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Abstract: Valuations of entrepreneurial companies are only observed 

occasionally, albeit more frequently for well-performing companies. 

Consequently, estimators of risk and return must correct for sample 

selection to obtain consistent estimates. We develop a general model of 

dynamic sample selection and estimate it using data from venture capital 

investments in entrepreneurial companies.  Our selection correction leads 

to markedly lower intercepts and higher estimates of risks compared to 

previous studies. The methodology is generally applicable to estimating 

risk and return in illiquid markets with endogenous trading. 
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There are many assets that only trade infrequently, such as privately-held companies, real 

estate, corporate and municipal bonds, small-cap stocks, many structured products, and 

securities trading OTC. Since their valuations are only known when they trade, valuation 

and return data for these assets are necessarily sporadic. It is well known that when assets 

trade non-synchronously and are “kept on the books” at previous trading prices, the stale 

price problem biases estimates of risk and return (Scholes and Williams, 1977; and 

Dimson, 1979). Moreover, when the timing of observed returns is endogenous, a sample 

selection problem arises. Here we address the latter problem, which we term the dynamic 

selection problem, as formally defined below. 

The dynamic selection problem is pervasive, arising in areas as diverse as hedge 

funds, real estate, and venture capital or private equity investments. For hedge funds, 

numerous papers have studied the selection issues arising from the voluntary reporting of 

hedge fund performance data  (e.g., Baquero, ter Horst, and Verbeek, 2005; ter Horst and 

Verbeek, 2007; and Jagannathan, Malakhov, and Novikov, 2009). Hedge funds with 

worse performance are more reluctant to report returns and less likely to survive, and the 

resulting self-selection and survivorship problems are manifestations of the dynamic 

selection problem. In real estate, transaction prices are only observed for traded 

properties, and the dynamic selection problem arises if, say, sellers with higher 

reservation prices are less likely to sell or properties that have depreciated more are more 

likely to trade, for example, due to foreclosures (Gatzlaff and Haurin, 1997; Fisher, 

Gatzlaff, Geltner, and Haurin, 2003; Hwang and Quigley, 2003; and Goetzmann and 

Peng, 2006). 
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Our study focuses on venture capital (VC) investments in entrepreneurial 

companies. Here the dynamic selection problem arises because valuations of portfolio 

companies are only observed when the companies receive funding or have exit events 

(IPOs or acquisitions). These events are more frequent for well-performing companies 

and these companies are more likely to subsequently survive. We find that the dynamic 

selection problem is important and that controlling for selection substantially decreases 

the estimated returns and increases the measures of the riskiness of entrepreneurial 

investments. In our baseline specifications, the estimated alpha decreases by about 40% 

and the market beta increases by about 20% relative to conventional GLS estimates that 

ignore the selection problem.  

Our empirical approach extends existing empirical models of the risk and return 

of VC investments (Cochrane, 2005; and Hwang, Quigley, and Woodward, 2005). We 

extend a standard dynamic asset-pricing model by adding a selection process to correct 

for the endogenous selection of the observed returns. Our model explicitly specifies the 

entire unobserved valuation and return path between the observed valuations, as well as 

the probability of observing a valuation at each point in time. Formally, we combine a 

Type-2 Tobit model (Heckman, 1979; and Amemiya, 1985) with a dynamic filtering and 

smoothing problem (Kalman, 1960; and Anderson and Moore, 1979). We present a 

Markov Chain Monte Carlo estimator using Gibbs sampling (Gelfand and Smith, 1990; 

and Robert and Casella, 2004), which produces the posterior distribution by iteratively 

simulating from three simpler distributions: a Bayesian regression, a draw of truncated 

random variables, and a path from a Kalman Filter.  Each of these simpler distributions is 

well understood and tractable, and combined they form an estimation procedure that is 
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surprisingly manageable given the numerical complexity of the model. Although we 

primarily report point estimates, this algorithm generates the posterior distribution of all 

the parameters and latent variables in the model, in particular it produces the estimated 

paths of all the unobserved valuations.  

Our approach produces substantially different results than previous studies, 

primarily in our estimates of systematic risk. Cochrane’s (2005) round-to-round 

estimates, which are most comparable to ours, show betas that are consistently below 1.0 

with an average beta of just 0.6. In contrast, we find betas that are consistently above 2.2, 

with an average of 2.8. To contrast with previous findings that do not correct for selection 

and hence may underestimate the betas, Reyes (1990) finds betas ranging from 1.0 to 3.8 

(using data from 175 mature VC funds), and Gompers and Lerner (1997) report betas 

from 1.08 to 1.4 (using a sample of 96 VC investments). Peng (2001), using a propensity 

weighting method, reports betas ranging from 1.3 to 2.4 on the S&P 500 and from 0.8 to 

4.7 on NASDAQ. Overall, these results suggest that entrepreneurial investments are more 

risky than previously found.  

