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Abstract

We develop a two sector general equilibrium model with capital accumulation and
convex adjustment costs. We use the model to study capital asset pricing and reallo-
cation, as well as optimal consumption and investment decisions. With two sectors,
the consumer balances diversification against the potential productivity and efficiency
gains of investing more heavily in one sector. The general framework nests and ex-
tends standard equilibrium macro-asset pricing models. We show conditions under
which aggregates are immune to the distribution of capital and in contrast, when the
distribution becomes crucial for both sectoral and aggregate values.

Applications of the framework highlight the importance of heterogeneity and capital
liquidity - the ability to reallocate capital - for economic growth and asset pricing.
Misallocated capital creates risk and reduces utility, but correcting it through capital
reallocation reduces efficiency and growth.
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1 Introduction

Economic fluctuations often begin in a distinct sector, and then propagate throughout the

economy. Yet equilibrium models in macro and finance typically assume a single representa-

tive firm, as in Cochrane (1991), emphasizing the equilibrium response to aggregate shocks

and de-emphasizing distribution and propagation. Existing models that incorporate multi-

ple sectors assume either that capital is perfectly liquid and can be reallocated frictionlessly,

as in Cox, Ingersoll, and Ross (1985, hereafter CIR), or that capital is completely illiquid and

fixed, as in Lucas (1978) and multisector versions by Santos and Veronesi (2006), Cochrane,

Longstaff, and Santa Clara (2008, hereafter CLS), and Martin (2009). When capital is

perfectly liquid as in CIR, Tobin’s q is one at all times and heterogeneity plays no role in

equilibrium. When capital is completely illiquid as in CLS, investment is zero at all times.

We model capital reallocation and asset pricing jointly in a general equilibrium model with

two sectors. In our model, investment drives both Tobin’s q and the distribution of capital;

these results fundamentally differ from both CIR and CLS due to the costly reallocation of

capital. Moreover, we show conditions under which the aggregate economy is immune to

the multi-sector structure, and also demonstrate circumstances in which the cross-section

distribution of capital is crucial for both aggregate quantities and pricing.

We use convex capital adjustment costs to capture illiquidity. We show that the distri-

bution of capital is the single state variable determining equilibrium capital reallocation and

asset pricing in our framework. We first develop a baseline case, with log utility and two ex

ante identical sectors, to establish analytic findings in a simple benchmark case. Then, we

extend the model to a more general non-expected utility framework and allow for asymmetry

between the two sectors.

When the two sectors are ex ante identical, the economy tends toward a symmetric

equilibrium, where the two sectors are of equal size and the consumer achieves maximum

diversification and utility. With log utility, there is little variation in aggregate variables,

regardless of the distribution of capital. Indeed, we demonstrate a case where the immunity

of aggregates to the distribution of capital is analytically exact. Nonetheless, the interest rate

is higher in the symmetric capital distribution, since the consumer must be induced to save

despite being well-diversified. Within the sectors, there is substantial impact of the capital

distribution. In particular, as one sector becomes small, its investment rate skyrockets
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- not because its marginal returns increase (we have constant-returns-to-scale), but rather

because its cost of capital falls. This occurs because the small sector becomes virtually risk-

free, and retaining the small sector and its potential for diversification becomes extremely

valuable. This result demonstrates another advantage of the two-sector framework: even

in the small sector case, where the sector has a negligible feedback to equilibrium variables,

the presence of the equilibrium affects sectoral decisions. We can therefore gauge the

importance of general equilibrium on the results, by scaling from a negligibly small sector that

approximates “partial equilibrium” to a single dominating sector that equates to standard

one sector general equilibrium analyses.

These baseline results interweave two disparate strands of work on reallocation. With-

out adjustment costs, reallocation of capital achieves diversification costlessly, as in Obstfeld

(1994) in an international context. However, the benefits of diversification are counter-

balanced by any costs of reallocation. Eisfeldt and Rampini (2006) emphasize the costs of

reallocation, showing in a quantiative setting that these costs must be time-varying and coun-

tercyclical in order to generate the observed pattern of capital reallocation. In our model,

the cost of reallocation varies endogenously, generating large shifts in sectoral investment

(e.g., as described above for a small sector) and reallocation of capital.

With the general framework in place, we first demonstrate the importance of adjustment

costs for both growth and asset pricing. A high cost of reallocating capital acts as a tax

on savings, so high adjustment costs deter savings, instead promoting consumption, and

dampening growth. Asset prices rise with adjustment costs because the rents to installed

capital are higher, but the rates of return to capital investment are lower. These results give

a hint of our findings when liquidity varies endogenously, expanding upon these comparative

static results.

When we extend beyond log utility or allow for asymmetry, the effect of the capital

distribution becomes more pronounced - even for aggregate variables. With higher risk

aversion, when the household is less diversified because of an unbalanced distribution of

capital, the household responds by adjusting the consumption-savings decision: saving more

and consuming less. This raises investment and growth, but also results in higher risk

premia and expected returns, so asset prices fall. Hence, the distribution of capital affects

both economic growth and asset prices.
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Similarly, when the sectors are not ex ante identical, and the two sectors have different

adjustment costs (so that one is more liquid than the other), shocks to the distribution of

capital affect the overall liquidity of the economy. When some of the economy’s liquid

capital is destroyed, even while liquid capital is rebuilt, aggregate investment and growth

decline. The interest rate falls because the consumer has a greater incentive to save in

the illiquid economy. The risk premium for liquid capital falls, but the risk premium on

illiquid capital rises. Because the overall economy is now more illiquid, the aggregate risk

premium rises and so does aggregate return volatility. Interestingly, changes in liquidity

cause investment and Tobin’s q to move in opposite directions: higher liquidity increases

investment even while Tobin’s q declines.

Our findings convey both the importance of heterogeneity and also caution about model-

ing heterogeniety. Initially, with symmetry and log utility, we establish a benchmark where

the two sectors show interesting internal dynamics but have quantitatively small effects on

the aggregate. However, when we depart from log utility or allow for asymmetry, the ag-

gregate effects are substantial. First, even in the symmetric case, higher risk aversion (we

consider risk-aversion as high as four), the endogenous response of savings to an undiversified

economy causes investment and growth to depend on the distribution of capital. Moreover,

this generates a higher value of capital that is reflected in higher asset prices and lower rates

of return. With ex ante asymmetry between the two sectors, changes in the distribution

of capital determine the overall liquidity in the economy. These endogenous compositional

changes in liquidity drive investment and growth, as well as asset prices and rates of return.

We develop the framework by first presenting a benchmark version of the model with

log utility and ex ante identical sectors, to establish notation and baseline results. We

explore this model analytically and then derive numerical results for a case with quadratic

adjustment costs. In Section 5, we extend the model to allow for non-expected utility and

asymmetric sectors. We show first how changing adjustment costs and risk aversion affects

the aggregate and sectoral results. Then, we allow for ex ante asymmetry between the two

sectors and show how this generates endogenous changes in the liquidity of the economy, as

well as the impact on equilibrium quantities and prices allowing for different values of the

elasticity of intertemporal substitution.
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2 Baseline Model

Consider an infinite-horizon continuous-time production economy. There are two productive

sectors in the economy, sectors 0 and 1. We introduce the model in this section with the

case where the two sectors are symmetric. Hence, functional forms and parameter values

are not sector specific, but random variables are. We allow for sector asymmetry in the

general formulation of Section 5. Let Kn, In, and Yn denote the representative firm’s capital

stock, investment and output, respectively, in sector n, where n = 0, 1. The representative

firm in each sector has an “AK” production technology:

Yn(t) = AKn(t) , (1)

where A > 0 is a constant. Capital accumulation is given by

dKn(t) = Φ(In(t), Kn(t))dt+ σKn(t)dBn(t) , (2)

where σ > 0 is the volatility parameter, and the function Φ(In, Kn) measures the effective-

ness of converting investment goods into installed capital. In this section, we assume the

correlation between the Brownian motions B0 and B1 is zero. Shocks appear in the capital

accumulation dynamics (2) as in CIR and the endogenous growth models in macroeconomics

(e.g., see the handbook chapter by Jones and Manuelli (2005)). Similarly, Dumas (1992) con-

siders shocks to allocations in a two-country model with linear adjustment (shipping) costs.

As in Hayashi (1982) and Jermann (1998), we assume that the adjustment technology in each

sector is homogeneous of degree one in I and K, so we can write the installation function as

follows:

Φ(In, Kn) = φ(in)Kn, (3)

where in ≡ In/Kn is the investment-capital ratio in sector n. We require φ′( · ) > 0 and

φ′′( · ) ≤ 0. Our model nests frictionless “AK” models (such as CIR and Jones and Manuelli

(2005)) as special cases.1 In an earlier paper, Eberly and Wang (2009), we use this specifi-

cation in a deterministic model to examine the effects of capital reallocation on growth.

