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Amajor problem in forecasting is estimating the time of some future event. Traditionally,
forecasts are designed to minimize an error cost function that is evaluated once, possibly

when the event occurs and forecast accuracy can be determined. However, in many applications
forecast error costs accumulate over time, and the forecasts themselves may be updated with
information that is collected as the expected time of the event approaches. This paper examines
one such application, in which flow control managers in the U.S. air traffic system depend on
forecasts of aircraft departure times to predict and alleviate potential congestion. These forecasts
are periodically updated until take-off occurs, although the number of updates may be limited
by the cost of collecting, processing, and distributing information. The procedures developed in
this paper balance the costs of accumulated forecast errors and the costs of forecast updates.
The procedures are applied to the aircraft departure forecasting problem and are compared with
methods currently used by the air traffic management system. Numerical examples demonstrate
that the procedures increase forecast accuracy while reducing the costs associated with frequent
forecast updates.
(Forecasting; Dynamic Programming Applications; Air Transportation)

1. Introduction
This article considers forecasting problems in which fore-
casts of the time of some future event are used as input to
a series of decisions, so that the consequences of forecast
errors accumulate until the event occurs. Forecasts may be
updated as the event approaches, and the relative impor-
tance of forecast errors may depend on the timing of the
forecast relative to the actual event. In the application ex-
amined in this paper, forecasts of aircraft take-off times
inform the decisions of air traffic managers. The take-off
time forecasts are updated frequently, and the benefits of
accurate forecasts to the managers vary over time. For ex-
ample, local traffic controllers at major airports rely on
take-off time predictions over forecast horizons measured
in minutes, and they typically disregard forecasts that are
produced hours in advance. Tactical traffic managers, on
the other hand, rely on forecasts over four- or five-hour
horizons.

The methods developed in the article use real-time
data to update forecasts of the event time, given forecast

error costs that materialize before the event occurs. This
problem differs from the traditional forecasting prob-
lem, in which the optimal predicted time minimizes a
single expected cost, such as the squared deviation be-
tween the forecast and the actual time of the event. This
traditional optimality criterion implies that the cost is
evaluated once, possibly when the event occurs and the
consequences of forecast inaccuracy are seen. In prac-
tice, a sequence of forecasts may be produced, and a
complete forecasting procedure must specify an update
schedule, the times at which the forecasts are generated,
as well as the forecasts themselves. In addition, each
forecast is used many times, and forecast error costs
must be evaluated over the entire period of forecast use.

The notion of an update schedule can also be found
in the literature on reliability and machine inspection.
Barlow et al. (1963) designed inspection schedules for
systems with random times until failure. Later work
produced schedules for systems which travel through
three states: healthy, failed but asymptomatic, and
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failed with symptoms (see, for example, Sengupta 1980,
Parmigiani 1993, and Zelen 1993). The inspection sched-
ules are designed to minimize a function of both in-
spection costs and the expected lapsed time between
system failure and the first subsequent inspection.
While the forecast update problem presented in this ar-
ticle also involves the design of a sequence of inspec-
tions and updates, both the cost function and the solu-
tion structure are fundamentally different. For the fore-
cast update problem, forecast error costs can be assessed
throughout the time up to the event, rather than during
the time between the event and its discovery. In addi-
tion, the procedures derived here determine both a
schedule of forecast updates and a sequence of updated
forecasts of the remaining time until the anticipated
event.

While forecast updates may reduce expected errors,
each update may incur costs for data collection, forecast
generation, and forecast distribution. Forecast updates
can also be disruptive, diverting human attention away
from other tasks. Therefore, the methods developed in
this article balance the costs associated with updating
forecasts and the costs associated with inaccurate fore-
casts.

The particular formulation presented here is moti-
vated by a problem in air traffic management, the pre-
diction of aircraft take-off times. In the U.S. air traffic
control system, take-off time forecasts are generated by
an automated air traffic management system operated
by the Federal Aviation Administration (FAA). The pri-
mary components of the system are located in Atlantic
City, New Jersey and Cambridge, Massachusetts, but
forecasts generated by the system are distributed to air
traffic managers throughout the United States. The fore-
casts are used by the managers to anticipate and prevent
congestion at airports and in airspace sectors. In the cur-
rent management system, updates to take-off time fore-
casts may be generated and distributed every five
minutes. Only the most rudimentary information is
available for updating: the fact that the departure has
not yet occurred and the aircraft is still on the ground.
While this article will focus on the take-off time fore-
casting problem (in this article the word ‘‘forecast’’ will
be interchangeable with the phrase ‘‘take-off time fore-
cast’’), the concepts and procedures developed for the
air traffic control application are applicable to the gen-

eral forecasting problem in which information arrives
over time while decisions must be made from forecasts
which are repeatedly updated.

In this article §2 describes both the aircraft departure
update problem and a few heuristics for its solution.
Section 3 introduces a cost function that includes pen-
alties for both forecast errors accumulated over time
and update costs. Section 4 describes an optimization
procedure for finding forecasts, given an update sched-
ule, as well as a dynamic program to find an optimal
update schedule, given a sequence of forecasts. A heu-
ristic combines these procedures to produce a combi-
nation of update schedules and forecasts. In §5 the pro-
cedures are tested with numerical examples that ap-
proximate air traffic management scenarios. The
procedures developed here are compared to the proce-
dure used by the present air traffic control system. The
examples demonstrate that when prior uncertainties are
large, the optimization procedures have significantly
greater forecast accuracy and fewer forecast updates
than the current system. For moderate levels of uncer-
tainty, simple heuristics provide benefits close to those
of the optimization procedures.

2. The Aircraft Departure Update
Problem

The FAA’s automated air traffic management system
distributes aircraft take-off time forecasts to air traffic
managers throughout the country, and the managers
use the forecasts to inform traffic flow control decisions.
When a flight takes off, the traffic management system
is notified almost immediately. Therefore, the absence of
a take-off signal also conveys information about the
flight. Every five minutes, the system has the opportu-
nity to distribute a revised take-off time forecast based
on this information.

