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To improve the efficiency of product distribution for a central-
ized bakery, I first performed each person’s tasks and discov-
ered that constructing optimal minimum-distance routes
would not significantly reduce costs but replacing the physical
validation of new routes with a manual mathematical compu-
tation or simulation would. The trick was getting management
to trust the simulation enough to use it.

Many organizations that deliver
products for a profit must fre-

quently select delivery routes that will en-
sure delivery by set times. The penalty for
late delivery is a fine. There is profit in
minimizing travel distance or maximizing
load, but achieving timeliness at low cost
does more to maximize profit. When this
is the case, reducing the cost of determin-
ing feasible routes may be more profitable
than minimizing travel or maximizing
load.

The manager of a centralized bakery
asked me to work on a problem of this
sort. The bakery was a part of a larger

food-service operation that provided
meals to a county school system and other
customers as could be sold the services of-
fered. The bakery was responsible for de-
livering products to over 50 delivery
points, also referred to as nodes. If the
bakery does not deliver products on time
at a profit, its manager, my client, can lose
a bonus or be fired. The manager called
me in as consultant to improve the profit-
ability of the delivery system.

From the manager’s description of the
problem, I assumed that minimizing dis-
tance and maximizing load efficiency
would reduce costs. The bakery trucks



BAKERY REDUCES DISTRIBUTION COSTS

July–August 1998 39

traveled three or more simultaneous
routes and the bakery frequently added
and dropped delivery points, so dynamic
formulation of this problem posed a math-
ematical challenge, but it was not the solu-
tion to the real problem. I solved this for-
mulation for a point scenario, which
yielded routes similar to those in the solu-
tion actually employed.

Minimizing mileage and maximizing
load increased profit marginally. Delivery
on time maximized profit and profit
growth. By working in the system, I
learned that my client really needed a
cheaper way to quickly pick new routes
that would ensure reliable on-time deliv-
ery. Delivery on time was so important

The current algorithm was
embedded in a seasoned
human scheduler.

that the bakery customarily physically
tested new routes to make sure they
would work. This expensive process could
be replaced by simulation. Doing so was
the true key to reducing costs and improv-
ing profitability.

What the client needed was an intelli-
gent algorithm that developed and tested
routes more efficiently than the current
method of guessing and physically testing
and adjusting and testing and so forth.
The client’s current algorithm was embed-
ded in a seasoned human scheduler who
could do the job because of great experi-
ence and familiarity with the current ser-
vice area. These are not qualities that
could easily be replicated or exported to
new service areas. Even with her experi-
ence, the scheduler would not initiate a

new route without physically testing it
first. This stifled growth and made the ad-
dition of new delivery points or routes
expensive.

To develop the solution, I performed all
aspects of the operation at least once. I as-
sumed the drivers’ duties, which include
checking out the truck, driving from the
motor pool to the bakery, loading the
product, and finally delivery. I ran all
routes several times. I collected data dur-
ing delivery that included time between
delivery points, time to deliver at each
point, and volume delivered at each point.
Participating in the process revealed sev-
eral facts.

The most important fact was that the
costs associated with route mileage repre-
sented an insignificant portion of total
costs. This meant that attempts to reduce
route mileage would yield low returns.
Physically testing routes, on the other
hand, represented a major expense with a
greater secondary cost of discouraging the
aggressive acquisition of new delivery
points. Taken together, these suggested
that replacing physical route testing with
simulated route testing would yield high
returns. The data I had collected partici-
pating in the system suggested a way to
simulate route testing.

The travel time between delivery points
had small variance and was generally a
small portion of the total time required to
complete a route. The time it took to un-
load at delivery points varied much more
and made up the major portion of time re-
quired to complete a route. Straight-line
distance between delivery points seemed
to dictate the transit time between them,
and volume of product delivered seemed
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to dictate time to unload at a delivery
point. I quantified these intuitive observa-
tions by running a regression analysis,
which showed a high correlation between
the straight-line distance between delivery
points and the time to travel between
them, as well as a high correlation be-
tween load size and unload time. The ex-
perience I gained working within the sys-
tem and the data I collected suggested that
a deterministic simulation could estimate
delivery times as accurately as physically
testing the routes. I developed a model us-
ing the following elements.