A representative consumer has a logarithmic utility given by:

E
(∫ ∞

0

e−αtα lnC(s) ds

)
, (4)

1Kogan (2004) considers a two sector model in which investment in one sector is irreversible (bounded
below by zero) and also bounded above. This is a special case of convex adjustment costs, applied to one
sector.
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where α > 0 is the subjective discount rate. We consider the more general recursive utility

formulation in Section 5. The consumer is endowed with financial claims on the aggregate

output from both sectors in the economy. Markets are complete.

Now consider the market equilibrium. The representative consumer chooses his consump-

tion and a complete set of financial claims to maximize (4). The representative firm in each

sector takes the equilibrium stochastic discount factor as given and maximizes firm value.

All produced goods are either consumed or invested in one or the other of the two sectors,

so the goods-market clearing condition holds:

C = Y0 + Y1 − I0 − I1. (5)

In equilibrium, the representative consumer holds his financial claims on aggregate output

in both sectors. Using the standard results in complete-markets competitive equilibrium

analysis, we obtain the equilibrium allocation by solving a central planner’s problem and

then decentralize the allocation using the price system. Details are included in the appendix.

3 Model Solution

We first summarize the model solution for the one-sector economy. Then, we solve the

allocation in the two-sector economy using the one-sector solution as the natural boundary

condition.

3.1 The one-sector economy

The one-sector economy serves as a benchmark and also is the solution to the model in the

extreme case where all capital is invested in one sector. In this case, the sectoral capital stock

is the aggregate capital K, which is the single state variable in this economy. The equilibrium

of the one-sector economy features stochastic growth, where the stochastic growth rates of

consumption, investment, and capital, and output are all equal. Moreover, these growth

rates are independently and identically distributed. Therefore, after scaling by capital,

the consumption-capital ratio c = C/K, investment-capital ratio i = I/K, and Tobin’s

q are all constant. For logarithmic utility, the first-order condition (FOC) with respect to

consumption gives c = αq, where q is the firm value-capital ratio, also referred to as average q
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or Tobin’s q. The FOC with respect to investment directly links Tobin’s q to the investment-

capital ratio i: q = 1/φ′(i). The FOCs for consumption and investment together with goods

market clearing condition (investment equals saving, i.e. A − c = i) jointly determine the

optimal investment-capital ratio as the solution to the equation (A − i)φ′(i) = α. The

equilibrium interest rate r is given by r = α+ φ(i)− σ2, the sum of the subjective discount

rate α and the expected growth rate φ(i), minus the standard precautionary saving term

for logarithmic utility. The expected return of a financial claim on aggregate output is

µm = α+φ(i) implying that the aggregate risk premium is equal to σ2. The CIR model is a

special case with q = 1 because capital is perfectly liquid (no adjustment cost, i.e. φ′(i) = 1).

In the appendix, we show that the representative consumer’s value function is J(K) =

ln(pK), where

p = (A− i) exp

[
1

α

(
φ(i)− σ2

2

)]
, (6)

and where i solves (A− i)φ′(i) = α. See the appendix for details. The constant value p will

help to determine the boundary conditions for a one-sector economy.

3.2 The two-sector economy

With two sectors, the natural state variables in the model are the capital stocks in the two

sectors. By exploiting the homogeneity properties of the model, the effective state variable

is the relative size of capital stocks in the two sectors, defined by

z ≡ K1

K0 +K1

, (7)

the ratio between sector-1 capital K1 and the aggregate capital (K0 + K1). Since physical

capital is non-negative, we have 0 ≤ z ≤ 1.

Let i denote the aggregate investment capital ratio: the ratio between aggregate invest-

ment (I0 + I1) and aggregate capital (K0 +K1), so that i ≡ (I0 + I1)/(K0 +K1). Using the

definitions of z and sectoral in, we have

i(z) = (1− z) i0(z) + zi1(z). (8)

Scaling the goods-market equilibrium market condition in equation (5) implies

c(z) + (1− z)i0(z) + zi1(z) = A0(1− z) + A1z. (9)
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3.2.1 Investment and endogenous growth

Adjustment costs drive a wedge between gross investment I and expected change in the cap-

ital stock in the economy Φ(I,K). The function Φ(In, Kn), which controls the effectiveness

of converting investment goods into installed capital, allows for both depreciation, so that

there is a difference between gross and net investment, and also investment adjustment costs

so that investment goods are used up in the installation process. The expected growth

rate φ(i) of capital nets out both depreciation and installation costs, so that the growth

in the capital stock is less than both gross investment i and the traditional notion of net

investment.

Let gn(z) denote the expected growth rate of capital in sector n. Using (2), we have

gn(z) = φ(in(z)), which differs from sectoral gross investment in(z). Let g(z) denote the

expected growth rate of aggregate capital (K0 +K1). We thus have

g(z) = (1− z) g0(z) + zg1(z). (10)

The concavity of φ(i) implies g(z) ≤ φ(i(z)). When z = 0, 1, the equality holds. Intuitively,

ceteris paribus, the expected growth rate g(z) is lower in a two-sector economy than the

corresponding one-sector economy, since both sectors incur convex adjustment costs.

3.2.2 Endogenous capital reallocation

The equilibrium dynamics of z are given by:

dzt = µz(zt)dt+ σzt(1− zt) (dB1(t)− dB0(t)) , (11)

where the drift µz(z) is given by

µz(z) = z(1− z)
[
g1(z)− g0(z) + (1− 2z)σ2

]
. (12)

Note that the volatility of dz is a quadratic function in z which attains its highest value at

z = 1/2 and becomes zero at z = 0, 1 (i.e. the one-sector economy is absorbing), as in the

two-tree pure exchange model of CLS. More interestingly in our model, the drift µz depends

on g1(z) − g0(z), the difference between the endogenous capital growth rates in the two

sectors. The larger this difference, the more capital reallocation occurs in equilibrium. This

component of growth, induced by the wedge between sectoral growth rates, fundamentally
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differentiates the results in our model from CLS. The sectoral growth rates will endogenously

differ between the two sectors because of the “imbalance” between the two capital stocks

(i.e. z 6= 1/2) even when the two sectors have the same technology.

3.2.3 Investment and Tobin’s q

We now turn to investment and the valuation of capital. The FOC for i1(z) is given by:

α

φ′(i1(z))
= c(z)

(
1 + (1− z)

N ′(z)

N(z)

)
, (13)

where N(z), the log of the value function (per unit of aggregate capital), is given in the

appendix. A similar first-order condition holds for i0(z) and is also in the appendix. Let

Vn(Kn; z) denote firm value in sector n. Using the homogeneity property, we have

Vn(Kn; z) = qn(z)Kn, n = 0, 1, (14)

where Tobin’s q in sector n is given by

qn(z) =
1

φ′(in(z))
. (15)

Intuitively, the capital stock increases by φ′(in) per marginal unit of investment. Each unit

of capital is valued at qn(z) Therefore, the firm optimally chooses in to equate φ′(in(z))qn(z)

to unity, the cost of investment.

The market value of aggregate capital is V (z) = V0(z) + V1(z) = q(z)(K0 + K1), where

Tobin’s q for the aggregate capital stock is given by

q(z) = (1− z)q0(z) + zq1(z) . (16)

3.2.4 Consumption and dividend yield

With complete markets and log utility, the aggregate consumption-wealth ratio C(z)/V (z)

is equal to the discount rate α, or equivalently c(z) = αq(z), as we noted in the one-sector

setting. While the aggregate dividend yield (i.e. consumption/wealth ratio) is constant and

equal to the discount rate α, the sectoral dividend yield dyn is stochastic and is given by

dyn(z) =
A− in(z)

qn(z)
, n = 0, 1. (17)
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The above formula implies that sectoral dividend yield can be negative if in(z) > A. Unlike a

one-sector model, the sectoral dividend yield can be negative when the consumer’s investment

incentive is high for that sector. We show that this negative dividend yield may indeed occur

when that sector is small and provides large diversification benefits.

4 An Exercise with Log Utility and Quadratic Adjust-

ment Costs

Up to now, none of our results depend on the particular functional form of adjustment costs,

φ(i). To further illustrate the properties of the model, we now specify a quadratic adjustment

cost function as follows:

φ(i) = i− θ

2
i2 − δ , (18)

where θ ≥ 0 is the adjustment cost parameter. When θ = 0, the expected growth rate of

capital is φ(i) = i − δ. We may naturally interpret δ as the expected rate of depreciation

in the special context without adjustment costs. By specifying the functional form, we first

obtain additional analytic solutions, and then solve the model numerically.

