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This paper concerns dynamic part dispatch decisions in electronic test systems with random yield. A discrete time, 
multiproduct, miltistage production system is used as a model for the test system with the objective to minimize the sum 
of inventory holding, backlogging, and overtime costs over a finite horizon. Exact results for such systems have been 
limited to either single-stage, multiple time period, or multistage, single time period problems with a single product. Here 
we develop two approximate policies: the linear decision rule, and the myopic resource allocation. The effectiveness of 
the two policies is evaluated through simulation under different operating conditions representative of those encountered 
in IBM and Tandem Computer facilities. The extensive computational study clearly demonstrates the overall superiority 
of the linear decision rule. 

W e consider a two-stage production system, 
AYVIshown in Figure 1, where various electronic 
components are tested. Each item requires testing at 
both stages. There are three inventories: an input 
inventory before the first stage, an in-process inventory 
between the stages, and a finished item inventory after 
the second stage. A random fraction of the items may 
not meet the required specifications at the tester stages. 
Good products from a tester stage go into the output 
inventory for the stage, while bad product is reworked 
and then returned to the input inventory for the stage. 
Both the supply of raw material to the system and the 
demand on it are subject to uncertainties. However, a 
higher level planning system ensures that the supply 
and demand are roughly matched over an appro- 
priate time horizon. Demand that cannot be met from 
inventory is backordered until inventory becomes 
available. 

The problem is to determine how much of 
each item to dispatch into each stage at the start 
of each period. The outputs from the tester stages are 
a function of the dispatch quantities and a random 
yield. The dispatch quantities themselves are con- 
strained by the available capacity. The capacity 

constraint can, however, be violated at a cost. This 
overtime cost applies to each stage. Each stage has a 
nominal capacity level; if production exceeds this 
capacity level, then there is an overtime cost. There 
are neither setup times nor setup costs. The other two 
types of costs considered here are for holding inven- 
tory and backordering. The objective is to determine 
a dispatch policy that minimizes the long-term 
expected average costs. 

Multistage systems have been examined in the lit- 
erature, in the context of production planning and 
scheduling. Hax and Candea (1984), and Gershwin, 
Akella and Choong (1985) discuss a variety of models 
and their effectiveness. An important feature of actual 
manufacturing and assembly systems that is not quite 
captured in these models is the internal uncertainty 
that results from causes, such as random yield. This 
paper is a first step in bridging that gap. The dominant 
uncertainties vary from system to system. We focus 
here on an electronic assembly facility that produces 
printed circuit boards for mainframe computers. 
The objective of the entire facility is to respond 
to incoming orders for printed circuit boards and 
to meet production targets on schedule, through a 
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Figure 1. Test stages. 

combination of component ordering policies, aggre- 
gate planning and detailed shop floor dispatch. We 
deal with the last issue in this paper. 

Production control in the presence of random yield 
has attracted considerable interest. We discuss some 
of the work that is closely related to the present paper. 
The intent is not to survey the work in the area but 
to contrast what is being done here with what has 
appeared in the literature. Interested readers are 
referred to Yano and Lee (1989) for an excellent 
survey of lot sizing problems in the presence of ran- 
dom yields. 

Previous research in the area has mainly concerned 
lot sizing decisions for a single product. Yano (1986) 
considers single-stage, finite and infinite horizon prob- 
lems with linear costs, deterministic demands and 
independent, identically distributed yields. Under 
some restriction on the yield distribution, it is shown 
that the optimal production quantity is multiplicative, 
i.e., it is simply a multiple of the net demand for the 
period. Gerchak, Vickson and Parlar (1988) consider 
a similar model but they allow stationary random 
demands. They show that the optimal production 
quantity has neither a simple order-up-to or multiplic- 
ative structure nor is it myopic in nature. The lot size 
is a complicated function of system parameters not 
amenable to efficient computation. 

The only multiproduct, multiple period model with 
random yield, to our knowledge, is by Karmarkar and 
Lin (1986). They present a single-stage model with 
linear cost structure reminiscent of classical LP-based 
production smoothing models. The solution approach 
comprises developing lower and upper bounds on the 
optimal solution. A good lower bound is obtained by 
using modified (or heuristic) Lagrangian relaxation 
that produces independent, single period subprob- 
lems. Three different procedures are presented to pro- 
vide upper bounds. However, the only upper bound 
that produces small duality gaps is obtained through 
simulation. The more efficient procedures for deriving 
upper bounds that are presented are not very encour- 

aging in terms of tightness of bounds. However, the 
lower bounds seem to be good and also suggest a 
heuristic procedure to directly obtain upper bounds. 

Lee and Yano (1988) analyze a multistage (serial) 
system, similar to the one considered here, but with a 
single period and a single product. They show that the 
optimal target input is given by a unique critical 
number which can be computed efficiently in a 
sequential fashion. The multistage, multiproduct, 
multiperiod model presented here can be considered 
a generalization of the above models, where produc- 
tion resources have to be allocated in the presence of 
time varying demands for a portfolio of products. We 
allow nonstationary yield which can be correlated 
between the stages. These complexities are an essential 
part of the complex manufacturing environment con- 
sidered here, and our effort is directed toward the 
development of efficient solution methods for 
resource allocation and dispatch decisions in such 
systems. 

In the next section, we provide the background for 
the problem and discuss key features of the system 
that need to be incorporated in the model. A general 
formulation for the problem is given in Section 2 as a 
dynamic optimization problem subject to a set of 
linear constraints. This formulation encompasses all 
the complexities of the problem and allows general 
inventory and capacity related costs. Though intrac- 
table to solve in the proposed form, it forms the basis 
for various approximations in the following sections. 
When inventory and capacity related costs are quad- 
ratic or can be approximated by quadratic functions, 
the dynamic optimization problem can be solved very 
efficiently. We show in Section 3 that the optimal 
dispatch rule in this case is affine in available inven- 
tory as well as expected demand and supply; we call 
this policy the linear decision rule (LDR). Like the 
classical production smoothing models with quadratic 
costs (Holt et al. 1960), the LDR requires only ex- 
pected values of demand and supplies. But unlike 
those models, expected values are not sufficient here 
for all uncertain quantities. For example, second-order 
moments (covariance terms) of yield distribution are 
needed. The stochastic dynamic programming for- 
mulation is quite general and captures many of the 
complexities of the model; yet the computational bur- 
den is very modest. The linear decision rule, however, 
is only heuristic due to many approximations made 
to arrive at the solution. To evaluate its performance 
against a reasonable alternative, we propose another 
solution scheme, myopic resource allocation (MRA), 
in Section 4. The MRA is based on decomposing the 
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problem by tester stage and time period, where the 
decomposed subproblems are solved efficiently using 
an adaptation of the resource allocation algorithm 
proposed by Luss and Gupta (1975) and Zipkin 
(1980). We compare the two dispatch policies in 
Section 5 using a comprehensive simulation study 
which mimics the cardline tester systems found in 
IBM and Tandem. The experiments, based on a linear 
holding, backlogging and overtime costs, clearly dem- 
onstrate the overall superiority of LDR under a variety 
of operating conditions. We expect that the LDR will 
perform even better under a more general setting 
because it explicitly takes account of nonstationarity 
and correlation of various parameters not considered 
in the computational experiments. A summary of 
results is provided in Section 6. 

