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Contemporary management theories such as Just-in-Time and Total Quality Management emphasize variance reduction as a critical
step in improving system performance. But little is said about how such efforts should be directed. Suppose a manager has only
limited resources for variance reduction efforts. How should she allocate them among a set of competing activities? Which activity
should receive the highest priority? We explore such questions in the context of a synchronous assembly line where processing times
are variable, incomplete jobs are reworked at the end of the line, and the objective is to minimize the total expected work overload.
Our results indicate that the station with the highest variance may not always be the best choice for variance reduction. Identifying
the set of stations that should receive variance reduction in an optimal solution is not trivial. Moreover, the variances at these
stations may not be reduced by the same amount or to the same level. We establish that the remaining variances among stations that
receive variance reduction must conform to one of two preferred structures: equal variance or spike-shaped. Dominance results are
presented to identify the set of stations and the amount of reduction in an optimal solution.

Variability in manufacturing systems leads to many op-
erational inefficiencies such as higher rework costs,

poor quality, lower throughput, higher work-in-process,
longer cycle times, and reduced labor productivity. Identi-
fying the causes of variability, assessing their impact, and
eliminating them is central to process improvement efforts.
Contemporary theories of operations management such as
Just-in-Time and Total Quality Management point to vari-
ance reduction as a critical step in improving system per-
formance. For example, Hopp and Spearman (1996)
emphasize that “variability reduction is a key means for
improving a manufacturing system.” Similarly, Sarkar and
Zangwill (1991) observe that “Just-in-Time (JIT) manufac-
turing procedures emphasize (among other things) reduc-
tion in variance.” Central to Total Quality Management is
the maxim that “variability is root of all evil” (Schonberger
1986) and that one should strive to reduce it continually.

A number of researchers have analyzed the benefits of
reducing variance. For example, Sarkar and Zangwill
(1991) demonstrate that reducing processing time variance
can expand effective capacity and reduce inventory in a
multi-item production facility. Gerchak and Parlar (1991)
consider a continuous review inventory model that quanti-
fies the benefits of investing to reduce the variability in
lead-time. A recent book by Hopp and Spearman (1996)
provides important insights into the benefits of variability
reduction through a number of illustrative queueing mod-
els. Unfortunately, variance reduction efforts require re-
sources that are scarce. When several competing
alternatives for variance reduction are available, the allo-

cation of these resources becomes critical and raises sev-
eral interesting questions. For example, how should a
manager allocate the precious resource among a set of
competing stages or activities such that maximal improve-
ment in system performance is achieved? Should one al-
ways start with the worst culprit—the station with the most
variance? Does a variance reduction strategy that attempts
to equalize the remaining variance among stations perform
better than other strategies? We explore these questions in
the context of a synchronous assembly line.

Consider a serial line where jobs move synchronously
from one station to the next every T time units. Such lines
are prevalent in automotive and appliance assembly where
jobs move simultaneously on an automated conveyor. The
processing time at each station is assumed to be normally
distributed with mean �, but stations differ in terms of
variability. A number of factors contribute to processing
time variability such as unforeseen disruptions, machine
and tool failures, differences in processing requirements
due to material and machine variations, operator availabil-
ity, variation in worker skill and experience across different
tasks, natural human variation in a repetitive manual work
environment, and inconsistency in operator speed due to
fatigue. Should the processing of a job at a station require
longer than the cycle time T, the residual work is consid-
ered to be an overload. All overload work is completed at
the end of the line at a rework station. Such a rework
policy is often used in industry to avoid line slowdowns
which result in reduced throughput. The objective is to
minimize the total expected work overload (EWO) for a
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job. The EWO is a surrogate for rework cost and serves as
a means to improve cost and quality. As Yano and
Rachamadugu (1991) note, “minimizing the work overload
contributes to reducing the total labor cost and improving
product quality.”

Processing time variance can be reduced by investing in
preventive maintenance, SPC, worker training, better
equipment and tools, etc. Suppose the manager for this
line has a “bag of money” to allocate to variance reduction
efforts among the stations. Assume that a dollar spent at a
station reduces its processing time variance by a fixed
amount that is independent of the choice of the station.
That is, variance reduction is proportional to the amount
of money spent and any two stations receiving the same
amount of money will realize identical reduction in their
variances. It is possible that learning effects bring increas-
ing returns to investment in variance reduction. It is also
possible that limits of available technology and current
engineering know-how result in decreasing returns to in-
vestment in variance reduction. Since it is difficult to know
in advance which of these two factors will play a dominant
role, we assume a linear return on investment in variance
reduction for all stations.

With a limited budget, the manager can accomplish only
a finite amount of variance reduction, say �V. The vari-
ance reduction problem then is to apportion the total re-
duction �V among the set of stations, �, on the assembly
line, so that EWO is minimized. No matter how �V is
apportioned, the final remaining variance on the line is
always the same, say V, the sum of initial variances less the
reduction. Consider two such apportionments, i.e., two
feasible solutions to the variance reduction problem.
These two otherwise identical lines, both with the same
amount of total variability V, may perform quite differently
depending upon how variability is distributed across vari-
ous stations. This raises several interesting questions: Are
there preferred variance structures that yield better line
performance for a given level of variability? How do these
structures change as the level of overall variability in-
creases or decreases? Answers to these questions are im-
portant for a targeted variance reduction effort. They can
also provide important insights into better design and
planning of assembly lines.

We address these questions by analyzing the following
variance allocation problem: How should the total variance
V be allocated among the set of stations � such that the
EWO is minimized? A similar question has been explored
by Lau (1992) who investigates via a simulation study the
impact of different variance structures on the throughput
of an asynchronous line while keeping the total variance
constant. He finds bowl-shaped and symmetric configura-
tions of processing time variances desirable, which can be
explained by the bowl-phenomenon (Hillier and Boling,
1966) and the well-known reversibility property (Muth
1979). However, Lau also makes the surprising observation
that the optimal solution in some cases is a spike-shaped
configuration where all (or nearly all) the variability is

concentrated at only one station and all other stations have
zero (or very close to zero) variability. Unfortunately, this
work does not give an indication under what circumstances
a spike-shaped configuration will be better than a bowl-
shaped or symmetric configuration.

Our results indicate that there are two desirable vari-
ance structures for processing times on synchronous as-
sembly lines: (i) the uniform configuration, where
variability is evenly distributed among all the stations; and
(ii) the spike-shaped configuration, where most of the vari-
ability is concentrated at only one station and all other
stations have relatively little variability. These configura-
tions are similar to those obtained by Lau (1992) for asyn-
chronous lines. Our work not only establishes the
desirability of these variance structures analytically, but it
also establishes the circumstances under which each of
these configurations is best. Specifically, we show that if
the total amount of variability exceeds a critical level, then
a spike-shaped configuration is optimal; otherwise, the uni-
form configuration is optimal. As the total variability in-
creases beyond the critical level, the spike-shape becomes
more pronounced; that is, the allocation at all stations
except one approaches zero. Any further increase in the
total variability beyond a point makes the line with uni-
form configuration the worst possible performer.

Given these results on variance allocation, we can sum-
marize the lessons for variance reduction for our synchro-
nous assembly line as follows: Unless the remaining
variance after reduction is to be brought below the critical
level, it is not optimal to equalize the variability at each
station. Moreover, the station with the highest variance
may receive no reduction at all in an optimal solution. The
variance structure for stations that do receive variance re-
duction follow the configuration described above—their
remaining variances are all identical except for possibly
one station, which may be left with a larger variance than
others.

The remainder of the paper is organized as follows. The
next section contains a formal statement of the variance
reduction problem and its relationship to the variance al-
location problem. The key results for optimal variance
structures are developed in § 2, first for a two-station line
and then for a general n station line. We revisit the vari-
ance reduction problem in § 3, where results from § 2 are
used to develop dominance results. These results provide
important insight into the set of stations that receive vari-
ance reduction. An example is also presented to illustrate
the structural properties. Section 4 demonstrates the valid-
ity of results when the normality assumption regarding
processing time distribution is relaxed. It is shown that the
validity of the results hinges on an important structural
property of the expected work overload, not the normality
assumption for the processing time distributions. We end
the paper with some final thoughts on how the insights
from this model can be applied to more realistic systems.
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1. PROBLEM FORMULATION AND ANALYSIS

Consider a synchronous assembly line with a set of stations
�. This line is designed for a throughput of 1/T, i.e., jobs
spend T time units at each station. The processing time at
each station is random with mean �. The mean processing
time at each station is kept the same so that the line is
balanced on average. Workforce rules often preclude as-
signing more work to some workers than others. We as-
sume that the processing times are normally distributed.
Studies in the literature (Wilhelm 1987) support this as-
sumption. Additionally, the normal distribution leads to
analytically tractable results. In § 4 we show that similar
results hold for a number of other distributions.

Consider a station that has processing time variance v.
The EWO for this station is given by

f�v�–�
T

� �t � T �
�2v�

e ��t��� 2/ 2v dt

� �v �Z�T � �
�v

�
� �T � �

�v
� � 1 � P�T � �

�v
� � � ,

where Z(x) and P(x) are the standard normal probability
density and cumulative distribution functions evaluated at
x, respectively. The function f(v) is continuous and differ-
entiable with limv30 f(v) � 0.

Suppose that the processing time variance at station i is
currently vi

0. The larger the variance at a station, the
greater the expected work overload. It is assumed that the
cost of rework is proportional to the work overload (in-
complete work). The total expected work overload can
thus be used as a surrogate for the expected rework cost at
the end of the line. To reduce the costly rework, the man-
ager is interested in reducing the variability in processing
time at some or all of the stations. Since any variance
reduction effort requires resources, e.g., time, money, en-
gineering expertise, etc., that are scarce, she would like to
use them most efficiently. We assume that the amount of
variance reduction achieved is directly proportional to the
amount of resource invested. If the same amount of re-
source is invested at two different stations, it is likely to
result in identical variance reduction (provided there is
enough variance to be reduced). The variance reduction
problem can then be posed as

��� Minimize �
i��

f�v i �

subject to �
i��

�v i
0 � v i � � �V, (1)

v i � v i
0, i � � , (2)

v i � 0, i � � , (3)

where �V is the total amount of variance reduction possi-
ble based on the available resources. The objective func-
tion can be interpreted either as the total expected work
overload accumulated by a job or as the total expected
work overload across all stations for a cycle. It is assumed

that the current total variance, ¥i�� vi
0, is larger than �V;

otherwise, one simply reduces the variance to zero at all
the stations and the problem is trivial.

