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Efficient Computation of Coordinating 
Controls in Hierarchical Structures for 

Failure-Prone Multi-Cell Flexible 
Assembly Systems 

A bstract-This paper concerns production allocation in multicell 
manufacturing systems. A model is developed for a hierarchical control 
scheme, where each cell consists of several failure-prone machines for 
which the time-scale of the machine state transitions is comparable to 
the processing times. The production objective is to track a nonstation- 
ary demand as closely as possible when the demand is near or exceeds 
the capacity of the system. The contribution of this paper is threefold. 
First, a series of approximations are proposed to obtain a model that is 
realistic while admitting a tractable solution. Second, to solve the 
resulting stochastic control problem, we derive a general result on the 
second-order finite-time (transient) statistics of a continuous-time 
Markov chain. Finally, simulation results are presented to illustrate the 
proposed model and control methodology. These results are compared 
with a myopic linear programming approach. 

I. INTRODUCTION 

ECENTLY, there has been a great deal of interest in the R design, planning, real-time dispatch, and control of mul- 
ticell systems for electronic and computer assembly. Results 
have been mainly limited, however, to real-time dispatch for 
single cell, high-volume systems with failure-prone machines 
and constant demand rates [l], [2], [4], [8], [9]. As pointed 
out in the seminal paper [9], these results are applicable only 
to situations when machine state changes occur on a much 
slower time-scale than the processing times. In contrast, here 
we develop a real-time dispatch procedure for system with a 
large number of machines (which can be located in a number 
of cells). In such systems, the machine state changes occur 
on a time-scale comparable to the processing times. The 
objective for the single/multiple-cell system is to track a 
nonstationary demand as closely as possible when the de- 
mand is near or exceeds the capacity of the system. 

The current work has been motivated by an electronic 
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Fig. 2. Parallel lines/cells. 

assembly facility. A typical card-line for electronic assembly, 
which is shown in Fig. 1, consists of several stages; of these, 
we focus on the insertion stage. A typical insertion stage is 
shown in Fig. 2, where components of different types are 
inserted at various machines. The line consists of multiple 
cells in parallel, with virtually no communication among 
them. A coordinator is responsible for periodic communica- 
tion and control of these cells. Machine availability is the 
dominant uncertainty in each of the cells due to machine 
failures and repairs. A coordinator allocates production rates 
to be implemented during a coordination period, using the 
machine state, demand, and inventory positions that are 
available at the beginning of each period. The next demand 
arrives at the beginning of the next coordination period. The 
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production rates specified by the coordinator are implemented 
by the local controllers as a function of the instantaneous 
machine state of the local cell. Cell controllers do not com- 
municate with the coordinator or the other cells except at the 
coordination epoches. 

A key concept in the present work is that of the aggrega- 
tion of the instantaneous capacity constraints. This results in 
the dispatch policy being a function of the random amount of 
time to be spent in each state. The production quantity can 
then be expressed in terms of the yet-to-be-determined pro- 
duction rates in a given state and the random times spent in 
each of these states. A key parameter in the proposed aggre- 
gation scheme is the second-order finite-time (transient) 
statistics of the continuous-time Markov chain governing 
state transitions. We obtain a closed-form solution for this 
quantity, which in itself is a result of significance and inter- 
est. 

A major hurdle in the control of systems whose capacity is 
subject to random fluctuations governed by a Continuous-time, 
discrete-state Markov chain with extremely large state space 
is the simultaneous integration of a large set of strongly 
coupled Ricatti-type differential equations [ 141. For the real- 
time control of manufacturing systems, algorithms that are 
computationally simple and less demanding, albeit subopti- 
mal, can prove very useful. The current work is an attempt in 
this direction. Through a series of approximations, we obtain 
a model that is computationally tractable and involves little 
on-line computation. 

In a recent series of papers by Shanthikumar and Yao [lo], 
[ll], [13], [16], [17], the issues of buffer space, machine, 
and production capacity allocation across different cells have 
been extensively treated. Their approach is based on queuing 
models, followed by optimization. Some of the results in that 
work correspond to production allocations across cells with 
stationary demand. However, their approach does not include 
dynamic capacity constraints. In contrast, we consider here 
the case of nonstationary demand in the presence of machine 
failures in a multicell situation, where simultaneous dynamic 
capacity constraints are imposed. Our model of the real-time 
control of each cell in the system follows previous formula- 
tions of the single-cell problem [2], [4], [8]. 

The paper is organized as follows. In the next section, we 
describe and formulate the multicell coordination problem. 
The derived control policy requires the computation of 
finite-time statistics. Section 111 summarizes the results re- 
lated to the computation of finite-time (transient) statistics. A 
brief summary of computational steps to implement the coor- 
dinating control is given in Section IV. For purposes of 
comparison, we provide a myopic linear programming for- 
mulation of the problem in Section V. A study of the 
effectiveness of the proposed algorithm vis-a-vis the myopic 
LP solution is done using discrete-event simulation of a 
two-cell system. The results are summarized in Section VI. 

II. CONTROL OF MULTICELL SYSTEMS WITH FAILURE 
PRONE MACHINES 

We consider a manufacturing system producing a number 
of products. The demand for each product is known for the 

future N periods, and the goal is to try to meet this demand. 
The manufacturing system consists of a number of parallel 
cells, where each has a combination of different machines. 
The grouping of machines into cells is influenced by several 
design considerations, ranging from layout to capacities of 
machines, material handling systems, etc. Each cell can 
produce a number of different products (similarly a product 
may be produced in a number of alternative cells), but there 
is no flow of material or information between the cells. 
During a given period of operation, a major source of 
uncertainty is capacity changes due to machine failures and 
repairs. We consider the situation when the system is heavily 
loaded, that is, the demand for parts is nearly equal to the 
total system capacity. Thus, an efficient allocation of produc- 
tion resources is critical, and machine failures must be 
anticipated to obtain a good performance. 

