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Simulation models are generally costly tools to use in systems analyses. 
Whenever applicable, a simple analytic model is preferable. How- 
ever, in many cases the conditions assumed by solvable analytic 
models do not hold in the real world; hence an analyst would hesitate 
to use them. A simulation can be used to suggest an appropriate ap- 
proximate model and to determine how good an approximation a 
given analytic model is. We show how simulations of New York City's 
fire and police operations have been used to develop and validate 
simple analytic models that are now being used to analyze the de- 
ployment of resources in these two services. 

ASIMULATION model of a large and complex system can be a very 
useful, but time-consuming and costly tool. Whenever applicable, 

one prefers to use a simple analytic model yielding closed-form algebraic 
expressions relating system inputs and outputs. However, in many cases 
the simplified conditions assumed by solvable analytic models do not 
hold in the real world, and more realistic models are too complex to solve- 
hence simulation. The standard use of simulation is direct: to answer a 
specific question or to obtain a description of the behavior of a system 
as some of its parameters are changed. In contrast, we illustrate here the 
use of simulation to confirm that a simpler model may safely be used to 
describe system behavior and even to suggest the form of such a simpler 
model. If the analytic model provides an adequate approximation, it can 
be used more economically than the simulation for future analyses.' 

A preliminary version of this paper was delivered at the 1974 Winter Simulation 
Conference held in Washington, D. C., January 14th-16th, 1974, and appeared in 
the proceedings of the Conference. 

1 Note that we will be skipping over the question of whether the simulation is 
an adequate (valid) representation of reality. We assume that this has already 
been established. The particular simulation models discussed below have already 
been tested for "face" validity [191. 
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Paraphrasing Hamming [9] and Geoffrion [8], we might say, "The pur- 
pose of simulation is insight, not numbers." 

Use of simulations to develop and test other mathematical models is 
conceptually analogous to use of experiments by physical scientists to 
develop new theory. It is this sometimes overlooked use of simulation 
models that we focus on through the use of four examples. 

The examples are drawn from studies carried out by The New York 
City-Rand Institute for the New York City Fire and Police Depart- 
ments. The analytic models are: 

1. A model for analyzing police patrol car allocation problems, where 
the simulation and analytic models were constructed in parallel. One 
of the chief reasons for building the simulation was to determine how 
well and under what conditions the analytic queuing model agreed 
with it (and thus with the real world). 

2. A model for estimating fire company response distances, where the 
analytic model was developed well after the simulation was written. 
Special simulation runs were made to confirm the validity of the an- 
alytic model. 

3. A model for predicting the number of fire companies dispatched to 
an alarm, where the analytic model was suggested (and verified) by 
an analysis of simulation runs that had been made years earlier for 
other purposes. 

4. A model for estimating the number of fire companies that will be 
busy at alarms, where the model was developed before the simulation 
was written but was verified several years later using the results of 
simulations that were run before the validation effort was begun. 

These examples are discussed briefly in Sections 1-4; detailed descrip- 
tions are given in [10]. A concluding section briefly discusses the cost and 
other advantages of using analytic models in these cases. 

1. ALLOCATING POLICE PATROL RESOURCES 

In [17] a queuing model is proposed to represent the patrol activities of 
a police command. A patrol car is dispatched immediately to answer 
a call for service if one is available; otherwise, the call is queued at the 
dispatching center. Queued calls are served in order of their assigned 
priority. What is desired is a way of relating queuing delays to N, the 
number of cars assigned to the command, so that N can be chosen ra- 
tionally. 

A queuing model that might be used in this situation is the simple 
M/M/N priority model of Cobham [6]. It assumes that calls arrive ac- 
cording to a stationary Poisson process, that service times are independ- 
ent and exponentially distributed, and that each call is served by a single 
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patrol car. These conditions are not all satisfied in the operating environ- 
ment of the New York City Police Department (NYPD). While call 
arrivals are approximately Poisson, call rates, even during a single 8-hour 
tour of duty, are not constant. Service times are not exponentially dis- 
tributed and include the time required for a car to travel to an incident, 
which depends on the number of cars available to dispatch. Moreover, 
some calls are served by more than one patrol car. 