The slope of expected work overload function,

��v�–f��v� �

Z�T � �
�v

�
2 �v

, (4)

plays a critical role in determining the optimal solution to
problem (�). Note from (4) that �(v) � 0, and �(v) 3 0
as v3 0 and as v3 �. That is, �(v) is positive everywhere
except at 0 and its value approaches zero as v goes to
infinity. Let V̂ – (T � �)2, then

���v� � f	�v� �

Z�T � �
�v

�
4v 5/ 2 �V̂ � v� (5)

crosses 0 only at v � V̂. Moreover, ��(v) 
 0 for v � V̂
and ��(v) � 0 for v 
 V̂. Hence �(v) is a unimodal func-
tion that is strictly increasing on (0, V̂), strictly decreasing
on (V̂, �), and achieves its (global) maximum at V̂. A
graph of �(v) is shown in Figure 1.

Note that the set of constraints (1)–(3) is convex. If the
objective function in problem (�) was concave, an extreme
point solution would be optimal (Zangwill 1960) and
problem (�) could be solved very efficiently. Unfortu-
nately, as Equations (4) and (5) indicate, f is increasing
on (0, �), convex on (0, V̂) and concave on (V̂, �). As a
result, the objective function in problem (�) is a com-
plex multidimensional convex-concave function and
finding its minimum over the constraint set (1)–(3) is a
nontrivial task.

Any feasible solution to problem (�) can be viewed in
terms of stations that receive variance reduction and those
which do not. Let � be the set of stations that receive
variance reduction, i.e., � � {i�vi � vi

0}. For the remain-
ing ��� stations, the constraints in (2) are active. Corre-
sponding to a choice of �, there may possibly be many
feasible solutions to problem (�). The best solution, the
one that apportions the variance reduction �V among the

Figure 1. �(v) � f�(v). The rate of change of the EWO
at a station with mean processing time � and
processing time variance v.
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stations in � such that the total expected work overload is
minimized, can be found from,

�� � � Minimize �
i��

f�v i �

subject to �
i��

�v i
0 � v i � � �V, (6)

v i � v i
0, i � � , (7)

v i � 0, i � �. (8)

Problem (��) is obtained from problem (�) by using the
fact that vi � vi

0 for i � ���. This implies that (i) ¥i����

f(vi
0) is constant, (ii) ¥i���� (vi

0 � vi) � 0, and (iii) vi � 0
for i � ���. Given a choice of �, problem (��) yields the
best allocation for �V. If, on the other hand, problem
(��) is found to be infeasible, then no feasible solution
exists for problem (�) such that the variance reduction is
limited to the set of stations �.

Unfortunately, solving problem (��) is not any easier
than solving problem (�), except for the reduced dimen-
sionality, since � � �. Consider now a relaxation of prob-
lem (��) obtained by disregarding constraints (7), that is

��1 � � Minimize �
i��

f�v i �

subject to �
i��

v i � V��� ,

v i � 0, i � �,

where V(�) � ¥i�� vi
0 � �V. Problem (�1�) is a variance

allocation problem that distributes the total variance V(�)
among the set of stations � such that the total expected
work overload is minimized.

Our interest in the variance allocation problem (�1�) is
due to its close relationship to the variance reduction
problem (�) and its subproblem (��). Given a choice of
�, if the optimal solution to problem (�1�) satisfies con-
straints (7), then it solves problem (��) optimally and we
obtain the best solution to problem (�) with the qualification
that variance reduction is limited to the set of stations �.
By considering all possibilities of � and solving the result-
ing problem (�1�), of which there are only a finite num-
ber, one can obtain the optimal solution to problem (�).

For this approach to succeed, we need to address the
following two problems: (a) how to solve problem (�1�)
efficiently, and (b) what happens if the solution to problem
(�1�) does not satisfy a constraint in (7). We address both
these problems by analyzing structural properties of the
variance allocation problem (�1�). These properties,
which we call optimal variance structures, are developed in
§ 2. They provide interesting insights into the nature of the
variance allocation problem, (�1�), and its relationship to
problem (�). By exploiting the optimal variance struc-
tures, we show in § 2 that the solution to problem (�1�) is
either trivial or can be obtained from a single variable
optimization problem. This resolves problem (a). Problem
(b) is resolved by Theorem 11 in § 3. According to this
theorem, unless the optimal solution to problem (�1�) is
feasible to problem (�), � can not be the set of stations

that receives variance reduction in an optimal solution to
problem (�). The only exception is when V(�) belongs to a
narrow interval defined in Theorem 11 and problem (�1�)
has two local minima, one of which solves problem (�).

2. OPTIMAL VARIANCE STRUCTURES FOR THE
ALLOCATION PROBLEM

In this section we examine problem (�1�) and character-
ize the structure of its optimal solution. Let n be the car-
dinal of the set �. Then problem (�1�) can be written as

��1� Minimize �
i�1

n

f�v i �

subject to �
i�1

n

v i � V ,

v i � 0, i � 1, 2, . . . , n ,

where we have suppressed the dependence of V(�) on �
for notational convenience, i.e., V � V(�). Note that
problem (�1) is indifferent to the composition of the set �
except for its cardinal and sum of initial variances. Two
sets of stations, �1 and �2, with the same cardinal but
different composition and different initial variances, will
lead to the same solution if ¥i��1

vi
0 � ¥i��2

vi
0.

If f(v) was convex, then problem (�1) would be a spe-
cial case of the resource allocation problem addressed by
Zipkin (1980), Luss and Gupta (1975), and others, who
minimize a convex nonlinear-additive objective function
subject to a single linear constraint using a very efficient
ranking algorithm. In fact in that case, problem (�1) could
be solved trivially since each nonlinear function is the
same. Unfortunately, f(v) is not convex as demonstrated in
the last section. In this sense, problem (�1) is very differ-
ent than the classical resource allocation problems. Before
we explore the solution to problem (�1) for n stations, we
investigate the optimal solution to a two station problem.
The solution to the two station problem will provide crucial
insights that will allow us to solve the n station problem.

2.1. Analysis of a Two-Station Line

For n � 2 problem (�1) reduces to:

��1.1� Minimize f�v 1 � 	 f�v 2 �

subject to v 1 	 v 2 � V , (9)
v 1 , v 2 � 0.

While this problem is symmetric in v1 and v2, the following
theorem states the optimal solution does not necessarily
have a symmetric structure.

THEOREM 1. For problem (�1.1) there exists a critical vari-
ance level

V̂ 2 – 2V̂ � 2�T � �� 2,

such that the equal variance solution is optimal if and only
if the total variance V � V̂2. Moreover, an optimal unequal
variance solution satisfies the equation

��v 1 � � ��v 2 �. (10)
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PROOF. See Appendix A.1.
This result is not intuitive. Due to the symmetric struc-

ture of problem (�1.1), a casual observer might have
guessed that the equal variance solution would always be
optimal. However, Theorem 1 states that this is only con-
ditionally true. If the total variance is large enough, (i.e.
greater than the critical variance, V̂2), then an unequal
variance solution is optimal. This structure of the optimal
solution is explained intuitively as follows. If an inherently
large amount of variability exists, at least one station will
have a significant amount of variance. If at least one sta-
tion has significant variance, it is better to have more of
the variance at the same station because the effect of mar-
ginal variability on a station that already has significant
variance is much less detrimental than the effect of mar-
ginal variability on a station that has little or no variance.

A graphical interpretation of Theorem 1 can be given as
follows. Note that Equations (9) and (10) define the first-
order conditions for problem (�1.1). Graphically, the in-
tersection of �(v1) with its reflection about the line v1 �
V/2 gives the first-order points as shown in Figures 2a and
2b. It is clear from these figures that one first order point
will always be at v1 � V/2. The other first order points
always appear as symmetric pairs. Whether there is one
first order point or several depends on whether the point
of reflection V/2 is greater than or less than V̂ as illus-
trated in Figures 2a and 2b, respectively. The correspond-
ing objective functions f(v1)  f(v2) � f(v1)  f(V � v1)

are shown in Figures 2c and 2d, respectively. Note that in
Figure 2d where V � 2V̂ � V̂2 that the global minimum
has an equal variance structure, while in Figure 2c we have
V 
 2V̂ � V̂2 and the global minimum has an unequal
variance structure.

Theorem 1 gives us a simple rule for determining the
structure of the optimal solution to problem (�1.1). For
V � V̂2, the structure of the optimal solution is one where
both stations have identical variance. For V 
 V̂2, the
optimal solution has an unequal variance structure. If (v1,
v2) is the optimal solution in this case then (v1, v2) satisfies
Equations (9) and (10). Since the unequal variance solu-
tion (v1, v2) always appears as a symmetric pair, we will
not distinguish (v2, v1) from its mirror image (v1, v2). The
following theorem demonstrates that there is only one
such pair satisfying the first-order conditions given by
Equations (9) and (10).

THEOREM 2. For any V 
 V̂2 there is a unique unequal
variance allocation pair (v1, v2) satisfying the first-order
conditions given by Equations (9) and (10).

PROOF. See Appendix A.3.
Theorem 2 (in conjunction with Theorem 1) allows us to

conclude that when the total variance V exceeds the criti-
cal variance V̂2, there is a unique unequal variance solu-
tion (ignoring the symmetric counterpart) that satisfies the
first order conditions, and that unequal variance solution is
also the global minimum. To summarize, we have shown

Figure 2. The effect of total variance on � and f(v)  f(V � v), the total expected work overload.