Associated with each product, there are inventory holding 
and backlogging costs that may change from period to pe- 
riod. Machines are flexible in the sense that they can process 
a group of products with virtually no setups. This gives the 
flexibility of producing any group of products on a set of 
machines simultaneously but not necessarily at the same 
production rate. These machines may physically be located in 
different cells with no information exchange. The real-time 
control problem can be stated the following way: Given the 
machine states, the current inventory status, and the future 
requirements, what should be produced on each machine 
such that the sum of inventory holding and backlogging costs 
for all the products is minimized over the N-period time 
horizon? The availability of the raw components is ensured 
by a higher-level model that deals with the medium-term 
planning. 

In a manufacturing system with a number of cells (each 
consisting of a large number of machines), the total number 
of possible machine states grows exponentially with the 
number of machines. Designing a centralized controller that 
can respond to every change in machine states by recomput- 
ing the control policy and changing the dispatch quantity for 
all the machines will be computationally prohibitive. For the 
real-time implementation, the feedback of information as well 
as the computation of dispatch quantities should be instanta- 
neous. We adopt a two-level hierarchical model (shown in 
Fig. 3), where each cell is controlled by a cell controller, 
which receives information about the machine states and 
specifies the cell production rate on a second-by-second 
basis. The coordination between the cells is achieved periodi- 
cally by a cell coordinator that receives the feedback from the 
inventory as well as the cell machine states at time intervals 
of period T, which is of the order of a few hours. Based on 
this information and also on the cost parameters and the 
future requirements, the cell coordinator specifies production 
rates for each cell corresponding to every possible cell state. 
The cell controllers use these values until the next coordina- 
tion epoch, when new updates are again downloaded. Clearly, 
the computation is still centralized but it is done on a periodic 
basis, which gives the cell coordinator enough time to carry 
out the dynamic program. 

This control architecture has been adopted due to the 
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Fig. 3. Control architecture. 

limitations on the computational speed of the processor and 
the capacity of the communication cables. In addition, the 
communication network and the host tend to go down several 
times a year, interrupting the communication between the cell 
and the coordinator for long time. The hierarchical architec- 
ture described above has the advantage of not disrupting the 
production under such circumstances. A centralized con- 
troller with more frequent updates can be used to advantage 
as future technology makes communication and computation 
faster and more reliable. 

Notation: We define the following variables and vectors 
that will be used later in the paper: 

number of products 
number of cells 
cell coordination interval 
superscript for cell (c = 1 ,  2 ,  
index for product ( i  = 1 ,  2 ; - . ,  p )  
index for period ( k  = 1 ,  2 ; * . ,  N )  
number of types of machines in cell c 
continuous-time Markov chain representing 
state of cell c at time t 
number of machine-states for cell c 
index for machine type ( j = 1 ,  2 ,  * e ,  J') 
state of cell c (ac  = 1 ,  2 ;  * e ,  S') 
demand for product i during kth period 
stock available for product i at the beginning of 
the kth period 
production rate for product i in cell c during 
period k if the cell is in state a'; Decision 
variable for cell coordinator (number of 
units/min) 
random production quantity of product i in cell 
c during period k as a result of the state 
changes 
number of type j machines up in cell c if the 
cell is in state a'. 

, n) 

T: ,c(T) random amount of time cell c spends in state 

66 1 

amount of time a type j machine will take to 
process a unit of product i ;  i 
j = 1 ,  2 ; . - ,  J' 
identity matrix of dimension p 

= a; . ( i )  

,., \ 

U;,,' = 

U; = 

D'(1 , l )  * * 

D ' ( j , i >  
D'( J c , l )  * * * 

a1 

a' 

a" 

4, s' 

D C (  J', P) 

- D' = diag [_Or@ e'{ S' times}] ; 

- D = diag[_D' a - .  - D' P ]  
7; = [IT;, 1 - * * I T ; ,  ,c * . * I T ; ,  sc] ; 

B k =  [7 :  * e *  7; 7 ; ] .  

A .  Problem Formulation 
Consider a cell c with a group of machines, where each 

can be in a either functional or breakdown state. The transi- 
tion between these two states is modeled as a continuous-time 
Markov chain. We assume that the repair starts as soon as a 
machine fails and that the failure and the repair of each 
machine is independent of the state of the other machines. 
Let the total cell state ac have the information about the 
number of functional machines of each type. The transition 
between the cell states can then be represented by an equiva- 
lent finite-state continuous-time Markov chain y'( t ) .  The 
transition rates of this Markov chain will be a function of the 
mean time between failure (MTBF) and mean time to repair 
(MTTR) of individual machines. .., - 

(11' during period k of length T .  A quantity of fundamental importance in deciding the 
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production dynamics is T ~ , , c ( T ) ,  which is the random 
amount of time cell c spends in state ac during period k and 
is expressed as 

kT 
. i , , c ( T )  = / Y N ) d t  

( k -  l)T 
where 

1 i f y c ( t )  = a ' , i .e . ,a t t imet , thecel l  c i s  
in state a' I 0 otherwise. 