As a result, although we wanted to use the simple M/M/N model to 
analyze deployment options for the NYPD, we first had to verify that, 
despite the above-mentioned variations from the model, it still produced 
predictions of sufficient accuracy. To make appropriate tests, we wrote 
a detailed police patrol simulation of a single police precinct [16]. The 
simulation included the complexities mentioned above as well as others, 
and used actual call histories in the precinct for arrivals and service times. 
We compared simulation results to those obtained from the queuing 
model with the same average call rate and the same average service time. 
The results, described below, were sufficiently close to give us and the 
Police Department confidence that the queuing model could be used 
instead of the simulation model. 

Based on the call rate, average service time, and number of servers, 
the queuing model gives the probability distribution of the number of 
calls being serviced and the number waiting to be dispatched. From this 
distribution one can obtain q, the probability that all N patrol cars are 
busy, and D, the average time a call will spend in queue before being 
dispatched (and other performance measures). 

To test this model, we used it to calculate q and D as functions of N 
and then compared the results to those obtained from the simulation model. 
One NYPD precinct, the 71st Precinct in Brooklyn, was chosen for study 
because a rich set of data on its operations was available. We considered 
each of the three shifts or "tours" worked by the policemen: tour 1-mid- 
night to 8:00 a.m.; tour 2-8:00 a.m. to 4 :00 p.m.; tour 3-4:00 p.m. to 
midnight. 

The average service time was approximately the same for all tours. 
The queuing model was used to analyze conditions for tours 1 and 3 with 
different numbers of cars on duty. The simulation was then run for these 
values of N. using as input a historical stream of calls for a given tour. 
We used the actual time each call was received and its actual service time, 
location, and priority. (The input stream for the simulation of a given 
tour was prepared from computerized records maintained by the NYPD 
by concatenating all of the calls received during that tour during July 
and August 1972. For example, when simulating tour 3, the last call be- 
fore midnight on one day would be followed by the first call after 4:00 
p.m. on the following day.) 
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Figure 1. Unavailability of patrol cars vs. number of cars assigned; 
0 = simulation results, 0 = predictions of queuing model. 

A comparison of the results from the simulation and the queuing model 
is given in Figures 1 and 2. Figure 1 shows the percent of time that all 
patrol cars are busy. The results are remarkably similar, with the queu- 
ing predictions being consistently slightly lower than the simulation re- 
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Figure 2. Delay in queue (in minutes) vs. number of patrol cars as- 
signed; * = simulation results, = predictions of queuing model. 
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suits. (We predicted this difference because the simulation makes mul- 
tiple car dispatches while the queuing model assumes that one car is sent 
to each call.) Figure 2 plots the average queuing delay as a function of 
the number of patrol cars on duty. The results, again, are quite close. 
Because of the type of applications we had in mind, we were particularly 
interested in finding out whether the queuing model would predict the 
"elbow" in these functions-the point at which the curves begin to rise 
steeply and performance begins to degrade badly. It appears to do so. 

The Police Department accepted the fact that the queuing model repre- 
sents a reasonable approximation to the dispatching and service activities 
of the patrol force. The model has been imbedded in a computer program 
called the Patrol Car Allocation Model [5], which the Police Department 
has begun to use as an aid in determining the number of patrol cars to 
assign to duty during each tour in each police precinct. 

2. ESTIMATING FIRE COMPANY RESPONSE DISTANCES 

Kolesar and Blum [14] derived an inverse square-root relationship be- 
tween the average distance traveled by fire companies responding to calls 
in a region and the number of locations from which they respond. The 
relationship was derived under idealized conditions: an infinitely large 
region in which the units are located either uniformly on a grid or purely 
at random, and in which calls for service are distributed homogeneously 
in space, while emergency vehicles travel along simple response paths. 
However, to have practical usefulness, it was important to show that the 
relationship provided a reasonable approximation to actual average 
response distances under more realistic conditions. 