The differences in the parameter estimates are likely due to the richer 

specifications that our approach accommodates. It is well known (Heckman, 1990; and 

Andrews and Schafgans 1998) that semi-parametric identification of sample selection 

models requires independent variation in the selection equation, and without such 

variation the estimated parameters may be sensitive to functional and distributional 

assumptions. We are able to include the time since the previous financing round in the 

selection equation as a reasonable source of exogenous variation, and we confirm in the 
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Appendix that our results are insensitive to distributional assumptions. Moreover, we can 

include Fama and French (1995) factors, a VC-specific factor, and period- and stage-

specific parameters to capture company-level heterogeneity. In our three-factor 

specification, the loading on the size factor (SMB) turns positive, and the loading on the 

value factor (HML) increases substantially when controlling for selection. Perhaps not 

surprisingly, the risk profile of privately-held entrepreneurial companies resembles that 

of small, high-growth, and high-risk public companies. The exposure to market risk 

increases with the stage of investment, consistent with the notion that market conditions 

are important for VC’s valuations. We also find evidence of a strong VC-specific factor 

defined in terms of the aggregate volume of VC investments. This is consistent with 

previous studies that suggest that capital inflows into VC funds help drive up valuations 

of entrepreneurial companies and in turn reduce VC investors’ returns. We are also able 

to look at risk-adjusted returns by sub-period, and find moderate alphas during the period 

before 1995, whereas the 1995-2001 period is characterized by high alphas. Post-2001 

the alpha appears to have turned negative.  

Our approach allows us to test the robustness of our results in several new ways, 

detailed in the Appendix. First, we use flexible distributions of the error terms, and report 

estimates using mixtures of up to four normal distributions, finding results that are largely 

insensitive to this distribution and consistent with the more restrictive assumption in our 

main specification. Using simulated data, we show that our procedure is robust to 

misspecifications of the error distribution. Moreover, we estimate specifications with 

company-specific parameter heterogeneity using hierarchical priors, corresponding to a 

random coefficients model. Again, our results are largely insensitive to this relaxation, 
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supporting the more restrictive assumption of homogenous parameters used in the main 

specifications. A final advantage of our approach is that it delivers accurate finite-sample 

inference, even for non-linear functions of non-Gaussian parameters, such as the alpha in 

our model. Cochrane (2005) reports bootstrapped standard errors that are consistently an 

order of magnitude greater than the asymptotic ones, suggesting that this is not a trivial 

concern. 

A related literature estimates the risk and return of private equity and VC 

investments using the cash flows distributed to the limited partners (Gompers and Lerner, 

1997; Jones and Rhodes-Kropf, 2003; Ljungqvist and Richardson, 2003; Kaplan and 

Schoar, 2005; Phalippou and Gottschalg, 2009; and Driessen, Lin, and Phalippou, 2007). 

One limitation of this approach is that the return to a fund is earned across a portfolio of 

companies, typically over a ten- to thirteen-year period, making it difficult to use fund 

level returns to identify differences across shorter time periods, across industries, and 

across companies with different characteristics, such as their stage of development. 

Estimation using valuations of individual companies may provide a more nuanced view 

of these differences. Moreover, using individual valuations leads to substantially more 

independent observations and consequently greater statistical power. 

The paper is organized as follows. Section 1 provides a formal definition of the 

dynamic selection problem. Section 2 describes the econometric model and estimation 

algorithm, and Section 3 describes the data. Section 4 discusses the empirical results. In 

Section 5 we discuss the interpretation of the intercepts in the factor models, and Section 

6 concludes. The Appendix describes the robustness and convergence properties of this 
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algorithm. An online appendix contains a more detailed description of the estimation 

procedure along with computer code to implement this procedure (http://XXXXX). 

1. The Dynamic Selection Problem 

To fix ideas and notation, the dynamic selection model consists of an outcome 

equation: 

 ( ) ( 1) ( ) ( )v t v t X t t! "#= $ + + , (1) 

where ( )v t  is the (log-)valuation at time t, and !  contains parameters of interest. The 

valuation is only observed when: 

 ( ) 0w t ! , (2) 

where ( )w t  is a latent selection variable given by the selection equation: 

 0( ) ( ) ( ) ( )vw t Z t v t t! ! "#= + + . (3) 

Assuming ( ) ( )t t! "#  and [ ( )] 0E t! = , the sample selection problem arises when 0v! " , 

because [ ( ) | ] 0E t data! " , conditioning on all observed data. Intuitively, the problem 

arises whenever the probability of observing a valuation is related to the valuation itself. 

In our application, entrepreneurial companies with higher valuations are more likely to be 

refinanced, so companies with higher realizations of !  are overrepresented in the data 

relative to the population, and [ ( ) | ] 0E t data! > . 
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In the standard cross-sectional case, without ( 1)v t !  in the outcome equation, a 

common two-step approach is to first calculate [ ( ) | ]E t data!  and include it as an 

additional variable (a control function) in the outcome equation. With normal distributed 

errors and the standard normalization 1!" = , this conditional mean admits a closed form 

expression (see Heckman, 1979): 

 
2

2 2
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( ( ))1
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where ( ) 2 2
0( ) ( ) ( ) 1v vC t Z t X t !" #" " $% %= + + . 

In contrast, our dynamic model, with ( 1)v t !  in the outcome equation, is more 

complex. Consider a company that trades twice, at times 0t  and 1t , and hence only 0( )v t  

and 1( )v t  are observed. Iterating equation (1) yields: 

 
1 1

0 0

1 0

1 1

( ) ( ) ( ) ( )
t t

t t

E v t data v t X E data
! !