Y:f(t) = 

Suppose for period k the cell coordinator specifies the vector 
of production rates u;,,c for all cell states ac that are 
implemented by the cell controller. The actual production of 
cell c during period k will then be 

Sf 

,c= 1 
U; = 7; , ,cu; , ,c .  (1)  

We note that U: is a random vector because the amount of 
time cell c spends in each state is random. Letting uk be 
the vector of production rates for all the cells and defining Bk 
as matrix of random times T;,,c(T) as defined above, (1) 
gives 

n 

c= 1 
Bkuk 

where U, is the vector of total production by all cells. The 
inventory balance equation for the multicell system can be 
written as 

where negative inventory values represent the backlog that 
must be met by future production. The specified production 
rates u;,,c must be within the production capacity of the 
functional machines, i.e. 

x k + l  = x k  + Bkuk - dk (2) 

D'u;,,c I UC,C V a c  

where Dc is the matrix of processing times, and the compo- 
nents of the vector uC,c represent the number of functional 
machines of each type. Stacking the above equations for 
ac = 1, 2; .* ,  Sc gives 

- D'uC, I U'. (3) 
The above equations and constraints holds for each cell of the 
manufacturing system. It is convenient to rewrite (3) for 
c = 1, 2 , . * * ,  n ,  in a more compact form 

where uk is the vector of production rates specified by the 
cell coordinator, which tells each cell, for every possible 
state, what to produce, on which type machines, and at what 
rate, and vector a represents the number of machines of each 
type available in each cell for every state. We shall also 
require the production rates uk to be nonnegative. Unfortu- 
nately, incorporating this hard constraint explicitly in the 
present formulation is difficult. We propose to impose this 
constraint heuristically by setting any negative production 
rate to zero. 

We now turn to the task of computing the production rates 
uk, k = 1 ,  2, - - , N so that a given cost function 

D U k  5 U (4) 

E { k y l  g k ( x k )  ] 

is minimized subject to the inventory balance equations (2) 
and capacity constraints (4), where g , ( x k )  can be a piece- 
wise linear, quadratic, or any general convex function, de- 
pending upon how inventory costs are incurred. 

B. Problem Solution 
An exact solution of the above problem for a general cost 

function is intractable. To obtain a computationally feasible 
approximate solution to the above problem, we make the 
following approximation, following [ 11, where an efficient 
solution for the single-cell problem is described. We approxi- 
mate the cost function by the quadratic form 

g ( x k )  X f Q k x k  - c k x k  

where elements of the diagonal matrix Qk and the vector Ck 
are chosen to fit the corresponding inventory holding and 
backlogging cost curves. The second term in the above 
approximation appears to mimic the asymmetry in cost func- 
tions corresponding to the positive and the negative invento- 
ries. 

Our second approximation converts the constrained opti- 
mization problem into an unconstrained optimization prob- 
lem. In particular, the capacity restrictions (4) are enforced 
by adding a cost 

( D U k  - U ) T R k ( D U k  - U )  + w,(DU, - U )  

in the objective function, where the elements of matrix Rk 
ensure that the capacity violations are heavily penalized. 
Vector wk can be used to mitigate the penalty for not using 
the available capacity, although this will rarely happen in the 
proposed model. The reason is as follows: If the demand is 
low and the machines are consistently underutilized, then an 
immediate response to machine failure/repair is not critical; 
the problem is trivial in this case because the optimal decision 
for each period is to produce until all demands are satisfied. 
On the other hand, when the capacity is scarce, a judicious 
utilization of available machines becomes critical. It is under 
these circumstances that the proposed control rule proves its 
value. We also note that if a machine type is consistently 
underutilized, it can then be excluded from the constraint set 
(4), or equivalently, the corresponding elements of matrix 
Rk can be set to zero. In many manufacturing systems, 
capacity costs are sunk for the short-term decisions, and any 
underutilized capacity incurs a loss due to numerous fixed 
costs. It is reasonable, in such circumstances, to include the 
cost of underutilization in the formulation. 

With the above approximations, the cell coordination prob- 
lem can be written as 

I I lh  E x f e k x k  - c k x ,  + ( D U k  - U)' 
U k  k = l  

' R k ( D U k  - a)  + wk(Duk - U ) )  ( 5 )  

(" 

subject to the inventory balance equation (2). The formula- 
tion now is easily recognized as the linear-quadratic control 
problem with jump parameters. Linear systems whose pa- 
rameters are subject to random fluctuations have been studied 
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Bk = E ( B , }  

Fk = [ E {  B;Kk+ ,Bk)  + D T R k D ]  

Lk = -FkE;Kk+, 

Mk = F k [ D T R k a  + B k K k + l d k  

- ( p k + l B k ) T -  ( w k D ) T ]  

K k  = Q k  - Kk+lEkFkEkTKk+l  + K k + l  

Pk = Pk+lM&?E:Kk+l - d:Kk+l - $ ck 
PN = - $  C N ;  K N  = Q N .  

by, among others. Sworder [14] and Wonham [15] for the 
continuous-time case and by Blair and Sworder [6] and 
Chizeck et al. [7] for the discrete-time case. However, the 
control problem defined above cannot be addressed effec- 
tively in either of the two frameworks. Although the periodic 
shipment of demand and associated bookkeeping leads to 
discrete-time inventory balance equations and cost functional 
similar to the discrete-time jump-linear system in [6] and 
[7], a major difference is that the capacity may change here 
many times within a period. This distinction can also be 
noticed by the fact that the matrix B, here is stochastic even 
when the cell state at the beginning of period k is known. 
Formulating the problem as a continuous-time linear system 
with randomly jumping parameters, as in [14], would have 
lead to a control law requiring numerical integration of a 
coupled set of Ricatti-type equations-a task that is unrealistic 
for even small problems. In contrast, the proposed formula- 
tion yields a tractable solution through the approximation in 
the following section. 