The current system uses a simple procedure for cal-
culating these revisions. If the initial forecast time has
passed, and if the flight has not taken off by the end of
the next five-minute period, then the system predicts
that the flight will take off five minutes later. If the air-
craft is still on the ground when the new forecast ex-
pires, five additional minutes are added to the forecast.
These five-minute updates repeat, as shown in Fig-
ure 1.
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Figure 1 Constant Interval Updating with an Original Forecast of 28 Minutes

The following notation will help to describe this pro-
cedure and its alternatives. Let random variable g rep-
resent the difference between an aircraft’s actual take-
off time and some arbitrary time origin, such as the
scheduled gate departure time. Long before a scheduled
aircraft departure, the traffic management system gen-
erates a forecast of g which is derived from the weather
forecast, the airport of departure, and other factors.
Later, information about the flight’s status will be used
to update the forecast.

Each flight has a predefined update schedule, a
schedule of times when forecasts are updated, given
that a take-off has not been observed. The update sched-
ule is followed until actual take-off occurs. Define a
forecast update at time ak to be an update epoch and the
ordered sequence of update epochs a Å {a0, a1, . . . , an}
is an update schedule. The update epoch a0 is the time
for production of the initial forecast of g. This forecast
will be updated at a1 as long as a take-off has not yet
been observed. A final update is performed whenever
a take-off does occur.

Associated with each update schedule is an ordered
sequence of updated forecasts, h(a). The forecast h(ai)
is the forecast of g that is in effect from ai until the next
update at ai/1, so that h(a) Å {h(a0), h(a1), . . . , h(an)}.
This notation is now applied to the procedure used by
the current system.

Constant Interval Updating. The current implemen-
tation of the air traffic management system has a cycle
time of five minutes; every five minutes the system re-
freshes the video screens of air traffic managers through-
out the country. After making an initial prediction, h(a0),
the system does not update the forecast of any particular
flight until the beginning of the first five-minute cycle
after h(a0). Thereafter it repeatedly adds five minutes to
the forecast until the flight departs. Therefore, update ep-
och a1 Å h(a0)5, where x5 is the beginning of the first

five-minute interval after x. The updated forecast h(a1)
Å a1 / 5 and the next update epoch a2 Å h(a1). Similarly,
h(a2) Å a2 / 5, a3 Å h(a2), etc. If an hour has passed and
the flight is still on the ground, the flight is marked as
canceled. If the flight eventually does take off, it is im-
mediately reactivated but is seen as a surprise arrival to
the users of the system.

Figure 1 illustrates an example of this update proce-
dure. The initial forecast h(a0) Å 28 min. The beginning
of the first cycle after 28 min. is 30 min. An update oc-
curs at 30 min., producing a new forecast of 35 min. The
update at 35 min. produces a new forecast of 40 min.,
and this continues until the flight departs at 47 min.
There is a total of six updates in this example: our initial
forecast h(a0), updates at 30, 35, 40, and 45 minutes, and
a final update when the flight does depart.

The number of scheduled updates is fixed: one every
five minutes until an hour passes. However, the number
of updates that are actually performed is a random vari-
able with a minimum of two: one ‘‘update’’ for the ini-
tial forecast and one at the true time of take-off. Note
that the final update at take-off occurs instantly and is
not restricted to be at any scheduled update epoch ak,
since a departing aircraft immediately appears on the
radar screens of the local air traffic managers and they
need not wait for an update from the national air traffic
management system.

The constant interval procedure has two fundamental
flaws. The first is that the updated forecasts ignore dis-
tributional information about g. While it is simple to
add five minutes to each forecast, there is no reason to
believe that such a rule minimizes a relevant measure
of expected forecast error. The second flaw lies in the
timing of the update epochs, which is also unlikely to
be optimal. The system may schedule too many up-
dates, and each update requires significant computer
processing to alter the large data structures that store
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Figure 2 Discrete Conditional Updating with an Original Forecast of 28 Minutes

flight information. In addition, frequent updates can
confuse air traffic managers and can lead to distrust in
a system that cannot ‘‘make up its mind.’’ Thus, what
little is gained in accuracy can be lost in greater expense
and frustration.

Now consider two alternative procedures for gener-
ating update schedules and forecast sequences of air-
craft departure times. The first is driven by the condi-
tional means of the distribution of g. The second is a
continuous updating scheme which should outperform
any discrete procedure in terms of forecast accuracy.

Discrete Conditional Updating. The update epochs
are determined in the same manner as the constant in-
terval epochs. Once a forecast has expired, the next up-
date is scheduled at the beginning of the following cy-
cle. However, each updated forecast h(ak) is the condi-
tional expectation of g given that gú ak. As is well-known
in decision analysis, the conditional expected value
minimizes the mean squared error of the forecast. Other
forecasts, such as the median, minimize other loss func-
tions.

As in our previous numerical example, the initial
forecast is 28 min. and the next update epoch a1 occurs
at the beginning of the following cycle, at 30 min. (see
Figure 2). Suppose at time 30 we determine that E(gÉg
ú 30) Å 39 min., so that the first updated forecast is
h(a1) Å 39 min. The next update occurs at 40 min., the
beginning of the following cycle. Finally suppose that
the second conditional forecast, h(a2), is 48 minutes, and
the flight departs before the next update can occur.

In this example, there were four updates. We will see
that when compared with constant interval updating,
discrete conditional updating reduces the number of ex-
pected updates while producing forecasts that reduce
the expected forecast error.

Continuous Conditional Updating. Suppose that
the traffic management system has an infinitesimal cy-

cle time, so that forecast updates may be released in an
essentially continuous manner. Such a system would
allow continuous conditional updating, so that h(t)
Å E(gÉg ú t) for all t. Since the system would always
produce the most accurate forecast possible, it would
outperform its discrete counterparts but would require
an essentially infinite number of updates for each flight.
For certain cost functions, such a system establishes a
lower bound on forecast error.

As these examples suggest, there is a tradeoff be-
tween forecast accuracy and update frequency. To mea-
sure the utility of each update procedure, the next sec-
tion defines the costs associated with update schedules
and forecasts. Later sections derive schedules and fore-
casts that minimize these costs.