! " # !
= + = +

$ % $ %
&$ % = + +' ( ' () *

) * ) *
+ + . (5) 

The first term in brackets is a linear function of observed variables during the interim 

period. The last term is the error term, but its conditional mean is now: 

 
1 1

0 0

0 0

1 1

1 1 0 1 0 1

( ) 0, ( 1) 0, ,
( ) | ( ) ( 1) 0, ( ) 0,

( ), , ( ), ( ), , ( )

t t

t t

w t w t
E data E w t w t

Z t Z t X t X t! !

" ! " !
= + = +

# $% + <
& '# $

= ( < %& '& '
) * & '

) *

+ +
!

! !
. (6) 

This conditional mean is a function of the trading history and observables over the entire 

period between the observed valuations. Unlike the standard selection model, 



 
10 

observations with unobserved valuations are informative about the valuation process, and 

the conditional means for the observed valuations depend on the observables over the 

periods where the valuations were unobserved. Accounting for these dependencies is 

difficult, however, because it requires integrating over all possible paths of the 

unobserved outcome and selection processes, and reasonable specifications typically lead 

to intractable models. 

2. Econometric Model and Estimation Procedure 

To motivate our specifications and help interpret and compare the results to OLS 

and GLS estimates, we first derive the discrete-time valuation process from a continuous-

time specification. 

2.1 Valuation Process 

Let the economy contain a risk-free bond with price B(t), paying the continuously 

compounded rate r, as given by, 

 
( )
( )

dB t rdt
B t

= . (7) 

The value of the market portfolio follows a geometric Brownian motion: 

 
( ) ( )
( ) m m m

dM t dt dW t
M t

µ != + , (8) 

where mµ  is the drift, and ( )mW t  is a Wiener process. The valuation of a given company 

is ( )V t , and it develops according to the one-factor market model:  
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 ( ) ( ) ( )
( ) ( )

dV t dM trdt dt rdt dW t
V t M t

! " #
$ %

& = + & +' (
) *

. (9) 

The excess return of the valuation process is ! , and ( )dW t  is independent of ( )mdW t  

per definition of beta. Denote the continuously compounded returns 

( , ') ln[ ( ') ( )]vr t t V t V t=  and ( , ') ln[ ( ') ( )]mr t t M t M t= , and define 

2 21 1
2 2 (1 ) m! " # $ $ #= % + % . Using Itô’s lemma, we derive the discrete-time return: 

 ( )( , ') ( ' ) ( ' ) ( , ') ( ' ) ( , ')v mr t t t t r t t r t t t t r t t! " #$ $ = $ + $ $ + , (10) 

where ( , ')t t!  is follows the 2(0, ( ' ) )N t t !"  distribution.1 Defining ( ) ln[ ( )]v t V t= , and 

starting from ' 1t t= ! , we arrive at the one-period transition equation for the valuation 

equation: 

 ( )( ) ( 1) ( ) ( )mv t v t r r t r t! " #= $ + + + $ + , (11) 

with 2~ (0, )N! "  and ( ) ln[ ( ) ( 1)]mr t M t M t= ! . This is equation (1) with  

( ) [1 ( ) ]mX t r t r != "  and [ ]r! " # $= + . 

2.2 Selection Process 

Valuations are only observed when a company has a refinancing or an exit event, 

and the endogeneity of these events is captured by the selection process. Following 

equations (2) and (3), let ( )v t  be observed only when: 

 ( ) 0w t ! , (12) 
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where ( )w t  is a latent selection variable specified as: 

 0( ) ( ) ( ) ( )vw t Z t v t t! ! "#= + + . (13) 

The vector Z(t) contains characteristics that affect refinancing and exit events, including a 

constant term, the time since the previous financing round (linearly and squared), and 

variables capturing general market conditions.  The second term in equation (13) is the 

log-valuation. By including the log-valuations at the previous financing round in ( )Z t  

with a coefficient of  !" v
, we can interpret  ! v  as the coefficient on the return earned 

since this previous round. Since valuations are observed more frequently for more 

successful companies, we expect v!  to be positive. As usual for selection models, the 

scale of the selection equation is unidentified and is normalized by fixing the variance of 

the error term to equal one. Hence, we assume ( )t!  is distributed i.i.d. (0,1)N . 

To summarize, the model contains two equations: the valuation equation (11) and 

the selection equation (13). Only when ( ) 0w t !  is ( )v t  observed, and ( )w t  is never 

observed. The error terms are distributed i.i.d. 2( ) ~ (0, )t N! "  and ( ) ~ (0,1)t N! , and the 

parameters of interest are ! , ! , 2! , and 0( , )v! ! != . 

2.3 Overview of Estimation Procedure 

We use a Bayesian Gibbs sampling procedure (see Geman and Geman, 1984; 

Tanner and Wong, 1987; Gelfand and Smith, 1990; and Johannes and Polson, 2010), 

which allows us to divide our model into three blocks. The first one contains the 

valuation variables. Most valuations are unobserved in the data, and this block estimates 
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the unobserved valuations, which are treated as parameters within the model. The second 

block contains the selection variables, and the last block contains the parameters of 

interest. The Gibbs sampler simulates the joint (augmented) posterior distribution of the 

model by iteratively sampling the variables in each block conditional on the previous 

realizations of the variables in the other blocks. The second and third blocks are simple. 

For the selection variables in the second block, we sample from truncated normal 

distributions, defined by equations (12) and (13). This is similar to Bayesian estimation 

of a probit model (Albert and Chib, 1993). For the parameters in the valuation and 

selection equations in the third block, we use two standard Bayesian linear regressions, 

given by equations (11) and (13).  