C. Quasi-Steady-State Approximation 
In order to obtain a recursive form of solution, we need to 

ensure that the Bk’s for the successive periods are indepen- 
dent. The following discussion provides a justification for 
this assumption. As discussed earlier, the elements of Bk’s 
correspond to the random amount of times the cells spend in 
different states during the kth period. In general, the fraction 
of time a cell spends in any state during a coordination period 
depends on the initial state of the cell. This dependence 
becomes weaker, however, as the length of coordination 
period increases. In particular, as the period T increases, the 
underlying Markov chain leads to stationary probabilities 
given by 

.. E{7;.,c(T)I ~ 

) (7) 

Iim . , = a;c 
T+ m T 

where T,CC is the stationary probability corresponding to state 
CYc. 

Moreover, as T increases, the occupation times become 
independent, that is 

which means that for large T ,  not only the computations of 
Bk’s are trivial, but in addition, there is no correlation 
between elements of the coefficients matrices for successive 
periods which is a property we need for efficient computation 
of controls. 
Unfortunately, a long coordination period also means slower 
updating of the inventory status and cell production rates. 
Clearly, an efficient computational method at the cost of 
valuable information and resultant performance degradation 
is undesirable. To resolve this dilemma, we choose the length 
of coordination period that is long enough so that the fraction 
of time spent in (dominant) states reach their stationary 
values. One should remember, the larger the number of 
machines of each type in a given cell, the larger the number 
of transitions and the less time it will take to reach the 
stationary probabilities. For a given cell structure, we can 
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right production rates is contingent on an accurate evaluation 
of finite-time statistics E {  r ; ,  ,c( T )  1 ~'(0)) and 
E{ r;, ,e( T )  T:, ,.c( T) 1 ~'(0)). The next section addresses 
this aspect of the problem. 

III. COMPUTATION OF FINITE-TIME STATISTICS 

For notational simplicity, explicit reference to cell c or 
period k is suppressed in the following development. As a 
matter of fact, since states a', a", y'(0) E { 1, 2, * a ,  S e } ,  
we will refer to cell states simply by letters j ,  j' etc., 
indicating integer values. Thus, we shall write 

simply as E{ rj( T ) T ~ (  T )  1 y(0) = k} . 
Theorem 1: Let y ( t )  be a continuous-time Markov chain 

with generator Q ,  and let rj( T) and 7y( T) be the occupation 
times in states j and j', respectively. Then, the joint statistics 
of occupation times conditioned on initial state y(0) is given 

E{T;,,c(T) .:, ,4) I YC(0) )  as E{T,(T)T,,(T) I Y ( 0 ) )  or 

by 

E { r j ( T ) r f ( T )  IY(O)  = k) 

1 

1 
where I is a vector of 1, S j  = 1, and 

6jsc 1 
ajk is the Kronecker delta function. 

Proof: See the Appendix. 
The convergence of the infinite series is guaranteed be- 

cause eigenvalues of the generator matrix Q are finite. 
Irrespective of the value of T ,  the factorial in the denomina- 
tor will ultimately dominate, making the successive terms in 
the series diminish. To evaluate the computational burden, 
we first express the series solution in a computationally more 
amenable form, namely 

E{ rj( T )  TI( T )  I Y (0) = k) 

The spectral representation of the generator Q = @A* can 
be used to compute the matrix exponents such that [ellkj 

= ~+~,x,.$,~, where A = diag[A,, &;*-, X , C ]  is the 

eigenvalue matrix, and @ and 9 are the left and right 
eigenvectors, respectively. 

The computational complexity in evaluating the series sum 
can be judged by the fact that corresponding to each N, there 
will be exactly (N + 1)(N + 2) terms in the inner summa- 
tion, where each requires 0(( S")') arithmetic operations. 
The Nth term in the series will be of the order 

and it will take approximately I TA,,.,,, I terms before the 
successive terms in the series start diminishing and definitely 
many more terms before the series can be truncated. 

Apart from the high computational burden, the evaluation 
of series sum poses serious accuracy problems. The genera- 
tor matrix is negative semi-definite, and its maximum eigen- 
value may lie far off on the negative real axis. The growth of 
series terms is exponential, which, depending on I TA- 1 ,  
may lead to arithmetic overflow before the series converges. 
Even when overflow does not occur, the series has terms of 

order O( N !  ), which becomes several orders of 

magnitudes larger than T 2 ,  which is the maximum possible 
value of the joint statistics. The series, with increasingly 
large alternating terms, is supposed to sum to a small positive 
value, but due to finite word length of digital computers, the 
series sum will be grossly in error. To alleviate these prob- 
lems, we propose a closed-form solution for the joint statis- 
tics in the following theorem. 