An existing simulation of New York City fire fighting operations was 
used to test the validity of the model for fire company responses. The 
simulation program is documented in [1], its design and development are 
described in [2], and its use in policy analysis is described in [3]. Two 
versions of the square-root relationship were to be tested by simulation: 

1. The expected response distance of the closest available unit (ED(N)) 
to a fire alarm occurring when there are N available companies in a 
region of area A is given by 

ED(N) = k VA/N. (1) 

2. If there are n companies located in a region of area A and if, on the 
average, b are busy, then the average response distance for the first- 
arriving company to alarms in the region is given by 

D (n) = k A/(n-b), (2) 

where n-b is the long-run average of N and D(n) is the long-run aver- 
age of ED(N). Since n is a major policy variable under management's 
control, this relationship is of more general interest than (1). 
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Verifying these relationships by gathering empirical data from Fire 
Department operations would have been an extremely difficult task. 
In fact, verifying (2) would have required the Department to vary the 
number of units operating in an experimental region at different times- 
an unthinkable procedure, especially if the changes meant using so few 
companies that lives and property were endangered. Instead, by means 
of simulation these tests were able to be made safely and economically 
without modifying Fire Department operations. 

To validate and test the two relationships, seven runs were made with 
the model of fire fighting operations in the Bronx (Table I). In each case 
the alarms were distributed probabilistically among 358 locations accord- 

TABLE I 
CONDITIONS SIMULATED-SQUARE-ROOT MODEL VALIDATION 

Simulation No. Alarm rate No. of No. of 
(alarm/hour) active ladders active engines 

1 30 31 37 
2 5 31 37 
3 5 24 37 
4 10 20 37 
5 30 20 37 
6 5 12 37 
7 10 12 37 

ing to actual 1968 alarm patterns. The engine locations were those ac- 
tually being used in the Bronx in 1971. The ladder locations in the 12-, 
20-, and 24-ladder cases were subsets of the 27 actual ladder locations 
then. In the 31-ladder case, 4 additional ladder locations were added in 
the south Bronx in carefully chosen places. Each simulation consisted of 
an extended time period during which the alarm rate and number of 
active units were unchanged. The simulation durations were chosen so 
that, in each case, about 3,500 alarms were handled. This sample size was 
selected after statistical analysis of the random variation in simulation 
output statistics. The results produced should be interpreted as estimates 
of performance of steady-state behavior under the conditions simulated. 

Relationship (1) 

First, we consider the validation of relationship (1) between ED(N) 
and N. The simulation program recorded the response distance and the 
number of companies of each type (engines and ladders) available at the 
instant of dispatch for each alarm. These data were accumulated separately 
for two regions of the Bronx; the south Bronx (a small region with a high 
incidence of alarms) and the rest of the Bronx (called the north Bronx). 
The data were collected for the closest engines and ladders to each alarm, 
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as well as for the second and third closest units for those alarms to which 
such units were dispatched. 

Each simulation run provided data for an independent test of relation- 
ship (1). Figure 3 is a plot of data from a typical simulation. The curve 
was fitted to the data by nonlinear regression. The closeness of the curve 
to the observed data points and the closeness of the estimated exponent 
to -0.500 suggest the validity of the square-root hypothesis. Reference 
[14] provides results obtained from other simulation runs that confirm 
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Figure 3. Simulated average response distances vs. the number of 
available companies (closest engine and ladder companies in the south 
Bronx). 

the validity of the square-root model and describes the regression in 
detail. 

Relationship (2) 

We now turn attention to validation of relationship (2) between long- 
run average response distance, D, and n, the number of companies as- 
signed to the region. The results discussed above indicate that the square- 
root model describes the relationship between average response distance 
and number of units available when an alarm occurs. However, this does 
not assure that a square-root law describes the relation between long-run 
average response distance and the average number of companies available 
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to respond to an alarm. On the contrary, if the square-root relationship 
holds for the former, it cannot hold exactly for the latter since the inverse 
square-root function is convex, and for a convex function f(.) of a ran- 
dom variable X, Ef(X) > f(EX) (Jensen's inequality). We wanted to de- 
termine whether the square-root relationship provides an adequate ap- 
proximation. 

Figure 4 displays the simulated long-run average response distance for 
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Figure 4. Simulated long-run average response distance vs. the aver- 
age number of available companies (closest ladder companies in the south 
Bronx). 

closest ladders versus average numbers of ladder units available for south 
Bronx ladders. The data were generated by the seven simulations listed 
in Table I. In this case each of the plotted points represents the results 
of an entire simulation run. Figure 4 contains regression fits of two func- 
tions: 

D = k (average number of available ladders)', 

D = a (average number of available ladders)0. 

