage is zero
if and only if the production at that stage incurs no setup cost
and the same is true for all downstream stages. That is, sn

Å 0 if and only if Ki Å 0, for all i ° n.

Whenever the lower critical number, sn, is zero, the
optimal policy at stage n is of produce-up-to form given
by a single critical number, Sn,

x if x ° S ,n/1 n/1 n
u*(x ) Ån n/1 H

S if x ú S .n n/1 n

According to Theorem 4, a nonzero setup cost at a stage
makes the lower critical number positive not only for
that stage, but for all upstream stages. If the optimal
policy for a stage is of produce-up-to form, the optimal
policy for all downstream stages must also be of
produce-up-to form.

The following theorem shows that any increase in the
setup cost at a stage will also increase the effective setup
costs at all the earlier stages.

THEOREM 5. An increase in setup cost at a stage leads to
an increase in the lower critical number at that stage as well
as at all preceding stages.
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The lower critical number at a stage (i) increases with
an increase in setup cost at that stage or at any other
succeeding stages, and (ii) remains unaffected by setup
cost changes at preceding stages.

THEOREM 6. An increase in stockout penalty leads to a
decrease in lower critical numbers for all stages.

As the shortage penalty increases, one is more likely
to carry out production (due to a decrease in lower crit-
ical number) and one tends to produce in a larger quan-
tity (due to an increase in upper critical number) at all
stages, to avoid the higher shortage penalty. A reduc-
tion in unit production cost has an analogous affect on
all upstream stages as indicated in the theorem below.

THEOREM 7. A decrease in the unit production cost at a
stage leads to a decrease in the lower critical number at that
stage as well at all preceding stages.

The lower critical number at a stage (i) decreases with
a decrease in unit production cost at that stage or at any
other succeeding stages, and (ii) remains unaffected by
the changes in unit production costs at preceding stages.

THEOREM 8. A decrease in disposal cost at an inventory
location leads to an increase in the lower critical number for
the immediately succeeding stage.

Any decrease in disposal cost at the inventory loca-
tion before a stage increases the lower critical number
but decreases the upper critical number at the imme-
diately succeeding stage. However, the decrease in the
disposal cost will increase the upper critical numbers at
all the upstream stages.

6. The Impact of Uncertainties
We now turn our attention to examine the effect of de-
mand and capacity uncertainties on the optimal policy.
We explore this by examining changes in critical num-
bers as the demand or capacity distribution is increased
stochastically. A random number with distribution Q̂(·)
is said to be stochastically larger than another random
number with distribution Q(·) if Q(z)¢ Q̂(z), ∀z (Ross
1983). Our results are summarized in the following two
theorems; their proofs can be found in the Appendix.

THEOREM 9. As the demand increases stochastically, the
upper critical number increases but the lower critical number
decreases at every stage of the system.

An increase in demand tends to increase the expected
shortage penalty. To avoid this extra penalty, one is less
reluctant to start production and is willing to produce
more.

THEOREM 10. A stochastic increase in capacity at any
stage leads to an increase in the upper critical numbers for
all upstream stages, but the upper critical numbers for all
downstream stages, including that for the current stage, re-
main unchanged.

As capacity decreases stochastically at a stage, there
is larger probability that capacity will take on smaller
values. Since it is more likely that only a smaller input
quantity can be processed at this stage, the maximum
desired output from upstream stages are curtailed.

The capacity changes at a stage, however, do not af-
fect the maximum desired output from that stage. To
explain this, suppose that the maximum desired output
for a stage was determined assuming an infinite capac-
ity at that stage. In case of capacity uncertainty, one sim-
ply hopes to produce this desired amount. Reducing the
maximum desired output in anticipation of a low ca-
pacity realization guarantees lower output for all ca-
pacity realizations. This can be no better than letting the
realized capacity limit the output.

7. A Numerical Example
The purpose of this example is (i) to demonstrate that
the two critical numbers can be computed efficiently,
(ii) to validate that the sequence of critical numbers, {sn,
Sn}, is imbedded, and (iii) to illustrate the nature ofgn(·)
numerically.