Theorem 2: The series solution for the joint statistics, as 
proposed in Theorem 1, can be expressed as 

(TA,,.,,,)" 

E{ rj( T ) r y ( T )  1 ~ ( 0 )  = k} = [ @CjQ] k y  + [@Cy'] k j  

where elements of matrix Cj  (and Cy) can be expressed as 
explicit functions of eigensolution 

[ cj] r c  = $rj+jcSrc 

if A, = A, = 0 T 2  
2 
- 

1 - 2erx 
X2 

en- (1 + Th) 
X2 

if A, = A, = X # 0 

if A, = A # 0;  A, = 0 

or, if A, = A + 0; A, = 0 
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Proof: See the Appendix. 
Remark: We would expect that irrespective of initial state 

k ,  the finite-time joint statistics exhibit the following limiting 
behavior 

- - T j T j . .  
E{7j(T)‘ j . (T)  I Y ( O )  = k }  lim 

T- m T 2  

To show that the closed-form expression for the finite time 
joint statistics in Theorem 2 indeed exhibits this behavior, 
we first note that 

T-rm T 2  

In addition, exactly one eigenvalue of generator Q is zero. 
Let X i  be that eigenvalue. Choose corresponding right-eigen- 
vector 4i = 1 .  The left eigenvector must be PT = T .  In 
terms of elements of matrices + and 9 ,  we have +kj  = 1, 
$ik = T k ;  V k .  Clearly, all but the ith diagonal element of 
matrices C j  and Cy vanish. Hence 

1 1 
= T . - T . ,  + T.,  - T . =  T . T . ,  J 2  J J 2  J J J  

We now turn to finite time statistics E{ T ~ ( T )  1 y(0) = k } .  
The following result, which is easy to prove, can be used to 
compute the conditional occupation times. 

Theorem 3: Let y ( t )  be a continuous-time Markov chain 

with generator Q = + [ Then, the occupation times 

in states j conditioned on initial state y(0) is given by 

r m T N + I  1 

Proof: Identical to that for Theorem 3 and outlined in 
Wl. 

IV. SUMMARY OF COMPUTATIONAL STEPS 
We summarize below the computational steps involved in 

implementing the coordinating control. Discussion of simula- 
tion results in Section VI will further clarify many computa- 
tion issues. 

1) Ofl-line Computations: For each cell, construct the 
generator matrix using the failure-repair history of machines. 
Compute the finite-time and steady-state statistics using The- 
orem 2 and 3. Store the result for on-line computation. 

2) On-line Computations: To specify the production rate 

for the ith period of an N-period problem, the following 
steps are needed: 

Step I )  Initialization: Set PN = -C,;  K ,  = Q,,, 
Step 2) For k = ( N  - 1 )  to ( i  - 1 )  repeat 

Compute Fk, Mkr  Pk using (7) and steady-state 
values for simple and joint statistics. 

Step 3) Observe the current cell states. Compute Fi, L i ,  
Mi using (7) and transient values for simple and 
joint statistics. 

Step 4)Observe the current inventory x i  and compute 
production rates ui ,  using (6) .  

Observe that Step I )  and 2) can be performed during the 
coordination period. At the coordination epoch, cell and 
inventory states are observed, and production rates are speci- 
fied using Steps 3) and 4), which involves very little compu- 
tation. The coordinator, in effect, is able to response instanta- 
neously after receiving the feedback, which is a requirement 
for real-time control. 

V. THE MYOPIC LINEAR PROGRAMMING FORMULATION 

For the purposes of comparison, we consider here a my- 
opic linear programming formulation of the problem as an 
alternative to the stochastic dynamic programming formula- 
tion developed in Section 11. Linear programming has been 
used frequently in the operations research/management sci- 
ence literature for capacity allocation across part types. The 
time-scale of decision making, in such models, is of the order 
of a shift to a week, and the objective is to plan aggregate 
production based on the expected availability of resources. In 
contrast, we are concerned with the real-time control deci- 
sion, which has to be taken on a time-scale comparable to the 
processing times. 

The linear programming formulation for capacity alloca- 
tion in any period is based on the expected availability of 
machines conditioned on the state at the beginning of that 
period. Its performance will provide a yardstick against 
which we can measure the performance of the stochastic 
dynamic programming formulation, which uses not only ex- 
pected availability, but also the higher order statistics of 
machine states. The LP formulation is myopic in the sense 
that production rates for each period are specified based on 
beginning inventory and demand during that period alone. 
The problem is solved independently for each period, but the 
beginning inventory has all the information needed from the 
earlier periods. In effect, the cell controller behaves like an 
open-loop feedback controller, which solves the one period 
problem N times, using the information x k  available thus 
far each time, but behaving as if no further demand will take 
place in the future. 

inventory holding cost for product i for period k 
inventory backlogging cost for product i for 
period k 
expected inventory for product i at the end of 
kth period or, equivalently, at the beginning of 
( k  + 1)th period. 
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= max(0, E,+1(i)); 

KL+](i) = max(0, -~,+](i)); 

h, = [h,(l) . * .  h , ( p ) ] ;  b, = [b,(l) . * *  b , ( p ) ] ;  

, 

To specify production rates for kth period, the cell coordina- 
tor solves the following linear program 

Product 

1 
2 Minimize h,Zl+, + bkEL+l 

Subject to Du, I a - 
E,+l = x, + B,Uk - d ,  
Ek+l = ?:+I - G + l  q+,, E;,, 1 0; Uk  1 0. 

Cell 1 Cell 2 

0.05 Hour 0.066 Hour 0.05 Hour 0.1 Hour 
0.066Hour 0.05 Hour 0.1 Hour 0.05 Hour 

&him Typc I Machine Typc Machine Type 1l1 Machine Type IV 

The above linear program computes production rates in such 
a way that expected holding and backlogging cost is mini- 
mized. By incorporating costs for a number of periods, the 
formulation can be easily extended to allow a limited “look 
ahead.” 