In the appendix, we show that the equilibrium consumption-capital ratio c(z) is given by

c∗(z) =
1

2

(
A− 1

θ

)
+

1

2

√(
A− 1

θ

)2

+ 4
α

θ

[
(1− z)2

L0(z)
+

z2

L1(z)

]
(19)

where the functions L0(z) and L1(z) are defined as:

L0(z) = (1− z)

[
1− zN

′(z)

N(z)

]
, (20)

L1(z) = z

[
1 + (1− z)

N ′(z)

N(z)

]
. (21)

Note that L0(z) + L1(z) = 1. The investment-capital ratios i0(z) and i0(z) are given by

i∗0(z) =
1

θ

[
1− α

c∗(z)

(
1− zN

′(z)

N(z)

)−1
]
, (22)

i∗1(z) =
1

θ

[
1− α

c∗(z)

(
1 + (1− z)

N ′(z)

N(z)

)−1
]
. (23)

Note that c(z), i0(z), and i1(z) are all explicit functions of N(z) and its derivatives. Using

these explicit expressions for decision rules, we obtain the following ODE for N(z):

0 = α ln

(
c∗(z)

N(z)

)
+ φ(i∗0(z))L0(z) + φ(i∗1(z))L1(z)− γσ2

2

[
L0(z)2 + L1(z)2

]
+ σ2M(z) , (24)
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where L0(z) and L1(z) are given in (20) and (21), respectively, and

M(z) =
z2(1− z)2N ′′(z)

N(z)
. (25)

We can obtain N(z) by solving the ODE (24) with the boundary conditions

N(0) = N(1) = p = (A− i) exp

[
1

α

(
φ(i)− σ2

2

)]
, (26)

where the constant value p is given in (6) and the optimal one-sector i = I/K is given by

i =
1

2

A+
1

θ
−

√(
A− 1

θ

)2

+
4α

θ

 . (27)

Our production model features endogenous growth and has direct implications for the

levels of the interest rate r(z) and the the expected return on the market portfolio µm(z),

but not the systematic risk σ2
m(z) and the risk premium rpm(z).

The sectoral distribution of capital, z, is the key state variable. Adjustment costs makes

z potentially slow moving as seen from (12). Moreover, the persistence of z induced by

adjustment costs expose the consumer to more sector-specific risk, ceteris paribus. The only

case in which prices are unaffected by the allocation of capital is at the absorbing boundaries

when z = 0, 1, or when the adjustment costs are arbitrarily small.

4.1 Sectoral distribution of capital z and the value function

Recall that the production and adjustment technologies in the two sectors are identical.

Despite the identical technologies, the two sectors price investment differently and carry

different risk premia because of differences in their capital stocks, even with constant-returns-

to-scale production.

We choose model parameters to generate sensible aggregate predictions and to highlight

the impact of endogenous investment and growth on equilibrium pricing and capital real-

location. The annual subjective discount rate is α = 0.04. Annual volatility is σ = 0.10

and the annual productivity parameter is A = 0.10. Finally, we choose the adjustment cost

parameter θ = 10 and δ = 0. The correlation coefficient ρ = 0. In the one-sector economy

(i.e. z = 0, 1), we have i = 0.0368, q = 1.58, and g = φ(i) = 0.03. The equilibrium one-

sector interest rate is r = 0.06% which tends to be high due to high precautionary saving.
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The equilibrium risk premium is 1% because of low risk aversion (γ = 1) and low volatility

(σ = 10%).

Figure 1 has six panels, arranged in 3 rows and 2 columns. The upper left panel of

Figure 1 shows N(z), the logarithm of the representative consumer’s value function per unit

of aggregate capital (K0 + K1), as a function of z = K1/(K0 + K1). Intuitively, we expect

that N(z) is maximized at z = 1/2, where the consumer achieves the maximally attainable

level of diversification between the two sectors.

The upper right panel of Figure 1 plots the drift of z, µz(z) given in equation (12). There

is a natural tendency for z to move towards the center (i.e. when z < 1/2, µz(z) > 0 and

hence on average z increases towards 1/2.) This mean reversion effect of µz(z) in z is also

present in CLS due to the definition of z. Unlike CLS, however, the “central tendency” is

stronger in our production economy due to endogenous investment and growth. Controlling

for size (that is, per unit of capital), the consumer has greater demand for the smaller sector,

and hence invests more per unit of capital, ceteris paribus. For example, when 0 < z < 1/2,

sector 1 is the smaller one, so the firm invests and grows at a faster rate, and i1(z) > i0(z)

and g1(z) > g0(z). The flexibility to adjust capital growth enhances the “central tendency”

of µz(z) due to endogenous growth. In contrast, in the CIR model with no adjustment costs

and hence unit marginal q, the economy frictionlessly responds to shocks and shifts capital

between two sectors, always maintaining half of its capital stock in each sector.

4.2 Aggregate implications on quantities and prices

In the mid left and right panels of Figure 1, we plot the aggregate investment capital ratio

i(z) and the aggregate Tobin’s q as functions of z. Note that neither i(z) nor q(z) are

monotonic in z.

The symmetry between the two sectors allows us to focus on the region 0 ≤ z ≤ 1/2.

First, aggregate investment i(z) decreases with z due to the adjustment cost. After reaching

the lowest value at around z = 0.10, investment i(z) starts to increase with z until it

peaks at z = 1/2. Intuitively, when z is close to zero (i.e. sector 1 is effectively the only

one), diversification has little value added, but the adjustment costs of having two sectors

may be high. Aggregate investment therefore falls. However, for sufficiently high z, the

diversification benefits outweigh the costs of adjusting capital stock. As a result, aggregate
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Figure 1: Aggregate results (log utility).
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investment increases and peaks again at z = 1/2.

Perhaps surprisingly, aggregate Tobin’s q moves in the opposite direction of aggregate

investment i(z) due to general equilibrium. With logarithmic utility, consumption is pro-

portional to firm value, i.e. c(z) = αq(z), where α is the agent’s subjective discount rate.

In equilibrium with symmetry, we have c(z) + i(z) = A. Therefore, a unit increase in i(z)

implies a unit decrease in c(z) and hence Tobin’s q decreases α units. Aggregate consump-

tion c(z) and hence q(z) first increase with z and then falls with z for z ≤ 1/2. Therefore,

our model predicts a negative (or weak) relation between i and q in aggregate data, even

though the neoclassic q theory of investment hold perfectly in the model. Heterogeneity and

equilibrium aggregation have first-order effects and potentially overturn the conventional

wisdom. However, for the illustration, the quantitative effects of sectoral distribution z on

aggregate investment are small. This is due to both consumption smoothing2 and the in-

vestment adjustment cost which encourages the firm to smooth its investment. In fact, we

show in Eberly and Wang (2009) in the deterministic case, and extend to uncertainty in the

appendix, that aggregate values are immune to the sectoral distribution of capital in the

case with log utility and log capital installation costs. Deviations from these assumptions

exhibit larger distributional effects, which we explore when we depart from the log utility

case in Section 5 and subsequent analysis.

Next, we turn to the asset pricing implications. In the bottom left and right panels of

Figure 1, we plot the expected return of the market portfolio (aggregate wealth), µm(z), and

the equilibrium interest rate r(z).

The expected return on the market portfolio, µm(z), closely tracks the expected aggregate

investment i(z) and aggregate growth rate g(z). This is consistent with the standard asset

pricing result that growth increases the expected rate of return on the risky asset. Its shape

again resembles a “W” as a function of z.

The risk-free rate r(z) depends on both the expected growth rate of aggregate consump-

tion and the volatility of aggregate consumption growth. Quantitatively, the precautionary

saving motive, measured by the variance of the market portfolio σ2
m(z), varies much more

with z than does aggregate growth. Hence, the precautionary motive determines the depen-

dence of the equilibrium interest rate on z. Note that r(z) reaches its maximum at z = 1/2,

2For log utility, the wealth effect offsets the substitution effect.
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where diversification achieves the highest possible level and precautionary saving demand

is lowest. A high interest rate is necessary to encourage saving in equilibrium when the

economy is well-diversified and the precautionary saving motive is weak.

4.3 Sectoral implications

The next set of figures shows sectoral values; in each panel we graph results for sector 1 only

for brevity since results are symmetric for sector 0. The top left and right panels of Figure

2 respectively plot the investment-capital ratio i1(z) and Tobin’s q in sector 1.