The closeness of the fitted curves to the data points, the near coincidence 
of the two curves and the closeness of the estimated exponent A in the 
more general model to -0.500 all confirm the validity of the model. 
Reference [14] provides additional details of these tests. 
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Uses of the Square-Root Model 

The distance that responding fire units travel to reach fire alarms is 
an important measure of the service being provided by the Fire Depart- 
ment. By being able to predict the average response distance in a region 
as a function of alarm rate, the number of units assigned to the region, 
and other measurable parameters of the region, allocation policies can be 
evaluated quickly without the use of simulation. Among the many ques- 
tions that the Fire Department of New York has already used the square- 
root model to answer are: 

1. What will be the effect on response distance of removing a company 
from a region? 

2. How should the number of units on duty be varied over the day (as 
the alarm rate varies) to maintain a given average response distance 
in a region? 

3. How many fire units will be required in the future under projected 
alarm rates to maintain desired average response distances? 

The time units spend traveling to reach alarms is another important 
measure. A travel-time model, based on the square-root model for dis- 
tances and the results of a field experiment in which fire company re- 
sponses were timed, has also been developed and tested in the simula- 
tion by Kolesar [13]. 

3. PREDICTING THE NUMBER OF UNITS SENT TO A FIRE ALARM 

In New York City, dispatching rules for an incoming alarm are gov- 
erned by the "alarm assignment card" for the fire alarm box closest to 
the alarm. The first line of an alarm assignment card contains the names 
of the three closest engine companies and the two closest ladder com- 
panies. The traditional policy for alarms turned in by box had been to 
send whichever first line companies were available, and "special call" 
companies further down on the card if necessary to assure a response of 
at least one engine and one ladder. As a result of this policy (which We 
call a "New York 3" dispatching policy for engines and a "New York 2" 
policy for ladders), the number of engines and the number of ladders ac- 
tually sent to a box alarm were random variables between 1 and 3. 

We were concerned with predicting how the actual number of units 
dispatched depended on the average unit availability in the surrounding 
region. By analyzing simulation runs that had been made for other pur- 
poses, we derived a simple relationship between the number of units sent 
and the average unit availability when a "New York" dispatching policy 
is used [11]. 

In this section we discuss the use of simulation, deriving and verifying 
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this relationship for the New York 2 policy for ladders. In similar ways we 
have derived and tested relationships for other dispatching policies. 

Let "a" be the average fraction of the time a ladder company is avail- 
able. Define P as the probability that 2 ladders are dispatched to an inci- 
dent under the New York 2 policy during a period in which the average 
availability is a. A good fit to the simulation data was found by using: 

P=a2 (3) 

TABLE II 
DERIVATION OF RELATIONSHIP BETWEEN NUMBER OF LADDERS DISPATCHED 

AND AVERAGE AVAILABILITY 

South Bronx North Bronx 

Observed and predicted Observed and predicted 
Observed (from availability) Observed (from availability) 

availability percent of NY2 alarms availability percent of NY2 alarms 
receiving 2 ladders receiving 2 ladders 

.952 86.8/90.7 .898 80.7/80.6 

.951 78.2/90.4 .882 75.3/77.9 

.877 75.7/76.9 .769 64.9/69.1 

.875 75.0/76.7 .752 58.1/56.6 

.871 73.5/75.9 .739 54.3/54.6 

.869 72.5/75.6 .718 47.5/51.6 

.776 52.7/60.3 .555 27.7/30.8 

.666 41.3/44.3 .466 27.3/21.7 

.623 33.8/38.8 .379 14.9/14.4 

This relationship would be true if: 

1. The average availability were the same for every ladder company 
in the region; 

and 
2. The event that any particular ladder company is available were 

independent of the status of all other ladder companies. 

Neither of these conditions is true, yet the relationship appears to be a 
good approximation. In fact, the validity of relationship (3) was dis- 
covered in the course of attempting to see how poor a2 is as an estimate 
of P. 