3. Cost Function for a Sequence of
Forecasts

Consider an air traffic manager responsible for an air-
space sector (a distinct region of controlled airspace).
During the next few hours a large number of aircraft are
scheduled to fly through the sector, and the traffic man-
ager is concerned that the sector will become danger-
ously crowded. If the manager is warned of the conges-
tion in advance, then it is possible to delay the depar-
tures of aircraft still on the ground or to divert aircraft
en-route.

The manager must make these decisions before many
of the aircraft depart and therefore relies on congestion
forecasts for the airspace sector. These forecasts are de-
rived from take-off time predictions for the aircraft that
are still on the ground. Recent studies of the air traffic
management system have found that these take-off time
forecasts can be extremely inaccurate (Goranson 1992
and Shumsky 1995). The inaccurate take-off time fore-
casts lead to unreliable congestion forecasts at down-
stream sectors.
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Now consider the cost of take-off time forecast inac-
curacy to the air traffic manager. For a manager with a
decision horizon measured in hours, aircraft arrivals a
few minutes before or after the forecasted times are un-
likely to change the overall traffic density substantially.
Larger forecast errors have more serious consequences,
for air traffic managers may be surprised by the early
appearance of numerous flights. Given large forecast er-
rors, managers may also anticipate congestion which is
later found to be a statistical illusion. Therefore, we rep-
resent the cost of a single forecast error as C(g0 0 h(t)),
a function of the difference between an actual take-off
time g0 and h(t), the forecast at time t. The specific form
of this cost function is determined by the relationship
between forecast error size and traffic management ef-
fectiveness. For example, the traditional squared error
function, (g0 0 h(t))2, would be reasonable if the largest
errors are much more likely to lead to unexpected con-
gestion or unnecessary and expensive control activities.
Finally, note that the forecast error cost is not necessar-
ily a monetary cost. Just as the variance of a random
variable is the expected squared deviation from the
mean, the cost function defined here is the expected to-
tal forecast error that has a significant impact on traffic
management decisions.

The function C(g0 0 h(t)) assigns an error cost to a
single forecast but does not capture the dynamic nature
of the traffic manager’s forecast error costs. The man-
ager makes multiple decisions over time, and we wish
to assess the accuracy of an update schedule which
specifies a number of forecasts over a number of time
periods. The cost function proposed here accumulates
forecast error over time while weighting these errors
according to a time-varying function, w(t). For example,
errors made far before the proposed departure time of
an aircraft may be given less weight than those made
close to the proposed departure, when the traffic man-
ager may be most interested in the forecast.

The assignment of weights to forecast errors over
time requires an understanding of the relative impor-
tance of forecast accuracy as the take-off time ap-
proaches. The assignment of weights may be accom-
plished by monitoring when, and how, traffic managers
use forecasts. The managers themselves can report fore-
cast usage over time. A simple numerical example will
be explored in section 4 in which forecasts are ignored

until flights are scheduled to depart from the gate.
Therefore, the weighting function w(t) rises from zero
to one at the scheduled gate departure time. This
weighting function would be appropriate for local man-
agers making relatively short-term decisions.

The total forecast error cost is found by accumulating
the weighted forecast errors up to the actual take-off
time. In addition to the costs associated with forecast
errors, a penalty Ku is assessed for each forecast update.
If forecast accuracy is the primary concern, then Ku may
be adjusted downward. However, an analyst will be
able to examine this trade-off between the expected
costs associated with forecast errors and costs associ-
ated with forecast updates by varying Ku and repeatedly
solving for the optimal update schedule and associated
forecast error costs.

3.1. Cost Function for a Given Departure Time
Many well-established methods exist for assessing fore-
cast accuracy and for designing optimal forecasts. For a
single forecast we will adopt the general framework
proposed by Seidmann and Smith (1981), which allows
the cost of an inaccurate forecast to assume a variety of
functional forms. Given a forecast h(t) at time t and an
actual departure time, g0, specify a cost function C on
the forecast error g0 0 h(t). Note that C(g0 0 h(t)) is the
forecast error cost given g0, a realization of random vari-
able g. In the next section we will derive the expected
forecast error costs, given the distribution function of g.

In order to include many possible functional forms,
define two cost functions for each forecast. One cost is
assessed if the flight departs before the forecast and an-
other if the flight departs after the forecast:

C (h(t) 0 g ) if g õ h(t),r 0 0

C(g 0 h(t)) Å C (g 0 h(t)) if g ú h(t), (1)0 l 0 05
0 if g Å h(t).0

Cost function Cr applies when there is an early de-
parture before the predicted departure time while Cl ap-
plies when there is a late departure after the predicted
time. Throughout this discussion, assume that the func-
tions Cr and Cl are monotone increasing, strictly convex,
twice differentiable, and vanish at the origin. This in-
cludes many reasonable cost functions and enables the
derivation of simple expressions for the optimal fore-
casts.
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The cost function C is a static one, for it does not take
into account the fact that we may update our forecast
as time progresses. Therefore, define the forecast error
cost for an actual departure at time g0 to be:

g0

C (g ; a, h(a)) Å w(t)C(g 0 h(t))dt, (2)F 0 0*
0`

where

w(t) ¢ 0.

The weighting function w(t) reflects the relative im-
portance of forecast error cost C(g00 h(t)) at time t. The
forecast h(t) is determined by the update schedule and
is revised at update epochs prior to g0. This cost function
weights the forecast error by w(t) and accumulates this
error until the departure of the flight. Besides the re-
quirement that w(t) be nonnegative, we will have no
restrictions on its functional form. The function w(t)
may rise or fall to give greater emphasis to those time
periods when forecast errors could be especially dam-
aging.