Sectoral investment and q. Recall that Tobin’s q in sector 1 is given by q1 (z) =

1/φ′(i1(z)) = [1− θi1(z)]−1. Therefore, Tobin’s q is monotonically increasing in its sectoral

investment-capital ratio and hence Tobin’s q and investment convey essentially the same

information for a given adjustment cost function. Note that both investment-capital ratio

i1(z) and Tobin’s q, q1(z), decrease before z reaches 0.80. Sectoral Tobin’s q and investment

capital ratio i become significantly larger as the sector becomes smaller, because the con-

sumer values the smaller sector more for diversification benefits, ceteris paribus. Recall that

there are constant-returns-to-scale in production, so this relationship between q and sector

size is not due to decreasing marginal returns in production. Rather, the diversification ben-

efits of keeping the small sector “alive” with the potential to grow are very valuable. Upon

vanishing, the sector will never be reborn, and the economy (with only the one surviving

sector) will be significantly riskier thereafter.

Note that i1(z) and q1(z) increase with z for sufficiently high z. The representative

agent’s consumption smoothing motive in equilibrium requires consumption and hence ag-

gregate investment to be relatively smooth and not too volatile. When sectors are sufficiently

imbalanced, the contribution by the dwindling sector to total investment is negligible. Hence,

to maintain a sufficient level of aggregate investment for the purpose of consumption smooth-

ing, the investment-capital ratio in the larger sector (i.e. sector 1 when z is high) must rise

as its share z increases. This explains the increasing behavior of the investment-capital ratio

i1(z) and Tobin’s q in z at the right side of the graph.

Sectoral risk premium and dividend yield. The mid left and right panels of Figure

2 graph the sectoral risk premium rp1(z) and dividend yield dy1(z). The risk premium of a
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Figure 2: Sectoral implications (log utility).
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miniscule sector is effectively zero, because this sector carries almost no weight in aggregate

consumption, and the correlation ρ between the two shocks is zero. The same intuition

applies in the pure-exchange economy (e.g. CLS). Recall that the interest rate is lowest

at z = 0 and z = 1, therefore, the discount rate, the sum of the interest rate and the

risk premium, for a sector is lowest when it is vanishing. Intuitively, in equilibrium, the

preferences for consumption smoothing and risk diversification lower the risk premium and

the discount rate for the shrinking sector. Since the physical production technology remains

unchanged, the vanishing sector invests at the highest rate i1(0) to take advantage of its

lowest cost of capital.

To finance this high level of investment around z = 0, the firm lowers its dividend yield.

The dividend yield for the dwindling sector is positive in our example. However, for other

parameter values, the firm may choose to issue equity and hence the dividend yield may be

negative. Tobin’s q reaches the maximal level q1 (0) at z = 0 despite the low dividend yield.

Note that the high valuation of capital for the vanishing sector is primarily driven by the

discount rate effect induced by diversification benefits. Unlike the aggregate dividend yield,

which is equal to the subject discount rate α for log utility, the sectoral dividend yield varies

significantly with z.

Sectoral β and volatility. We now turn to sectoral risk measures. In the bottom left and

right panels of Figure 2, we plot β and return volatility σr1(z) in sector 1. The β for sector

1 is given by

β1(z) =
σ

(σm(z))2

[
σm1 (z) + (σm1 (z)− σm0 (z)) z(1− z)

q′1(z)

q1(z)

]
, (28)

where σm0 (z) and σm1 (z) are given by

σm0 (z) =
σ0(1− z)

q(z)

[
q0(z)− z(1− z)q′0(z)− z2q′1(z)

]
, (29)

σm1 (z) =
σ1z

q(z)

[
q1(z) + (1− z)2q′0(z) + z(1− z)q′1(z)

]
. (30)

The non-monotonic behavior of β can be understood by considering several benchmarks.

First, zero risk premium for the disappearing sector implies β1(0) = 0. Second, with increases

in the share of capital z, more consumption is financed out of sector-1’s output and hence

β1(z) rises. Third, β(1/2) = 1, which follows from symmetry between the two sectors and
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β = 1 for the market portfolio by definition. When z increases above 1/2, β1(z) exceeds

one, because the other sector becomes smaller and carries smaller β (again by symmetry).

Therefore, the bigger sector is riskier, ceteris paribus. Finally, when the sector becomes

sufficiently large (i.e. low enough z), β has to fall as the sector becomes effectively the market

portfolio, which has β = 1 by definition. Indeed, in the limit, when sector 1 comprises the

whole economy (z = 1), β1 = 1.

Now consider return volatility for sector 1, σr1(z). We have

σr1(z) = σ

√(
q′1(z)

q1(z)
z(1− z)

)2

+

(
1 +

q′1(z)

q1(z)
z(1− z)

)2

. (31)

While σr1(z) also varies non-monotonically with z, its behavior is rather different from β1(z).

At z = 0, β1(z) is zero and hence all return volatility comes from the idiosyncratic component

because the sector carries no weight in the aggregate. Since total return volatility is the same

as capital stock growth volatility σ for the miniscule sector, we have σr1(0) = σ = 0.10. When

z = 1, sector 1 is the whole economy and hence the aggregate volatility is also σ = 10%. It

is thus natural to expect a non-monotonic relation between sectoral return volatility σr1(z)

and sectoral distribution of capital stock z.

5 Equilibrium with Recursive Utility and Asymmetry

We now extend our baseline model to allow for more flexible preferences and sectoral asymme-

try. Specifically, we consider the setting where the representative consumer has a homothetic

preference featuring both constant relative risk aversion and constant elasticity of intertem-

poral substitution (Epstein and Zin (1989) and Weil (1990)). We use the continuous-time

formulation of this recursive utility introduced by Duffie and Epstein (1992a). That is, the

agent’s has a recursive preference defined as follows:

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
, (32)

where f(C, J) is known as the normalized aggregator for consumption C and the agent’s

continuation value J . Duffie and Epstein (1992a) show that f(C, J) for Epstein-Zin non-

expected (homothetic) utility is given by

f(C, J) =
α

1− ψ−1

C1−ψ−1 − ((1− γ)J)ω

((1− γ)J)ω−1
, (33)
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where

ω =
1− ψ−1

1− γ
. (34)

The parameter ψ ≥ 0 measures the elasticity of intertemporal substitution, and the pa-

rameter γ ≥ 0 is the coefficient of relative risk aversion. The parameter α > 0 is the

entrepreneur’s subjective discount rate. The widely used time-additive separable constant-

relative-risk-averse (CRRA) utility is a special case of the above Duffie-Epstein-Zin-Weil

recursive utility specification where the coefficient of relative risk aversion γ is equal to the

inverse of the elasticity of intertemporal substitution ψ, i.e. γ = ψ−1 and hence ω = 1.

For the general recursive utility given in equations (32) and (33), the scale-invariance

property proves useful in keeping our model analysis tractable (see Duffie and Epstein (1992b)

for example). Using this preference, we can quantify both the effect of intertemporal substi-

tution and that of risk aversion on equilibrium resource allocation and asset pricing.

5.1 One-sector Economy

The one-sector economy defines the boundaries of the two-sector economy as one sector’s

capital stock shrinks to zero. We now allow for sector-specific values of sectoral parameters,

so that the two sectors need not be ex ante identical. The one-sector equilibrium investment-

capital ratio i∗n for sector n solves the following non-linear implicit equation:

An − i∗n =
1

φ′n(i∗n)

[
α + (ψ−1 − 1)

(
φn(i∗n)− γσ2

n

2

)]
. (35)

Note that the left side of (35) is also the equilibrium consumption-capital ratio. Note that in

equilibrium, the firm’s optimality implies that Tobin’s q is given by q∗n = 1/φ′n(i∗n). Therefore,

the marginal propensity to consume out of wealth C/V , i.e. the dividend yield on aggregate

wealth, is given by

dyn =
An − i∗n
q∗n

= α + (ψ−1 − 1)

(
φn(i∗n)− γσ2

n

2

)
. (36)

The equilibrium value function coefficient pn for a one-sector economy is given by

pn =
α

φ′n(i∗n)

[
1 +

ψ−1 − 1

α

(
φn(i∗n)− γσ2

n

2

)]1/(1−ψ)

. (37)
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5.2 Two-sector Economy

For two-sector economy, sectoral investment-capital ratios i0 and i1 jointly solve the following

implicit equations as functions of z = K1/(K0 +K1):(
c∗(z)

N(z)

)1/ψ

=
α

φ′0(i
∗
0(z))

1

N(z)− zN ′(z)
, (38)(

c∗(z)

N(z)

)1/ψ

=
α

φ′1(i
∗
1(z))

1

N(z) + (1− z)N ′(z)
, (39)

where c∗(z) is the optimal aggregate consumption-capital ratio: c∗(z) = C∗/(K0 + K1).