Consider a three-stage serial production system with
the following costs,

w Å 30 w Å 10 w Å 153 2 1

h Å 10 h Å 20 h Å 25 h Å 50 pÅ 200.4 3 2 1

K Å 25000 K Å 0 K Å 45000.3 2 1

Demand as well as capacities are assumed to follow a
lognormal density function
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21 0(ln a 0 m)
___f(aÉm, s) Å exp for all a ú 0,√ F G22s2psa

where m and s are parameters of the lognormal distri-
bution. That is, q(z) Å f(zÉmd, sd) and fn(yn) Å f(ynÉmn,
sn), n Å 1, 2, 3. The parameters of these distributions
are

m Å 8.5 m Å 8.3 m Å 8.5 m Å 7.33 2 1 d

s Å 0.2 s Å 0.5 s Å 0.3 s Å 0.5.3 2 1 d

The upper critical numbers, Sns, can be computed us-
ing (29). Note that this computation need not be carried
out in a recursive fashion, i.e., the upper critical num-
bers can be obtained independent of each other. In fact,
since the implementation of the optimal policy requires
only S3 (see Observation 3 for Corollary 1), there is no
need to compute any other upper critical numbers. For
the purpose of comparison, we report below all the Sns

S Å 2434, S Å 2177, S Å 1708.1 2 3

The lower critical numbers are calculated recursively
using (13) to obtain

s Å 214, s Å 231, s Å 453.1 2 3

Since S3 Å 1708, the search for s1 was limited between
zero and 1708. Similarly, after finding s1 Å 214, the
search for s2 was limited between 214 and 1708. Note
also that s2 is greater than zero despite the fact that K2

is zero. This is because the effective setup cost at stage
2 is greater than zero due to a positive setup cost at stage
1. Observe also that the critical numbers satisfy the
monotonicity property indicated in Corollary 1.

8. Concluding Remarks
A major goal of this investigation was to explore how
capacity uncertainties affect production decisions in a
multi-stage system with setup costs. Despite the un-
wieldy nature of the cost functions involved, we were
able to establish the optimality of a simple two-critical-
number policy. The critical numbers for successive
stages were shown to be monotonic. This fact was ex-
ploited for efficient computation of the critical numbers.
The monotonicity of the critical numbers also lead us to
the interesting conclusion that production for all but the

very first stage can effectively be controlled using only
the lower critical numbers. In our effort to understand
how production decisions are affected by cost parame-
ters, we explored the sensitivity of the critical numbers
to these parameters. The impact of demand and capac-
ity uncertainties were also studied by letting their dis-
tributions change stochastically. These results provided
us with further insights on the interrelationship among
various stages of the system.

Appendix

PROOF OF LEMMA 3. Suppose (wn/ hn0 hn/1)ú then,/0g* (s )n01 n01

from (22), ú 0. Since gn(un) is increasing over interval (sn01,/g (s )n n01

Sn01), it remains positive over this entire interval. As a result, from
(21), is always positive. That is, gn(0) õ gn(un) for all un, andg*(u )n n

it is not worthwhile to produce at stage n. Q.E.D.

PROOF OF LEMMA 4. Consider for un √ (sn01, Sn01). Substi-g*(u )n n

tuting (22) into (21),

U Ug*(u ) Å F (u )(w / h 0 h ) / F (u )g* (u ),n n n n n n n/1 n n n01 n

for u √ (s , S ). (A.1)n n01 n01

Similarly, for un √ (sn02, Sn02), is given byg* (u )n01 n

U Ug* (u ) Å F (u )(w / h 0 h ) / F (u )g* (u ),n01 n n01 n n01 n01 n n01 n n02 n

which can be substituted in (A.1) to yield

U U Ug*(u ) Å F (u )(w / h 0 h ) / F (u )F (u )(w / h 0 h )n n n n n n n/1 n n n01 n n01 n01 n

U U/ F (u )F (u )g* (u ), for u √ (s , S ).n n n01 n n02 n n n01 n01

Note that this substitution is valid because (sn01, Sn01) ⊆ (sn02, Sn02) as
indicated in (28). By recursive substitution, we can obtain ing*(u )n n

terms of the model parameters alone. The result is

n n

Ug*(u ) Å F (u )(w / h 0 h )∑ ∏n n j n k k k/1
kÅ1 jÅk

n

U U0 F (u )Q(u )(p / h ), u √ (s , S ) (A.2)∏ j n n 1 n n01 n01

jÅ1

where we have used the definition of g1(u1) given in (7). Since the
upper critical number, Sn, is the solution to equation Å 0, ung*(u )n n

√ (sn01, Sn01), the result follows. Q.E.D.