1. CARDLINE DESCRIPTION AND 
BACKGROUND OF PROBLEM 

A typical cardline or electronic assembly facility is 
shown schematically in Figure 2. Our model is based 
on two facilities: IBM and Tandem. These systems 
have four stages: 

1. the stocking warehouse, where raw components 
are received and stored; 

2. the insertion stage, where the electronic compo- 
nents are inserted into printed circuit boards; 

3. the soldering area, where cards that have had com- 
ponents inserted are wave soldered; 

4. the test and rework area, where the cards are tested 
and reworked if necessary. 

A detailed description of the system and the real- 
time part dispatch issues at the insertion stage, where 
uncertainties such as machine failures are explicitly 
modeled, can be found in Akella, Choong and 
Gershwin (1984), Akella and Kumar (1986), Akella, 
Singh and Krogh (1990), and Gershwin, Akella and 
Choong. Here we focus on the tester area and describe 
a dynamic part dispatch problem where uncertainties 
such as random yield play a key role. 

Completed 

CopnnsWarehouse I.nsetio Solder Test Sh.ipping 

Demand 

Figure 2. Cardline for electronic assembly. 

Consider the following simplified representation of 
a tester area, with two substages, where in-circuit and 
functional tests are performed (Figure 1) to identify 
defective connections. The cause for faulty connec- 
tions can be traced to the soldering stage, where an 
entire batch of cards may be affected, leading to 
correlated errors. We now describe some key features 
of these test systems that need to be incorporated in 
any model for determining dynamic dispatch policies. 

1.1. Arrival and Departure Processes 

Cards of different types arrive from the soldering area. 
Supply from the soldering area is based on the derived 
demands determined by a higher-level planning sys- 
tem. This system ensures that average inventories or 
backorders are bounded. Despite higher-level plan- 
ning to coordinate arrivals with derived demand at 
each stage, there is some randomness due to uncer- 
tainties, such as machine failures, in the previous 
stages. 

1.2. Random Yield 

The main uncertainty that we focus on here is the 
random yield at each test stage. This results in sto- 
chastic workloads at each test stage, uncertainty in 
meeting the demand and increased, uncertain inven- 
tories at the buffers. We use a multiplicative yield 
model, where a random fraction of a batch that is 
released into the system is found to be defective. 
Occasionally, an entire batch of cards moving through 
the wave solder area is affected by fluctuations in belt 
speed and this results in batch correlated connection 
defects. The multiplicative yield model is especially 
suited for the high volume production with large batch 
sizes and correlated defects. Note that this model 
differs from the Bernoulli trial models, where each 
card defect is assumed to be independent of the others, 
the process is stationary, and batch correlations are 
ignored. 

Product life cycles also affect the yield. During the 
product introduction phase, the r/1u (standard devia- 
tion by mean) ratio is high. As the product matures, 
this ratio decreases to a relatively small value due to 
technological improvements and learning. 

1.3. Rework 

Here we assume that defective boards during a given 
day are sent to a separate rework station where they 
are reworked by the end of the same day. The model 
can easily be extended to allow any arbitrary but 
known rework times. 
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2. PROBLEM FORMULATION 

We use a discrete time model to represent the dis- 
patching problem outlined in the Introduction. This 
model assumes a finite horizon with N periods. First, 
we write the inventory balance equations for the test 
system shown in Figure 1. Let si be the random 
arrival at stage 1 and dtj be the random demand at 
stage 3 for card type i in period t. Both si and dtj are 
bounded and roughly matched by a higher-level plan- 
ning system. The inventory level of card type i at 
buffer j (= 1, 2, 3) in period t is x'<, . Let uj i be the 
number of cards of type i tested during period t at 
stage j (= 1, 2), and ai i be the corresponding random 
yield term, which is the random fraction of good cards. 
The number of cards that need to be reworked and 
retested is given by (1 - atj)u'tji 

We can now write the state (or inventory-balance) 
equations: 

X,= - uI i + (1 -a ai)U1i + st 

t+I = Xt- ut + (1 - t + 

3 3 2U xt3+ ,= xtj + at, t- dt,j. 

Combining these in vector form, we obtain 

xt+ = xt + Btut + Gwt (1) 
where, 

Xt,,- ]xs 

*t IX, = xg 
Xt,M . [t = 

wt = [* ]; wtji = tui 

L Ut,M_ 

Wt= [ ]; * ' B dt,M]; 

Bts, ~ ~ ut 

Bt= . . ] ; 

StI i1 
Bt i= O s ? s 

_ a tj s _ 

GI 

G =.. ;Gi= O 

We now represent the constraints on the time available 
for testing all the card types at the two stages. Let fjt 
be the amount of regular time available for processing 
at stage j in period t. Also, let rJ represent the unit test 
time of card type i at stage j. Then the capacity 
constraints can be represented by 
M 

i= 

or, in matrix form 

Tut > t. (2) 

(Tut - ,t) represents the overtime on which there are 
no limits. 

Finally, we define the objective function as: 

UN N-i 

minimize Et gt(xt) + E f(Tut - t), (3) 
ut0 B,,w, Lt=I t=J 

t= 1,2,. . .,N-1I 

where g(xt) represents inventory holding and back- 
ordering costs, andf(Tut - .t) represents the cost of 
overtime. The specific form of these functions depends 
on the manufacturing environment. The classical lit- 
erature has assumed convex cost functions, in partic- 
ular, linear (e.g., Karmarkar and Lin) and quadratic 
(e.g., Holt et al. (HMMS)). These functions often 
provide good approximations and have the merit of 
being analytically tractable. In the next two sections, 
we present two possible approaches to solve the above 
problem. The first approach assumes quadratic cost 
functions and models the coupling between the differ- 
ent stages explicitly. The second approach assumes 
linear cost functions and is based on decomposing the 
problem stagewise. 