Notes: (a) and (b). �(v1) and �(v2) � �(V � v1) for V 
 V̂2 and V � V̂2, respectively.
(c) and (d). f(v1)  f(v2) � f(v1)  f(V � v1) for V 
 V̂2 and V � V̂2, respectively.
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for problem (�1.1) that an unequal variance solution is
optimal if and only if the total variance is large enough
(greater than V̂2). Furthermore, if an unequal variance
solution is optimal, it is the unique unequal variance solu-
tion (ignoring the symmetric counterpart) that satisfies the
first order conditions. Using these results, we now address
the general case of problem (�1) with n stations.

2.2. Analysis of an n Station Line

In this section we extend the results of the previous section
for instances of problem (�1) when there are more than
two stations. We first note that problem (�1) has a sym-
metric structure. That is, if (v1, v2, . . . , vn) is a feasible
solution to problem (�1) with objective function value
¥i�1

n f(vi), then any permutation of (v1, v2, . . . , vn) is also
a feasible solution to problem (�1) with the same objec-
tive function value. Therefore, the optimal solution will
not be unique unless vi � V/n for all i. We assume (with-
out loss of generality) that v1 � v2 � . . . � vn. The
first-order conditions for problem (�1) are given by

��v i � � � � 0, i � 1, . . . , n, (11)

�
i�1

n

v i � V � 0. (12)

Notice that Equation (11) is equivalent to �(vi) � �. Thus,
if (v*1, v*2, . . . , v*n, �*) satisfies the first-order conditions
for this problem then given a “potential” �*, we need only
find the vi that solve �(vi) � �* and then find combina-
tions of the vi that satisfy Equation (12).

While this approach may sound easy, it is not because
the equation �(v) � �* is transcendental. Instead, by using
some of the properties of �(v), we will characterize the
structure of the optimal solution to problem (�1). We now
state our first result which characterizes a local optimum.

LEMMA 1. Any unequal variance solution that is a local
optimum for problem (�1) is such that the variance at
each station must take one of the two values, vl � V̂ or
vh 
 V̂.

PROOF. If (v*1, v*2, . . . , v*n, �*) satisfies the first-order con-
ditions, then �(vi) � �* for all i. It was shown in § 1 that
�(v) is strictly increasing on (0, V̂) and strictly decreasing
on (V̂, �). Thus given a value of �*, it is clear that �(v) �
�* has at most two solutions, which we call vl and vh. Since
the maximum of �(v) occurs at V̂, it must be true that vl �
V̂ and vh 
 V̂. □

According to Lemma 1, the optimal solution to problem
(�1) is such that k of the n stations will have variance vl,
and the remaining n � k stations will have variance vh.
Since

kv l 	 �n � k�v h � V,

the optimization problem (�1) can be reformulated as

��1�� Minimize kf�v l � 	 �n � k� f�V � kv l

n � k �

subject to 0 � v l �
V
n ,

1 � k � n � 1,
k integer.

Problem (�1�) is a nonlinear-integer program with two
decision variables: vl, the low variance; and k, the number
of stations with the low variance. Each of the remaining
n � k stations has high variance vh � (V � kvl)/(n � k).
In formulating problem (�1�) we have excluded the possi-
bility of k � 0, i.e., no stations with low variance and n
stations with high variance, which corresponds to the equal
variance solution. Instead we account for the equal vari-
ance solution by noting that for any value of k if vl � V/n
then vh � V/n and we get the equal variance solution.

Problem (�1�) is significantly simpler than problem
(�1) since for a given value of k, the optimal value of vl

can be determined using a univariate search. Let v*l [k] be
the value of vl that minimizes the objective function in
problem (�1�) for a given k. The optimal solution to prob-
lem (�1�) can then be found by comparing the objective
function value for all (k, v*l [k]) pairs. Unfortunately, for a
large number of stations, this procedure becomes tedious
since it must be repeated n � 1 times. The following result
allows us to perform the search only once and still obtain
the optimal solution.

THEOREM 3. In an optimal unequal variance solution to
problem (�1), all stations except one have low variance.

PROOF. We prove the result by contradiction. Suppose
that an unequal variance solution is optimal, k stations
have low variance, and k � n � 1. Form a two-station
subproblem by considering stations k  1 and k  2 in
isolation. We let V(k) – vk  vk1. Clearly V(k1) �
vk1  vk2 � 2vh 
 2V̂ � V̂2. Thus by Theorem 1, an
unequal variance solution is better for the two-station sub-
problem of stations k  1 and k  2 considered in isola-
tion. But if the solution to this two-station subproblem can
be improved, this implies that the original solution to the n
station problem is not optimal. This fact is a result due to
the separability of the objective function from problem
(�1). Thus we have a contradiction, and therefore it must
be true that that k � n � 1. □

The consequence of Theorem 3 is that given an instance
of problem (�1), we can determine the structure of the
optimal solution. Either an equal variance solution is opti-
mal, or an unequal variance solution is optimal with n � 1
stations having low variance. In either case, to find the
optimal values of the vi, we only need to apply a univariate
search to problem (�1	),

��1	� Minimize
0�v l �V/n


�v l �–�n � 1� f�v l �

	 f�V � �n � 1�v l �.

That is, if v*l is the optimal solution to problem (�1	), then
v*i � v*l for i � 1, . . . , n � 1 and v*n � V � (n � 1)v*l.

An important question still remains to be answered.
When does the optimal solution to an n station problem
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have an unequal variance structure? Recall that for a two-
station problem, an unequal variance solution is optimal if
V 
 V̂2. Before giving an analogous result for the n station
problem, we first define

v a �
V 2 	 2�n � 1�VV̂ � V �V 2 � 4�n � 1�V̂ 2

2�n � 1��V 	 nV̂�
, (13)

and

v b �
V 2 	 2�n � 1�VV̂ 	 V �V 2 � 4�n � 1�V̂ 2

2�n � 1��V 	 nV̂�
. (14)

THEOREM 4. Let �Vn – 2�n � 1 V̂ and V̂n – nV̂. The
following holds for the optimization problem (�1	):

(1) If V � V̂n, then:
(a) the equal-variance solution, vl � V/n, is a local

maximum of 
(vl);
(b) in the interval 0 � vl � V/n, there exists only one

unequal-variance solution that satisfies the first-
order conditions and 
(vl) achieves its global min-
imum at this point;

(c) v*l � va � V/n.

(2) If �Vn � V � V̂n, then
(a) the equal-variance solution, vl � V/n, is a local

minimum of 
(vl);
(b) in the interval 0 � vl � V/n, there exists either (i)

no unequal-variance solution that satisfies the first-
order conditions, or (ii) two unequal-variance so-
lutions that satisfy the first-order conditions—a
local minimum in the interval (0, va) and a local
maximum in the interval (va, vb);

(c) either v*l � V/n, or v*l � va � V/n.

(3) If V � �Vn then the equal variance solution, vl � V/n, is
the only solution that satisfies the first-order condi-
tions, and this solution is the global minimum of 
(vl).

PROOF. See Appendix A.4.
Theorem 3 characterizes the structure of an optimal un-

equal variance solution but says nothing about when such a
solution may be optimal. Theorem 4, on the other hand,
gives conditions when an unequal variance solution is (V �
�Vn) or may be (�Vn � V � V̂n) optimal. If V � �Vn, we are
able to conclude that the equal variance solution is opti-
mal. Unlike Theorem 1 for the two-station problem, we
are not always able to determine what type of solution
(equal-variance or unequal-variance) will be optimal. To
further understand the implications of Theorem 4 and the
differences between the solutions to the two-station prob-
lem and the n station problem, consider the function �2(V)
which gives the optimal lower variance to a two station
problem with variance V. That is,

v*l � � 2 �V�

implies that v*l must satisfy �(v*l) � �(V � v*l). The func-
tion �2(V) has a unique value for each V as shown in
Figure 3. Consistent with Theorem 1, �2(V) is linear with

slope 1/2 (denoting the equal-variance solution) for V �
V̂2 and decreases for V 
 V̂2.

Now consider all first-order points that are candidates
for the optimal solution to an n station problem as charac-
terized by Theorem 3. Let �n(V) be a relation that gives all
v*l that satisfy the first-order conditions of problem (�1	),
that is �(v*l) � �(V � (n � 1)v*l). So,

� n �V� � v*l N ��v*l � � ��V � �n � 1�v*l �

N ��v*l � � ���V 	 v*l � � nv*l �

N v*l � � n1 �V 	 v*l �.

Equating v*l with �n(V) we obtain

� n �V� � � n1 �V 	 � n �V�� .

By induction it is easily shown that

� k2 �V 	 k� 2 �V�� � � 2 �V�. (15)

In words, this identity says that if v*l is the optimal solu-
tion to a two-station problem with total variance V, then it
satisfies the first-order conditions to a k  2 station prob-
lem with total variance (V  kv*l ).

Graphs of �3 and �4 obtained from Equation (15) are
also shown in Figure 3. An interesting phenomenon occurs
for n 
 2. The graph of �n “bends back” at V̂n. This
behavior is predicted by Theorem 4. When V is slightly less
than V̂n we see that there are three points that satisfy the
first order conditions, as predicted in part 2b of Theorem
4. In other words, for a V in this range, we do have three
potential v*l satisfying Equation (15), each of which is pair-
wise optimal for all two-station subproblems. The equal
variance solution in this range may not be optimal as noted
in Theorem 4. To illustrate this point, consider a three-
station problem with cycle time T � 12, mean processing
time � � 10 for which the critical variance is V̂3 � n(T �
�)2 � 12. Suppose the total variance is V � 11.57. There
are three points that satisfy the first order conditions—the
equal-variance solution, (11.57/3, 11.57/3, 11.57/3) and two
unequal-variance solutions, (2.863, 2.863, 5.844) and
(3.443, 3.443, 4.684). The equal-variance solution is a local
minimum, (3.443, 3.443, 4.684) is a local maximum, and
(2.863, 2.863, 5.844) is the global minimum. For the speci-
fied T and �, the optimal solution to a two-station problem
has equal variance if V � V̂2 � 8 and has unequal-variance

Figure 3. �n(V). Candidate optimal low variances to
problem (�1) as a function of the total vari-
ability V.
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otherwise. Notice that all pairwise combinations formed
from these solutions are optimal.