PROOF OF THEOREM 3. Using the implicit-function theorem, the
sensitivity of Sn with respect to any parameter p can be expressed by

ÌS Ìg*(S )/Ìpn n nÅ 0 .
Ìp Ìg*(S )/ÌSn n n

From (23), for un √ (sn01, Sn01),
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Ìg*(S )n n
UÅ g9(S ) Å F (S )g9 (S ) 0 f (S )g (S ).n n n n n01 n n n n nÌSn

But gn(Sn) Å 0 from definition of Sn, which makes the last term of the
above equation vanish. Hence

ÌS Ìg*(S )/Ìpn n nÅ 0 . (A.3)
UÌp F (S )g9 (S )n n n01 n

The sensitivity of Sn to changes in cost parameters can now be obtained
by taking partial derivative of (29) with respect to hi , wi , p and Ki

respectively and then substituting the results into (A.3). Q.E.D.

PROOF OF LEMMA 5. By the definition of sn,

sn

0K Å g (s ) 0 g (0) Å g*(u )du .n n n n n n n*
0

From (21), can be decomposed into two subintervals (0, sn01)g*(u )n n

and (sn01, sn) instead of (0, sn). Hence, (25) can be rewritten as
(30). Q.E.D.

PROOF OF THEOREM 4. From (9), s1 Å 0 if and only if K1 Å 0 since
s1 √ (0, S1) and g1 is decreasing in (0, S1) by Theorem 2. Assume K1

Å 0. From Theorem 2, g2 is decreasing in (0, S2). Then, from (25), s2

Å 0 if and only if K2 Å 0 since s2 √ (0, S2) by definition. If K1 x 0, then
s1 ú 0. By Theorem 2, s2 ú s1 ú 0. Therefore K1 must be zero to have
s2 Å 0. To proceed by induction, assume sn01 Å ··· Å s1 Å 0 if and
only if Kn01 Å ··· Å K1 Å 0. By Theorem 2, gn is decreasing in (0, Sn).
By the definition of the lower critical number, sn Å 0 if and only if Kn

Å sn01 Å 0 since sn01 √ (0, Sn) by definition. Suppose Ki x 0 for some
i õ n. Then, sn01 ú 0 by assumption. By Theorem 2, sn ú sn01 ú 0.
Therefore, Ki for all i õ n must be zero to have sn Å 0. Q.E.D.

PROOF OF THEOREM 5. Suppose the setup cost at stage i increases
from Ki to K̂i . Let the corresponding functions gn(·), Cn(·), etc., be
represented by Ĉn(·), etc. Similarly, let the new critical numbersPg (·),n

be represented by ŝn and Ŝn, for all n. Recall that the upper critical
numbers are not affected by changes in setup costs (Property 4 of
Theorem 3), i.e., Sn Å Ŝn for all n. Since the change at stage i does not
affect decision for any of the downstream stage, hence sj Å ŝj for all j
õ i. From (25), for stage i

Pg (s ) 0 g ( Ps ) Å g (0) 0 K 0 Pg (0) / K ú 0,i i i i i i i i

since gi(0) Å by Lemma 2 and Ki õ K̂i . Observe from (2) and (3)Pg (0)i

that gi is not a function of Ki , i.e., gi(ui) Å for all ui . Then, gi(ŝi)Pg (u )i i

Å õ gi(si). By Theorem 2, gi is decreasing in (ŝi01, Si), and bothPg ( Ps )i i

si and ŝi belong to interval (si01, Si). Hence, ŝi ú si since gi(ŝi)õ gi(si).
For stage i / 1, using (3), we can derive

Pg (u )0 g (u )i/1 i/1 i/1 i/1

ui/1

PÅ [C (y )0 C (y )]dF (y )i i/1 i i/1 i/1 i/1*
0

P

U/ F (u )[C (u )0 C (u )], ∀u . (A.4)i/1 i/1 i i/1 i i/1 i/1

Consider (A.4) for ui/1√ (ŝi , Si). Since ŝi ú si and Ŝi Å Si , the first term

can be divided into three subintervals (0, si), (si , ŝi) and (ŝi , ui/1). Then,
substitute (20) into (A.4) to get

Pg (u ) 0 g (u )i/1 i/1 i/1 i/1

si

Å [ Pg (0) 0 g (0)]dF (y )i i i/1 i/1*
0

Psi

/ [ Pg (0) 0 g (y ) 0 K ]dF (y )i i i/1 i i/1 i/1*
si

ui/1

P P

U/ [K 0 K ]dF (y ) / F (u )[K 0 K ]. (A.5)i i i/1 i/1 i/1 i/1 i i*
Psi

Observing that gi(0) Å from Lemma 2, the first term becomesPg (0)i

zero. The integrand of the second term can be rewritten as gi(si)
0 gi(yi/1) by the definition of si . By Theorem 2, gi is decreasing in (si ,
ŝi) ⊆ (si01, Si). Therefore, gi(si) ú gi(yi/1) for yi/1 √ (si , ŝi). Hence, the
second term of (A.5) is also positive. The last two terms of (A.5) are
positive since K̂i ú Ki . As a result, ú gi/1(ui/1) in (ŝi , Si/1).Pg (u )i/1 i/1