3. LINEAR DECISION RULE 

We will assume that the cost functions g(xt) and 
f(Tut - .t) are either quadratic or can be approxi- 
mated closely by quadratic functions. Specifically, we 
assume that 

g(xt) = xt' Qtxt (4) 

and 

f(Tut - t) = (Tut - 6t)'Rt(Tut - t), (5) 

where Qt is a diagonal matrix representing the inven- 
tory carrying/backordering penalty coefficient for all 
the part-types at the three buffers in period t. Corre- 
spondingly, Rt is the diagonal matrix representing 
the overtime/undertime penalty coefficient for the 
resources at the two tester stages in period t. Note that 
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the inventory cost function (4) penalizes positive and 
negative inventories equally. In reality, backordering 
is much costlier than holding inventory. The following 
modifications could be used to overcome these 
limitations: 

g(xt) = x/'Q'x' - C'x' (6) 

g(xt) = (xt - st)Qt(xt - St) (7) 

where nonnegative vector Ct is used to create the 
desired asymmetry in cost function and vector st 
specifies a desirable positive inventory at each buffer 
to be tracked by production. For the purpose of opti- 
mization, both modifications are equivalent as sub- 
stituting Ct = 2stQt in (6) gives (7), except an 
inconsequential constant term s' Qtst. We will use 
quadratic form (6) in the remainder of this paper. 

Backlogging is not permitted at buffers 1 and 2, but 
this constraint cannot be imposed directly in this 
formulation. When a situation arises such that the 
optimal input quantity is larger than the available 
inventory, the input quantity is truncated to the level 
of available inventory. The backlogging costs at 
buffers 1 and 2 can be interpreted as the implied 
cost of not having enough inventory to satisfy the in- 
put quantity and hence lowering the output at the 
downstream buffer. 

The cost function (5) could also be modified to 
make overtime more expensive than undertime. 
Following the arguments above, we can use the 
modification 

f(Tut - t) = (Tut - tt)'Rt(Tut -t) 

+ Ft(Tut - t), (8) 

where the positive vector Ft increases the penalty for 
overtime compared to that for underutilization of 
capacity. It is also required that the input quantity, ut, 
be nonnegative. However, we cannot incorporate this 
constraint explicitly into the present formulation. We 
shall impose this constraint heuristically by setting 
any negative production rate to zero. 

The problem can now be stated as 

N 

minimize E xt'Qtxt - Ctxt 
ut Bt,w, t=1 

t= 1 2_ . N-I 

N-I 

+ E (Tut - tt)'Rt(Tut -t) 
t= 1 

+ Ft(Tut - At)} (9) 

subject to (1). 

This is a variant of the classical linear quadratic 
control problem with random coefficient matrix 
(Bertsekas 1976). The above formulation is quite gen- 
eral in the sense that it allows multiple products, 
multiple periods and multiple stages of production; 
the demand for finished products and the supply of 
raw materials can be nonstationary and random; pro- 
duction yields can vary with time and be correlated 
among part types as well as between the stages; avail- 
able capacity can vary from period to period and all 
costs can be nonstationary. Any delay between the 
production stages can also be incorporated simply by 
rewriting the state-equation (1). The following result 
(proved in the Appendix) gives the optimal production 
quantitities in terms of system parameters. 

Theorem 1. For a production system with dynamics 
described by (1), and the objective function given by 
(9), the optimal dynamic dispatch policy is given by 

t* = Ltxt + Mt, (10) 

where 

Lt = -r-1BKt+ I 

Mt=r- '[T'Rtft-Bt'Kt,Gwtl 

-Bt'Pt+1-1/2T'FJ 
] 

rt = E{BtKt+,Bt} + T'RtT (11) 

Kt = Kt+- Kt+,1BFtr-'BTKt+, + Qt 

Pt = Pt+, + [Gwt + BtMt]Kt+l - /2Ct| 

KN = QN; PN = - /2CN. 

The optimal policy for each part type is affine in the 
inventory levels. Also, observe from the form of Mt 
that the feedback policy is also affine in a linear 
combination of the expected demand and supply. As 
in classical production smoothing models with quad- 
ratic costs (HMMS, p. 123) the linear decision rule 
requires only expected values (shown with overbars) 
of future demands and supplies, all other distribu- 
tional information about these quantities are irrele- 
vant. But, unlike those models, expected value alone 
is not sufficient for all uncertain quantities. For exam- 
ple, second-order moments (covariance terms) of yield 
distribution are needed, as can be seen from the 
presence of the EIBtKt+KBt term in rt. The certainty 
equivalence obviously does not hold for this model 
and this is mainly because of the random coefficient 
matrix Bt in the state equation. The alternate objective 
functional forms (7 and 8) can be incorporated 
in Theorem 1 simply by substituting (xt - st) and 
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(At - 'y) in place of xt and At, respectively; all the 
observations made above remain valid. 

For such a general formulation, it is interesting that 
the decision rule is simple, and essentially linear. 
Furthermore, the calculation of affine constants 
L, and M, can be done recurisvely, overwriting the 
intermediate matrices Kt and P, at each recursion. 
Unlike the LP formulation of similar planning 
problems, where the size of the coefficient matrix in- 
creases proportionately with the number of periods, 
matrices Kt and Pt are independent of the number of 
periods. The recursive calculation involves simple 
matrix operations at each step. As a result, the 
computational burden for the proposed decision rule 
turns out to be far less than that needed for even a 
deterministic LP solution. 

We point out, however, that this simplicity is closely 
linked to the quadratic form of the objective function. 
When the actual costs are not quadratic, the method 
can still be used by choosing quadratic cost functions 
that yield a good linear decision rule for the original 
cost environment. 