To summarize, if V 
 V̂n, then an unequal-variance
solution is optimal, and this solution is such that n � 1
stations have low variance, vl, and the remaining station
has high variance level vh � V � (n � 1)vl. For V � �Vn,
the equal-variance solution is optimal. When �Vn � V �
V̂n, we make no claim whether an equal or unequal-
variance solution is optimal. However, if an unequal-
variance solution is optimal, it must be true that n � 1
stations are allocated a low variance level. In any case, the
optimal solution can be found by solving the univariate
optimization problem (�1	).

2.3. The Worst Solution to Problem (�1)

Recall that the equal variance solution may be a local
maximum to problems (�1.1) and (�1). The following the-
orem indicates that it can potentially be the worst choice
to problem (�1.1).

THEOREM 5. For problem (�1.1), there exists an upper

critical variance level V̂
ˆ

2 
 V̂2 such that the equal variance

solution is the global maximum if and only if V 
 V̂
ˆ

2. The

critical variance level V̂
ˆ

2 is given by

V̂
ˆ

2 � �T � �

x̂̂
� 2

	 3.83�T � �� 2,

where x̂̂ is the unique positive solution to

x 	 Z� x� 	 xP� x� � �2Z� x �2� 	 2xP� x �2� . (16)

PROOF. See Appendix A.5.

Consider f(v)  f(V � v) as a function of v for a given
V 
 V̂2. It was shown in the proof of Theorem 1 that the
equal variance solution is a local maximum for this func-
tion. Whether or not it is a global maximum depends upon
whether the total variance exceeds the upper critical vari-

ance level, V̂
ˆ

2, according to Theorem 5. This point is illus-
trated in Figures 4a and 4b, which show f(v)  f(V � v)

for V̂2 � V � V̂
ˆ

2 and V 
 V̂
ˆ

2, respectively.
The following result, analogous to Theorem 5, indicates

as to when the equal variance solution is the worst solution
to problem (�1).

THEOREM 6. For problem (�1) there exists an upper criti-

cal variance level V̂
ˆ

n 
 V̂n such that if V 
 V̂
ˆ

n, then the
equal-variance solution is the global maximum. The upper
critical variance level is given by

V̂̂ n � �n � 1�V̂̂ 2 .

PROOF. See Appendix A.7.

The following theorem demonstrates that when the vari-
ance is sufficiently large, one should prefer a configuration

that places most of the variance at as few stations as pos-
sible.

THEOREM 7. For the problem (�1), if the total variance V

exceeds the upper critical variance V̂
ˆ

n, then the optimal
solution where k stations have low variance and n � k
stations have high variance is worse than the optimal solu-
tion where k  1 stations have low variance and n � k � 1
stations have high variance.

PROOF. See Appendix A.8.

3. THE VARIANCE REDUCTION PROBLEM

We now address the variance reduction problem (�). Our
solution approach to problem (�) involves repeated solu-
tion of the variance allocation problem (�1�)—a task that
can now be performed very efficiently. We first present the
properties of the optimal solution for the variance reduc-
tion problem. Our interest is in identifying (i) where to
reduce the variance, and (ii) by how much. Theorems 8–10
address the first question by specifying where not to reduce

Figure 4. f(v1, v2) � f(v1)  f(V � v1) for V̂2 � V �V̂
ˆ

2

and V 
 V̂
ˆ

2. These graphs show the quality of
the equal variance solution to problem
(�1.1) as a function of the total variability, V.
(N. B., vertical axes not to the same scale.)
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the variance in an optimal solution to problem (�). Theo-
rem 11 addresses the second question by characterizing
the structure of the optimal variance reduction.

THEOREM 8. Consider two sets of stations, �1 and �2,
such that �1 � �2. If the optimal solution to the variance
allocation problem (�1�1

) is feasible to the variance reduc-
tion problem (��1

) then �2 cannot be the set of stations
where variance reduction occurs in an optimal solution to
the variance reduction problem (�).

PROOF. Let v*(1) be the optimal solution to problem
(�1�1

). Suppose v*(1) is feasible to problem (��1
), as per

the assumption of the theorem. Then v*(1) also solves
problem (��1

) optimally. Now consider problem (��2
),

which may or may not have a feasible solution. If problem
(��2

) is infeasible then no solution exists for problem (�)
such that variance reduction occurs only among the set of
stations �2, and the theorem is true. If problem (��2

) is
feasible, then let v*(2) be the optimal solution to problem
(��2

).
Let v�*(k) be the optimal solution to problem (�) when

variance reduction is restricted to the set of stations �k.
Such a solution can be constructed from the optimal solu-
tion to problem (��k

) as follows:

v� *i �k� � 
 v*i �k� if i � � k ,
v i

0 if i � ��� k .

We need to show that ¥i�� f(v�*i (2)) 
 ¥i�� f(v�*i (1)). Note
that

�
i��

f�v� *i �2�� � �
i��

f�v� *i �1�� � �
i��2

f�v*i �2�� 	 �
i����2

f�v i
0�

� �
i��1

f�v*i �1��

� �
i����1

f�v i
0�

� �
i��2

� f�v*i �2�� � f�v*i �1���

	 �
i��1 ��2

� f�v i
0�

� f�v*i �1��)

� �
i��1

f�v�i �1��

� �
i��1

f�v*i �1�� ,

where v�(1) is a solution to problem (��1
) defined as

v�i �1� � 
 v*i �2� if i � � 2 ,
v i

0 if i � � 1 �� 2 .

Note that v�(1) is feasible to problem (��1
). But v*(1) is

optimal to problem (��1
) and hence has a lower objective

function value than any other feasible solution to problem
(��1

). As a result, ¥i��1
f(v�i(1)) 
 ¥i��1

f(v*i(1)), which
implies that ¥i�� f(v�*i (2)) 
 ¥i�� f(v�*i (1)). □

Let �* be the set of stations that receive variance reduc-
tion in the optimal solution to the variance reduction prob-

lem (�). Let � be any set of stations. If the optimal
solution to the variance allocation problem (�1�) is feasi-
ble to problem (��) then, according to Theorem 8, �* �
�.

THEOREM 9. Let {v� i, i � �} be a feasible solution to the
variance reduction problem (�). Let {vi, i � �} be an
optimal solution to the variance allocation problem (�1�).
If ¥i�� f(v� i) � ¥i�� f(vi)  ¥i���� f(vi

0) then �* � �.

PROOF. Define

v ĩ � 
 v i if i � �,
v i

0 if i � ���.

Then, according to the theorem, ¥i�� f(v� i) � ¥i�� f(ṽi). If
�* � � then ṽ is optimal to problem (�) and ¥i�� f(ṽi) �

¥i�� f�vi
¯�, a contradiction. To show that �* � �, let �̀ �

�. Consider the following optimization problem:

������ Minimize �
i��

f�v i �

subject to �
i��

�v i
0 � v i � � �V ,

v i � v i
0, i � �, (17)

v i � v i
0, i � ���,

v i � 0, i � �.

Problem (�(�)) is a restatement of problem (�) under
the assumption that only stations in � can potentially re-
ceive any variance reduction. Note that the feasible region
of problem (�(�)) is a subset of the feasible region of
problem (�1�). In the absence of constraints (17), prob-
lem (�(�)) is solved optimally by ṽ. Let v*(�) be the
optimal solution to problem (�(�)). Similarly, define
problem (�(�̀)) as above and its optimal solution as
v*(�̀). Since �̀ � �, the feasible region of problem
(�(�̀)) is a subset of feasible region of problem (�(�)).
Hence,

�
i��

f� v̄ i � � �
i��

f� ṽ i � � �
i��

f�v*i ���� � �
i��

f�v*i ��̀�� .

The first inequality follows from the statement of the the-
orem. The other inequalities follow because the feasible
region of (�(�̀)) is a subset of the feasible region of
(�(�)), which is a subset of the feasible region of (�1�).
From the above inequality we conclude that �* � �̀. □

According to Theorem 9, if the objective function value
for the variance reduction problem (�) corresponding to
the optimal solution for the variance allocation problem
(�1�) is worse than that for any feasible solution to prob-
lem (�), then � or any of its subsets cannot be the set of
stations where variance reduction occurs in an optimal
solution to problem (�). Note that both Theorems 8 and 9
rely on the optimal solution to problem (�1�) to rule out
the subsets of � as candidates for �*. While Theorem 8 is
based solely on the feasibility of this solution to problem
(�), Theorem 9 relies only on the objective function value.
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THEOREM 10. If ¥i�� vi
0 � �V then �* �� �.

PROOF. If � is the set of stations where variance reduction
occurs in an optimal solution to problem (�), then it must
satisfy the feasibility conditions (1) and (3):

�V � �
i��

�v i
0 � v i � � �

i��

�v i
0 � v i � � �

i��

v i
0,

which contradicts the assumption in the theorem. Since �
is not feasible to problem (�), it can not be optimal. Now
consider, �̀ � �. Clearly, ¥i��̀ vi

0 � ¥i�� vi
0 � �V. But,

as shown above, �̀ is feasible to problem (�) only if
¥i��̀ vi

0 � �V. Hence, there does not exist a feasible
solution to problem (�) such that variance reduction is
limited to the subset of stations �. □

We now consider the structure of the optimal variance
reduction. If the optimal solution to the variance alloca-
tion problem (�1�*) is feasible to the variance reduction
problem (�), then the final variances among stations in �*
inherit the optimal variance structure for the allocation
problem. What if problem (�1�*) is not feasible to prob-
lem (�)? Is it possible? If so, what is the structure of final
variances among stations in �*? The following theorem
addresses these questions.

THEOREM 11. Suppose �* is the set of stations that receive
variance reduction in an optimal solution to the variance
reduction problem (�). Suppose n is the cardinal of �*
and V � V(�*) � ¥i��* vi

0 � �V. Then the optimal
variance reduction is such that either (a) v*i � V/n for all
i � �*, or (b) v*i � v* � V̂ for all i � �* except one, say
j, for which v*j 
 V̂ and �(v*i) � �(v*j), @i, j � �*. More-
over, the optimal solution to the variance allocation prob-
lem (�1	) always solves the variance reduction problem
(�) except when �Vn � V � V̂n and problem (�1	) has two
local minima, one of which solves problem (�).