Drawing the valuation variables in the first block is the most complex part of the 

procedure. This part traces out the entire path of the unobserved valuations, conditioning 

on the parameters, selection variables, market returns, and on the fact that during this 

intermediate period no valuations were observed, which shifts down the unobserved 

valuations’ conditional distributions. We use the Forward Filtering Backwards Sampling 

(FFBS) procedure by Carter and Kohn (1994) and Fruhwirth-Schnatter (1994), which 

provides an efficient way to sample a path of latent variables conditional on all available 

information. The starting values and prior distributions are provided in the Appendix. A 

more detailed description of the procedure along with code to implement our procedure is 

available in an Online Appendix.  

To understand the application of the FFBS procedure, note that conditional on the 

parameters and selection variables, the model is a linear state space, and the path of the 
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latent valuations can be recovered using a Kalman filter. From this perspective, ( )v t  are 

unobserved state variables, and the valuation equation (11) is the transition rule with 

( ( ) )mr r t r! "+ + #  as an “observed” control acting on the state. The state space has one 

or two observation equations depending on whether the valuation is observed or not. 

Conditionally, the selection variables ( )w t  can be regarded as noisy “observations” of 

( )v t , and the first observation equation is the selection equation (13). When a valuation is 

observed, it provides a direct observation of the underlying state and ln[ ( )] ( )OBSV t v t= , 

where ( )OBSV t  is the observed valuation as defined in the next section. We assume that 

valuations are observed without error, although it would be possible to incorporate 

observation error here without losing the linear filtering properties.  

We use diffuse priors and several different starting values for the parameters, as 

detailed in the Online Appendix.  Our Gibbs sampler uses 1,000 iterations for the initial 

burn-in, followed by 5,000 iterations to simulate the posterior distribution. During the 

burn-in, the simulations converge quickly. We verify the convergence and robustness of 

the algorithm in the Appendix, including relaxing the assumptions of Gaussian error 

terms and that alpha and beta are constant across companies. 

3. Data Description 

Monthly market returns and returns to Fama-French portfolios (Fama and French, 

1995) are taken from Kenneth French’s website.  These are constructed from the NYSE, 

AMEX, and NASDAQ firms in CRSP.  Monthly Treasury-bill rates are from Ibbotson 

Associates and are also available on his website. 
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3.1 Venture Capital Data 

Venture capital investment data were provided by Sand Hill Econometrics (SHE).  

SHE combines and extends two commercially available databases: VentureXpert 

(formerly Venture Economics) and VentureSource (formerly Venture One). These two 

databases are used extensively in the VC literature, and the combined data contain the 

majority of VC investments in the United States from 1987 to 2005.  Gompers and Lerner 

(1999) and Kaplan, Sensoy, and Strömberg (2002) investigate the completeness of 

VentureXpert and find that missing investments are predominantly smaller and more 

idiosyncratic ones. In addition, SHE has spent a substantial amount of time and effort to 

ensure the accuracy of the data.  This includes removing duplicate investment rounds, 

adding missing rounds, and consolidating rounds, ensuring that each round corresponds 

to a single investment by one or more VCs. Cochrane (2005) uses an earlier version of 

these data, and previously reported data problems have been resolved.2  

3.2 Calculating Returns 

VCs distinguish between pre- and post-money valuations. When a VC invests I in a 

company with a total valuation of VPOST (the post-money valuation), VPRE (the pre-money 

valuation) is defined by POST PREV V I= + . Hence, the gross return earned by an investor 

over two subsequent rounds from time t to 't  is: 

 ( , ') ( ') ( )v PRE POSTR t t V t V t= . (14) 
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We use these returns to construct a new valuation variable, which strips out the effects of 

ownership dilution by future investors. Starting from V(0) = 1, the dilution-adjusted 

valuations are calculated iteratively as: 

 ( ') ( ) ( , ')OBS OBS vV t V t R t t= ! . (15) 

These valuations are used as the observed valuations in the estimation procedure. This 

calculation requires valuations that are observed for consecutive rounds.  When a 

valuation is missing for an intermediate round, it is not possible to adjust for dilution, and 

the dilution-adjusted valuation is restarted after the break in observed valuations. For 

firms that are liquidated at an unknown amount, we set the liquidation value equal to 10% 

of the original investment.3 

3.3 Descriptive Statistics 

The full dataset contains 61,356 investment rounds for 18,237 companies. 

However, we only have valuation data for a fraction of these companies. Moreover, the 

data are more likely to include valuations for companies with IPOs or acquisitions, since 

valuations of IPOs and acquisitions are publicly available. Consequently, these 

companies are overrepresented in the sample of companies for which we have return 

information. To adjust for this oversampling, we use a randomly drawn subsample that 

matches the IPO and acquisition rates of the full dataset.4 The number of companies and 

their exits, in the full dataset and in the sample used for estimation, are listed in Table 1.  

**** TABLE 1: DESCRIPTIVE STATISTICS **** 
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Our final sample contains a total of 5,501 financing rounds for 1,934 companies. 

Of these, 199 (10.3%) companies go public, another 451 (23.3%) are acquired, and we 

have information that 445 (23.0%) have been liquidated. We have no information about 

the fate of the remaining 839 (43.4%) companies. Some of these may be alive and well, 

some may be “living zombies,” but the majority has likely been liquidated at this point.  