The cost CF(g0; a, h(a)) will depend on both the up-
date schedule a and updated forecasts h(a). In order to
make this dependence explicit, rewrite the cost function
as the sum of costs over each interval [ak, ak/1). The
value of each term in the sum will depend only on the
forecast produced for that interval,

h(t) Å h(a ) for a ° t õ a , (3)k k k/1

so that Equation (2) may be rewritten as:

k01

C (g ; a, h(a)) Å W(a , a )C(g 0 h(a ))∑F 0 i i/1 0 i
iÅ0

/ W(a , g )C(g 0 h(a )) (4)k 0 0 k

∀ a ° g õ a ,k 0 k/1

where

b

W(a, b) Å w(t)dt. (5)*
a

In addition to this forecast cost, a cost Ku is assessed
on each update, where Ku is expressed in units that are
equivalent to the units used for the forecast error cost.
The minimum cost of updating for any flight is 2Ku: a

charge of Ku for the initial forecast at a0 and another for
the update when the aircraft takes off at g0.

3.2. Expected Cost of a Sequence of Forecasts
Let Fg be the cumulative distribution function of g and
let F(a, h(a)) be the expected forecast error cost under
update schedule a and forecast sequence h(a). There-
fore,

`

F(a, h(a)) Å C (g ; a, h(a))dF (g ). (6)F 0 g 0*
0`

Using Equation (4) and rearranging terms, we find:

n

F(a, h(a)) Å M (h(a )), (7)∑ k k
kÅ0

where n is the number of scheduled updates. For k Å 0
··· n 0 1,

ak/1

M (h(a ))Å W(a , g )C(g 0 h(a ))dF (g )k k k 0 0 k g 0*
ak

`

/W(a , a ) C(g 0 h(a ))dF (g ),k k/1 0 k g 0*
ak/1

(8)

and for k Å n,

`

M (h(a )) Å W(a , g )C(g 0 h(a ))dF (g ). (9)n n n 0 0 n g 0*
an

In this sum, each term Mk(h(ak)) represents the prior
cost, which we expect to accumulate during the interval
[ak, ak/1). Throughout this interval, h(ak) is used as the
forecast.

Given update schedule a, the expected number of up-
date epochs is:

n

U(a) Å (1 0 F (a )) / 1. (10)∑ g k
kÅ0

The single update added to this total represents the final
update when the flight departs. The total expected cost
for update schedule a and the sequence of forecasts h(a)
is F(a, h(a)) / KuU(a).

When the range of random variable g is not bounded,
some updating procedures, such as the discrete condi-
tional procedure, generate a schedule with an infinite
number of updates. For the forecast distributions and
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Figure 3 Two-step Heuristic for Finding Update Epochs and Forecasts

cost functions tested in this article, it is always possible
to choose a sufficiently large n such that both (1
0 Fg(an)) and Mn(h(an)) are arbitrarily close to zero.
Therefore, an infinite update schedule can be approxi-
mated closely by a finite schedule.

Now consider the minimization problem:

min F(a,h(a)) / K U(a) (11)u
a,h(a)

n

Å min {M (h(a )) / K (1 0 F (a ))} / K . (12)∑ k k u g k u
a,h(a) kÅ0

The next section develops procedures for finding opti-
mal update epochs and forecasts.

4. Optimal Update Schedules and
Forecasts

An optimal solution to the forecast cost minimization
problem requires that expression (11) be minimized
over both the update schedule a and the sequence of
forecasts h(a). While an exact solution may be a subject
for further study, the decomposition heuristic presented
here produces near-optimal results when applied to the
numerical examples in the next section. The heuristic
divides the problem into two steps, first finding an op-
timal update schedule under a given method for deriv-
ing forecasts and then revising the forecasts to be opti-
mal for the update schedule derived in the first step.
The steps are shown in the flow chart, Figure 3. Each of
these two steps may be used independently. A system
may be required to follow a predetermined update
schedule, and the second step determines an optimal
sequence of forecasts under this constraint. Alterna-
tively, a particular class of forecasts, such as the simple
conditional mean, may be preferred at each update ep-
och, and the first step finds the optimal times at which
these forecasts should be produced.

The next subsection discusses the production of fore-
casts and derives methods which will be used in the first

and second steps of the heuristic. Two classes of forecasts
are presented: one-time forecasts and sequential forecasts.
A one-time forecast, ho(t), minimizes the expected value of
the cost function C(g 0 h(t)) and is optimal in the tradi-
tional sense: the cost is evaluated at only one time, i.e.,
when the aircraft departs. Sequential forecasts minimize the
expected cumulative cost defined in Equation (6) for a
given update schedule. Step 2 in the heuristic solves for
the sequential forecasts. Section 4.2 describes the dynamic
program used in step 1 to determine the optimal update
schedule, given a particular forecasting method.

4.1. Optimal One-time and Sequential Forecasts
Assume that at a potential update epoch tk we may make
a single forecast and that we cannot change this forecast
until the flight departs. In the present air traffic manage-
ment system, a potential update epoch tk might be the
beginning of a five minute cycle when the system may
generate and distribute a new forecast. Given the infor-
mation available in the aircraft departure update prob-
lem, the optimal one-time forecast, ho(tk), minimizes:

E[C(g 0 h(t ))Ég ú t )]k k

`
01Å (1 0 F (t )) C(g 0 h(t ))dF (g ). (13)g k 0 k g 0*

tk

For a linear or quadratic cost function, ho(tk) is the con-
ditional median, or mean, respectively.

For a particular update schedule a, the one-time fore-
casts will not necessarily minimize F(a, h(a)). Let h*(a)
be the optimal sequential forecasts, so that h*(a) is the
sequence {h*(a0), h*(a1), . . . , h*(an)} which minimizes
F(a, h(a)), given a. From Equation (7), the kth term in
the sum of forecast error costs depends only on h(ak).
Therefore, each forecast h*(ak) need only minimize the
term Mk(h(ak)). The appendix describes a procedure for
finding the optimal sequential forecast h*(ak).

4.2. Optimal Update Schedules Given Forecasts
Assume that we have a finite number of potential up-
date epochs, t0, t1, . . . , tm. In the following optimization
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problem we will choose these update epochs to form a
large ‘‘window’’ around the proposed departure time.
Also assume that we are given forecast h(tk) at each po-
tential update epoch tk, k Å 0, 1, . . . , m and that no
forecast updates are possible after tm. The time of this
last potential update epoch can be chosen so that (1
0 Fg(tm)) is sufficiently close to zero, so that any updat-
ing after tm does not significantly change expected costs.