VI. SIMULATION RESULTS 

In this section, we compare the effectiveness of the pro- 
posed control rules using a simple example. Our purpose is 
to give the reader some additional insight into how the 
proposed control laws achieve the production target in the 
face of machine failures and repairs. 

Consider a manufacturing system that consists of two 
parallel cells where each has two types of machines. Cell 1 
has five each of Type I and Type 11 machines, whereas Cell 2 
consists of six of Type 111 and four of Type IV machines. 
The MTBF and MTTR of these machines are listed in Table 
I. We consider a five-period problem with two products with 
time varying demands as indicated in Table II. The manufac- 
turing system runs 8 hr every period. The two products can 
be processed in either cell, and their processing times are 
listed in Table III. Note that the load on the system, based on 
the expected availability of machines, varies from underuti- 
l i e d  capacities in period 1 to a shortage of capacities in 
period 3. Moreover, the five-period average load is roughly 
matched to the expected capacity. To illustrate this, first note 
that, on an average, machine type I is available for 

(5)(8)( m) = 34.5 hr. Similarly machine types 11, 

111, and IV are available for 35.6, 41.4, and 28.4 hours of 
processing, respectively. The average demand, on the other 
hand, is 380 units for product 1 and 640 units for product 2. 
Consider a deterministic allocation problem where every 
period, machines are functional for exactly the durations of 
their average availabilities. Is it possible to meet the average 
demands? Suppose a fraction fi of product i (0 5 fi I: 1; 

10 

TABLE I 
MACHINE PARAMETERS 

10Hours 1.6 Hour 

Type m 10Hours 1.6 Hour 
T IV 8Hours 1 H w  

TABLE II 
DEMAND 

Fig. 4. Feasible allocation based on average capacities and demand. 

i = 1, 2) is assigned to cell 1. Then, the average demands 
would be met if allocations f i ’ s  satisfy capacity constraints 

(380)(0.05)f1 + (640)(0.066)f2 I 34.5 
(380)(0.066) f l  + (640)(o.05)f2 5 35.6 
(380)(0.05)(1 - f,) + (640)(0.1)(1 -f2) 5 41.4 

( 8 4  

(8b) 

( 8 ~ )  

(8d) (380)(0.1)(1 - f l )  + (640)(0.05)(1 -f2) I 28.4. 

These constraints are shown in Fig. 4, where shaded region 
represents feasible allocations. It appears in this case that, on 
average, demand can be met. Recall, however, that con- 
straints set changes stochastically, and a feasible allocation 
based on average capacity may be infeasible for many realiz- 
able machine states. In fact, the allocation has to be changed 
as capacity changes. The feasibility based on averages does 
not have much meaning except that it conveys, to a limited 
extent, the potential load on the system. Infeasibility of 
constraint set in Fig. 4, for example, would mean a heavily 
loaded system. Small feasible set can be interpreted as roughly 
matched capacity. The actual output will depend on how the 
allocation is achieved dynamically. 

A cell typically consists of a large number of machines of 
different types. The machine state grows exponentially in the 
number of machines. However, many machine states are 
extremely unlikely to be reached, and there is no need to 
compute production rates corresponding to those improbable 
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Machine State 
Stationary 
Robability 

TABLE IV 
STATIONARY F’ROBABILITIES FOR DOMINANT STATES OF CELL 1 

~~ ~ 

(6.4) (5.4) (4.4) (3.4) (62) (5.3) (4.3) (6.2) (5.2) 

0.256 0.246 0.098 0.021 0.128 0.123 0.049 0.024 0.023 

Machine State 

Probability 
Stationary 

I I I I I I I I  I 

(5>) (4.5) (3.5) (5.4) (4.4) (3.4) (5.3) (4.3) 

0.264 0.211 0.068 0.165 0.132 0.042 0.041 0.033 

250 - 

125 - 

0 -  

states. Cell 1, in this example, can have a total of (6 + 1)(4 
+ 1) = 35 possible machine states. However, an examina- 
tion of stationary probabilities of the associated Markov chain 
shows that Cell 1 is in one of the nine dominant states listed 
in Table IV 97% of the time. Similarly, out of a total of 36 
possible states, Cell 2 is in one of the eight states listed in 
Table V 96% of the time. The unlikely states correspond to 
the situation when a large number of machines are under 
repair; this situation is extremely unlikely to happen in any 
realistic manufacturing system with a reasonable maintenance 
policy. 

1 
For each cell, the matrix - 7 ( T )  is computed as a func- 

T 
tion of trial coordination period T using Theorem 3. The 
computations indicate that for each cell, as T approaches 8 

hr, the rows of matrix - 7 ( T )  converge to a unique vector, 
which is the stationary probability vector. This allows us to 
consider a coordination period equal to 8 hr so that the cell 
coordinator computes production rates once every period. At 
the end of each period, the demand is met from the available 
inventory, and costs are incurred on any extra inventory or 
backlogged demand. We assume that product 1 is more 
expensive than product 2 to hold and backlog. More specifi- 
cally, a cost of 5 units is incurred for each unit of product 1, 
whereas a cost of only 1 unit is incurred for each unit of 
product 2 whenever ending inventory exceeds or falls short 
of demand. The elements of Q , ,  R , ,  and C ,  are design 
parameters that should be chosen to fit the cost structure of a 
specific problem. Since positive and negative inventory cost 
the same and product 1 inventory is five times as expensive 
as that of product 2 ,  we have taken Qk = diag[5 11, and 
C,  = 0. In addition, for this example, we used R ,  = 
diag [5 * - 51. 