PROOF. From the Kuhn-Tucker conditions, the optimal so-
lution to problem (�) must satisfy

��v*i � � �* if i � �*,

��v*i � � �* if i � ���*.

But �(v) is strictly increasing on (0, V̂) and strictly decreas-
ing on (V̂, �). Thus given a value of �*, the solution to
�(v*i ) � �* is either (i) v*i � vl � V̂ or (ii) v*i � vh 
 V̂.
Suppose that of the n stations in �*, k stations have high
variance, vh, and (n � k) stations have low variance, vl.
We now prove, by contradiction, that k � 1. Suppose k 

2. Then there exist two stations i, j such that v*i � vi

0, v*j �
vj

0 and v*i � v*j � vh 
 V̂. Let v�i � v*i � , v�j � v*j  

where 0 �  � min(vh � V̂, vj
0 � v*j ). Consider an alter-

native solution to problem (�) where v�i and v�j has been
substituted for v*i and v*j respectively. This solution is fea-
sible. Consider the function

L�� � f�v*i � � 	 f�v*j 	 � .

Note that

L��� � ���v*i � � 	 ��v*j 	 �

� ���v h � � 	 ��v h 	 � � 0,

since �(v) is strictly decreasing on [V̂, �]. That is, the
objective function value can be further improved. This
contradicts the fact that v*i and v*j are part of the optimal
solution. Hence in �*, no more than one station can have
the high variance; all others must have low variance. Note
that in the statement of the theorem, cases (a) and (b)
correspond to k � 0 and k � 1, respectively.

Let the stations in �* be labeled such that v1
0 � v2

0 � . . .
� vn

0. Then, by virtue of the result just proven, problem
(�) can be expressed as

�� 	�* � Minimize
0�v l �V/n


�v l � � �n � 1� f�v l �

	 f�V � �n � 1�v l �

subject to
V � v n

0

n � 1 � v l � v 1
0. (18)

Note that the feasibility conditions v*i � vi
0, @i � �* are

equivalent to vl � v1
0 and vh � (V � (n � 1)vl) � vn

0.
Except for constraint (18), problem (�	�*) is identical to
problem (�1	). The first-order points of 
(vl) are of inter-
est since minimization must occur at one of these points.
The possibility of the minimand occurring at a boundary is
excluded since that would imply that one of the stations in
�* did not receive variance reduction—a contradiction to
the definition of �*. If V � V

�
n or if V 
 V̂n then 
(vl) has

only one local minimum—in the interval [0, V/n] as indi-
cated in Theorem 4, parts (1b) and (3), respectively. In
these cases, the optimal solution to problems (�	�*) and
(�1	) must occur at the same point, since there is no other
first-order point. In contrast, if V�n � V � V̂n, then 
(vl)
has either one or two local minima in the interval [0, V/n],
as indicated in Theorem 4, part (2). In the case of two
local minima, it is possible that the minimand of problem
(�1	) does not fall in the interval specified by constraint
(18). In this case, the optimal solution for problems (�1	)
and (�	�*) are different, and they correspond to the two
local minima of 
(vl). □

That is, Theorem 11 states that the optimal solution to
the variance reduction problem (�) is such that among the
stations that receive variance reduction, at most one can
have its final variance larger than V̂, all others must have
the same final variance that is smaller than V̂. Though the
variance allocation problem (�1�*) may not solve problem
(�) if V(�*) is in the interval �V�n, V̂n), the final variances
among stations in �* always inherit the optimal variance
structure for the allocation problem. The result below fol-
lows directly from Theorem 11.

COROLLARY 1. Let � be a set of stations with cardinal n
and V(�) outside the interval �V�n, V̂n). If the optimal solu-
tion to the variance allocation problem (�1�) is not feasi-
ble to problem (��), then � cannot be the set of stations
where variance reduction takes place in an optimal solution
to the variance reduction problem (�).
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Based on these results, we have developed a branch-
and-bound algorithm for determining the optimal solution
to the variance reduction problem (�). For the sake of
brevity, we present here only an outline of the algorithm.
It illustrates how the results of this section can be utilized
to identify the set of stations in the optimal solution. Let
each node in the branch-and-bound tree correspond to a
set of stations � where variance reduction may possibly
occur. The algorithm selects a node with the highest cardi-
nal so that if fathomed, the largest number of subsets are
eliminated. For any node, the allocation problem is solved
only if the initial variance is large enough to absorb the
available variance reduction, otherwise the node is fath-
omed. If the optimal solution to (�1�) yields a worse
objective function value than that of the incumbent best
solution, the node is fathomed. Otherwise, the feasibility
of this solution to problem (�) is checked. If feasible, this
node represents a better solution than those found before;
the incumbent is updated and the node is fathomed. Only
when the solution to (�1�) is infeasible to (�), its objec-
tive function value better than the incumbent, and V(�) in
the critical range �V�n,V̂n�, that we explore alternative min-
imum for 
(v). If an alternative minimum exists and is
found to be both feasible and better than the incumbent,
we update the incumbent solution and fathom the node.
When a node does not lead to a better solution and it
cannot be fathomed, it is branched by creating descen-
dants. Descendant nodes are created in a manner that
rules out generation of duplicate nodes as well as those
fathomed earlier. When a node is fathomed, all its subsets
as well as those nodes with worse lower bound are re-
moved from the set of unfathomed nodes. The algorithm
stops when all branched nodes are fathomed.

EXAMPLE. We now present an example to illustrate the
nature of the optimal solution. Consider a four-station as-
sembly line with T � 12, � � 10, v1

0 � 5, v2
0 � 10, v3

0 � 16,
and v4

0 � 25. Suppose the amount of variance reduction
desired is �V � 19.5. An optimal solution to this problem
can be found as v*1 � 3, v*2 � 3, v*3 � 5.5 and v*4 � 25.
That is, stations 1, 2, and 3 receive 2, 7, and 10.5 units of
variance reduction, respectively. Station 4, which has the
largest initial variance, receive no reduction. Note that the
remaining variance at stations receiving variance reduction
follows the optimal variance structure: All stations have
their variances reduced to the same level (three units),
except one, which has its variance reduced to a higher level
(5.5 units). An alternative optimal solution can also be
constructed from this solution as v*1 � 3, v*2 � 5.5, v*3 � 3
and v*4 � 25, resulting in the same expected work over-
load. In this solution, stations 2 and 3 receive 4.5 and 13
units of variance reduction, respectively, instead of 7 and
10.5 units of reduction received in the first solution. When-
ever an alternative like this exists, one should choose a
solution that reduces variance at an upstream station be-
fore reducing the variance at a downstream station. This
will reduce the risk that an unfinished task upstream

hinders the completion of a task downstream on a syn-
chronous line. This is consistent with the observation in
Hopp and Spearman (1996) that “variability early in a
line is more disruptive than variability late in a line,”
when one considers congestion effects in an asynchro-
nous line.

4. SENSITIVITY TO PROCESSING TIME
DISTRIBUTION

So far we have assumed that the processing times are
normally distributed. This assumption was motivated by
analytical tractability as well as realism (a combination of
uncertainties often add up to a symmetric unimodal pro-
cessing time distribution with distinctive peak). At this
point it is natural to ask the following: To what extent do
the results of the last three sections depend on the normal-
ity assumption? Will the structural properties still hold if
the processing times are not normally distributed? The use
of the normal distribution in obtaining these results makes
the results potentially suspect for two reasons. First, the
normal distribution allows for negative processing times,
especially at high levels of variability. Second, the unimo-
dal, symmetric shape of the normal distribution may not
always be appropriate to represent the processing time.

We address these questions and issues by exploring the
nature of the expected work overload function f(v). If f(v)
were convex, an equal variance solution would be optimal
for the variance allocation problem (�1). In this case, the
variance reduction problem (�) could be solved by reduc-
ing the variance incrementally at the station(s) with the
highest variance. On the other hand, if f(v) were concave,
an extreme point solution would be optimal for both prob-
lems (�) and (�1). The optimal allocation for problem
(�1) will be such that a single station receives the entire
variance. The variance reduction problem (�) could be
solved by reducing the variance incrementally at the sta-
tion(s) with the lowest nonzero variance. Recall that when
processing times are normally distributed, f(v) is convex
for v � V̂ and concave otherwise. All structural results for
allocation problem (�1) are directly attributable to this
convex-concave nature of f(v). When the total variability is
small, one is allocating variance in the convex region of
f(v) and an equal variance solution is optimal. Conversely,
when the total variability is large, i.e., V 
 V̂n, one station
gets most of the variance due to the concavity of f(v) for
large v. However, all other stations do not get zero vari-
ance because f(v) is not concave for small v. The result is
a hybrid of an extreme point solution and an equal-
variance solution. An optimal solution to the variance re-
duction problem (�) preserves this structure; all stations
that receive variance reduction get their variances reduced
to the same level, with the possible exception of one sta-
tion that may have its final variance larger than the others.

It is clear that the increasing, convex-concave nature of
f(v) is central to all arguments leading to the structural
results in §§ 2 and 3. To demonstrate the generality of
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these results for other processing time distributions, it will
be enough to show that the resulting expected work over-
load function has an increasing, convex-concave shape.
Unfortunately, it is often difficult, if not impossible, to find
a closed form expression for the expected work overload
as a function of variance. We present below the analytical
results for the uniform and shifted exponential distribu-
tions. We have verified numerically that similar results
hold for lognormal, beta, and gamma distributions.

4.1. Uniform Distribution

Suppose the processing time at each station is uniformly
distributed with mean �. Consider a station with variance
v. As variance is reduced, the support of the distribution,
[� � �3v, �  �3v], shrinks symmetrically around mean
�. If the half-spread of the distribution, �3v, falls below
the slack in processing time, (T � �), one always finishes
work within the cycle time. For this reason, it is not worth-
while to reduce the variance at any station below the level
(T � �)2/3. The expected work overload is given by

f�v� � �
T

��3v t � T
2 �3v

dt

� � 0 if 0 �v �
�T ��� 2

3 ,

1
4� �T ���2

�3v
�2�T ���  �3v� otherwise.