In order to simplify the notation, define t0 å 0` and
set h(t0) to be our initial, prior forecast. Setting t0 å0`
indicates that the time of the initial forecast is fixed to
be far in the past, before information is available which
would alter the prior probability distribution. This is a
convenient and accurate shorthand for current practice
in the traffic management system. The initial forecast
for a flight is often produced during the previous night,
when the system’s computers are underutilized.

The following dynamic program finds the optimal
update schedule:

Indices: k Å 0, 1, . . . , m, the index for each potential
update epoch.

Potential update epochs: tk.
State variables:

x Å index of the most recent update epochk

(x Å 0, 1, ··· k 0 1).k

0 if the aircraft has not departed by time t ,k
d Åk H

1 if the aircraft has departed by time t .k

Control variables: The zero-one variable uk repre-
sents the decision to update at epoch tk:

0 if no update occurs at t ,k
u Å (14)k H

1 if an update occurs at t ,k

for 1 ° k ° m. Let u0 Å 0.
Transition Probabilities: The state variable dk is sto-

chastic with transition probabilities:

1 0 F (t )g kp(d Å 0Éd Å 0) Å ,k k01 1 0 F (t )g k01

F (t ) 0 F (t )g k g k01p(d Å 1Éd Å 0) Å ,k k01 1 0 F (t )g k01

p(d Å 0Éd Å 1) Å 0,k k01

p(d Å 1Éd Å 1) Å 1.k k01

The state variable xk is deterministic. Its value is deter-
mined by the value of the control variable uk:

x when u Å 0,k k
x Å (15)k/1 H

k when u Å 1.k

Costs: Let Jk(xk, dk), k Å 0, . . . , m, be the cost-to-go
function at time tk, given dk and the most recent update
at time At time tk an update may occur and the valuet .xk

of xk/1 is determined according to Equation (15). The
forecast applies during the period [tk, tk/1), sinceh(t )xk/1

the update occurs at the beginning of the period. For k
Å 0, . . . , m 0 1,

M (h(t ))k xk/1J (x , 0) Å min / u Kk k k uH 1 0 F (t )u g kk

/ E [J (x , d )] , (16)d k/1 k/1 k/1 Jk/1

J (x , 1) Å K , (17)k k u

and the terminal cost is Jm/1(xm/1, dm/1) Å Ku. If dk Å 0,
the expected remaining cost is the sum of the expected
forecast error cost from tk to tk/1 using forecast h(t ),xk/1

the update cost at tk if there is an update, and the ex-
pected costs accumulated after tk/1. The quantity

is the unconditional expected forecast errorM (h(t ))k xk/1

cost accumulated between tk and tk/1 when ish(t )xk/1

used as a forecast (see Equation (8)). If dk Å 1, the pro-
cedure ends with a final update with cost Ku. It can be
verified that the total cost J0(0, 0) is equal to the expected
total cost of Equation (12), with the h(tk) replaced by

and the control variable uk multiplying the po-h(t )xk/1

tential update costs.
Given m potential update epochs, the dynamic pro-

gram must calculate and compare costs along pairs of
arcs from m(m / 1)/2 nodes. Therefore, the algorithms
has a running time of O(m2). Each step requires the cal-
culation of Mk(h(tk/1)), and the computational require-
ments of this calculation depend on the form of w(t),
Fg(g0), and the cost function for forecast errors. Alge-
braic expressions for Mk may be derived when the w(t)
is constant within each time period and Fg(g0) is a nor-
mal or gamma distribution (Shumsky 1995). This en-
ables efficient computation of Mk when solving the dy-
namic program.

The dynamic program is used in Step 1 of the heuris-
tic to find an update schedule, given the one-time fore-
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casts ho(tk) at each potential update epoch. In Step 2 we
derive the optimal sequential forecasts for the update
schedule generated in Step 1. An alternate to the dy-
namic program for specifying update epochs, discrete
conditional updating, was described earlier. Whether a
schedule is generated with the dynamic program or by
discrete conditional updating, forecast accuracy can be
improved by resolving for the optimal forecasts.

5. Examples and Numerical Results
In the following numerical examples, six distinct pro-
cedures are used to generate forecast sequences. For the
first example, the prior take-off time distribution is sim-
ilar to the distribution seen during poor weather at At-
lanta Hartsfield International Airport (ATL). Addi-
tional experiments test the sensitivity of the procedures
to the objective function parameters and the shape of
the prior distribution.

Five of the six update procedures are restricted to po-
tential update epochs at five-minute intervals, the cycle
time of the present air traffic management system. The
sixth technique, continuous conditional updating, as-
sumes that the cycle time is zero and that updates occur
at all times. This establishes a lower bound on expected
forecast error costs. The six procedures are:

1. Constant interval updating with five-minute inter-
vals. This is the procedure used in the current air traffic
management system.

2. Discrete conditional updating using one-time forecasts.
Use discrete conditional updating to set the timing of
the update epochs. A one-time forecast, ho(t), is pro-
duced at each update epoch.

3. Dynamic programming using one-time forecasts. This
is Step 1 in the heuristic, with the dynamic program
(DP) generating the update schedule.

4. Discrete conditional updating using sequential fore-
casts. Discrete conditional updating determines the up-
date schedule and then optimal forecasts are generated
for that schedule.

5. Dynamic programming using sequential forecasts. The
DP determines the update schedule and then optimal
forecasts are found, given this schedule. This corre-
sponds to Steps 1 and 2 in the heuristic.

6. Continuous conditional updating. This procedure
was described earlier. Since we will be specifying a

piecewise linear cost function, the optimal forecast used
at all times will be the conditional median.

The next section describes the parameters of the nu-
merical examples. This is followed by comparisons of
the update schedules, forecasts, and expected costs pro-
duced by each procedure.