We simulated the manufacturing system on a VAXstation 
using IMSL code for matrix manipulation and random num- 
ber generation. The two decision rules were imbedded inside 
the discrete event simulator so that production rates could be 
computed based on the sample path realization thus far. We 
found occasional violation of capacity constraint (4) by the 
stochastic dynamic program, which we corrected heuristi- 
cally by scaling the production rates of both the products. In 
addition, any negative production rates computed by the 
stochastic dynamic program were set to zero. This rarely 
occurs in a heavily loaded system, which we are considering 
here. The same sample path realizations of machine 
failures/repairs were used for stochastic dynamic program- 

1 

T 

Product 1 

I Siochasric DP - MyoplcLP 

-250 4 I Per,& 
0 1 2 3 4 5 

-1251 
-250 I Period 

0 1 2 3 4 5 

Fig. 5 .  Sample path of ending inventories. 

ming as well as a myopic linear programming solution so that 
the sample paths of inventory levels can be compared under 
the two decision rules. The simulation was always started 
with zero inventory of both products. 

It was found that the sample path of inventory levels under 
the stochastic dynamic program was smoother than that under 
myopic linear program. Two representative sample realiza- 
tions are shown in Figs. 5 and 6. These realizations show that 
the deviation from the mean is smaller under the stochastic 
dynamic program than with the myopic linear program. A 
more detailed analysis, based on 25 random experiments, is 
described in Tables VI and VII. The average ending inven- 
tory levels under the two decision rules are not very differ- 
ent. However, their standard deviation and range of variation 
is significantly different. Comparisons based on average in- 
ventories can be very misleading. A low average inventory 
over the samples may seem to perform well, but if it is 
accompanied with high variance, it will incur high holding 
and backlogging costs. It is due to this reason that stochastic 
dynamic program yields much lower costs compared with 
myopic linear program as shown in Table VIII. In addition, 
in todays manufacturing environment, where reliability of 
supply is extremely important, it is not sufficient that we meet 
the demand on the average. An equally important question 
asks: How far do we end up from the targeted production? It 
is due to this reason that small standard deviations and ranges 
of variation of ending inventories of stochastic dynamic 
program makes it a very attractive control policy. In fact, the 
impact of supply variance increases dramatically in a multi- 
stage or multiplant environment. Thus, the variance reduc- 
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Fig. 6. Another sample path of ending inventories. 

TABLE VI 
ENDING INVENTORY OF PRODUCT 1 

TABLE VII 
ENDING INVENTORY OF PRODUCT 2 

tion achieved at the output by the proposed policy has a 
major beneficial impact on reducing the total systemic cost in 
a multistage system. 

VII. CONCLUSIONS 
We have developed a real-time dispatch algorithm for 

multicell coordination. The algorithm is responsive to ma- 
chine failures in systems where the host and local cell 
controllers communicate periodically. The algorithm has been 
tested via simulation. It has the appealing characteristic that 
the resulting production is such that variation from demand is 
kept small. In contrast with previous approaches, the large 

TABLE VIII 
HOLDING AND BACKLOGGING COSTS 

machine state space can still be handled. There are several 
other possible variations of this algorithm. For instance, 
another possible approach is demand allocation to cells by the 
host, followed by cell controllers that try to achieve produc- 
tion targets by responding to machine states. A stricter 
imposition of capacity constraints in developing the analysis 
is yet another possibility. 

We observe that the key concept we used here was that of 
aggregation, that is, the higher level estimates, in an aggre- 
gate way, the expected availability of capacity in different 
machine states. This includes the first- and second-order 
statistics information. The lower level controller implements 
the policy based on this information in real time. In a single 
cell context, the two levels are implemented by using a single 
control computer on two different time scales. 

Finally, note that the result on the finite-time second-order 
statistics is general and could be useful in a wide variety of 
situations. 

APPENDIX 

Proof of Theorem 1: To evaluate the finite time joint 
statistics of the random variables T,( T) and T~ (T), which are 
the occupation times in state j and j', respectively, we define 
the Laplace transform associated with their joint distribution 
conditioned on the initial state y(0) = k. This is given by 
two-dimensional 

f jY(  ul, U,, T ,  k) = E{ e- ' lTJT)-u2T~(T) I Y ( 0 )  = kJ 

1. = Ek{e -UlT j (T) -U2TY(T)  

All moments of the joint distribution can then be computed 
from the transform function. In particular, the first moment is 

E{7 j (T) . f (T)  I Y ( 0 )  = k} 

To obtain the transform function, we develop a linear differ- 
ential equation for it, where for notational simplicity, we 
suppress explicit dependence of f j y ( u l ,  U,, T, k )  on the 
transform variables ul, and U, by defining 

&y( T ,  k) = f j f (  0 1  7 0 2 ,  T ,  k) . 