Naturally, the goods-market equilibrium market condition given in (9) continues to hold.

Equations (38), (39), (9) and the following ODE jointly give the solution for sectoral

investment-capital ratios:

0 =
α

1− ψ−1

[(
c∗(z)

N(z)

)1−ψ−1

− 1

]
+ φ0(i

∗
0(z))L0(z) + φ1(i

∗
1(z))L1(z)

− γ

2

[
σ2

0L0(z)2 + σ2
1L1(z)2 + 2ρσ0σ1L0(z)L1(z)

]
+
σ2

0 − 2ρσ0σ1 + σ2
1

2
M(z) , (40)

where L0(z), L1(z), and M(z) are given in (20), (21), and (25), respectively.

Both z = 0 and z = 1 are absorbing barriers. They correspond to the one-sector model

solution. The boundary conditions are

N(0) = p0, and N(1) = p1 , (41)

where pn is the value function coefficient for the one-sector economy, and is given by (37),

evaluated with parameters and the optimal investment-capital ratios in sectors 0 and 1.

Using Ito’s formula, the dynamics of z = K1/(K0 +K1), which govern endogenous capital

reallocation, are given by

dzt = µz(zt)dt+ zt(1− zt)σ1dB1(t)− zt(1− zt)σ0dB0(t) , (42)

where the drift of z, µz(z), is given by

µz(z) = z(1− z)
[
φ1(i1(z))− φ0(i0(z)) + (1− z)σ2

0 − zσ2
1 − (1− 2z)ρσ0σ1

]
. (43)
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5.3 Two-sector CIR Model

We next report the results for the setting with no adjustment costs in either sector, i.e.

φ′n(i) = 1 for n = 0, 1. Because capital is perfectly liquid, we have a time-invariant steady-

state sectoral capital distribution. That is, there is a single constant z which maximizes the

representative consumer’s welfare and is given by

z∗ =
(A1 − δ1)− (A0 − δ0) + γ (σ2

0 − ρσ0σ1)

γ (σ2
0 − 2ρσ0σ1 + σ2

1)
. (44)

Aggregate consumption-capital ratio c(z∗) is given by

c(z∗) = αψN(z∗)1−ψ , (45)

where N(z∗) is given by

N(z∗) = α [1 + (1− ψ) ((A0 − δ0) z∗ + (A1 − δ1) (1− z∗)− α− Π(z∗))]1/(1−ψ) , (46)

and

Π(z∗) =
γ

2

[
σ2

0(z∗)2 + 2ρσ0σ1z
∗ (1− z∗) + σ2

1(z∗)2
]
. (47)

6 Exercise with recursive utility: capital illiquidity

As in the baseline case, the analytic results with recursive utility are independent of the

functional form for adjustment costs, φn(i). In order to calculate quantitative results we

now use the baseline quadratic adjustment cost function:

φn(i) = i− θn
2
i2 − δn. (48)

We continue to use the parameter values we introduced in Section 4.1 for the baseline sym-

metric model with log utility.

To understand the role of capital liquidity, we now consider a comparative static change

in the efficiency of reallocating capital. In standard equilibrium models, this experiment

is not possible, since capital reallocation is either frictionless (CIR) or ruled out in pure-

exchange settings (CLS). In this section, we analyze the aggregate and sectoral effects of

changing the adjustment cost parameter θ. We choose three levels of the adjustment cost

parameters: θ = 10, 20, and 10, 000 for Figures 3-6. The higher the value of θ, the more
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illiquid is physical capital. The extreme value of θ = 10, 000 corresponds to essentially

completely illiquid capital. Without investment, the economy essentially behaves as a pure-

exchange economy (CLS). We set the agent’s coefficient of relative risk aversion γ = 2. All

other parameter values are the same as in Section 4.

The adjustment costs impose direct resource costs (hence lowering the welfare) and also

discourage savings and investment. The higher the adjustment cost parameter θ is, the lower

welfare N(z) is, and the higher consumption is. In fact, for the highest adjustment cost, the

consumer consumes virtually the entire dividend and does not save; in this case, no direct

resource costs are incurred at all, but the high adjustment cost gives rise to the misallocation

of resources.

6.1 Aggregate implications

Figures 3 and 4 plot aggregate implications for two settings where the elasticity of intertem-

poral substitution ψ is set at ψ = 0.5 and ψ = 2, respectively. We consider these two values

of elasticities because there is much debate about the magnitude of elasticity of intertempo-

ral substitution. In the macro finance literature (where long-run risk is a key input), a high

value of elasticity ψ is often chosen.3

First, we show that regardless of elasticity of intertemporal substitution, welfare N(z)

decreases with the adjustment cost. For a given θ, N(z) is higher when the sectors are more

balanced. Second, investment decreases with the adjustment cost and hence consumption

must increase with the adjustment cost in the short run: aggregate output is either invested

or consumed via dividends. Third, the higher the adjustment cost, the higher the rents to

installed capital and hence the higher is Tobin’s q.

Fourth, the higher the adjustment cost, the smaller is adjustment and thus on average

the smaller is magnitude of the change in z, |µz(z)|. When the adjustment cost is lower, the

consumer actively reallocates capital to drive the allocation of capital back to the optimal

value of z = 0.5, so the central tendency in Figures 3-4 is dramatically strengthened as

capital becomes more liquid, i.e. the adjustment cost declines. Fifth, the aggregate risk

3Bansal and Yaron (2004) argue that the elasticity of intertemporal substitution is larger than one and
use 1.5 in their long-run risk model. Attanasio and Vissing-Jorgensen (2003) estimate that the elasticity of
intertemporal substitution is higher than unity for stockholders. Hall (1988) uses aggregate consumption
data, obtains an estimate near zero. Using micro and macro evidence, Guvenen (2006) aims to reconcile the
different estimates and finds that the elasticity depends on wealth.
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Figure 3: Aggregate implications with risk aversion γ = 2 and elasticity ψ = 0.5.

22



0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15
N(z)

 

 
!=10
!=20
!=10000

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2
x 10−3 drift of z: µz(z)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06
aggregate investment−capital ratio: i(z)

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5
aggregate Tobin"s q: q(z)

0 0.2 0.4 0.6 0.8 1
0.005

0.01

0.015

0.02
aggregate risk premium: rp(z)

0 0.2 0.4 0.6 0.8 1
0.02

0.03

0.04

0.05

0.06
interest rate: r(z)

Figure 4: Aggregate implications with risk aversion γ = 2 and elasticity ψ = 2.
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premium rp(z) is virtually independent of the adjustment cost. This is perhaps counter-

intuitive. We provide intuition in two steps: first, with one sector only (i.e. z = 0, 1), this

is expected because the volatility of the shock to capital is exogenously given. Adjustment

costs enter via the expected change, i.e. the drift, in capital accumulation. This in turn

translates into the implication that only the drift µz(z), not the volatility, of the capital

stock share z (the key state variable), depends on the adjustment cost specification. Since

the risk premium depends on the volatility of z and the pricing kernel, we naturally do not

expect much variation of the aggregate risk premium with respect to the adjustment cost.

Moreover, for a given value of θ, the agent’s incentive to consume is highest when the two

sectors are more balanced because the systematic risk is smaller (due to diversification).

Finally, the adjustment cost has a significant effect on the level of the interest rate and

hence also the expected aggregate market return.4 Intuitively, the more liquid capital is, the

more attractive and hence the higher is investment. In order to clear the goods market, we

need to encourage the consumer to save so that investment can be financed. As a result,

the equilibrium interest rate is higher in a more liquid economy, as we see for both levels

of elasticities. This is often viewed as one undesirable effect of introducing production into

equilibrium asset pricing models because it pushes up the equilibrium interest rate.

6.2 Sectoral implications

Figures 5 and 6 plot the corresponding sectoral results for the same two settings, i.e. elasticity

of intertemporal substitution ψ is set at ψ = 0.5 and ψ = 2. In the low adjustment cost

economy, the incentive to save and reallocate capital is strong, and hence investment is

high at the sectoral level. This effect is also reflected in the lower value of Tobin’s q when

adjustment costs are low. When adjustment costs are so high as to prohibit investment

almost entirely, the value of Tobin’s q for a vanishing sector increases sharply, as the marginal

value of reviving the shrinking sector skyrockets.