5.1. Parameters for the Numerical Examples
Parameters for the first experiment are derived from
historical data collected during poor weather at ATL.
The data include the ground times for departures by the
major airlines, where we define the ground time as the
time between the flight’s scheduled departure from the
gate and the actual take-off. The average ground time
at ATL during July, 1995 was 30 minutes, with a stan-
dard deviation of 26.7 minutes. Figure 4 is a histogram
of 2,551 ground times from ATL during four poor-
weather days in July, 1995.1 The mean of this bad-
weather sample is 41 minutes and the standard devia-
tion is 33 min. While this sample is not representative
of all departures from ATL, accurate departure time
forecasts are particularly important for these flights
since poor weather reduces capacity and increases traf-
fic congestion.

Superimposed on the histogram of Figure 4 is a
gamma distribution with parameters a Å 1.58 and b
Å 26.2. The parameters were determined by the method
of moments, although a maximum likelihood method
suggested by Bonvik (1994) produces nearly identical
parameters from the data. The fitted distribution is sim-
ilar in shape to the histogram but is not sufficiently
‘‘peaked.’’ Indeed, a Chi-square test resoundingly re-
jects the hypothesis that the data were generated from
this distribution. However, the gamma does capture the
general shape of the histogram more accurately than a
beta distribution, and fits much more closely than a
symmetric distribution such as the normal. Another ad-
vantage of the gamma distribution is that the cost func-
tion may be expressed algebraically in terms of its cu-
mulative density function. Therefore, the following nu-
merical experiments will assume a gamma prior.

1 Approximately 1% of the flights had ground times over 200 minutes,
and one unfortunate flight was delayed over six hours at the gate.
These flights were treated as outliers and removed from the sample.
Cancelled flights were also ignored.
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Figure 4 Ground Times During Poor Weather at Atlanta Hartsfield in
July 1995 (Superimposed Gamma Distribution with Parame-
ters a Å 1.58 and b Å 26.2)

Figure 5 Predicted Time Remaining for Three Forecast Sequences with
g Ç Gamma, Parameters a Å 1.58 and b Å 26.2, w(t) Å
m1(0), Kr Å Kl Å 1, and Km Å 25

Also assume that at the flight’s scheduled gate de-
parture time, regional air traffic managers begin to in-
clude the flight in their sector congestion forecasts.
Given the distribution shown in Figure 4, this implies
that forecasts are relevant about 41 minutes before the
expected take-off time. Therefore, define the forecast er-
ror weighting function w(t) as a step function that rises
from 0 to 1 at time 0.

To specify the instantaneous forecast error cost func-
tion, C(g0 0 h(t)), assume that the immediate impact of
a forecast error is proportional to its size. It is reasonable
to place a heavier penalty on larger errors, since large
forecast errors are more likely to lead to unexpected
congestion or unnecessary and expensive traffic man-
agement actions. Assume a piecewise linear cost func-
tion, C(g0 0 h(t)) Å Ég0 0 h(t)É, although a quadratic
cost function may be implemented if even heavier pen-
alties should be placed on larger errors. Set Ku Å 25, so
that a penalty of 25 units is assessed for each update.
Section 5.3 will test the sensitivity of the dynamic pro-
gramming procedure to this parameter. The following
numerical tests derive forecasts from the gamma distri-
bution shown in Figure 4. By varying the parameters of
the prior distribution, we will test the sensitivity of the
procedures to the shape of the prior take-off time dis-
tribution.

5.2. Comparison of Forecast Sequences and Costs
Figure 5 displays the update schedules and forecasts
produced by the first three procedures described above.
The vertical axis of the figure is the predicted time re-
maining for each sequence of forecasts, so that if h(t) is
the forecast at time t, then the graph shows h(t) 0 t
plotted against t. Update epochs are visible as vertical
jumps in the predicted remaining time. The figure dis-
plays update schedules, and for any particular flight the
sequence of forecasts is likely to be cut short by the ac-
tual departure. The figure displays only the first 100
minutes of the schedule, although the forecast sequence
extends to three hours after the scheduled departure
time. With the given distribution of g, flights have a
probability of 0.004 of departing after 3 hours.

All three procedures begin with a forecast equal to
the prior median, 33 min. This initial one-time forecast
minimizes the expected instantaneous cost, which is a
linear function of the forecast error. The first update un-
der the constant interval procedure occurs at 35 min.,
the beginning of the first cycle after the forecast has ex-
pired. Updates are produced at five-minute intervals
thereafter. Discrete conditional updating (DC) first re-
vises its forecast at 35 min. The revised forecast is 58
minutes, the conditional median given that g ú 33.
Therefore, at t Å 35 the predicted time remaining is 23
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Table 1 Expected Forecast Error and Update Costs for Six Update
Schedules

Update Procedure

Expected
Forecast

Error Cost

Expected
Number of

Updates

Expected
Total
Cost

Constant Interval 1,097 5.3 1,229
Discrete Conditional (DC)

with One-time Forecasts 1,029 2.9 1,101
Dynamic Program (DP)

with One-time Forecasts 952 4.0 1,052
Discrete Conditional (DC)

with Optimal Forecasts 951 2.9 1,023
Dynamic Program (DP)

with Optimal Forecasts 927 4.0 1,027
Continuous Updating 895 – –

Figure 6 Predicted Time Remaining for Forecast Sequences Generated
by the Discrete Conditional Procedure with Optimal Sequential
and One-time Forecasts

minutes. The next update under the discrete conditional
procedure occurs at 60 minutes.

The dynamic program (DP) also has an initial forecast
of 33 minutes, but prescribes an initial update at 20 min.
By this time the initial prediction of 33 minutes is suf-
ficiently obsolete so that the update penalty is lower
than the potential benefits of increased forecast accu-
racy. The dynamic program schedules subsequent up-
dates at 15-minute intervals.