We now discuss the issue of choosing the quadratic 
cost coefficients. Schneeweiss (1971, 1974) developed 
a two-stage procedure for choosing the LDR parame- 
ters optimally for production smoothing problems 
with nonquadratic costs and Gaussian demands. 
Using Wiener filtering theory, the stationary proba- 
bility distribution in the inventory-production space 
is first derived as a function of quadratic cost param- 
eters. The optimal decision rule parameters are then 
computed so that the expected cost resulting from the 
probability distribution, given the firm's actual cost 
function, is minimized. The Wiener filtering proce- 
dure is intimately related to the certainty equivalence 
principle, which does not hold in the proposed model. 
We present another two-stage iterative procedure 
where, given the probability distributions of inven- 
tories and overtime/undertime for each period, the 
quadratic cost parameters are fitted such that the 
weighted least square deviation from the firm's actual 
cost is minimized, where weights correspond to the 
probabilities of being in various inventory and over- 
time states (see the Appendix). A linear decision rule 
is then computed using these cost parameters. The 
LDR is used, in turn, to generate, by repeated simu- 
lation runs, an updated distribution of inventories and 
overtime/undertime, which is then used to achieve a 
better quadratic fit. 

While we do not prove the convergence of the 
proposed method (Schneeweiss's iterative method also 
suffers from the same limitation), computational 

experience shows that the fitted cost parameters con- 
verge to a narrow range within a few iterations, pro- 
vided that we start with a good initial guess of probable 
inventories and overtimes. It turns out that the LDR 
parameters L, and Mt are not very sensitive to the 
quadratic cost parameters, and the iterative process 
can be terminated whenever improvement in expected 
total cost due to a new fit becomes insignificant. The 
proposed procedure for finding quadratic cost func- 
tion has another advantage. Notice that the distri- 
bution of inventories and overtime/undertime will 
depend on the distribution of demand and supply. 
The fitted quadratic cost parameters, as a result, 
will depend on the demand and supply distribution. 
The linear decision rule, which does not require any 
higher order moments of the demand and supply 
distributions, is now dependent on them indirectly 
through the quadratic cost parameters. We believe 
that this further enhances the performance of the 
LDR. 

As a final point, we note that the applicability of 
the linear decision rule is not limited to problems with 
quadratic costs alone. For example, the optimality of 
the linear policy is established in Yano for a single- 
stage production system with variable yield, linear 
costs and deterministic demands for both finite and 
infinite horizon problems. For many other dynamic 
optimization problems with linear state equations and 
nonquadratic costs, Schneeweiss (1971, 1974) shows 
that linear policies can be a good approximation. 

4. MYOPIC RESOURCE ALLOCATION 

We present an alternative approach to solve the prob- 
lem using a capacitated newsboy model with random 
yields and deterministic demands. The method is 
based on decomposing the problem by tester stage 
and time period. The decomposed subproblems con- 
sist of allocating the capacity, including overtime, to 
the various part types in a newsboy fashion. This 
problem is solved efficiently using a variant of the 
resource allocation approach proposed by Luss and 
Gupta (1975) and Zipkin (1980). 

For any period, given beginning inventories, the 
optimal dispatch quantities are determined in 
the following fashion: Starting with the final stage, 
the dispatch quantities are computed sequentially for 
each stage using corresponding costs and the net 
demand (demand less inventory). Barring the final 
stage, where actual demands occur, for all other stages 
the dispatch quantity at the following stage is used 
as the demand for the previous stage. Assume that 
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yields are not correlated between the stages or part 
types; inventory costs are linear and separable for 
part types and capacity violation is penalized by a 
linear overtime cost. 

The cost of backlogging at the intermediate buffer 
is the price one pays for not being able to feed the 
following stage when required by the optimal decision. 
In the worst case, a unit short at the intermediate 
buffer may result in a unit backlogged at the final 
stage. In this case, the cost of backlogging at the 
intermediate buffer will be exactly equal to the back- 
logging cost at the final buffer. It is possible that the 
cost of backlogging at the intermediate buffer is less 
than that at the final buffer due to the benefits derived 
from the alternative use of capacity at stage 2 freed by 
insufficient supply at the intermediate buffer. How- 
ever, the value of a unit of capacity can vary from 
zero to overtime cost, depending upon the marginal 
value of capacity for other part types. As a result, the 
backlogging cost at the intermediate buffer for any 
part type is a complex function of stock levels and 
yield distributions of all part types. To preserve the 
separable structure of the cost function, a property 
critical for efficient solution of the decomposed prob- 
lems, we have taken the backlogging cost at the inter- 
mediate buffer to be the same as that at the final 
buffer. 

Consider a tester stage j which, according to 
Figure 2, draws the components from buffer j and 
after testing puts the good output into buffer j + 1. 
Let d' be the net demand and f'(.) the probability 
density function of yield distribution for part type i 
with corresponding upper and lower limits ULi and 
LLi, respectively. The per unit inventory holding and 
backordering costs at the output buffer, j + 1, are 
hi+' and bj+', respectively for part type i. Choosing 
u' as the input quantity implies that a backordering 
cost bj+'(d' - ajuj) may incur if the good output 
a&u' turns out to be less than the net demand; other- 
wise, an extra holding cost (h+'1 - hj)(aj uj - di) may 
incur due to surplus production. Due to value added 
at tester stages, holding costs at consecutive buffers 
satisfy the relationship hj+' >, hj. The sum of back- 
ordering and excess holding costs for part type i can 
be represented by a convex cost function 

Cia = (d./Jl ) 

'(U')= J bj+'(d' - aou')fj(ao) da' 
a.=LL, 

UL 

+ J (h+ - hj)(at'u' - di)fi(a') da' . 
aJ=(dJ/u1) 

The optimization problem for stage j can now be 
stated as 

M 

minimize z Lj(u'-) + ray' 

M 

subject to E ju fu 3i + yi 
i1= 

yi2 0; Uiia O, i= 1, ..,M, 

where y' is the amount of overtime and ri the unit 
cost of overtime at stagej. In what follows, we suppress 
superscript j for notational simplicity. The optimi- 
zation problem described above has a derivative 
separable objective function with a single resource 
constraint. The expected marginal decrease in cost, 
-( 1/ri)(dL/dui), is a nonincreasing function of total 
machine time assigned to a part type. Starting with a 
maximum value of (bji+l &i)/ri the expected marginal 
decrease in cost remains constant until the allocated 
machine time exceeds ridl/ULi, after which it starts 
decreasing. The optimal allocation is such that the 
marginal cost of capacity equals the expected marginal 
benefit derived from an extra unit of capacity; those 
part types that cannot afford this price do not get 
produced. If overtime is used in the optimal solution, 
then the marginal cost of capacity also equals the unit 
cost of overtime and it is easy to identify which part 
types do not get produced in the optimal solution. 
When overtime is not used in the optimal solution, a 
simple ranking procedure due to Luss and Gupta 
(1975), and Zipkin (1980) can be used to identify 
which part types do not get produced. The following 
algorithm is used to obtain an optimal solution. 