The sectoral risk premium and sectoral β are almost independent of the adjustment costs

provided that the sector is not too small. However, when the sector is small enough (low

z for sector 1), the properties of the sectoral risk premium and β differ depending on the

elasticity of intertemporal substitution and the adjustment costs. In those situations, the

4This is because aggregate risk premium is effectively independent of the adjustment cost as we have
argued in the preceding paragraph and documented in Figures 3-4.
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Figure 5: Sectoral implications with risk aversion γ = 2 and elasticity ψ = 0.5.
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Figure 6: Sectoral implications with risk aversion γ = 5 and elasticity ψ = 2.
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diversification incentive is very strong.

With a relatively small elasticity of intertemporal substitution (e.g. ψ = 0.5), for low

values of z, the higher the adjustment cost is, the larger the sectoral risk premium and β

are. Intuitively, a more costly adjustment process makes the smaller sector riskier.

With a large elasticity of intertemporal substitution (e.g. ψ = 2), the representative

agent’s incentive to smooth consumption over time is very high. As a result, the value of

the dwindling sector skyrockets and investment increases substantially when the adjustment

cost is relatively low. Intuitively, if ψ is high (e.g. ψ = 2), for the dwindling sector, the

sensitivity of Tobin’s q with respect to changes in sectoral distribution z is quite high when

the adjustment cost is low. As a result, the sectoral risk premium and sectoral β are higher

in dwindling sectors when the adjustment cost is low.

7 Exercises: Recursive Utility with Quadratic Adjust-

ment Costs

In this section we continue to use the baseline quadratic adjustment cost function, and

explore the implications of changing risk aversion and asymmetric sectors. Otherwise, we

continue to use the parameter values we introduced in Section 4.1 for the baseline symmetric

model with log utility.

7.1 Varying Risk Aversion

Since diversification across the two sectors plays an important role in capital allocation in the

model, we now consider changing risk aversion in order to explore the quantitative impact

of risk. We already discussed the log utility case (γ = 1) in Figures 1 and 2, so now we

graph the results for different values of risk aversion, γ = 2, 5, holding the other parameters

of the model fixed. Since we have now developed the model with non-expected utility, we

hold the intertemporal elasticity of substitution, ψ, fixed and equal to one.

Aggregate implications. In Figure 7, we plot the aggregate implications of the model

with two values of risk aversion. In all cases, higher risk aversion lowers utility and raises

investment. Note, however, the greater curvature in utility as a function of z, the distribution

of capital, for higher values of γ. The more risk averse consumer responds more to changes in

the distribution of capital, which determine how well-diversified the household is. When his
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risk aversion is high, the consumer cuts consumption more as he becomes less diversified (z

closer to zero or one), and instead engages in more precautionary savings. The middle panel

of Figure 7 shows that this savings response translates into higher investment and growth

near the boundary values of z, compared to z = 0.5. This greater response of investment

to the distribution of capital increases the mean reversion in the model, evidenced in the

drift in z, µz(z). The higher is risk aversion, the greater is the central tendency in z. These

effects are also evident in the interest rate, which also shows more curvature in the high risk

aversion case. With higher risk aversion, the model also generates higher expected returns

and risk premia, consistent with the lower asset prices and investment, compared to the low

risk aversion case.

Sectoral implications. In Figure 8 we plot the sectoral implications for the model

for two different values of risk aversion. As in the aggregate case, the higher value of risk

aversion is associated with high investment and Tobin’s q in each sector, as well as a higher

risk premium. The dividend yield is lower when risk aversion is high because of the strong

investment response to higher risk aversion, depleting the dividend.

These results indicate that risk aversion, even for modest values of γ, substantially en-

hances the effect of the distribution of capital on aggregate variables. In particular, the

central tendency in the model is much stronger as risk aversion increases, since the consumer

is more sensitive to departures from the well-diversified economy. The enhanced central

tendency drives greater investment and growth for extreme values of z. As in the single

sector model, greater risk aversion increases risk premia, but lowers expected returns owing

to the lower interest rate resulting from greater precautionary saving. Hence, asset prices

rise with risk aversion in equilibrium.

7.2 Asymmetric sectors, Varying Risk Aversion

So far, we have only considered cases with two symmetric sectors, so the natural equilibrium

is maximum diversification at z = 0.5. Now we allow for the two sectors to have different

values of the adjustment cost parameter θ, so that one sector is relatively liquid and the

other illiquid; this allows us to examine shocks to liquidity, as the economy endogenously

moves between high and low liquidity with variation in z. In Figures 9 through 11, we plot
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Figure 7: Aggregate implications with different levels of risk aversion γ = 2, 5 and
elasticity ψ = 0.5.
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Figure 8: Sectoral implications with different levels of risk aversion γ = 2, 5 and
elasticity ψ = 0.5.

30



results for the model with θ0 = 10, and θ1 = 10, 000.5

Aggregate Implications. When z is low, sector 1 (the illiquid sector) is small and

the economy overall is relatively liquid. As z rises, the economy has more illiquid capital.

Now, the value function in Figure 9 achieves its maximum at a value of z less than 0.5,

since the consumer prefers to hold more of the relatively liquid capital. Because sector 1 is

completely illiquid, investment in this sector is always zero, so the drift in z must always be

negative (reflecting investment in sector 0, which reduces z), and there is more reallocation

for higher values of risk aversion. The middle panel of Figure 9 shows that investment

falls monotonically as z increases: as capital becomes less liquid on average, savings and

hence aggregate investment falls monotonically. Similarly, consumption rises monotonically

as z increases and capital is less liquid. Paradoxically, Tobin’s q rises with z as investment

falls. This effect is consistent with the fact that the value of installed capital rises as

adjustment costs generate rents to installed capital. Again, changes in liquidity cause

investment and Tobin’s q to move in opposite directions: higher liquidity (higher values of

z) increases investment while Tobin’s q declines. The bottom panel of Figure 9 shows that

the aggregate risk premium is highest when the economy is less-well-diversified, especially

for higher risk aversion. The interest rate reaches its peak to the left of z = 0.5, where it

is also relatively flat. In this region, the economy is very liquid so there is little change in

precautionary savings as z varies. On the right-hand side, however, where the economy is

illiquid, precautionary savings and hence the interest rate are more sensitive to changes in

z, especially for higher risk aversion.

Sectoral Implications. The next two figures, Figures 10 and 11, show the sectoral

values as functions of z in the economy; since the two sectors are no longer symmetric, we

now graph the two sectors separately. Figure 10 shows values for sector 1, the illiquid sector

with high adjustment costs. The first panel of Figure 10 shows that investment is always

near zero (because of the prohibitively high adjustment costs), so Tobin’s q varies with z,

especially as sector 1 becomes very large. The middle panel shows that the risk premium

in sector 1 tends to rise as that sector becomes a larger share of the economy, consistent

with our earlier discussion of the symmetric sectors. Since investment is zero for all values

of z, the dividend yield simply reflects the ratio of A to value, or the inverse of Tobin’s q.

5In our earlier paper, Eberly and Wang (2009), we studied asymmetric productivity, A, in a deterministic
setting.
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Figure 9: Aggregate implications with asymmetric sectors: θ0 = 10 and θ1 = 10, 000.
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Figure 10: Sector-1 implications with asymmetric sectors: θ0 = 10 and θ1 = 10, 000.

33



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2
sector−0 investment−capital ratio: i0(z)

 

 
!=2
!=5

0 0.2 0.4 0.6 0.8 1
0

50

100

150
sector−0 Tobin"s q: q0(z)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

sector−0 risk premium: rp0(z)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

sector−0 dividend yield: dy0(z)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
sector−0 beta: #0(z)

0 0.2 0.4 0.6 0.8 1

0.06

0.08

0.1

0.12
sector−0 volatility: $r

0(z)

Figure 11: Sector-0 implications with asymmetric sectors: θ0 = 10 and θ1 = 10, 000.
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Similar to what we saw in the symmetric case, the bottom panel shows that sectoral β rises

and then falls as sector 1 becomes larger.

Figure 11 for the liquid sector shows the properties of liquid capital in the model. The

first panel of Figure 11 shows that both investment and Tobin’s q in sector 0 rise with z,

as the economy becomes less liquid on average. In this example, as z approaches unity

and the liquid sector tends to disappear, the value of liquid capital (measured by Tobin’s

q) exceeds 100, since the agent places such a high value on resuscitating the liquid sector.