The estimate I used for travel time, T,
between any two nodes was the upper
bound of a 95-percent confidence interval
estimate [Walpole and Meyers 1989] for
the regression estimate of T based on
straight-line distance, S, between nodes. I
used a similar estimate for unload time, U,
based on load size, L. There is strong logi-
cal basis for these choices. I used a
confidence-interval estimate because the
clients had commented that they wanted
to be at least 90-percent certain that deliv-
eries would be on time. The 95-percent-
confidence-interval estimates produced
route-simulation estimates very close to
the actual completion times for existing
routes. A more important reason was that
the client trusted these estimates and
would therefore use them. In practice,
these estimates routinely provided routes
that could meet overall delivery time con-
straints in practice.

A more deep-pocketed client could
make gains in accuracy by using Monte
Carlo simulation or a more sophisticated
deterministic simulation. Among other
benefits, added sophistication and com-

plexity would better address accumulation
of variance in load and transit times. I ac-
counted for these by safe-siding the esti-
mates in the method actually used. This
would come with higher costs to collect
the data required to drive the simulation,
costs to code the simulation, and higher
training and salary costs for the users of
the simulation. My experience building

This algorithm is easy to use
and easy to understand, and it
reduces costs.

and running simulations had taught me
that for this example these costs would be
much greater than the gains in efficiency
and would not be beneficial to the client.
The bakery had no need for this increased
complexity, so I dismissed these techni-
cally superior methods.

The client’s rejection of unfamiliar or
overly complicated solutions dictated a
simple and familiar solution. For this rea-
son, I used a nearest-neighbor heuristic to
pick routes and simple, if overly conserva-
tive, estimates from the regressions to esti-
mate completion times.

Using the confidence-interval estimates
of the regression of S 2 T, I constructed a
time ruler (Figure 1). The time ruler mea-
sured the travel time between any two
points based on straight-line distance. I
used the confidence-interval estimates of
the regression of L 2 U to construct a
loading table (Figure 2). The loading table
simulated the time to unload at a node
based on load size. Employed together,
these two tools can be used to quickly esti-
mate or simulate the time required to com-
plete a route.
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Figure 1: In this figure showing the regression of travel time versus straight-line distance be-
tween delivery points, the dark curve is the regression. The lighter curves show the upper and
lower limits for a 95-percent confidence interval of the regression estimate. The time ruler is
constructed using the upper limit. Using the time ruler shown, I estimated that travel between
two delivery points separated by a straight-line distance of less than 1.2 miles would require
eight minutes; 1.2 to 2.2 miles, 10 minutes; 1.2 to 3.5 miles, 14 minutes, and so forth.

At the time, the bakery was selecting
routes using a loosely disciplined nearest-
neighbor heuristic. I define the method as
loosely disciplined because it usually
picked the nearest neighbor as the next
stop but had multiple exceptions for devi-
ating from this procedure. From reading
Bartholdi et al. [1983] and Hesse and
Woolsey [1980] and from personal experi-

ence with the system, I concluded that a
nearest-neighbor heuristic was probably
nearly optimal. To verify this theory, I con-
structed minimum-distance routes using
mixed-integer programming. These opti-
mal routes yielded minimal mileage sav-
ings over the routes in use. Because the
costs associated with mileage were a small
portion of total cost, reducing the mileage
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Figure 2: In this figure showing regression of time to unload versus the number of units of
product being delivered, the dark curve is the regression. The lighter curves are the upper and
lower limits for a 95-percent confidence interval of the regression estimate. The loading table is
constructed using the upper limit. Using the loading table shown, I estimated that delivery of
one to five units would require 17 minutes; six to 10 units, 22 minutes; 11 to 15 units, 28 min-
utes, and so forth.

required to travel scheduled routes re-
sulted in minimal savings. The added
complexity and cost of a more optimal
algorithm was not justified. We used the

nearest-neighbor heuristic.
To demonstrate the practicality of this

system, I constructed a worksheet with in-
structions that allowed an untrained
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scheduler (my spouse) to construct a near-
optimal route and compute whether or not
it could be completed in the required
amount of time. The system works con-
ceptually as follows. Mark the delivery
points with push pins on a map. Start at
the bakery and go to the closest delivery
point. Measure and estimate transit time
with the time ruler. Estimate loading time
with the loading table. Annotate the work-
sheet. Continue this process until you can-
not add a new delivery point without ex-
ceeding the delivery time constraint. For
the bakery situation, all deliveries had to
be completed four hours after the start
time.