(19)

The following theorem indicates that the structural results
derived for normal distribution hold for uniform distribu-
tion.

THEOREM 12. For the expected work overload function f(v)
given by (19) the following holds:

(a) f(v) is 0 on the interval [0, (T � �)2/3], convex-
increasing on the interval [(T � �)2/3, V̂] and concave-
increasing on the interval [V̂, �] where V̂ – (T � �)2.

(b) For the two-station problem, (�1.1), there exists a
critical variance level V̂2 – 2V̂, such that the equal-
variance solution is optimal if an donly if the total variance
V � V̂2.

(c) In an optimal unequal-variance solution to problem
(�1), all stations except one have low variance.

(d) There exists a critical variance level V̂n – nV̂, such
that an unequal-variance solution is optimal to problem
(�1) if V 
 V̂n.

PROOF. See Appendix A.9.
The dominance results derived in §3 remains true for

the uniform distribution as well.

4.2. Shifted Exponential Distribution

Suppose the processing time at each station follows a
shifted exponential distribution. The random variable Y is
said to have a shifted exponential distribution if Y � � 
X, � is a constant, and X is exponentially distributed. If X

has mean �, then Y has mean � � �  � and variance v �
�2, which implies that

� � � � �v,

� �
1
�v

.

For the shifted exponential distribution, the expected work
overload at a station with mean processing time � and
variance v is given by

f�v� � �
T

�
t � T
�v

e ��t���v�/�v dt �
�v
e e ��T���/�v. (20)

THEOREM 13. For the expected work overload function f(v)
given by (20) the following holds:

(a) f(v) is convex-increasing on the interval [0, V̂] and
concave-increasing on the interval [V̂, �] where

V̂ – � �5 � 1
2

� 2

�T � �� 2.

(b) For the two-station problem, (�1.1), there exists a
critical variance level V̂2 – 2V̂ such that the unequal-
variance solution is optimal if V 
 V̂2.

(c) In an optimal unequal-variance solution to problem
(�1), all stations except one have low variance.

(d) There exists a critical variance level V̂n – nV̂, such
that an unequal-variance solution is optimal to problem
(�1) if V 
 V̂n.

PROOF. See Appendix A.10.

Note that the structure of the optimal allocation de-
pends only upon normalized slack processing time per unit
of standard deviation

s – T � �
�V/n

, (21)

and not on individual model parameters—T, �, n, and V.
The quantity s is dimensionless and can be viewed as a
measure of processing flexibility. This is a fundamental
quantity which governs the transition from an equal to an
unequal variance structure. For the case of normally or
uniformly distributed processing times, an unequal vari-
ance solution is optimal to the variance allocation problem
if s � 1. For the shifted exponential distribution, the same
is true if s � (�5  1)/2. A similar quantity, � � 2(T �
�)/v, plays a fundamental role in determining the percent-
age of jobs requiring rework in Hsu’s (1992) assembly line
model.

5. CONCLUSIONS

This paper has analyzed, in the context of a synchronous
assembly line, how to allocate a limited resource to a set of
competing alternatives for variance reduction. It is shown
that to focus variance reduction efforts among stations
with the largest variability may not be optimal. While the
choice of best stations that should receive variance reduc-
tion is complex, the structure of remaining variance among

612 / ERLEBACHER AND SINGH



these stations can be obtained from a related variance
allocation problem. Our analysis revealed that if the total
remaining variance among stations receiving reduction is
sufficiently large, the remaining variance is best left in a
spike-shaped configuration; efforts to equalize them can be
the worst solution.

Our model assumed that the total variance reduction
can be apportioned to stations in any desired quantities. In
reality, investment in variance reduction efforts may result
in discrete amounts of reduction. However, even in cir-
cumstances when variance reductions are not infinitessi-
mally divisible, our results provide targets at which
reduction efforts should be aimed. Our model also as-
sumed that stations respond identically to the variance re-
duction efforts. This assumption was made not only to
simplify the analysis but also to reflect the fact that it is
often difficult to know in advance how much variance re-
duction will be realized at a station as a result of an invest-
ment. In the absence of such information it may not be
unreasonable to assume that a dollar spent on one station
is as good as a dollar spent on another.

In situations where the remaining variance among sta-
tions receiving variance reduction is spike-shaped, the high
variance station should ideally be located toward the end
of the line. That is, given a choice, one should strive to
reduce the variance at upstream stations first. This ap-
proach has several advantages. The resulting work over-
load at these high variance stations would have little
disruptive effect on other stations. Moreover, the jobs re-
quiring rework can be sent to the rework station with min-
imal delay. For variance reduction on asynchronous lines,
Hopp and Spearman (1996) recommend a similar ap-
proach and note that “there tends to be greater leverage
for variability reduction applied to the front end of a line
than the back end.”

The results of this paper can thus be used to guide
performance improvement efforts in many realistic set-
tings. They can also provide important insights into the
design and planning of stochastic assembly lines. Finally,
the mathematical results are applicable to a wide class of
separable resource allocation problems with convex-
concave structure.

APPENDIX A

A.1. Proof of Theorem 1

We recast problem (�1.1) as a single variable optimization
problem by substituting V � v1 for v2. (In what follows we
drop the subscript on v1 because it is the only decision
variable.) The new optimization problem is given by

��1.1�� Minimize
0�v�V

f�v� 	 f�V � v� .

The function f(v)  f(V � v) is the objective function
from problem (�1.1) with V � v substituted for v2. The
first station receives v units of variance and the second
station receives the remaining V � v units of variance.

Differentiating f(v)  f(V � v) with respect to v we
obtain

f��v� � f��V � v� � ��v� � ��V � v�.

Clearly, the first derivative vanishes at v satisfying

��v� � ��V � v�. (22)

An optimal solution to problem (�1.1�) must take one of
the following two forms:

1. v � V/2, the equal-variance solution, or
2. v � V/2, an unequal-variance solution.

We first show that for V 
 V̂2, the equal-variance solution
cannot be optimal. We will prove this by showing that for
V 
 V̂2, the equal-variance solution is a local maximum
and hence cannot be a global minimum. First note that
v � V/2 satisfies Equation (22) and as a result must be
either a local minimum, a local maximum, or a point of
inflection. But

f	�V/ 2� 	 f	�V/ 2� � 2f	�V/ 2�

�

�2Z�T � �
�V/ 2

�
V 5/ 2 �2�T � �� 2 � V�

�

�2Z�T � �
�V/ 2

�
V 5/ 2 �V̂ 2 � V�

� 0 for V � V̂ 2 .

Hence for V 
 V̂2 the equal-variance solution is a local
maximum and therefore cannot be a global minimum. This
proves that for V 
 V̂2, an unequal-variance solution is
optimal.

It remains to be shown that if (v*, V � v*) is an optimal
unequal-variance solution, then V 
 V̂2. We first demon-
strate that the extreme points v � 0 and v � V cannot be
optimal. Since

f��0� � f��V� � ���V� � 0,

then f(v)  f(V � v) is decreasing on the interval [0, ] for
some  
 0. Therefore v � 0 cannot be the global mini-
mum. Likewise, it follows that

f��V� � f��0� � ��V� � 0,

which implies that v � V cannot be the global minimum,
either. As a result we know that the optimal solution must
be such that 0 � v* � V/2. We must show that if (v*, V �
v*) is an optimal unequal-variance solution, then V 
 V̂2.
In fact we will show that a more general result holds—for
any unequal-variance solution (v0, V � v0) satisfying the
first-order condition �(v0) � �(V � v0), it must be true
that V 
 V̂2.

Assume that v0 � V � v0 without loss of generality. For
any solution (v0, V � v0), which satisfies the first order
conditions, we know that �(v0) � �(V � v0) � � as shown
in Figure 5. Because �(v) attains its maximum at v � V̂
(see § 1), it must be true that v0 � V̂ � V � v0. Let � � V̂
� v0. In A.2 we show that �(V̂ � �) � �(V̂  �) for 0 �
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� � V̂. Since �(v) is strictly decreasing for v 
 V̂ (see § 1),
then V � v0 
 V̂  �. But

V � v 0 	 �V � v 0� � �V̂ � �� 	 �V̂ 	 �� � 2V̂ � V̂ 2 ,

and hence for any unequal-variance solution (v0, V � v0),
v0 
 0 that satisfies the first-order conditions, it must but
true that V 
 V̂2.

For the case when V � V̂2, it can be shown that the first,
second, and third derivatives of f(v)  f(V � v) vanish at
the equal-variance solution. However, the fourth derivative
of f(v)  f(V � v) is positive and hence for V � V̂2, the
equal-variance solution is the global minimum. □

A.2. Proof that �(V̂ � �) < �(V̂ 	 �)

If 0 � � � V̂ � (T � �)2 then

��V̂ 	 �� � ��V̂ � ��

N e ��T��� 2/ 2�V̂��

2 �2� �V̂ 	 �
�

e ��T��� 2/ 2�V̂���

2 �2� �V̂ � �

N e �V̂/�V̂���V̂��� � �V̂ 	 �

V̂ � �

N e 2�V̂/�V̂���V̂��� � 1 	
2�

V̂ � �
.

But

e 2�V̂/�V̂���V̂��� � 1 	
2�V̂

�V̂ 	 ���V̂ � ��

	
2� 2V̂ 2

�V̂ 	 �� 2�V̂ � �� 2
,

because 0 � � � V̂.
Therefore �(V̂  �) 
 �(V̂ � �) if

1 	
2�V̂

�V̂ 	 ���V̂ � ��
	

2� 2V̂ 2

�V̂ 	 �� 2�V̂ � �� 2
� 1 	

2�

V̂ � �

N 2�V̂
�V̂ 	 �� 2�V̂ � �� 2

	
2� 2V̂ 2

�V̂ 	 �� 2�V̂ � �� 2
�

2�

V̂ � �

N 2�V̂�V̂ 2 � � 2� 	 2� 2V̂ 2 � 2��V̂ 2 � � 2��V̂ 	 ��

N V̂ 3 � � 2V̂ 	 �V̂ 2 � V̂ 3 	 �V̂ 2 � � 2V̂ � � 3

N 0 � �� 3. □

A.3. Proof of Theorem 2

Let 
(v) � f(v)  f(V � v). Substituting the first-order
condition, (10), in the second derivative

� 2


�v 2 �

Z�T � �
�v

�
4v 5/ 2 �V̂ � v�

	

Z� T � �
�V � v

�
4�V � v� 5/ 2 �V̂ � �V � v��

yields

� 2


�v 2 �
��v���V 	 2V̂�v 2 � �V 2 	 2VV̂�v 	 V 2V̂�

2v 2�V � v� 2 .