The second panel of the charts shows that the risk premium in the liquid sector does not

generally increase with the size of the sector, especially for higher risk aversion. As z rises

and sector 0 shrinks, its risk premium initially falls, as expected, but then it rises again

(before falling abruptly when the sector becomes insignificant), especially when risk aversion

is high. In the range where the liquid sector is a relatively small part of the economy, sector

0 is nonetheless the only sector with an “adjustable” capital stock. Thus, it buffers all

shocks (even shocks to the other sector) to provide consumption smoothing. This can be

seen in the bottom panel of the figure, where sector 0 volatility increases to the right of the

graph. Moreover, sector 0’s β also falls, and then increases again (before going to zero) as

sector 0 shrinks. Thus, as sector 0 becomes very small, the value of its capital (Tobin’s

q) shoots up because the overall cost of capital falls, but sector 0 itself becomes riskier and

more volatile.

This version of the model provides a useful lens to consider a shock to liquidity. A

negative shock to K0 destroys liquid capital and increases z. This shock causes the overall

economy to become less liquid: this is an endogenous change in liquidity in contrast to the

comparative static change in θ we considered in Section 6. Starting from z at its utility-

maximizing value, a negative shock to liquidity causes aggregate investment and growth

to decline, even though investment in liquid capital increases to rebuild the liquid sector.

The interest rate falls because the consumer has a greater incentive to save in the illiquid

economy. Interestingly, the risk premium for liquid capital falls initially (and may rise if z

becomes large enough), but the risk premium on illiquid capital rises. Because the overall

economy is now less liquid, the aggregate risk premium rises and so does aggregate return

volatility. This set of circumstances is remarkably like descriptions of a liquidity shock

during the recent financial crisis. In the model, the results are endogenously generated by

35



the equilibrium response to a relative scarcity of liquid capital.

8 Conclusion

We have developed an analytical framework that extends and nests standard equilibrium

models in macroeconomics and finance. The two sector structure allows us to consider both

ex ante and ex post heterogeneity. This is especially important in assessing the role of

equilibrium in aggregated models. By examining the dynamics of the model when one

sector is relatively small and has little impact on the aggregates, researchers can examine a

“partial equilibrium” exercise in an equilibrium setting. In the limit, as a sector becomes

an increasingly large share of the economy, our results converge to those of a single sector

equilibrium model - which provides the boundary conditions for our model. Similarly, by

allowing for investment with adjustment costs, we nest both the “two trees” approach of CLS

and the frictionless model of CIR, as adjustment costs go to infinity and to zero, respectively,

in our model. Not only does our framework allow for intermediate cases between CLS

and CIR, it also allows for asymmetric capital adjustment across the two sectors, which is

implicitly ruled out by both polar cases.

The model is driven by the tension between diversification and adjustment costs. The

agent is most diversified by a balanced capital stock, but maintaining this balance requires

incurring costs of reallocating capital. The efficiency cost of reallocating capital is a drag on

growth in the economy, so the agent gives up some efficiency and growth in order to diversify

risk.

After developing the general framework, we use it to demonstrate both when heterogene-

ity is not relevant in the aggregate and when it is - and for the latter case, how heterogeneity

affects the equilibrium. In the symmetric economy with log utility, the distribution of cap-

ital across sectors has very little effect on aggregate values. This immunity is exact when

the adjustment cost function is also log, as we show in a deterministic case in Eberly and

Wang (2009) and extend here to the stochastic case. However, even with quadratic adjust-

ment costs, the distributional effects are negligible when the utility function is log. When

we depart from log utility, greater risk aversion generates a much larger consequence of the

distribution of capital.

Even in the benchmark case, the two sector economy exhibits endogenous capital real-
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location. The desire for diversification generates mean reversion in the capital distribution,

counterbalanced by costs of adjustment, so reallocation is slow and time-varying. For ex-

ample, when a sector is small, the desire to invest and restore diversification is very large.

Conversely, the cost of capital is very low because the sector is virtually risk-free. Hence,

Tobin’s q and investment are very large in the dwindling sector, and the dividend yield may

be negative, even with constant-returns-to-scale in production and identical technologies in

the two sectors.

When risk aversion is higher, the economy is more sensitive to the distribution of capital,

exhibiting greater reallocation and greater price variation at both the aggregate and sectoral

levels. These results are further enhanced when liquidity differs between the two sectors,

so that one sector has relatively liquid (low adjustment cost) capital. In this case shocks

to the distribution of capital change both diversification and liquidity in the economy. In

particular, a low-liquidity economy is both undiversified and faces costly rebalancing, so the

agent is especially sensitive to risk.

These results demonstrate the impact of shifting the balance between risk diversification

and costly reallocation. Higher risk aversion focuses on the value of diversification, while

altering the reallocation technology changes the costs of moving capital in the desired di-

rection. Because liquidity is valuable in a stochastic economy, the more so the higher is

risk aversion, these shifts significantly alter the dynamic equilibrium prices and quantities.

Put differently, shocks in the model can unbalance the desired ”match” of capital to sectors,

and the adjustment cost function controls how readily new matches can be made. Hence,

the model generates endogenous shifts in the matching function governing reallocation, as

suggested in the labor literature by Shimer (2007) and in current data by Kocherlakota

(2010).
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A Appendix: Technical details

We provide technical details for the general case with recursive utility. We first solve the

central planner’s resource allocation problem. Then, by using the standard welfare theorem,

we use equilibrium allocation to derive both aggregate and sectoral asset pricing implications.

A.1 The social planner’s resource allocation solution.

We conjecture that representative agent’s value function J(K0, K1) has the homogeneity

property in sectoral capital stocks K0 and K1 and can be written in the following form:

J(K0, K1) =
1

1− γ
((K0 +K1)N(z))1−γ , (A.1)

where z = K1/(K0 + K1) and N(z) is a function to be determined. We use Jn(K0, K1) to

denote the first-order derivative with respect to capital stock Kn in sector n = 0, 1. Similarly,

we use Jmn(K0, K1) to denote the second-order derivatives with respect to capital stocks in

sectors n and m.

The following Hamilton-Jacobi-Bellman (HJB) equation describes the planner’s problem:

0 = max
I0, I1

f(C, J)+φ0(i0)K0J0+φ1(i1)K1J1+
1

2
σ2

0K
2
0J00+ρσ0σ1K0K1J01+

1

2
σ2

1K
2
1J11. (A.2)

Using the conjectured value function (A.1), we have the following two first-order conditions

(FOCs) with respect to the sectoral investment-capital ratios i0 and i1:(
c∗(z)

N(z)

)1/ψ

=
α

φ′0(i
∗
0(z))

1

N(z)− zN ′(z)
, (A.3)(

c∗(z)

N(z)

)1/ψ

=
α

φ′1(i
∗
1(z))

1

N(z) + (1− z)N ′(z)
, (A.4)

where c(z) = C/(K0 + K1) is the aggregate consumption-capital ratio. With the optimal

c∗(z), the normalized aggregator of Duffie-Epstein utility for the agent is given by

f(C∗, J) =
α

1− ψ−1

[(
c∗(z)

N(z)

)1−ψ−1

− 1

]
((K0 +K1)N(z))1−γ . (A.5)

As a special case, if ψ = 1, we have f(C, J) = α [ln c(z)− lnN(z)] ((K0 +K1)N(z))1−γ .

Substituting the normalized aggregator (A.5) and the FOCs (A.3) and (A.4) for i0 and i1

into the HJB (A.2), we obtain the nonlinear differential equation (40) in the text. Similarly,
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we apply our two-sector results to z = 0 and z = 1, we obtain the boundary conditions given

by (41) and (37) at the absorbing boundaries: z = 0, 1.

Using the Ito’s formula, we show that the dynamics of z = K1/(K0 +K1) are given by

dzt = µz(zt)dt+ zt(1− zt)σ1dB1(t)− zt(1− zt)σ0dB0(t) , (A.6)

where the drift of z, µz(z), is given by

µz(z) = z(1− z)
[
φ1(i

∗
1(z))− φ0(i

∗
0(z)) + (1− z)σ2

0 − zσ2
1 − (1− 2z)ρσ0σ1

]
. (A.7)

The aggregate capital accumulation dynamics is

d(K0(t) +K1(t))

K0(t) +K1(t)
= g(zt)dt+ (1− zt)σ0dB0(t) + ztσ1dB1(t) , (A.8)

where the aggregate growth (capital accumulation) rate g(z) is given by

g(z) = (1− z)φ0(i
∗
0(z)) + zφ1(i

∗
1(z)) . (A.9)

The volatility of the aggregate growth (capital accumulation) rate is given by

σ(z) =
√
σ2

0(1− z)2 + 2ρσ0σ1(1− z)z + σ2
1z

2 . (A.10)

The aggregate Tobin’s q is

q(z) =
V (K0, K1)

K0 +K1

= (1− z)q0(z) + zq1(z) . (A.11)

A.2 Asset pricing implications.