Algorithm 1 

Step 1. For i = 1, . .. , N find u?1 such that 

dLi 
dui u4) 

If 'L1 riu 51 < A, then ui* = u5'1 for all i. Stop. 
Step 2. Assign each part type a unique rank [i] such 

that 

1 dL[i] 1 dL[i+ 1] 
r[iI du[i] uHi,=o r[i+,] du[i+11 u,i+ 1=o 

Break the tie arbitrarily. Store the transformation 
i -- [i]. Let j be the largest index such that 

1 dLu] | Br,I sj<M. 
ru, duui uu,=o 
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For i = 1, 2, . .. ,j, find u(2f) such that 

1 dL[,] r. 
T[j] dU[j] U(2]) 

Set u (2) =0 for i=j+ 1, .. ., M. If Ey, -[i]u 2) 

A3> 0, then uE = u 2) for all i. Transform solution 
u- u and stop. 

Step 3. a. Set k = j. 
b. Compute X(k) and u 3), i = 1, ..., Nby simul- 

taneous solution of the following system of equations 

I [i] |= \X(k), i , ...,k (12) 
T[j] dU[j] U(3]) 

N[i3) = ?, i = k+ 1, ... ., M (13) 
M 

EXr[i ] = f. (14) 
i1= 

c. If- 1 dL[k+l] X(k) 
T[k+ 1] dU(k+l] U(k+ll=O 

then u [] = u 313) for all i. Transform solution u [*- u* 
and stop. 

d. Set k = k + 1 and return to Step 6. 

The proof that the above algorithm yields the opti- 
mal solution is given in the Appendix. The algorithm 
exploits the convex, separable nature of the cost func- 
tion and the single resource constraint to obtain a 
simple ranking of products, which is then used to 
obtain the optimal solution efficiently. Note that if 
the optimal solution is such that either capacity is 
underutilized, or overtime is used, then the algorithm 
terminates at either Step 1 or Step 2, respectively. 
Only when machine time is scarce and the overtime 
is prohibitively expensive that it goes to Step 3, which 
is essentially Zipkin's algorithm. The above algorithm 
can be extended to convex inventory costs. However, 
this will increase the computational effort in solving 
the simultaneous equations (12-14). Note also that 
cost functions Li(ui) are not strictly convex, which 
implies that for the same marginal cost of capacity 
(X), a number of solutions (ui) may exist. However, 
this does not cause any problem as long as Steps 2 
and 3 above are interpreted suitably. For example, 
corresponding to X(k) a set of u[3) may satisfy (12) in 
Step 3b and all such solutions should be considered 
as candidates for simultaneous solution of the set of 
equations (1 2)-(14). 

5. COMPUTATIONAL RESULTS 

In this section, we report the results of a computational 
study performed to assess the effectiveness of the two 

policies: the linear decision rule (LDR) and the my- 
opic resource allocation (MRA), discussed in previous 
sections. Different assumptions were made for the 
development of the two dispatch policies and our goal 
is to illustrate their performance under various oper- 
ating conditions. Since the manufacturing problem 
addressed here is too complex to be solved optimally, 
we use simulation as a benchmark to evaluate the 
approximations. This approach is common for prob- 
lems for which exact results are not known; for 
example, see Bitran and Tirupati (1988) and many 
references therein. 

We consider a production environment that is rep- 
resentative of the cardline tester systems found in IBM 
and Tandem. However, the system details have been 
simplified and parameter values disguised for the 
study. We first discuss the details of the experiment 
and then the results. 

Each of the problem sets we consider has four part 
types. For each problem a horizon of 10 time periods 
was considered. Short-term dispatch decisions are typ- 
ically based upon a horizon of approximately this 
length; see, for example, Graves (1982). The relative 
performance of the two decision rules is not very 
sensitive to the horizon length due to a careful choice 
of initial inventories with which we start all simulation 
runs. 

5.1. Initial Inventories (xi,,) 

At buffers 1 and 2, due to the same-day rework policy, 
there is always a certain residual inventory. We assume 
that the initial inventories at buffers 1 and 2 are equal 
to average expected residual inventories. At buffer 3, 
they are assumed to be zero. 

5.2. Yield Values (a ,,) 

Yields for all part types were taken to be stationary 
and uncorrelated. They were generated from uniform 
distributions with averages shown in Table I. To 
study the effect of yield variance, two ranges of the 

/,u ratio were considered: Low (0.03 - 0.1), and 
High (0.2 - 0.4). 

Table I 
Average Yield and Test Times 

Expected Yield Test Time 
at Test Stage at Test Stage 

PartType 1 2 1 2 

1 0.550 0.450 0.160 0.284 
2 0.700 0.550 0.228 0.226 
3 0.525 0.525 0.258 0.327 
4 0.400 0.525 0.232 0.3 10 
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5.3. Demand and Supply (dtci and st,j) 

As discussed, demand is either deterministic (based 
on master production schedules) or has a low noise 
level at the time scale considered. In this computa- 
tional study, we assume demand to be deterministic 
and mildly fluctuating over time. Demand values were 
generated randomly from the range 200-300. 

Supply to the tester stage was generated such that it 
was reasonably well-matched with the demand. Sup- 
plying more than what is needed will incur an unnec- 
essary holding cost; similarly, an acute shortage of 
supply will drive the backlogging costs up no matter 
what policy is chosen. In both cases, the total cost will 
be inflated and the savings due to the better policy 
devalued. 

5.4. Test Times and Tester Capacities (4 and fl,) 

Test times are of the order of a fraction of a minute. 
The specific values used in the computational study 
are listed in Table I. Based on these test times, the 
mean yield values at the two stages, and the demands, 
we generated three different scenarios for capacities: 

i. Matched Capacity. Capacity over 10 periods 
roughly matched to the demand at both stages. 

ii. Surplus Capacity. Capacity available 20% greater 
than in i at both stages. 

iii. Inadequate Capacity. Capacity available 20% less 
than in i at both stages. 

The capacity was assumed to be constant over time. 

5.5. Performance Measure 

The exact functional forms of inventory and capacity 
related costs are difficult to establish and they change 
with the manufacturing environment. While the LDR 
can be used for any convex cost function subject to 
an accurate approximation by quadratic form in the 
region of interest, the MRA was developed using linear 
inventory and overtime cost functions. Hence, we 
chose to compare the performance of the two dispatch 
rules based on linear inventory and overtime costs. 
This will also put to test how well LDR performs in 
extreme circumstances because achieving an accurate 
quadratic fix to linear costs is usually more difficult 
than fitting quadratic forms to convex functions. The 
final comparison is based on the actual total cost 
incurred by the two policies regardless of how they 
were developed. 