Follow the proof for Theorem 4 below using n � 2. □

A.4. Proof of Theorem 4

For the optimization problem (�1	), substituting the first-
order condition

Z�T � �
�v

�
2 �v

� ��v� � ��V � �n � 1�v�

�

Z� T � �

�V � �n � 1�v�
2 �V � �n � 1�v

in the second derivative

� 2


�v 2 � �n � 1�

Z�T � �
�v

�
4v 5/ 2 �V̂ � v�

	 �n � 1� 2

Z� �T � ��

�V � �n � 1�v
�

4�V � �n � 1�v� 5/ 2

� �V̂ � �V � �n � 1�v��

yields

� 2


�v 2 �
�n � 1���v�Q n �v�

2v 2�V � �n � 1�v� 2 ,

where

Q n �v� � ��n � 1��V 	 nV̂��v 2

� �V 2 	 2�n � 1�VV̂�v 	 V 2V̂ .

Because 
(v) is continuous and differentiable, the se-
quence of first-order points for this function must alter-
nate between local minimum and local maximum. Since

�(0) � 0, i.e., 
(v) is initially decreasing, the smallest first
order point must be a local minimum. If the first-order
points are arranged in an increasing order, then the second
derivative evaluated at successive first-order points must
alternate in sign, i.e., , �,  etc. Since n 
 1 and �(v) 

0, @v 
 0, the number of sign changes for the function

Figure 5. �(v) for the Proof of Theorem 1.
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Qn(v), can be used as an indicator for the number (and
nature) of first-order points for the function 
(v). In par-
ticular, because Qn(V/n) � (V/n)2(nV̂ � V), V/n is a local
minimum (local maximum) when V � (
) nV̂.

Note that Qn(v) is quadratic in v with Qn(0) 
 0,
Q�n(0) � 0 and Q 	n(v) 
 0. These imply that Qn(v) is a
convex, parabolic function that is positive and decreasing
at v � 0 and that can cross zero at most twice. That is, the
function 
(v) can have at most three first-order points.
The zero-crossing properties of Qn(v) are governed by its
discriminant

�V 2 	 2�n � 1�VV̂� 2 � 4�n � 1��V 	 nV̂�V 2V̂

� V 2�V 2 � 4�n � 1�V̂ 2� .

For V � 2�n � 1 V̂, there is no real root for Qn(v) � 0
and Qn(v) is positive for all v. The equal-variance solution,
v � V/n, must be the global minimum because there is no
other first-order point. This is true for V � 2�n � 1 V̂ also,
because Qn(v) � 0 has two repeated real roots and Qn(v)
remains weakly positive for all v.

For V 
 2�n � 1 V̂, equation Qn(v) � 0 has two real,
positive roots given by va and vb. We claim that for the
multistage problem under consideration, whenever
Qn(v) � 0 has two distinct real roots, the equal-variance
solution is strictly greater than the smaller of the two
roots, i.e., V/n 
 va for n � 2. To show this, first note that
the parabolic curve Qn(v) achieves its minimum at

v m �
V 2 	 2�n � 1�VV̂

2�n � 1��V 	 nV̂�
.

Clearly, va � vm � vb, i.e., the minimum lies between the
two roots. Now suppose that vm 
 V/n, then

V 2 	 2�n � 1�VV̂

2�n � 1��V 	 nV̂�
�

V
n

f nV 2 	 2n�n � 1�VV̂ � 2�n � 1��V 2 	 nVV̂�

f nV 2 � 2�n � 1�V 2

f n � 2,

a contradiction. Hence it must be true that vm � V/n and,
as a result, va � V/n. Now let

x – n �V 2 � 4�n � 1�V̂ 2

and

y – �n � 2�V.

Then x � (�) y N vb � (�) V/n and �x � (�) y N va �
(�) V/n. This can be seen from

� n �V 2 � 4�n � 1�V̂ 2 � � � ��n � 2�V

N V�nV 	 2n�n � 1�V̂ � n �V 2 � 4�n � 1�V̂ 2�

� � � �2�n � 1�V�V 	 nV̂�

N
V 2 	 2�n � 1�VV̂ � V �V 2 � 4�n � 1�V̂ 2

2�n � 1��V 	 nV̂�
� � � �

V
n .

Moreover,

V � � � � V̂ n

f V 2 � � � � n 2V̂ 2

f �n 2 � �n � 2� 2�V 2 � � � � 4n 2�n � 1�V̂ 2

f n 2�V 2 � 4�n � 1�V̂ 2� � � � � �n � 2� 2V 2

f x 2 � � � � y 2

f � x 	 y�� x � y� � � � � 0.

Now, V 
 V̂n implies that either (a) x 
 y and �x � y
or, (b) x � y and �x 
 y. That is, either (a) vb 
 V/n and
va � V/n or, (b) vb � V/n and va 
 V/n. Condition (b)
cannot hold since va � vb and va � V/n. Hence V 
 V̂n f
va � V/n � vb, i.e., the equal variance solution lies be-
tween the two roots. In the interval (0, V/n), Qn(v)
changes sign only once when it goes from  to � at va.
Recall that the smallest first-order point for 
(v) must be a
local minimum and that V/n is a local maximum for V 

nV̂. Thus, for V 
 nV̂ � V̂n, there are exactly two first-
order points for 
(v), the minimizing variance v*l, which
must be smaller than va and V/n, a local maximum.

Similarly, V � V̂n implies that either �x � y or x � y,
i.e., either va � V/n or vb � V/n. But va � V/n, hence V �
V̂n f va � V/n � vb. In the interval (0, V/n), Qn(v)
changes sign only once when it goes from  to � at va and
as v 3 V/n, Qn(v) approaches zero from below. Hence

(v) achieves its global minimum at a first-order point, v*l,
that lies in the interval (0, va) and 
(v) is increasing in the
interval (v*l, V/n).

Finally, V � V̂n implies that either (a) x 
 y and �x 
 y
or, (b) x � y and �x � y. That is, either (a) vb 
 V/n and
va 
 V/n or, (b) vb � V/n and va � V/n. But condition (a)
cannot hold since va � V/n. Hence V � V̂n f vb � V/n
i.e., the equal variance solution is larger than both the
roots. In the interval (0, V/n), Qn(v) changes sign twice (,
�, ) at va and vb, respectively. The number of first order
points for 
(v) cannot exceed three. Recall that the small-
est first-order point for 
(v) must be a local minimum,
that V/n is also a local minimum, and that the successive
first-order points must alternate between local maximum
and local minimum. These observations rule out the possi-
bility of 
(v) having just two first-order points in the inter-
val (0, V/n). Hence for 2�n � 1 V̂ � V � nV̂, one of the
following must be true:

1. 
(v) has three first order points in the interval (0, V/n).
The first-order point that falls in the interval (va, vb) is
a local maximum; other two are local minimum, one of
which minimizes 
(v).
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2. 
(v) has only one first-order point in the interval (0,
V/n)—the global minimum at V/n. □

A.5. Proof of Theorem 5

The only candidate points for the global maximum to
problem (�1.1) are first-order points and extreme points.
In Theorem 2 it was shown that if V 
 V̂2 then there are
three points that satisfy the first-order conditions. One of
these points is the equal-variance solution, which is a local
maximum. The other two points are a symmetric pair of
unequal-variance solutions that are the global minima.
Therefore, the only other candidate for the global maxi-
mum would be an extreme point. It is shown in A.6 that
the equal variance solution is worse than an extreme point

solution if and only if V 
 V̂
ˆ

2. Thus, for V 
 V̂
ˆ

2, the
equal-variance solution must be the global maximum. □

A.6. Proof that the Equal Variance Allocation is
Worse than an Extreme Point Allocation if and

only if V > V̂
ˆ

2

Define fEV(V) � 2f(V/2) and fEP(V) � f(V). The function
fEV(V) is the EWO for the equal variance (EV) solution
with total variance V while fEP(V) is the EWO for an
extreme point (EP) solution with total variance V. If we let
x � (T � �)/�V then the equation fEP(V) � fEV(V)
reduces to Equation (16). Since V 
 0, and there is a
one-to-one relationship between positive x and positive V,
we need only find positive roots to Equation (16). To show
that x̂̂ is the unique positive root to Equation (16), we
consider the equation D(V) – fEP(V) � fEV(V). Now since

lim
V30

D�V� � 0 

and

lim
V3�

D�V� � lim
V3�

� �V
�

� �2 � 2�
2 �

T � �
2

� � �� � 0,

there is at least one root to D(V) � 0, and therefore at
least one root to Equation (16). To show that there is a
unique root to D(V), we show that there exists a number �

such that D�(V) 
 0 if and only if V � �. This fact guar-
antees that there is only one root to D(V) � 0. Now,
consider the first derivative of D,

D��V� �

Z�T � �
�V/ 2

�
�2V

� e �T��� 2/ 2V

�2
� 1� .