The empirical model incorporates the uncertainty about these unobserved outcomes by 

simulating valuations for 60 months past the last observed round.5 

An entrepreneurial firm receives 4.4 financing rounds on average (the median is 4 

rounds), with some firms receiving as many as 9 rounds. On average, 13 months pass 

between rounds (the median is 10 months). While 5% of follow-on investments occur 

after as few as 2 months, another 5% take 34 months or more.  The average arithmetic 

return between observed rounds is 95% (median 21%) with a standard deviation of 319%.  

4. Risk Factors for Entrepreneurial Companies 

Table 2 presents four different specifications of the selection equation. The 

valuations appear highly exposed to the market factor with a beta (RMRF) around 2.8. 

The (monthly) intercept is about -5.7%, and the (monthly) standard deviation of the 

idiosyncratic returns (Sigma) is 41%. Note that the intercept is not an abnormal return, 

but it is possible to compute the implied posterior distribution of alpha using 

  ! = " + 1
2#

2 $ 1
2 %(1$ %)#m

2 . We return to this calculation below. The coefficients are 

stable across specifications. For comparison, Davis, Fama, and French (2000) consider 

companies trading on NYSE, AMEX, and NASDAQ, and for small growth companies – 
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most similar to our entrepreneurial ones – they estimate betas from 1.01 to 1.06, 

depending on the time period, considerably smaller than the betas for the companies in 

our sample. 

**** TABLE 2: ONE-FACTOR MODEL **** 

In the first specification in Table 2, the selection equation includes only the (log-) 

return and the time since the previous financing round, linearly and squared. The 

coefficient on the return is positive and highly significant across all specifications. 

Companies with higher returns are more likely to have refinancing or exit events and 

hence appear in the data, suggesting that the sample selection problem may be 

substantial.  

The coefficients on Time and Time Squared are around 0.4 and -0.04. This 

captures the distribution of the frequency of refinancing rounds. Keeping the valuation 

constant, the probability of observing a refinancing or exiting event each month (a hazard 

rate) increases from the time of the previous round and reaches a maximum after roughly 

five years ( 0.4 (2 0.04))= !  after which the likelihood decreases. The negative square 

term captures the rapid deterioration of the likelihood of refinancing and the 

corresponding higher returns required to be refinanced as more time passes. This captures 

the fact that companies that have not received financing for a while become increasingly 

unlikely to ever receive refinancing again. 

Semi-parametric identification of selection models requires a variable that enters 

the selection equation but is independent of the error term in the valuation equation 

(Heckman, 1990; and Andrews and Schafgans, 1998). The time since the previous 
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refinancing round (Time) seems a reasonable source of such variation. It is well known 

that a valuation process given by   V (t) = E[VT | F(t)]  is a martingale, where VT is the final 

payoff and F(t) is a filtration, and consequently the error terms in this process are 

independent over time. In particular, they are independent of Time, which is the exclusion 

restriction. Moreover, Time is directly related to the probability of observing a financing 

round. VC financing involves sufficient capital to sustain the company for a substantial 

period, and a company is unlikely to be refinanced repeatedly in short succession. After 

the company exhausts its capital, typically after one or two years, the probability of 

refinancing increases. If too much time elapses, however, the company is likely 

struggling, and the probability of being refinanced declines again. In this case, Time is a 

valid source of exogenous variation for semi-parametric identification of the model. 

The critical assumption is that the investor’s valuation process can be written as 

  V (t) = E[VT | F(t)]. This states that today’s valuation is the expected future payoff, 

rationally discounted and risk-adjusted taking into account all current information. The 

assumption is standard, and the main requirement is that investors rationally anticipate 

future contingencies. The condition remains valid even with illiquid and opaque markets 

for entrepreneurial companies, with future negotiations between entrepreneurs and 

investors, and with asymmetric information and high uncertainty about future 

performance, as long as these contingencies are rationally anticipated by the VCs ex-ante. 

We cannot test whether VCs are fully rational. For public markets, there is substantial 

support for the efficient market hypothesis, suggesting that valuations incorporate current 

information about future contingencies. We have no reason to expect that VCs should be 

less sophisticated than public market investors.  
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In the second specification of the selection process in Table 2, the market return 

(RMRF) enters the selection equation with a negative coefficient. This may seem 

puzzling, but to derive the full effect of the market on the probability of observing a 

valuation, the indirect effect of the market on the valuation should also be considered. To 

illustrate, using the estimates in specification 2 in Table 2, let RMRF increase by one. On 

average, this translates into an increase in the valuation of 2.79, and the combined effect 

on the selection equation is 2.79 0.34 0.71 0.25! " = , which is positive, consistent with 

the empirical fact that more valuations are observed when the market is higher. 

In addition to the return and the time since the previous financing round, there 

may be a cyclical component to VC investments – “hot” and “cold” markets – and the 

variables Acquisitions, IPOs, and Rounds control for this cycle: Acquisitions contains the 

number of VC-backed acquisitions during the same month as the investment, IPOs 

contains the number of VC-backed IPOs during this month, and Rounds contains the 

number of investments rounds during this month. In the selection equation, these are 

strongly significant, but they have little effect on the estimates in the valuation equation. 

It is surprising that IPOs enters with a negative sign, but this variable is correlated with 

the Acquisitions and Rounds variables.  