The forecasts produced by these three procedures are
one-time forecasts, which are not optimal for the given
update schedules. Figure 6 compares the one-time fore-
casts with the optimal sequential forecasts produced for
the discrete conditional schedule. The optimal sequen-
tial forecasts are consistently higher than the one-time
forecasts. The forecasts shown are about 10 minutes
larger, while the optimal forecasts for the dynamic pro-
gramming schedule are about 5 minutes larger. This is
a consequence of the cumulative nature of the forecast
cost function (2). The optimal sequential forecast h*(ak)
produced at update epoch k must minimize the ex-
pected cumulative forecast cost for departures after
time ak. Flights that depart immediately after ak will
have little time to accumulate error before take-off, and
therefore receive less weight in the function to be min-
imized. Flights which depart after ak/1, the next update

epoch, will accumulate forecast error over the entire pe-
riod [ak, ak/1), and therefore will have a relatively large
impact on the cost function. This shifts the forecast
h*(ak) towards later flights. However, the difference be-
tween one-time and optimal sequential forecasts de-
creases as the time between update epochs decreases.
As the time between update epochs approaches zero, as
in continuous conditional updating, the one-time and
optimal sequential forecasts converge.

Table 1 contains the expected forecast error costs F(a,
h(a)), expected number of updates U(a), and expected
total costs for each forecast sequence. The expected fore-
cast error cost for continuous updating is a lower
bound. Constant interval updating has the largest ex-
pected forecast and update costs because of its frequent
updates and uninformative forecasts. The discrete con-
ditional procedure is relatively ‘‘stingy’’ with its up-
dates and expects only 2.9 updates to the dynamic pro-
gram’s 4.0. However, when using the one-time fore-
casts, the dynamic program achieves a significantly
lower expected forecast error cost than discrete condi-
tional updating. The extra updates pay for themselves
with increased forecast accuracy.

When optimal sequential forecasts are used with each
update schedule, the procedures come closer to the
lower bound on expected forecast error cost and con-
tinue to improve upon constant interval updating. Both
the discrete conditional and dynamic programming
schedules, when combined with optimal forecasts, have
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Figure 8 Expected Number of Updates as the Prior Mean Varies

Figure 7 Expected Total Cost Reduction from the Constant Interval Pro-
cedure (Range in Prior Mean is Produced by Varying Param-
eter b)

an expected total cost 17% lower than the total cost of
the constant interval updating procedure. The discrete
conditional schedule and its small number of expected
updates produces the lowest overall cost. The dynamic
program’s schedule, when combined with the ‘‘opti-
mal’’ forecasts, need not be a global optimum.

Finally, it is interesting to note that the conditional
means are consistently closer to the optimal forecasts
than the conditional medians. For example, the prior
mean of 41 minutes is close to the initial optimal se-
quential forecast of 43 minutes shown in Figure 6. Recall
that the median is the optimal forecast for the instan-
taneous cost function but not for the overall cost func-
tion. This suggests that use of the conditional mean may
produce lower forecast error costs than use of the con-
ditional median. Numerical tests find that when using
conditional means instead of conditional medians, total
costs are reduced by about 1%.

5.3. Sensitivity to Prior Distribution and Update
Costs

The following experiments compare the performances
of the forecasting procedures as the parameters of the
prior distribution and cost function vary. We first vary
parameter b of the Gamma distribution while holding
parameter a equal to the original value of 1.58. Both the
mean and the standard deviation of the gamma distri-

bution increase in direct proportion to the parameter b.
Varying b produces prior means ranging from 10 to 60
minutes.

Figure 7 displays the percentage decrease in total
costs from the constant interval procedure for each of
the alternative procedures. The average ground time for
all July 1995 flights from ATL was 30 minutes. Given a
distribution with this prior mean, the savings vary from
10% for the discrete conditional procedure with one-
time forecasts to 16% for the discrete conditional pro-
cedure with optimal forecasts. The largest cost reduc-
tions are achieved with the largest prior means. When
the simple one-time forecasts are used, the dynamic
program outperforms the discrete conditional proce-
dure. When optimal forecasts are used, the discrete con-
ditional and dynamic programming procedures gener-
ate similar expected costs.

These cost improvements are derived from both su-
perior forecasts and reductions in the number of up-
dates. Figure 8 displays the expected number of updates
as the prior mean increases. Under the constant interval
procedure the expected number of updates rises lin-
early, with a slope of approximately one update for
every 15 minutes in the prior mean. Under the discrete
conditional method the expected number of updates is
nearly constant. The update frequency of the dynamic
program falls between the two.
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Figure 10 Expected Number of Updates and Forecast Costs Produced
by the DP over a Range of Update Costs (Parameters are a
Å 1.58 and b Å 26.2, w(t) Å m1(0), kr Å Kl Å 1)

Figure 9 Expected Total Cost Reduction from the Constant Interval Pro-
cedure as a Varies (Mean Held Constant at 41 minutes)

These experiments have held parameter aÅ 1.58, pro-
ducing a prior distribution with a long right-hand tail.
By varying parameter a we can assess the impact of the
shape of the distribution on the relative advantages of
the update procedures. With a Å 10, for example, the
gamma distribution is nearly symmetric. However,
both the mean and the variance of the distribution are
directly proportional to a. To control for changes in the
mean, we set b Å 41/a. This holds the mean to 41
minutes, the mean ground time in the original experi-
ment described above. The variance is not constant, for
as a rises the variance falls (s2 Å 412/a).

In Figure 9 the relative advantages of the optimal up-
date procedures decline quickly as a rises, the distribu-
tion becomes more symmetric, and the variance falls. In
general, the optimal updating procedures are most ef-
fective when they limit the impact of a high prior vari-
ance and a long right tail.

One advantage of the dynamic programming proce-
dure is that it allows managers to observe the trade-off
between costs associated with forecast errors and costs
associated with forecast updates. Figure 10 illustrates
this trade-off for one-time forecasts (heuristic Step 1)
and optimal sequential forecasts (heuristic Step 2). An
analyst may use this curve to determine the update cost
which produces a desired level of forecast accuracy for
a reasonable number of expected updates. The graph

also demonstrates that if optimal sequential forecasts
are used, the forecast error cost is relatively insensitive
to the number of updates for this distribution of g.

These numerical experiments have assumed a partic-
ular cost function and prior distribution. Experiments
with a normal prior distribution produce similar results
(Shumsky 1995). Additional experiments find that the
relative advantages of the updating procedures increase
substantially when the cost function is assymetric, i.e.,
when Kr x Kl. Such a function would be reasonable if
an unexpected, early arrival is more costly than an ar-
rival after the predicted time.