By Lemma 2 and from the definition of the lower critical number, we
have

g (s ) Å g (0) 0 K Å Pg (0) 0 K Å Pg ( Ps ).i/1 i/1 i/1 i/1 i/1 i/1 i/1 i/1

Hence, gi/1(si/1) Å ú gi/1(ŝi/1) since ŝi/1 √ (ŝi , Si/1) by The-Pg ( Ps )i/1 i/1

orem 2. Notice that gi/1 is decreasing in (ŝi , Si/1) ⊆ (si , Si/1) by Theorem
2. Therefore, si/1 õ ŝi/1.

To proceed by induction, suppose sn01 õ ŝn01 and gn01(un01)
° in (ŝn01, Sn) for nú i. Using a similar argument as above,Pg (u )n01 n01

one can show that ú gn(un) in (ŝn01, Sn). Using Lemma 2 andPg (u )n n

Theorem 2, it follows that gn(sn)Å ú gn(ŝn). But gn is decreasingPg ( Ps )n n

in (ŝn01, Sn) ⊆ (sn01, Sn), hence sn õ ŝn. Finally, to complete the proof
by induction, note from (28) that ú gn(un) in (ŝn, Sn/1) ⊆ (ŝn01,Pg (u )n n

Sn). Q.E.D.

PROOF OF THEOREM 6. Suppose the penalty cost p increases to Pp,
and the associated gn(·), sn and Sn become ŝn and Ŝn, respec-Pg (·),n

tively. Consider the relationship between ŝn and ŝn01 for the case when
the penalty is from Lemma 5Pp

Ps Psn01 n

UF (u )[w / h 0 h ]du / Pg*(u )du Å 0K . (A.6)n n n n n/1 n n n n n* *
0 Psn01

Since 0Kn is a constant, the difference between the left-hand-sides of
(30) and of (A.6) is zero. We will prove the theorem by induction. For
each stage n, we will show that unless sn ú ŝn is true, the difference
between (30) and (A.6) will turn out to be negative. Hence, by contra-
diction, sn ú ŝn.

For stage 1, the first terms of both (30) and (A.6) vanish since s0

Å ŝ0 å 0. Suppose s1 ° ŝ1. Then, by subtracting (A.6) from (30), we
have

s Ps1 1

[ Pg*(u ) 0 g*(u )]du / Pg*(u )du Å 0. (A.7)1 1 1 1 1 1 1 1* *
0 s1

Since ú p, thereby ú in (0, s1) , (0, `) from (A.2).Pp g*(u ) Pg*(u )1 1 1 1
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Then, the first term of (A.7) is negative. The second term is also neg-
ative since the integrand, is negative in (s1, ŝ1) ⊆ (0, ŝ1) byPg*(u ),1 1

Theorem 1. Hence, the left-hand side of (A.7) becomes negative. This
contradicts (A.7). Therefore, s1 ú ŝ1.

Consider stage n. To proceed with induction, assume sn01ú ŝn01.
In order to prove sn ú ŝn by contradiction, suppose sn ° ŝn. Hence,
ŝn01 õ sn01 õ sn õ ŝn since sn01 ° sn by Theorem 2. Subtract (A.6)
from (30)

s sn01 n01

U0 F (u )[w / h 0 h ]du / Pg*(u )dun n n n n/1 n n n n* *
Ps Psn01 n01

s Psn n

/ [ Pg*(u ) 0 g*(u )]du / Pg*(u )du Å 0. (A.8)n n n n n n n n* *
s sn01 n

The first term of (A.8) is negative since wn / hn 0 hn/1 ú 0 by
Condition 2. By Theorem 2, is negative in ( ŝn01, Ŝn), which con-Pg*n
tains intervals ( ŝn01, sn01) and (sn, ŝn). Therefore, the second and
fourth terms of (A.8) are both negative. From (A.2), consider ing*n
(sn01, Sn01) and in ( ŝn01, Ŝn01). Since ú p, hencePg* Pp Pg*(u )n n n

õ in (sn01, Sn01) Å (sn01, Sn01) > ( ŝn01, Ŝn01) since Sn01õ Ŝn01g*(u )n n

by Theorem 3. By Theorem 2, (sn01, Sn01) contains interval (sn01,
sn). Therefore, the third term of (A.8) is also negative. Hence, the
left-hand side of (A.8) is negative. This contradicts the equality in
(A.8). As a result, ŝn õ sn. Q.E.D.