Overall, the estimates of the valuation equation appear to be robust across 

specifications, and the more parsimonious specification appears to capture the selection 

well. The richer specifications suggest that VC investments have a cyclical component 

that is not captured by the traditional risk factors, and we explore the role of this VC-

specific component below. 
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4.1 Magnitude of Selection Bias  

To assess the magnitude of the selection bias, we compare our estimates to OLS, 

GLS, and MCMC estimates that do not correct for this bias. Table 3 presents estimates of 

these models. For the standard OLS and GLS estimators, we calculate the log excess 

returns and regress them on the corresponding log excess market returns.  In particular, 

for the OLS estimator, we estimate the following specification, motivated by equation 

(10), pooled across firms: 

 ( )( , ') ( ' ) ( ' ) ( , ') ( ' )v OLS OLS m OLSr t t t t r t t r t t t t r! " #$ $ = $ + $ $ + . (16) 

The coefficient OLS!  corresponds to the intercept in equation (10) and is called Intercept 

here as well although, strictly speaking, equation (16) has no intercept. When observed 

valuations are more distant in time they have more volatile errors, however, introducing 

heteroscedasticity.  Ignoring selection, equation (10) implies that:  

 ( )2~ 0, ( ' )OLS N t t! "# , (17) 

and the GLS estimator normalizes the variance of the error term by dividing by the 

square root of the time between observed valuations: 

 ( )( , ') ( ' ) ( , ') ( ' )'
' '

v m
GLS GLS GLS

r t t t t r r t t t t rt t
t t t t

! " #
$ $ $ $% &

= $ + +' ($ $) *
. (18) 

Again, GLS!  corresponds to !  in equation (10) and is called Intercept here as well.  

**** TABLE 3: OLS, GLS, AND MCMC **** 
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Comparing the OLS and GLS estimates, we see that the OLS estimators have 

lower intercepts, corresponding to lower monthly drifts. The OLS estimators place 

relatively more weight on observations that are further apart, and the lower intercept 

indicates that these observations have lower average monthly returns than rounds that are 

closer together. This is not consistent with the observed valuations being generated by a 

standard Geometric Brownian motion, which has the same average monthly return 

regardless of the duration between rounds. However, as illustrated in Figure 1, it is 

consistent with the observations being generated by a selection process. Figure 1 

illustrates a Geometric Brownian Motion with drift. The drift is indicated by the sloped 

solid line, and the process is observed when it is above a given threshold, illustrated by 

the horizontal line. The solid points represent the observed data points, and the gray 

points are unobserved ones. Point A represents an average observation after t = 1 2 . 

Conditional on being observed at this point, the observations must have a high realized 

drift to make it across the threshold, as illustrated by the steep dotted line reaching this 

point. The point B represents the average observation at t = 2. Conditional on being 

observed at this point, the process needs a somewhat lower drift, on average, as indicated 

by the flatter dotted line reaching point B. The finding that the OLS intercept is lower 

than the GLS intercept is consistent with this picture.  

Like the GLS estimators, the MCMC specifications in Table 3 also ignore 

selection (by setting 0v! = , see details in Online Appendix). Comparing these MCMC 

specifications to the specifications in Table 2 with selection corrections, we find that the 

intercept increases from -5.7% to -1.6% to per month for the procedure that does not 

correct for selection.6  The change in beta (RMRF) is smaller, decreasing from 2.75 to 
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2.66 without selection correction, and the estimated volatility declines from a monthly 

standard deviation of 41% to 36%. These changes are all consistent with selected data, as 

illustrated in Figure 2. In this figure, the data are generated by a standard CAPM 

relationship, but they are only observed when the excess return is positive. Consistent 

with our empirical findings, the observed, selected observations in this figure have a 

flatter slope, a higher intercept, and a lower idiosyncratic volatility than the underlying 

true process.7 

4.2 Three-Factor Model 

Table 4 presents estimates of a Fama-French three-factor specification, which 

includes the size (SMB) and book-to-market (HML) factors in addition to the market 

factor (RMRF). We still find substantial loadings on the market factor, from 2.25 to 2.34. 

For the size factor (SMB), the loadings vary from 0.97 to 1.07.  The SMB loadings are 

similar to loadings reported by Davis, Fama, and French (2000) and Fama and French 

(1995) for a portfolio of small public growth stocks. Davis et al. find loadings on the size 

factor ranging from 1.22 to 1.47. Fama and French (1995) report loadings between 0.99 

and 1.44. For the book-to-market (HML) factor, we find negative loadings between -1.65 

and -1.54. Davis, Fama, and French (2000) report loadings between -0.14 and -0.23, and 

Fama and French (1995) report loadings between -0.31 and -0.20, indicating that for VC-

backed private companies, growth options represent a much larger fraction of the total 

value than for publicly traded growth stocks. It is interesting that the size and book-to-

market factors, which were developed to explain returns to publicly traded companies, 



 
24 

appear to also explain variations in the returns to privately-held entrepreneurial 

companies. 