It is clear that D�(V) 
 0 if and only if e(T��)2/2V/�2 
 1.
But e(T��)2/2V/�2 
 1 if and only if V � � � (T � �)2/log
2. Thus we have shown that there is exactly one root to
D(V) � 0. This in turn implies that there is exactly one
root, x̂̂, to Equation (16). So, fEV(V) will grow at a slower
rate than fEP(V) until V � � and then fEV(V) will grow at
a faster rate than fEP(V), cross fEP(V) at V̂2 (
 �), and
fEV(V), will be greater than fEP(V) thereafter. Through

numerical techniques, we have found that x̂̂ � 0.511, which

implies that V̂
ˆ

2 � 3.83(T � �)2. (Note that V̂
ˆ

2 
 V̂2.) □

A.7. Proof of Theorem 6

The proof is in two parts. We first show that an extreme
point solution cannot be the global maximum. We then
show that an interior point, unequal variance solution can-
not be the global maximum. To show that an extreme

point cannot be the global maximum when V 
 V̂
ˆ

n, we first
observe that an extreme point solution has v1 � 0. (Recall
that we have assumed without loss of generality that vi �
vi1, i � 1, . . . , n � 1.) Furthermore, it must be true that

vn � V/(n � 1) 
 V̂
ˆ

2. If we form a two-station subproblem
by considering stations 1 and n in isolation, then the total
variance for this subproblem is greater than V/(n � 1) 


V̂
ˆ

2. By Theorem 5, the equal-variance solution to this two-
station subproblem has a larger objective function value
than an extreme point solution. Since (v1, vn) is not the
global maximum to this two-station subproblem, then the
original extreme point solution cannot be a global maxi-
mum to problem (�1).

We now show that an interior point, unequal variance
solution cannot be the global maximum. Suppose that an
interior point, unequal variance solution was the global
maximum. Then by Lemma 1, it would have k stations with
variance vl and n � k stations with variance vh. Since it is
an unequal-variance solution, 1 � k � n � 1. If vl  vh 


V̂
ˆ

2, then by Theorem 5, the equal-variance solution must
be the worst solution to this two-station subproblem, which
implies that this unequal-variance solution to the n station
problem cannot be the global maximum. We now show

that vl  vh 
 V̂
ˆ

2. Let vl � V/n � �. Then vh � V/n 
k�/(n � k). So vl  vh � 2V/n  (2k � n)�/(n � k). First
consider the case when 2k � n � 0. Then

v l 	 v h � 2V/n 	 �2k � n��/�n � k�

�
2V
n 	

�2k � n�V
�n � k�n

, since � �
V
n

�
V

n � k �
�n � 1�
n � k V̂̂ 2

� V̂̂ 2 .

Now consider the case when 2k � n � 0. Then

v l 	 v h � 2V/n 	 �2k � n��/�n � k�

�
2V
n

�
2�n � 1�

n V̂̂ 2

� V̂̂ 2 since
2�n � 1�

n � 1 for n � 2. □
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A.8. Proof of Theorem 7

Consider the optimal solution to the problem where k
stations have low variance and n � k stations have high
variance. Let this solution be

v� �1� � �v*l�k� ,· · · , v*l�k� , v*h�k� ,· · · , v*h�k� � .

k n�k

Now consider v� (2), which is a solution to the problem
where k  1 stations have a low variance of v*l(k) and n �
k � 1 stations have high variance v�h(k) � (V � (k 
1)v*l(k))/(n � k � 1). That is,

v� �2� � �v*l�k� ,· · · , v*l�k� , v�h�k� ,· · · , v�h�k� � .

k1 n�k�1

These two solutions have the same variance assigned to
each of the first k stations. Therefore, consider the n � k
station subproblem with total variance V� � V � kv*l(k)

formed by considering the last n � k stations of either one
of these solutions. The solution to this subproblem formed
from v� (1) is

v� � �1� � �v*h�k� ,· · · , v*h�k� � .

n�k

The solution to this subproblem formed from v� (2) is

v� � �2� � �v*l�k� , v�h�k� ,· · · , v�h�k� � .

n�k�1

Note that v��(1) is an equal-variance solution to this sub-
problem. If we can demonstrate that the total variance for
this subproblem, V�, is greater than the upper critical vari-
ance level for this subproblem, then by Theorem 6 it will
be true that v��(2) is a better solution to the subproblem
than v��(1). But,

V� � V � kv*l�k�

� V̂̂ n � kv*l�k�

� �n � 1� V̂̂ 2 � kv*l�k�

� �n � 1� V̂̂ 2 � kV̂̂ 2

� �n � k � 1� V̂̂ 2

� V̂̂ n�k .

Hence the total variance for the subproblem is greater
than the upper critical variance for the subproblem. There-
fore v��(1) is a worse solution to the subproblem than v��(2).
This implies that v� (1) is a worse solution to the original
problem than v� (2), i.e., ¥i�1

n f(v� i
(1)) 
 ¥i�1

n f(v� i
(2)). Recall

that v� (2) is a solution which has k  1 stations with low
variance and n � k � 1 stations with high variance. If we
let

v� �3� � �v*l�k1� ,· · · , v*l�k1� , v*h�k1� ,· · · , v*h�k1�

k1 n�k�1

be the optimal solution to the problem with total variance
V and k  1 stations with low variance and n � k � 1
stations with high variance, then it must be true that ¥i�1

n

f(v� i
(2)) 
 ¥i�1

n f(v� i
(3)). Therefore ¥i�1

n f(v� i
(1)) 
 ¥i�1

n

f(v� i
(2)) 
 ¥i�1

n f(v� i
(3)), i.e., the optimal solution with k sta-

tions having low variance is worse than the optimal solu-
tion with k  1 stations having low variance. □

A.9. Proof of Theorem 12

(a) From Equation (19), the first two derivatives of the
expected work overload function are obtained as

��v� � f��v�

� � 0 if 0 � v �
�T � �� 2

3 ,

�3
8v 3/ 2

� v �
�T � �� 2

3
� if v �

�T � �� 2

3 ,

and

���v� � f	�v�

� � 0 if 0 � v �
�T � �� 2

3 ,

�3
16v 5/ 2 ��T � �� 2 � v� if v �

�T � �� 2

3 .

Except for v � (T � �)2/3, �(v) is positive everywhere and
its value approaches zero as v goes to infinity. This implies
that f(v) is increasing in v except for v � (T � �)2/3,
when it is zero. Let V̂ – (T � �)2. Then for v � (T �
�)2/3, ��(v) crosses 0 only at v � V̂. Moreover, ��(v) 
 0
for v � V̂ and ��(v) � 0 for v 
 V̂. Hence �(v) is a
unimodal function that is strictly increasing on ((T �
�)2/3, V̂), strictly decreasing on (V̂, �), and achieves its
(global) maximum at V̂. The expected work overload func-
tion f is convex on ((T � �)2/3, V̂) and concave on (V̂, �).
□

(b) The proof is identical to that for Theorem 1. Only
that part of the proof that is dependent upon distributional
assumption will be presented here. To show that for V 

V̂2, the equal-variance solution cannot be a global mini-
mum, note that the second derivative of the objective func-
tion, f	(v)  f	(V � v), evaluated at v � V/2 gives

2f	�V/ 2� �
�3

4 �2V 5/ 2
�2�T � �� 2 � V�

�
�3

4 �2V 5/ 2
�V̂ 2 � V�

� 0 for V � V̂ 2 .

Hence for V 
 V̂2 the equal variance solution is a local
maximum and cannot be a global minimum.

To show that �(V̂ � �) � �(V̂  �), recall that �(v) �
0 on [0, (T � �)2/3] and V̂ � (T � �)2. Thus, we require
that � � 2

3
(T � �)2. Now,
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��V̂ � �� � ��V̂ 	 ��

N 1
8� �3

�V̂ � �
�

V̂
�3�V̂ � �� 3/ 2�

�
1
8� �3

�V̂ 	 �
�

V̂
�3�V̂ 	 �� 3/ 2�

N 3�V̂ � �� � V̂ � 3
�V̂ � �� 3/ 2

�V̂ 	 �
� V̂� V̂ � �

V̂ 	 �
� 3/ 2

N 2V̂ � 3� � �V̂ � �

V̂ 	 �
� 3�V̂ � �� � V̂ V̂ � �

V̂ 	 �
�

N �2V̂ � 3���V̂ 	 �� � �V̂ � �

V̂ 	 �
�V̂ � ���2V̂ 	 3��

N �2V̂ � 3�� 2�V̂ 	 �� 2 �
V̂ � �

V̂ 	 �
�V̂ � �� 2�2V̂ 	 3�� 2

N �2V̂ � 3�� 2�V̂ 	 �� 3 � �V̂ � �� 3�2V̂ 	 3�� 2

N 9� 2 � 5V̂ 2

N � � �5
9 V̂ ,

which gives us our result since we know that � �
2
3

V̂ �
� 5

9 V̂. □

(c) Identical to the proof of Theorem 3.
(d) We prove the result by contradiction. Suppose V 


V̂n but the equal-variance solution is optimal. Consider any
two stations in isolation. The total variance from these two
stations is 2V/n 
 2V̂ � V̂2. So for this two-station prob-
lem considered in isolation, an unequal-variance solution
must be optimal from results in part (b) above. Since ob-
jective function in problem (�1) is separable, this means
that the equal-variance solution cannot be optimal to the
problem (�1). □

A.10. Proof of Theorem 13

The proofs are similar to those for the normal and uniform
distributions. The convex-concave nature of the function
f(v) is proved below. The rest of the proof is omitted.
From (20), the first two derivatives of the expected work
overload function is obtained as

��v� � f��v� �
e �T���/�v

2e �v
� 1 	

T � �
�v

� , (23)

and

���v� � f	�v� �
e ��T���/�v

4ev 3/ 2 � �T � �� 2

v �
T � �

�v
� 1� .

(24)

Note from (23) that �(v) � 0, and �(v) 3 0 as v 3 0,
or as v 3 �. Hence f(v) is increasing. The term in the
braces of (24) is negative if

0 �
T � �

�v
�

1 	 �5
2

and positive if

T � �
�v

�
1 	 �5

2 .

That is, ��(v) � 0 for v 
 V̂ and ��(v) 
 0 for v � V̂
where

V̂ � � �5 � 1
2

� 2

�T � �� 2.

Hence �(v) is a unimodal function that is strictly increas-
ing on (0, V̂), strictly decreasing on (V̂, �), and achieves its
(global) maximum at V̂. Also, f(v) is convex-increasing on
the interval [0, V̂] and concave-increasing on the interval
[V̂, �]. □
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