The relationship was developed from a set of nine simulation runs that 
had originally been made to test the effects at different alarm rates of both 
adding new companies to an area and modifying the dispatching policy 
(see [3]). The simulation model mentioned in Section 2 was used. For each 
simulation run we calculated the fraction of time each ladder company 
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was available. We then obtained the average a of these availabilities over 
all the ladder companies in the region. For all incidents in the region for 
which the dispatching policy was New York 2, we determined the pro- 
portion that received two ladders as their initial dispatch (these data 
had been part of the normal output from all simulation runs). The re- 
sults in Table II show that P was very close to a2. 

The relationship was then validated by analyzing the results on a dif- 
ferent set of simulations that had also been run previously but had not 
been examined during the derivation of the relationship. The original 

TABLE III 
VERIFICATION OF RELATIONSHIP BETWEEN NUMBER OF LADDERS DISPATCHED AND 

AVERAGE AVAILABILITY 

South Bronx North Bronx 

Observed and predicted Observed and predicted 
Observed (from availability) Observed (from availability) 

availability percent of NY2 alarms availability percent of NY2 alarms 
receiving 2 ladders receiving 2 ladders 

.945 83.8/89.2 .849 72.2/72.1 

.882 70.2/77.8 .705 50.2/49.7 

.948 83.8/89.8 .847 71.9/71.7 

.888 69.3/78.9 .699 49.3/48.9 

.738 42.5/54.4 .494 24.5/24.4 

.745 45.0/55.5 .485 24.2/23.6 

.689 38.1/47.4 .469 13.9/21.9 

objective of these runs had been to study the effects of matching the 
number of fire engines on duty more closely to the time-varying alarm 
rate. Results of these simulations were analyzed and compared to the 
results predicted by the relationship (see Table III). On the basis of this 
comparison, we were able to conclude that the relationship did provide a 
useful approximation to the actual field-dispatching behavior. 

Since availability can be predicted from the alarm rate, service time 
distribution, and number of companies stationed in the region, we have 
used this relationship instead of the simulation to analyze the effects of 
various Fire Department deployment options on the number of units 
dispatched. 

4. ESTIMATING THE NUMBER OF FIRE COMPANIES WORKING AT ALARMS 

Chaiken [4] proposed a queuing model of the number of fire companies 
busy working at alarms. The model gives the long-run probability dis- 
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tribution of the number of busy companies. Its assumptions are much 
closer to reality than those of the models in Sections 1 and 2-nonexpo- 
nential service times are allowed and there are no assumptions about the 
geographical distribution of alarms or companies. Therefore, the model 
had been used for planning purposes in New York City before we com- 
pared its predictions with simulation results. We discuss the model and 
its assumptions and how we validated it using results from simulation 
experiments carried out several years earlier for other purposes. 

In response to a fire alarm, several units are immediately dispatched 
to the scene. Should the situation require more units, they are subse- 
quently dispatched. Units are released from service one at a time or in 
groups until the incident is over. The queuing model separates alarms 
into types according to the number of units required to serve the alarm 
and the distribution of service times for each stage of service. A stage of 
service consists of a period of time when a fixed number of units is commit- 
ted to serving the alarm. Thus a new stage begins whenever an additional 
unit is dispatched or a unit completes service. Permitting some stages 
to have zero duration allows units to be dispatched or released in groups 
of two or more. 

Important assumptions of the model are: 

1. Infinitely many units are available (this is a reasonable assumption 
since fire departments will generally send as many units as are required 
even if it is necessary to enlist the assistance of nearby cities to obtain 
a sufficient number); 

2. Different types of alarms in the region are generated according to inde- 
pendent Poisson processes; 

3. Alarm and service rates do not vary with time; 
4. Service times for different stages of an alarm of a given type are sta- 

tistically independent of each other and of the number of units already 
assigned to previous alarms. 

Chaiken's model is a generalization of Erlang's formulas [7], which 
Khintchine [12] proved valid for the case of an infinite server queue and 
general service times. Chaiken finds closed-form expressions for the prob- 
ability distribution of the number of busy servers. These expressions de- 
pend upon easy-to-compute convolutions that involve alarm rates and 
the worktime distributions of the various stages. The expressions can be 
used to decide how many emergency units to locate in any specified ge- 
ographical region. Enough units can be assigned to the region so that 
the probability that more than that number are busy does not exceed a 
certain threshold, say 2%. 