**** TABLE 4: THREE-FACTOR MODEL WITH SELECTION **** 

4.3 Comparing Companies Across Stages and Periods 

Table 5 presents estimates with separate coefficients for investments in companies 

at different stages.  We refer to four stages of development: “seed,” “early,” “late,” and 

“mezzanine,” as defined by Sahlman (1990).  In all specifications, the intercept is largest 

for the seed stage, followed by the early and mezzanine stage, with the late stage having 

the lowest intercept. Seed investments have very little systematic risk. This is consistent 

with the definition of seed investments, which are primarily investments to develop 

young ideas or prototypes where the risk is mainly idiosyncratic technological risk. The 

exposure to the market tends to increase with the stage of the investment.  As the 

companies mature, the option to become public companies becomes more dominant in 

their valuations, increasing their exposure to market risks.   

The third specification includes the size and book-to-market factors. Again, the 

seed investments have no systematic exposure to any of the factors, but as the companies 

mature their exposures to the size factor range from 1.3 to 1.8. The HML factor has small 

insignificant loadings at the seed and mezzanine stages, but loadings around -1.8 for early 

stage investments increasing to loadings around -1.2 for late and mezzanine investments. 

Interpreting this exposure as a measure of growth options, it is consistent with the early 

stage having more rapid growth than the late and mezzanine stage investments. 
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Interestingly, the measure of idiosyncratic volatility remains fairly constant across the 

four stages.  

**** TABLE 5: ESTIMATES BY COMPANY STAGE **** 

In Table 6 and Figure 3, we report two specifications where the parameters in the 

valuation equation vary by time period. We see that the intercept is markedly lower in the 

post-2001 period, indicative of a recent lower performance of VC investments. Below, 

we find substantial differences in the alphas calculated for these three periods. The 

idiosyncratic risk is fairly constant across time periods, but the figures indicate that the 

very high betas predominant in the late 1990s have abated in recent years.  

**** TABLE 6: ESTIMATES BY INVESTMENT PERIOD**** 

4.4 Estimates with VC-Specific Factor 

We define a separate VC factor by the monthly change in the logarithm of the 

total dollar volume of VC investments. This is motivated by Gompers and Lerner (2000) 

and Kaplan and Schoar (2005), who suggest that capital inflows into VC funds lead to 

higher valuations and subsequent poorer performance. This effect may introduce a risk 

factor that is specific to VC investments, and our factor is an attempt to provide a 

measure of the potential magnitude of this risk. In Table 7, we see that the valuations load 

strongly on the VC factor, suggesting that there may be substantial VC-specific risk that 

is not captured by the three-factor model. Including this factor reduces the loadings on 

the market factor substantially, from about 2.8 without the factor to about 1.0 with it. 

Similarly, the magnitudes of the loadings on SMB and HML decline markedly with the 
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factor. The positive coefficient in the selection equation confirms that the probability of 

observing a valuation increases with the aggregate amount of VC investments, not 

surprisingly. 

One interpretation of these findings is that the new loadings on the market-, size-, 

and book-to-market-factors capture the inherent “business risk” of VC-backed 

companies, and the loading on the VC factor captures the “capital risk” arising from the 

effect of capital in- and out-flows on valuations. This interpretation, however, ignores the 

reverse causality of the valuations on capital flows, and the estimates may well 

overestimate the direct causal effect of capital flows on valuations. Nevertheless, the 

results are indicative of the potential magnitude of this effect, and suggest that there may 

be substantial VC-specific risk, possibly leaving even a diversified portfolio of VC 

investments with substantially greater risk than predicted by standard models. Pricing this 

risk is difficult, however. It is unclear whether it is possible to construct a factor-

mimicking portfolio of publicly traded stocks, making it difficult to assess the risk 

premium associated with this factor. 

**** TABLE 7: ESTIMATES WITH VC FACTOR **** 

5. Interpretation of Intercepts 

Interpreting the economic magnitudes of the intercepts is not straightforward. For 

our estimates using log returns, the arithmetic alpha defined in equation (9) is calculated 

using the correction 2 21 1
2 2 (1 ) m! " # $ $ #= + % % . The analogous correction for multi-

factor specifications is in footnote 1. One advantage of the Bayesian approach is that it is 
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possible to compute the posterior distribution of alpha even though it is a non-linear 

function of the estimated parameters and 2!  is not asymptotically normal. The estimated 

alphas for the specifications in the previous tables are in Table 8. We first report GLS and 

MCMC estimates without correcting for selection. Without correcting for selection, we 

see high monthly alphas between 5.2% and 7.9%.   

Correcting for selection, the alphas drop substantially, as indicated both in Table 8 

and Figure 2. Figure 2 compares the posterior distributions of the alphas found using the 

MCMC estimates without selection correction from Table 3 and the estimates with 

correction from the first specification in Table 2. Correcting for selection, the market 

model specifications in Table 2 and the Fama-French specifications in Table 4 show 

monthly alphas ranging from 3.3% to 3.5%. In the specifications that separate 

investments by the stage of the company, we find that seed investments have larger 

alphas and late-stage investments offer the lowest alphas. Finally, Table 8 shows 

substantial variation in the alphas over the three different time periods. In Figure 3, we 

plot the posterior distributions and see that the early period, from 1987-93, offered a 

moderate monthly alpha of around 1.6%. This increased dramatically in the late 1990s, 

during the dot-com boom, to a monthly alpha around 5.8%. The 2001-2005 period 

appears to have experienced more disappointing returns, with average monthly alphas 

around -2.7%. 