PROOF OF THEOREM 7 AND THEOREM 8. Can be proved using sim-
ilar mathematical arguments as for Theorem 6. Removed due to space
limit.

PROOF OF THEOREM 9. Suppose that the demand distribution
changes from Q(z) to Q̂(z) such that QV (z) ° for all z, and theU

PQ(z)
associated gn(·), gn(·), sn and Sn become ĝn(·), ŝn and Ŝn, re-Pg (·),n

spectively. We first show inductively that Sn ° Ŝn for all stages. By
substituting (21) into (A.2) for un √ (sn01, Sn01), one obtains

n01 n01

Ug (u ) Å (w / h 0 h ) / F (u )(w / h 0 h )∑ ∏n n n n n/1 j n k k k/1
kÅ1 jÅk

n01

U U0 F (u )Q(u )(p / h ). (A.9)∏ j n n 1

jÅ1

Since ŝ0 Å s0 å 0 and Ŝ0 Å S0 å `, both g1 and ĝ1 are defined in (0, `).
Since QV (·)° g1(·)¢ ĝ1(·) in (0, `). Then, ĝ1(S1)° g1(S1)Å 0 byU

PQ(·),
the definition of S1. Hence, S1 ° Ŝ1 since ĝ1 is increasing and ĝ1(Ŝ1)
Å 0. By induction, assume Sn01 ° Ŝn01. For stage n,

(1) If Sn õ ŝn01: By Theorem 2, Sn ° Ŝn since ŝn01 ° Ŝn.
(2) If Snú ŝn01: From (A.9), consider gn in (sn01, Sn01) and ĝn in (ŝn01,

Ŝn01). Since QV (·)° gn(·)¢ ĝn(·) in (max{sn01, ŝn01}, Sn01)Å (sn01,U

PQ(·),
Sn01) > (ŝn01, Ŝn01). By Theorem 2, both Sn and Ŝn belong to (max{sn01,
ŝn01}, Sn01). Hence, ĝn(Sn) ° gn(Sn) Å 0 from (22). Then, Ŝn ¢ Sn since
ĝn is increasing in (Sn, Ŝn01) ⊆ (ŝn01, Ŝn01).

Now, we need to prove that sn ¢ ŝn for all stages. From (A.2), while
the demand density shifts from Q(z) to Q̂(z), we have Pg*(u )n n

° in {(sn01, Sn01) > (ŝn01, Ŝn01)} since ĝn° gn in the same range.g*(u )n n

This result is analogous to the one that appeared in the proof of The-
orem 6, where the penalty cost increases from p to Following thePp.
proof of Theorem 6, one can show that sn ¢ ŝn. Q.E.D.

PROOF OF THEOREM 10. Assume the density of the capacity at stage
i changes from Fi(yi) to Fi(yi) such that FV i(yi) ° for all yi , andU

PF (y )i i

the associated gn(·), sn and Sn become ĝn(·), ŝn and Ŝn, respectively.
From (A.9), gi(ui) is not a function of Fi(·). Hence, from (24) Si Å Ŝi .
From (21), if ui √ {(si01, Si) > (ŝi01, Ŝi)} then

U

P

Ug*(u ) 0 Pg*(u ) Å [F (u ) 0 F (u )]g (u ) ¢ 0,i i i i i i i i i i

since gi(ui) ° 0 by Theorem 2. From (22), if ui/1 √ {(si01, Si) > (ŝi01,
Ŝi)} then

g (u ) 0 Pg (u ) Å g*(u ) 0 Pg*(u ) ¢ 0.i/1 i/1 i/1 i/1 i i/1 i i/1

By recursive substitution and (28), we obtain gn(un) ¢ andPg (u )n n

gn(un) ¢ ĝn(un) in {(sn01, Sn01) > (ŝn01, Ŝn01)} for n ú i.
By induction, assume Sn01 ° Ŝn01 for n 0 1 ú i. Then, gn(un)

¢ ĝn(un) in {(sn01, Sn01) > (ŝn01, Sn01)}. For stage n, if Sn õ ŝn01, then
Sn ° Ŝn since ŝn01 ° Ŝn by Theorem 2. If, on the other hand, Snú ŝn01,
then Sn √ {(sn01, Sn01) > (ŝn01, Sn01)} by Theorem 2. Hence, ĝn(Sn)
° gn(Sn) Å 0 from (22). Therefore, Ŝn¢ Sn since ĝn is increasing in (Sn,
Ŝn01) ⊆ (ŝn01, Ŝn01). Q.E.D.
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