Let ξ denote the equilibrium stochastic discount factor (SDF). Using the results in Duffie

and Epstein (1992), we have

ξt = exp

[∫ t

0

fJ(C∗s , Js) ds

]
fC(C∗t , Jt). (A.12)

We have

fJ(C∗, J) =

(
α

1− ψ−1

)[(
ψ−1 − γ

)( c∗(z)

N(z)

)1−ψ−1

− (1− γ)

]
, (A.13)

fC(C∗, J) =
α(C∗)−ψ

−1

((1− γ)J(K0, K1))ω−1
=
δ(N(z)(K0 +K1))

ψ−1−γ

(C∗)ψ−1 . (A.14)
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The equilibrium dynamics of the SDF is given by

dξt = −r(zt)ξtdt− η0(zt)ξtdB0(t)− η1(zt)ξtdB1(t) , (A.15)

where the equilibrium interest rate as a function of z is given by

r(z) = α + α

(
ψ−1 − γ
1− ψ−1

)[
1−

(
c∗(z)

N(z)

)1−ψ−1
]

+ γg(z)

− (γ + 1)
[
(1− z)σ2

0 − zσ2
1 − (1− 2z)ρσ0σ1

]
ε(z)− ε(z) (φ1(i

∗
1(z))− φ0(i

∗
0(z))

+
ψ−1

2

[
d2

dz2
ln c(z)− (1− γψ)

d2

dz2
lnN(z)

]
z2(1− z)2(σ2

0 − 2ρσ0σ1 + σ2
1)

− (γ + 1)γ

2

(
σ2

0(1− z)2 + σ2
1z

2 + 2ρσ0σ1z(1− z)
)
− (σ2

0 − 2ρσ0σ1 + σ2
1)ε2(z)

2
, (A.16)

and the equilibrium market prices of risk for two diffusion risks B0(z) and B1(z), η0(z) and

η1(z), are respectively given by

η0(z) = σ0ε(z) + γσ0(1− z), (A.17)

η1(z) = −σ1ε(z) + γσ1z, (A.18)

where

ε(z) = ψ−1

(
−c
∗′(z)

c∗(z)
+ (1− γψ)

N ′(z)

N(z)

)
z(1− z) . (A.19)

The market-to-book ratio, average q, is also equal to marginal q, for sector n is given by:

qn(z) =
Vn
Kn

=
1

φ′n(i∗n(z))
, n = 0, 1. (A.20)

The dividend yields in sector n, dyn, is given by

dyn(z) =
Dn

Vn
=
An − i∗n(z)

qn(z)
. (A.21)

Next, we derive the dynamics for the rate of return from investing in sector 0, dR0(t),

which is given by the sum of sector-0 dividend yield D0(t)dt/V0(t) = dy0(zt)dt and the

expected rate of capital gains dV0(t)/V0(t). Using Ito’s formula, we obtain:

dR0(t) =
D0(t)dt+ dV0(t)

V0(t)
= dy0(zt)dt+

dq0(zt)

q0(zt)
+
dK0(t)

K0(t)
+
dq0(zt)

q0(zt)

dK0(t)

K0(t)
,

= µr0(zt)dt+
q′0(zt)

q0(zt)
zt(1− zt) (σ1dB1(t)− σ0dB0(t)) + σ0dB0(t), (A.22)
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where the expected rate of return in sector 0, µr0(z), is given by

µr0(z) = dy0(z) + φ0(i0(z)) + z(1− z) [φ1(i1(z))− φ0(i0(z))]
q′0(z)

q0(z)
(A.23)

−z2(1− z)
(
σ2

0 − 2ρσ0σ1 + σ2
1

) [q′0(z)

q0(z)
− 1

2

q′′0(z)

q0(z)
(1− z)

]
.

Let σr0(z) denote the return volatility in sector 0. We may calculate σr0(z) as follows:

σr0(z) =

[(
q′0(z)

q0(z)
z(1− z)

)2 (
σ2

0 − 2ρσ0σ1 + σ2
1

)
− 2z(1− z)

q′0(z)

q0(z)

(
σ2

0 − ρσ0σ1

)
+ σ2

0

]1/2

.(A.24)

Similarly, the instantaneous rate of return dR1(t) including both the dividend yield and

capital gains in sector 1 is given by

dR1(t) =
D1(t)dt+ dV1(t)

V1(t)
= dy1(zt) +

dq1(zt)

q1(zt)
+
dK1(t)

K1(t)
+
dq1(zt)

q1(zt)

dK1(t)

K1(t)
,

= µr1(zt)dt+
q′1(zt)

q1(zt)
zt(1− zt) (σ1dB1(t)− σ0dB0(t)) + σ1dB1(t), (A.25)

where the expected rate of return in sector 1, µr1(z), is given by

µr1(z) = dy1(z) + φ1(i1(z)) + z(1− z) [φ1(i1(z))− φ0(i0(z))]
q′1(z)

q1(z)
(A.26)

+z(1− z)2
(
σ2

0 − 2ρσ0σ1 + σ2
1

) [q′1(z)

q1(z)
+

1

2

q′′1(z)

q1(z)
z

]
.

Let σr1(z) denote the return volatility in sector 1. We may calculate σr1(z) as follows:

σr1(z) =

[(
q′1(z)

q1(z)
z(1− z)

)2 (
σ2

0 − 2ρσ0σ1 + σ2
1

)
+ 2z(1− z)

q′1(z)

q1(z)

(
σ2

1 − ρσ0σ1

)
+ σ2

1

]1/2

.(A.27)

The sectoral risk premium is then given by rpn(z) = µrn(z)− r(z), for n = 0, 1.

Using the portfolio argument, we obtain the following dynamics for the rate of return on

the market portfolio dRm(t):

dRm(t) = µm(zt)dt+ σm0 (zt)dB0(t) + σm1 (zt)dB1(t) , (A.28)

where the expected return of the market portfolio is then given by

µm(z) =
1

q(z)
[(1− z)q0(z)µr0(z) + zq1(z)µr1(z)] , (A.29)
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and the volatility functions are given by

σm1 (z) =
σ1z

q(z)

[
q1(z) + (1− z)2q′0(z) + z(1− z)q′1(z)

]
, (A.30)

σm0 (z) =
σ0(1− z)

q(z)

[
q0(z)− z(1− z)q′0(z)− z2q′1(z)

]
. (A.31)

The market return volatility is therefore given by

σm(z) =

√
(σm0 (z))2 + 2ρσm1 (z)σm0 (z) + (σm1 (z))2 . (A.32)

The aggregate market risk premium is given by rpm(z) = µm(z)− r(z).

Sectoral betas are defined in the standard way, i.e. β0(zt) = Covt(dR0, dR
m)/Vart(dR

m).

The betas for sectors 0 and 1, β0(z) and β1(z), are given by

β0(z) =
σ0σ

m
0 (z) + ρσ0σ

m
1 (z)

(σm(z))2 +
(σ1 − ρσ0)σ

m
1 (z)− (σ0 − ρσ1)σ

m
0 (z)

(σm(z))2 z(1− z)
q′0(z)

q0(z)
, (A.33)

β1(z) =
σ1σ

m
1 (z) + ρσ1σ

m
0 (z)

(σm(z))2 +
(σ1 − ρσ0)σ

m
1 (z)− (σ0 − ρσ1)σ

m
0 (z)

(σm(z))2 z(1− z)
q′1(z)

q1(z)
. (A.34)

The instantaneous correlation between dR0(t) and dR1(t) is calculated as follows:

χ(z) =
z(1− z)

σr0(z)σr1(z)

[
σ2

0

q′1(z)

q1(z)

(
z(1− z)

q′0(z)

q0(z)
− 1

)
+ σ2

1

q′0(z)

q0(z)

(
z(1− z)

q′1(z)

q1(z)
+ 1

)]
(A.35)

− ρσ0σ1

σr0(z)σr1(z)

[
2z2(1− z)2 q

′
0(z)

q0(z)

q′1(z)

q1(z)
+ z(1− z)

(
q′0(z)

q0(z)
− q′1(z)

q1(z)

)
− 1

]
.

For the special case where both sectors are liquid (i.e. two-sector CIR version), we can

solve the ODE and decision rules in closed form. The results for this important special case

are summarized in Section 5.3. A key result is that the steady-state capital ratio between

the two sectors is a constant z∗ given by (44) as implied by perfect liquidity of capital.
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