5.6. Costs 
To test the performance of the dispatch policies exten- 
sively, several cost scenarios were considered and are 
described below. 

Holding Costs. Holding costs were based on the value 
of the printed circuit boards and a 30% annual holding 
charge. They ranged from 0.2 to 0.4 per unit per 
period and were taken to be the same at the three 
buffers. They were used as base costs compared to 
which other costs were defined on a relative scale. 

Backlogging Costs. Backlogging cost is incurred only 
at buffer 3. Three ratios of backlogging cost/holding 
cost(b/h) were considered: 2, 5, and 10. They provide 
various levels of cost asymmetries against which per- 
formance of LDR can be judged. 

Overtime Costs. The overtime cost is expressed here 
as cost per unit time of extra capacity and is assumed 
to be the same at the two test stages. A judicious 
tradeoff between overtime and backlogging costs is 
central to a good dispatch policy and the relative cost 
of overtime compared to backlogging plays a key role 
in this process. An inexpensive overtime cost can 
mitigate the effect of bad decisions by employing 
overtime capacity whenever needed, without much 
penalty. A very expensive overtime, on the other hand, 
may not serve any purpose since it might become 
cheaper to backlog than produce using overtime. For 
any part type, if the maximum expected marginal 
decrease in cost due to use of a unit of capacity, bI/r, 
is less than the overtime cost, it will never be produced 
using the overtime capacity. However, if the quantity 
b&e/T for a part type is greater than the cost of overtime, 
it will qualify for production using regular time, and 
it may even qualify for overtime if, by optimal allo- 
cation of regular capacity, the marginal cost of capac- 
ity turns out to be greater than the cost of overtime. 
To examine the various possibilities of overtime-back- 
logging tradeoffs, we consider three scenarios for over- 
time cost for each case of b/h: 

Prohibitively Expensive Overtime: The overtime 
cost is greater than the maximum of bal/T over all part 
types at both the stages. This is equivalent to a hard 
capacity constraint since use of overtime is never 
beneficial. However, due to quadratic approximation, 
LDR may use some amount of overtime and pay a 
high penalty. 

Inexpensive Overtime: The overtime cost is signifi- 
cantly less than the minimum of bol/T over all part 
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types at both the stages. A liberal use of overtime can 
be expected in this case both to avoid the backlogging 
as well as to fill any outstanding order due to erro- 
neous allocation in the past. Since overtime can be 
readily used to bail out from any backlog, the effect 
of a bad decision does not propagate beyond one 
period. 

Moderate Overtime Cost: The overtime cost, in this 
case, is chosen such that it is within the range over 
which ba&/T lies for different part types. Overtime is 
used sparingly in this case and tradeoff between back- 
logging and overtime costs becomes critical. 

5.7. Experimental Details 

A total of 54 problem sets were constructed based on 
three cases of available capacity, two types of yield 
variability, three levels of backlogging-to-holding cost 
asymmetry, and three scenarios for overtime cost. 
Each problem set consisted of 10 problems, each of 
which was constructed using a different speed for the 
generation of the demand sequences. For each prob- 
lem, the simulation run consisted of a pilot run, and 
a main study, as described below. 

Pilot Run. The purpose of the pilot run was to deter- 
mine the quadratic cost parameters Q, C, R, and F. 
To generate an initial value of these parameters, some 
knowledge about the range of inventory/backorder 
and overtime values is needed so that a good fit to 
actual cost can be obtained using the weighted least 
square method described in the Appendix. To provide 

this knowledge, a number of simulation runs were 
made using the MRA. Once initial estimates of quad- 
ratic cost parameters were available, they were used 
to generate the linear decision rule, which were then 
used in simulation runs to update the knowledge 
about the range of inventory/backorder and overtime 
values. This process was used to successively improve 
the fit and in our experience 2 to 3 iterations were 
sufficient to achieve a good fit. 

Main Study. The main study consisted of 20 simula- 
tions using different sample paths of yield realizations 
for each of the 540 problems in 54 categories. How- 
ever, both the decision rules used identical sample 
paths for comparison. A period-by-period account of 
holding and backlogging costs incurred by each part 
type and overtime costs incurred at each production 
stage was maintained to understand the behavior of 
the two policies. 

5.8. Results 

A comparative summary of results is provided in 
Tables II-IV, which are classified by the backlogging- 
to-holding cost ratios. The entries indicate the average 
total cost for the MRA as a percentage excess over the 
average total cost for the LDR. For example, entry 
21.1 means that the average total cost for the MRA 
was found to be 1.21 1 times the corresponding average 
total cost for the LDR. The absence of any negative 
terms in the three tables indicates the overall superi- 
ority of LDR over MRA. However, the relative cost 

Table II 
Relative Cost for MRA (Percentage Excess Over LDR), b/h = 2 

Inadequate Capacity Matched Capacity Surplus Capacity 

Low Yield High Yield Low Yield High Yield Low Yield High Yield 
Overtime Variance Variance Variance Variance Variance Variance 

Prohibitively Expensive 21.1 49.8 19.4 33.8 5.1 10.1 
Moderate 30.5 51.2 22.7 50.0 5.1 10.1 
Inexpensive 4.4 14.5 1.9 13.9 0.7 9.2 

Table III 
Relative Cost for MRA (Percentage Excess over LDR), b/h = 5 

Inadequate Capacity Matched Capacity Surplus Capacity 

Low Yield High Yield Low Yield High Yield Low Yield High Yield 
Overtime Variance Variance Variance Variance Variance Variance 

Prohibitively Expensive 19.8 35.8 16.8 30.8 4.1 9.1 
Moderate 26.2 43.3 18.0 35.9 4.1 9.1 
Inexpensive 3.3 11.9 1.8 11.8 0.5 3.3 
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of MRA compared to LDR varies from an insignifi- 
cant difference of less than 1% to a substantial devia- 
tion of more than 50%. An understanding of the 
sensitivity of their relative performance to various 
operating parameters is in order. 