6. Conclusions and Extensions
The traditional forecasting problem has been reformu-
lated to allow for the generation of a sequence of fore-
casts rather than a single forecast. By specifying a
weighting function w(t), a manager can indicate when
forecast accuracy is most important. Methods were de-
veloped for finding optimal sequential forecasts, given
a fixed update schedule. A dynamic program found the
optimal update schedule, given a particular forecast
technique. In the numerical examples the procedures
obtained forecast errors that were close to the lower
bound established by continuously updating the fore-
cast.
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The empirical results demonstrate increasing ad-
vantages for the optimal updating procedures as the
mean take-off time rises and the level of prior uncer-
tainty grows. When using optimal sequential fore-
casts, there is little difference between the perform-
ances of the discrete conditional and dynamic pro-
gramming procedures. Figure 8 shows that when
prior uncertainty is high, discrete conditional updat-
ing requires significantly fewer updates than the
other procedures.

After conducting these experiments, we recom-
mended to the FAA that the simple discrete conditional
procedure be adopted to find the update schedules for
flights departing from most airports. This procedure
achieves high forecast accuracy while using fewer up-
dates than the current system. The optimization proce-
dures should be considered at airports with frequent,
major disruptions to aircraft departures.

The numerical examples also demonstrate how these
procedures may be implemented efficiently for the tens
of thousands of flights which depart each day. While
update schedules may be costly to generate, the proce-
dures can calculate schedules in advance for large num-
bers of flights. First, use historical data to derive prior
take-off time distributions for groups of flights with
similar characteristics. In the numerical example of the
previous section, we applied this procedure to ATL de-
partures in poor weather. Then derive a generic update
schedule from the take-off time distribution. Finally, ap-
ply the schedule to a specific flight by shifting the sched-
ule’s origin to align with the flight’s scheduled depar-
ture time.

Alternative procedures may be used to generate fore-
casts. For example, a sophisticated model of consumer
behavior may be adopted to predict purchasing deci-
sions. In general, the computational effort required to
generate update schedules will depend on the complex-
ity of the forecasting model and the number of distinct
event categories, but once the schedules are generated
and installed in a database the update procedures re-
quire little more than a single table lookup and a bit of
addition. In the current air traffic management system,
using the derived schedules will be only slightly more
computationally intensive than the constant interval
procedure, and the schedules will reduce the costs as-
sociated with distributing frequent updates.

The forecast updates presented in this article were
driven by the simplest information, the fact that the
event of interest had not yet occurred. This formulation
reflects the capabilities of the current air traffic manage-
ment system, but for many systems it is possible to up-
date with more complex information. More general ap-
proaches would take multiple scenarios into account
and incorporate many sources of data into the forecasts.
For example, service facilities such as hospitals and ho-
tels may revise a forecast of a customer’s exit time using
real-time information about the customer’s status. Op-
timal updating procedures would use this information
to efficiently produce accurate and timely forecasts.2

2 The author is grateful to Arnold Barnett, Amedeo Odoni, and the
anonymous referees for their helpful suggestions. The research was
supported by a grant from the Federal Aviation Administration.

Appendix

Optimal Sequential Forecasts for a Given Update Schedule
We wish to minimize Mk(h(ak)) over h(ak). To simplify the notation
slightly, consider minimizing Mk(h) over forecast h, and let the optimal
solution be h*. Assume that h ¢ ak, since h is the forecast of g, condi-
tioned on g ¢ ak. The functional form of Mk(h) changes at h Å ak/1, so
there are two cases to evaluate:

Case (i): (ak ° h õ ak/1).

h

M (h) Å W(a , g )C (h 0 g ) f (g )dgk k 0 r 0 g 0 0*
ak

ak/1

/ W(a , g )C (g 0 h) f (g )dgk 0 l 0 g 0 0*
h

`

/ W(a , a ) C (g 0 h) f (g )dg . (18)k k/1 l 0 g 0 0*
ak/1

Using Leibnitz’s rule and the fact that both Cr(0) and Cl(0) vanish at
the origin,

h

M*(h) Å W(a , g )C*(h 0 g ) f (g )dgk k 0 r 0 g 0 0*
ak

ak/1

0 W(a , g )C*(g 0 h) f (g )dgk 0 l 0 g 0 0*
h

`

0 W(a , a ) C*(g 0 h) f (g )dg . (19)k k/1 l 0 g 0 0*
ak/1

Since õ 0, there is no relative minimum at ak. Since both Cr(0)M*(a )k k

and Cl(0) are strictly convex, ú 0 for ak ° h õ ak/1 and there isM9(h)k

either a unique minimum for some ak ° õ ak/1, or there is a* *h , h1 1

local minimum as h approaches ak/1.
Case (ii): h ¢ ak/1.
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ak/1

M (h) Å W(a , g )C (h 0 g ) f (g )dgk k 0 r 0 g 0 0*
ak

h

/ W(a , a ) C (h 0 g ) f (g )dgk k/1 r 0 g 0 0H*
ak/1

`

/ C (g 0 h) f (g )dg , (20)l 0 g 0 0* J
h

ak/1

M*(h) Å W(a , g )C*(h 0 g ) f (g )dgk k 0 r 0 g 0 0*
ak

h

/ W(a , a ) C*(h 0 g ) f (g )dgk k/1 r 0 g 0 0H*
ak/1

`

0 C*(g 0 h) f (g )dg . (21)l 0 g 0 0* J
h

Since ú 0 for h ¢ ak/1, there is either a unique minimum forM9(h)k

some ¢ ak/1 or a local minimum at ak/1.*h2

In order to find the optimal solution, h*, note that if ú 0,M*(a )k k/1

then õ and therefore h* Å If ° 0, then ¢ and* * * * *h h h . M*(a ) h h1 2 1 k k/1 1 2

h* Å The solution is unique, and the function Mk(h) is unimodal*h .2

under both cases (i) and (ii), so numerical search techniques may ef-
ficiently find the optimal solution if no exact solution can be derived.
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