In addition, define vector 

where Se is the number of machine states. With this notation, 
[ f j Y (  T)lk  = f j Y ( T ,  k) and the initial state f j y (0 )  = 1. 
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where FA is U algebra generated by { y ( t ) ,  0 s C 5 A } .  
Expanding the first exponential, discarding terms of higher 
order than O(A) ,  and using Markovian property of memory- 
less yields 

f j y ( ~ +  A ,  k) = ~ ~ { ( i  - a l T j ( ~ >  
Y A  

'(1 - u ~ T , ( A ) - u ~ T , ( A ) )  (10) 

where Pki(A) = Pr{ y ( A )  = i I y(0) = k } .  Note that T ~ ( A )  
and T ~ ( A )  are the times spent in states j and j' during the 
infinitesimal interval A ,  which depend on the initial state k 
and are given by 

A i f j = k ,  
0 otherwise 

T,(A) = Ahjk = 

Defining 

which are the transition rates of the continuous-time Markov 
chain, which can be computed from the MTBF and MTTR of 
the machines. Disregarding the second-order terms, (10) can 
now be written as 

fj,( T + A , k )  
S' 

= qkiAf, , (T,  i ) ( l  - a,AAj, - uzAAyk) 
i = l , i # k  

Stacking similar expressions for k = 1, 2, * . . , S' leads to 

fj,( T + A )  = QAf jy (  T )  

- a1Asjf jy(  T )  - ~ 2 A s y f j y (  T )  + fjy( T )  

1 
Taking limit A --t 0, (1 1) yields the matrix differential equa- 
tion 

which, when substituted in (9), gives 

To evaluate the above expression, one could use the series 
definition for the matrix exponential 

and collect the coefficients of U, U , .  Other terms vanish when 
expression 

is evaluated. Observe that all coefficients of ala2 have only 
one S j  and 6, term each, in different orders, and with 
powers of Q between and on either side. Corresponding to 
the ith term in the expansion, the powers of Q enumerate all 
possible partitions of ( i  - 2). The final result is 

E { T j ( T ) q , ( T )  I Y ( 0 )  = k }  
r TN+Z 

. ( Q ~ s , Q ' s , Q ~  + Q ~ ~ ~ Q % , Q ~ ) ~ ~ , ( o )  

where f , , . (O) = 1 from initial condition. 
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en-  (1  +TA) 
if hr = h # 0; A, = 0 

or, if A, = X # 0; A, = 0 
h2 

Proof of Theorem 2: First, we observe that 1 is an 
eigenvector of generator matrix Q corresponding to eigen- 
value 0. This implies Q m l  = 0 for all m # 0. Thus, in the 
series solution, terms corresponding to m # 0 can be elimi- 
nated yielding 

E{7j(T).j.(T) I y ( O ) = k }  

r m T N + ~  1 

kj' 
C Qi6jQ']  

N=O (N + 2)! vi ,  I I i + l = N  

r r N + 2  

The first term in (12) is an element of the matrix 

m r N + 2  

m OD Ti+1+2 

m m r i + 1 + 2  

= + A i t 6 j C  @A'* 
i = O  1=0 ( i  + f + 2)! 

m 

where diagonal matrix D(i) is defined as 

kc 
dy' = { ( i  f + 2)! 

d$> 

if h, = 0 

Matrix (13) can be further simplified to 

(14) 
Substituting (14) in (12) we have 

E{ Ti( T)7j'( T )  I y ( 0 )  = k} = [ @cj?] kj' + [*cj.*] kj '  

Thanks to the diagonal structure of matrices Ai and D") and 
the special structure of Si, the elements of matrix Cj  can be 
expressed as 

m 

Ai*ksj@D(i) = $rjc$jc A',d?) (15) 
i = O  I rc i = O  

which is in a much more tractable form than the multiple 
matrix product in the parenthesis. However, the deceptively 
simple expression (15) still has the undesirable series form, 
and the task remains now to show that the infinite series can 
be expressed in the closed form. We take this task next. 
More specifically, we are going to show that 

src = krd?) 
i=O 

m 

if Ar = hc = 0 

if A, = hc = h it 0 

Consider each case separately: 

The series has only one nonzero term and the result follows 
trivially. 

1) A, = A, = 0. 

2)  A, = A, = h # 0. 
Substituting for dy) gives 

m c 
i = O  

h' 

The above infinite series has a structure that will become 
evident if the terms are grouped in the following way. Collect 
the last term corresponding to each i to form an infinite 
series. Next, collect the second-to-last term corresponding to 
each i to form another infinite series. Continue this process 
by taking third-to-last terms, fourth-to-last terms, etc., for 
each i (substitute zero if no such term exists) and forming a 

TI 
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new infinite series every time. The result is 

1 (TA)’ O3 (TA)’ s = -  -E- 
r ,  A2 ( ’ = I  v !  ) +; (-,ll) 

O3 (TA)’ ( v = o  

A2 ( v = o  

OD (TA)’ +-  e“-  T) + . S .  

1 1 

12 A2 
= - ( I  -e”) + -(-e”) 

1 - 2 e n  + o + o + * . .  = ~ 

A2 . 

3) A, = A # 0; A, = 0 or, A, = A # 0; X, = 0. 
The result can be obtained by direct substitution. 

We first observe that 
4) A, # A,; X,, A, # 0. 

m 

S,, = X’,dF’ 
i = O  

T i + 1 + 2  

= srr. 
This shows that series sum S,, is symmetric with respect to r 
and c. Now, we turn to the task of evaluating the sum 

~ i + 1 + 2  

The above infinite series again has a simplifying structure 
that will become evident if the terms are regrouped in the 
following manner. Collect the first term corresponding to 
each i to form an infinite series. Next, collect the second 
term corresponding to each i to form another infinite series. 
Continue this process by taking third terms, fourth terms, 
etc., for each i (substitute zero if no such term exists) and 
forming a new infinite series every time. We get 

If X, > Ar,: the geometric series converges, and we have 

en,- 1 en‘- 1 + - - 
Ac(Ac - A r )  A r ( A r  - A,) ‘ 

If A, < A,, we use the symmetry property to obtain 

Src  = Scr 

which yields the same expression 
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