To construct a delivery route, one starts
by picking any start point. The example
shown in Figure 3 uses coordinate (8,8).
Go to the closest node. Using the time
ruler, estimate the transit time based on
straight-line distance. In this example, the
transit time from the start node to Node 1
is 10 minutes. Estimate the loading time
using the loading table and the units to be
delivered at the node. At Node 1 this is
four units, which takes 17 minutes accord-
ing to the loading table in Figure 2. Add
travel time and load time (to get 27 min-
utes as a delivery-completion time at
Node 1). Check to see that delivery-
completion time is less than the deadline
time. As long as you meet this condition,
continue the process. Go to the closest
node, estimate travel time using the time
ruler and load time using the loading ta-
ble. Add travel time and unload time to
the last delivery-completion time. When
delivery-completion time exceeds deadline
time, stop the route and do not deliver to
that node. In this example, that occurs at

Node 9, and we therefore stop at Node 8.
The requirement to deliver to further
nodes must be met by another route.

On the example worksheet (Figure 4),
the deadline is expressed as 240 minutes,
since we assumed we would start the
route at 6:00 AM and all the nodes had a
deadline of 10:00 AM. The difference of
four hours (240 minutes) provided the
deadline.

The travel times in the “travel time” col-
umn are those between the node indicated
and the node above, for example, START
to Node 1 is 10 minutes. The time ruler is
used to estimate the transit time between
nodes.

The load times shown in the “unload
time” column are computed using the
loading table given the units to be deliv-
ered at the node.

The real test of the method was with the
client. I asked the experienced scheduler
to pick the existing route that was most
difficult to meet. She did and then me-
thodically simulated the route on a form
similar to that shown in Figure 4 and com-
puted the estimated delivery times. With
the algorithm, she estimated that the route
would take three hours and 47 minutes.
She confessed that it actually took three
hours and 30 minutes on a good day and
never more than three hours and 45 min-
utes. She repeated this exercise on a sec-
ond difficult route and produced an esti-
mated performance of two hours and 13
minutes with actual performance varying
between one hour and 45 minutes to two
hours and 10 minutes. I had, of course,
conducted these and many other tests
prior to working through them with the
scheduler. She was absolutely sold on the
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Figure 3: In this sample delivery area, the stars represent delivery points or nodes. Points 1
through 9 are used to construct a sample route on the worksheet shown in Figure 4. Each deliv-
ery point has a coordinate vector. The coordinate vector for delivery point 1 is (7, 12, 4, 10AM).
The first element, 7, is the x distance in miles from the origin. The second element, 12, is the
the y distance in miles from the origin. The origin can be any point on the map. The third ele-
ment, 4, is the number of units of product that must be delivered at this point. The fourth ele-
ment, 10AM, is the deadline for delivery.

system. This algorithm is easy to use and
easy to understand, and it reduces costs.
Routes do not have to be physically tested;

they can be simulated on the form. The
availability of this algorithm encouraged
the business to expand, and it was later
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Figure 4: This is a completed route-construction worksheet for the delivery area shown in Fig-
ure 3. Travel times are estimated using the time ruler shown in Figure 1. Unload times are esti-
mated using the loading table shown in Figure 2. The deadline assumes that the route starts at
6:00 AM and must be completed at 10:00 AM, a total of 240 minutes. Using this worksheet, I
estimate that delivery to points 1 through 8 can be completed in 237 minutes.

used to bid contracts and establish con-
tractual guarantees before setting up simi-
lar operations in new territories.

The algorithm can easily be coded in
C`` or even in Basic and transported on
a personal computer to a variety of users.
Depending on the features desired of the
software, one could handle more than
10,000 delivery points on a 486 PC. As a
coded algorithm, this system for selecting
and testing routes could address more
complex situations and could be self-
improving or intelligent with some collec-
tion of operational data. If one collects and
feeds route performance, for example, to
the algorithm, one can constantly update
the estimates for travel time and load time

and give them tighter confidence intervals
with little additional effort or risk. This al-
gorithm has possible application in any in-
dustry where products with a time value
must be distributed or picked up. Applica-
tion would be heavily dependent upon the
parameters of the particular problem.
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Shirley Brooke, Food Service Coordina-
tor, Jefferson County Public Schools, 1829
Denver West Drive, Building 27, Golden,
Colorado 80401, writes: “This system is
easy to use, understandable, and, most im-
portant, I feel it is reliable. On more than
one occasion, it has allowed me to develop
routes without the tedious task of juggling
and continual physical testing. When I
have used this method, it has performed
within the projection of the system. This
has proved valuable to us.

“I recently used this system to deter-
mine delivery routes for a bid, a new area
which could provide additional income to
Food Services. The system met our needs
and allowed me to feel comfortable with-
out physically driving the routes I had es-
tablished. This saved me a significant
amount of time and labor.

“Since we are in the business of deliver-
ing perishable products and our program
is continually changing, I foresee the po-
tential for using this system time and
again in the future.”