Effect of Yield Variance. As the uncertainty in yield 
increases, both policies pay a higher backlogging cost 
due to uncertainty in stock at the intermediate buffer. 
But the MRA, which does not take into account yield 
uncertainty at stage 1 while making dispatch decisions 
at stage 2, pays a heavier toll than LDR which takes 
a coordinated dispatch decision for both the stages. 
As a result, the relative performance of MRA com- 
pared to LDR becomes worse as yield variance in- 
creases. This effect would be further accentuated if 
more than two test stages were involved. 

Effect of Available Capacity. The LDR utilizes the 
scarce capacity much more efficiently than the MRA 
and this results in a significant difference in the total 
cost of the two policies, particularly when overtime is 
not too cheap. A close look at the period-to-period 
simulation results revealed that MRA occasionally left 
a portion of the capacity unused even when capacity 
was inadequate. This happens because the MRA al- 
locates capacities sequentially at the two test stages 
which may result in an unproductive use of capacity. 
To illustrate this point, consider a part type which 
offers a relatively large expected marginal decrease in 
the total cost bi/el at the second stage compared to 
other part types. As a result, it gets a significant 
amount of capacity at the second test stage. The 
demand for this part type, among others, is placed on 
the first test stage. Consider further that this particular 
part type has a very small bi/el at the first test stage 
compared to the other part types. As a result, it does 
not get any capacity allocated at the first stage. The 
net result is starvation of the second stage due to an 
uncoordinated allocation of capacities which, in turn, 
leads to a high backlogging cost. The scarcer the 
capacity, the higher the price paid for the starvation. 

When surplus capacity is available, the difference be- 
tween the two policies is minimal. 

Effect of Overtime Cost. As the cost of overtime 
increases, the percentage excess total cost of MRA 
over LDR first increases and then gradually decreases. 
This can be explained as follows. An inexpensive 
overtime belittles the advantages of the coordinated 
capacity allocation accomplished by the LDR. As the 
overtime cost increases, the need to use less overtime 
and make coordinated capacity allocation decisions 
to reduce backlogging costs becomes important. As 
mentioned in the previous paragraph, MRA is less 
effective than LDR in this respect. We observed in a 
sequence of simulation experiments (not reported 
here) with gradually increasing overtime costs that 
initially MRA used overtime liberally. Subsequently, 
the use of overtime decreased and backlogging costs 
increased dramatically. 

Unfortunately, as the per unit cost of overtime 
increases, the performance of LDR downgrades grad- 
ually due to decreasing quality of quadratic fit to the 
undertime-overtime curve. This is especially true here 
because we assumed a zero undertime, linear overtime 
cost resulting in a ramp-like curve difficult to fit 
accurately by quadratic forms particularly for high 
ramp angles. 

When capacity is in excess, the quality of fit is not 
an inssue as overtime is never used. As a result, after 
an initial increase the percentage excess total cost of 
MRA over LDR saturates to a constant value. The 
mild difference in performance for the two policies in 
this case is mainly due to the way they tradeoff inven- 
tory and backlogging costs: the LDR uses a smooth 
production plan taking into account the mild varia- 
tion in period-to-period demands and supplies, the 
MRA computes dispatch quantity based on a single 
period's requirement alone. As a result, the MRA runs 
into more frequent raw material unavailability at the 
intermediate buffer than the LDR, particularly when 
yield variance is high. 

Table IV 
Relative Cost for MRA (Percentage Excess Over LDR), b/h = 10 

Inadequate Capacity Matched Capacity Surplus Capacity 

Low Yield High Yield Low Yield High Yield Low Yield High Yield 
Overtime Variance Variance Variance Variance Variance Variance 

Prohibitively Expensive 19.1 27.3 14.1 23.2 3.4 8.0 
Moderate 24.7 33.8 14.7 23.2 3.4 8.0 
Inexpensive 2.4 11.0 1.7 10.3 0.4 1.4 
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Effect of Backlogging-to-Holding Cost Ratio. LDR 
performance degrades gradually as the backlogging to 
holding cost ratio increases. This is mainly due to the 
decreasing quality of quadratic fit to the inventory 
holding-backlogging cost curve. As a matter of 
fact, had we not incorporated modification (6) to the 
quadratic cost functional, the LDR would have 
performed even worse with the increase in the cost 
ratio. 

6. CONCLUSIONS 

We have modeled a flexible test system for printed 
circuit boards as a multiproduct, multistage produc- 
tion system with random yield. Two policies, LDR 
and MRA, for part dispatch have been developed by 
considering two different sets of approximations. The 
LDR assumes that inventory and capacity related 
costs have (or can be approximated by) quadratic 
forms. It allows efficient computation of decision rules 
in very general problem settings-costs are allowed 
to be nonstationary, yields can be time-varying and 
correlated among part types or between the stages, 
demand and raw material supply can be nonstation- 
ary and stochastic, and available capacity may vary 
with time. It needs only the first one or two moments 
of uncertain quantities, which are easier to obtain 
economically compared to complete distributional 
information required by MRA. The myopic resource 
allocation, on the other hand, makes dispatch deci- 
sions in a myopic capacitated newsboy fashion. Due 
to its myopic nature, it is not suited for nonstationary 
situations. However, the policy lends itself to intuitive 
economic interpretation and can be computed effi- 
ciently using a recently developed resource allocation 
algorithm. 

We also performed extensive computational studies 
to assess the performance of the two policies under 
various operating conditions. The experiments, based 
on a linear holding, backlogging and overtime costs, 
clearly demonstrate overall superiority of LDR. When 
capacity is scarce and overtime not too cheap, the 
average total cost for the MRA compared to LDR is 
quite high. If capacity is in excess, both decision rules 
give similar performance, except when yield variance 
is high in which case LDR is again better. Availability 
of inexpensive overtime reduces the gap between 
them. We point out that LDR is expected to perform 
even better under a more general setting because it 
explicitly takes into account the nonstationarity and 
correlation of various parameters not considered in 
the computational experiments. 

APPENDIX 

Proof of Theorem 1 

Rewriting the objective function (9) in the dynamic 
programming recursive form, we get 

Jt(x,) 
= Min E {x[ Q,x, - C,x + (Tu, - t) 'R (Tu, - U1 B1,w t 

+ Ft(Tut - t) + Jt+ I (xt + Btut + Gwt)} (A. 1 ) 

JN(XN) = X NQNXN - CNXN. 