Validating the Model 

To test the model with empirical data would be very difficult, if not 
impossible. An important problem in this regard is that the model gives 
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Figure 5. The probability that n engine companies are busy (north 
Bronx, X = 5). 
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steady-state results for a system with a stationary alarm rate, yet the 
actual alarm rate varies throughout the day. We decided to test the 
queuing model by comparing its results to those derived from the simula- 
tion model mentioned in Section 2. The simulation incorporates several 
characteristics of actual operations not treated in the queuing model. 
For example, in the simulation, service times for fires are somewhat state 
dependent because travel times and the number of units actually dis- 

DATA: ENGINE COMPANIES 
THE SOUTH BRONX 
I 30 ALARMS PER HOUR 

SIMULATION RESULTS 

0 

PREDICTIONS OF QUEUEING MODEL 

0 1 2 3 4 5 6 7 8 9 10 I1 12 13 18 19 20 21 22 23 24 25 26 27 28 29 30 

NUMBER OF ENGINE COMPANIES BUSY (n) 

Figure 6. The probability that n engine companies are busy (south 
Bronx, X = 30). 

patched depend on the number available when the alarm occurs. In addi- 
tion, there is a finite number of units in the simulation while the queuing 
model assumes an infinite number. Units can be dispatched across region 
boundaries, and there is a "relocation" procedure that will temporarily 
reassign units to firehouses other than their home houses if protection in 
a region is too low [15]. 

The simulation has a set of incident types based on the number of units 
required by the incident and their service times. We were therefore able 
to designate the stages and stage durations of the incidents according to 
the structure of the queuing model. The simulation that had been con- 
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structed years before we carried out this validation exercise was clearly 
not designed with this test in mind. Its printed output reports did not in- 
clude the data we needed for the test. Fortunately, an output tape had 
been created from each simulation run that recorded the status of every 
fire-fighting unit at 15-minute intervals of simulated time. Using tapes 
from past simulation runs, we were able to create histograms of the num- 
ber of busy units. 

The output tapes from four simulation runs, each for a different alarm 
rate (5, 10, 20, and 30 alarms per hour), produced 24 sets of test data 
when engines were considered separately from ladders and the Bronx was 
considered as a whole as well as in two parts (north and south). For each 
of these data sets we estimated the parameters of the queuing model from 
the simulation data and then computed the "theoretical" distribution 
of the number of busy units. 

The results in each case were extraordinarily good. Plots of the theoret- 
ical frequencies and those produced by the simulation show a very close 
correspondence. Figures 5 and 6 are a sample of the results. We remark 
that although the fits are quite close "by eyeball," they fail the chi-square 
goodness-of-fit test. The reason is that the sample sizes are very large: 
they range from 430 to 2871 observations. However, the issue should be 
whether the fit is close enough for policy analysis purposes. We feel that 
these comparisons validate the model for the decision-making applica- 
tions for which the queuing model was created. 

5. CONCLUSIONS 

The four examples we have just discussed illustrate the use of simula- 
tion to develop and validate analytic models. The reason for doing so is 
to give the potential user of the analytic model confidence that it is a safe 
substitute for the more accurate simulation model. 

What are the advantages of analytic models over continued use of 
simulation models in these and other cases? In a narrow sense, the analytic 
models are cheaper to use. Calculations with a square-root model can be 
made using a desk calculator; the queuing models would require a few 
minutes at the terminal of a time-shared computer system. Thus, per- 
formance characteristics for a range of policy choices can be produced 
quickly for at most a few dollars of computer time. In contrast, the simu- 
lation models would typically require several runs at perhaps $10 to $100 
each, and a turnaround time of several hours or days for each run. 

In a broader sense, the analytic models offer even more substantial 
advantages. Two of the most important are: 

1. They can be imbedded in other models. For example, the square-root 
model is an integral part of procedures for choosing the number of 
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fire companies [18] and the number of police patrol cars [5] to assign 
to different regions of the city. 

2. They require far less detailed input than simulation models, which 
saves both time and money. For example, the preparation of a simu- 
lation input tape for two months of police patrol activity (see Section 
1) in another precinct in New York or in another city might take 
several weeks. Abstracting the essential information needed for the 
M/M/N queuing model might take a few minutes if summary 
statistics on call for service and service times were available, as they 
often are. 
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