Let us rewrite the last equations as 

JN(XN) = XNKNXN + 2PNXN (A.2) 

by setting QN = KN and CN = -2PN without loss of 
generality. Starting from the last period, we can com- 
pute the optimal policy recursively. For t = N - 1, 
the cost-to-go JN-1 (XN- 1) is obtained by first substitut- 
ing (A.2) in (A. 1) and then using the inventory balance 
equation (1) to represent XN as a function of XN-1 and 
decision UN-I. We obtain 

JN-1(XN- 1) 

= Min E XN1QN-1XN-1 - CN-1XN-1 
UN- I BN-1,WN-I 

+ (TUN-1 - N-1) RN-1 

* (TUN- - 6N-1) + FN-1 

* (TUN- - IN-1) + (XN-I 

+ BN-1UN-1 + GwN-1)' 

* KN(XN-1 + BN-1UN-1 

+ GwN-1) + 2PN(XN-1 

+ BN-I UN-1 + GWN-,)}. (A.3) 

Substituting rN- I for E{BA 1KNBN 1}+ T'RN T and 
collecting terms that involve UN-1, XN- 1, and those 
without them, the above equation can be rewritten as 

JN-1 (XN-1) 

= XN-(QN-1 + KN)XN-I 

+ (2PN + *N-I G'KN - CN- i)XN-I 

+ Min u{ N-1 rN-I UN-1 + 2U NB1N-KNXN-1 
UN - I 

- 2UI1(T'RN- Ni - BN-1 KNG*N-1 

- BN-1 PN - 1/2T'FN-1)} 

+ terms free of xN_- and UN-1. (A.4) 
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By differentiating with respect to UN-I and setting 
the derivative equal to zero, we get 

rT-1 U N-1 = -BIN-1 KNxN-1 + 
(T'RN-ilN-l 

- BN-KNG*Ni - BN iPN - '/2T'FN- I), 

which yields the optimal production vector for period 
N-1, 

UN- = LN-1 + MN-1, 

where, LN-1 = -rl BN- 1KN, and 

MN-I = rN- I(T'RN- IfN-, - BN-1KNG*N-I 

- B PN-1/2T'FN-1). 

Similarly, to obtain the optimal production decision 
for period N - 2, we first compute JN- (XN- 1). By 
substituting uN in (A.4) we get 

JN-i(XN-1) = XN-iKN-lxN-l + 2PN-lXN-1 

+ terms free of XN-1, (A.5) 

where the matrices KN-1 and PN-1 are obtained by 
straightforward algebra and are given by 

N N-1 = KN KNBN-lrN-1B>-1KN+ QN-1 

PN1 = PN+ [G*N-I + BN-I MN-1 ] 'KN- 12CN- I 

The constant term in (A.5) will not affect the com- 
putation of UN-2 and can be dropped. Note the simi- 
larity between (A.2) and (A.5), which is of significance 
because the cost-to-go, JN-2(XN-2), is obtained by 
using (A. 1) for t = N - 2 and substituting JN- I (XN- 1) 

from (A.5). This results in an expression identical to 
(A.3) except all subscripts are shifted by one period. 
Repeating the steps followed above gives 

UN-2 = LN-2XN-2 + MN-2, and 

JN-2(XN-2) = XNk-2KN-2XN-2 + 2PN-2XN-2 

+ terms free of XN-2, 

where matrices LN-2, NN-2, KN-2, and PN-2 are iden- 
tical to those for N - 1. The same argument can be 
repeated for t = N- 3, N- 2,..., 1 to obtain the 
recursive equations for each period. 

Fitting A Quadratic Function 

Here we describe how to fit a quadratic form to a 
nonquadratic cost function, such that the weighted 
least squares deviation from the actual curve is mini- 
mized. Suppose that the inventory costs for part type 
i is given by a function, gi(xi). For example, if the 

actual costs were linear, then gi(xi) = himax(xi, 0) - 
bimax(-xi, 0). Suppose that xk, k = 1, 2, ... I are the 
inventory realizations generated by repeated simula- 
tion runs using the best available policy. We would 
like to achieve a better fit in the region where xi's fall 
more frequently. The objective of the weighted least 
square fit can be given by 

minimize E {(Qi(Xk)2 - Cixx) - gi(xk)12. 
Qi,Ci k=1 

Taking partial derivatives with respect to Q' and Ci, 
and setting them to zero gives the following set of 
equations 

E(Xki,4 (Xki, 1 X k, gi (x ik1 

k=1I k=1 Q = 

E (Xi)3 -E (X [2i EXX igi(Xk) 
k=1 k=1 k-1 

which can be solved to obtain the best fit. 

Proof That Algorithm 1 Finds the 
Optimal Solution 

The Kuhn-Tucker conditions for the problem stipu- 
late that there exists a number X* 0 0 such that 
(u*, y*, X *) satisfies 

<, foralli (A.6) 
,ri dUi 

ui > 0 implies = X or, equivalently, 
,ri dUi 

I dLi < X implies ui =0. (A.7) 
,ri dui 

rk X (A.8) 

y > 0 implies r = X or, equivalently, 

r > X implies y = O (A.9) 

X z riui- y- = 0. (A.10) 

Properties (A.6) and (A.7) together with the fact that 
-(dL,/dui) are decreasing functions of ui imply that 

u* > 0 iff 'I dLi > 
ri dUi ui,= 

If the variables have been arranged such that 

I dLi 1 dLi+ I 
ri dui u,=O ri+l dui+1 lUi+=o 
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then the optimal solution, u*, is such that 

0 u>0; _ L i= 1 2~ ..k* 

< ~~~~~~~~~~~~~~(A.I1) 

l ~~~T, du.I u,=o 

If ?M1 r1u* < 3 + y, then X* = 0 from (A.10) which, 
in turn, implies that y* = 0 (from A.9). Hence, the 
optimal solution is such that either: i) Z 1 TUr- < A, 
or ii) X?1 riu* = u + y*. Case i can be tested easily 
by solving the problem without the resource constraint 
and then verifying that the unconstrained optimal 
production rates do not violate the regular time capac- 
ity (Step 1 of the algorithm). Case ii can be further 
subdivided into iia y* > 0 which implies X* = r, and 
iib y* = 0 in which case, X* < 0 and X?g1 u* = d. 
To check if Case iia holds, algorithm 1 uses property 
(A. 11) to find the production quantities and then 
check if y* = V ri u-3 is greater than zero 
(Step 2). If this is not the case, then, by enumeration, 
Case iib must hold, which is exactly the problem dealt 
with in Zipkin. Step 3 is identical to that of Zipkin 
and proof of optimality for this step can be found 
there. 
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