When interpreting the estimates of alpha as measures of risk-adjusted returns, it is 

important to keep in mind the specification of the model and the unit of analysis. Our 

estimates reflect the average monthly risk and return for companies receiving VC 
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financing. Given a company and its current valuation, our estimates predict next month’s 

valuation as a function of the market return and other observed variables. This is a natural 

starting point for understanding the risk and return properties of entrepreneurial 

companies, but it may not directly measure the investment returns earned by VCs or LPs, 

for several reasons: First, the investments are illiquid, cannot be traded, and appear to 

contain substantial systematic risk that is specific to VC investments. It is not clear how 

to adjust the return measures for the investors’ inability to rebalance their portfolios and 

price the VC-specific risk. Second, our returns are gross returns that do not account for 

the fees and carry paid by the LPs to the GPs. Third, the investments are not independent 

in the sense that is it not possible to participate in only some investments in a company 

without also participating in the other ones. Indeed, an important part of an early 

investment is that it provides a real option to invest in future rounds, should the company 

be successful. Fourth and probably most importantly, investors are concerned about the 

dollar-weighted return on their investments. Our estimates suggest that the highest returns 

are earned for seed stage investments, but the dollar amounts invested in these rounds are 

tiny compared to the early- and late-stage rounds. Computing the dollar-weighted returns 

would substantially complicate the algorithm. A simple back-of-the-envelope calculation 

provides a sense of the magnitude of this effect: We can weigh the company-stage alphas 

in Table 8 by the percentage of dollars invested in each stage (from VentureSource). 

They report that 1% of VC dollars are invested in seed-stage companies, 45% and 50% 

are invested in early- and late-stage companies, respectively, leaving 4% for mezzanine 

rounds. With these figures, we calculate a simple dollar-weighted monthly alpha of about 

2.5%. 
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**** TABLE 8: ESTIMATES OF ALPHA **** 

**** FIGURE 3: HISTOGRAMS OF ALPHA **** 

6. Conclusion 

Empirical problems arise when estimating the risk and return of assets with 

infrequently observed valuations. We show that when the timing of the observed 

valuations is endogenous, a dynamic sample selection problem can bias traditional 

measures of risk and return, and we introduce a new methodology to address this 

problem.  

We estimate our model using data with venture capital investments in 

entrepreneurial companies, and our results suggest that the selection bias is substantial. 

Correcting for selection leads to substantially lower intercepts and higher estimates of 

risk exposures, both for systematic and idiosyncratic risk. These findings are robust 

across specifications of the pricing model and selection equation.  

Our approach explicitly models the path of the unobserved valuations between the 

observed ones, accounting for the factor returns over this period and the fact that no 

valuation was observed during this interim period, which shifts down the conditional 

distribution of the valuations. From these valuations, we estimate various measures of 

risk exposures and specifications of the selection process. Due to the large number of 

unobserved valuation and selection variables, the model is numerically difficult to 

estimate. We present a Bayesian estimator, relying on insights from Gibbs sampling and 
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Kalman Filtering, which is surprisingly tractable and robust given the complexity of the 

model.  

Similar problems have been encountered in studies of real estate indices and 

hedge fund performance, two other areas with infrequent and endogenous observations of 

valuations. Previous studies have struggled to address these problems, and it may be 

possible to apply our methodology, with some modifications, to those areas as well. 
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Appendix: Robustness and Convergence 

Below we provide details about the prior distributions and starting values of the sampling 

procedure and confirm the robustness of our procedure by using simulated data, testing 

for convergence, relaxing the normality assumption, and allowing for firm-level 

heterogeneity in the parameters. 

A.1 Prior Distributions and Starting Values 

We use diffuse priors for the parameters. We set the prior means of ! , ! , and 

0( , )v! !  to zero. We set 0 10,000I! =  and 0 100I! = , where I is the identity matrix. 

The prior distribution of 2!  is inverse gamma with parameters a0 = 2.1 and 0 1 600b = , 

implying that [ ] 4%E ! =  per month, and !  is between 1% and 12% (monthly) with 99% 

probability. Based on these choices, the priors for !  and !  are 2(0,4 )N , and the priors 

of 0!  and v!  are 2(0,10 )N .8 We start the Markov chain with ! , ! , and 0( , )v! !  at zero 

and !  at 10%. We do not need starting values for v(t) and w(t), because v(t) is the first 

variable we simulate and v!  is zero initially, so our initial draws of v(t) do not depend on 

w(t). 

We implement this algorithm in C++, using the GNU Scientific Library (GSL). 

On a 2.66 GHz Pentium 4 quad-core processor, it takes about 30 minutes to simulate 

6,000 draws of the Markov Chain (using only a single core). 

A.2 Estimation Using Simulated Data 
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We simulate three sets of 1,000 datasets and estimate our model on those. For the 

first 1,000 datasets, we use normal errors, as assumed in the model. For the second and 

third 1,000 datasets, we use log-normal and t-distributed errors to assess the robustness of 

the algorithm to misspecifications of the error distribution. We also compare the 

estimates to OLS, GLS, and MCMC estimates without correcting for selection. 

Each dataset contains 10 firms simulated over 120 periods. The valuation 

variables are simulated using equation (11), and the selection variables are simulated 

using equation (13), with the valuations being “observed” when ( ) 0w t ! . The market 

return is assumed to be distributed i.i.d. normal with mean zero and monthly standard 

deviation of 0.1 12 . The results are reported in Tables 9 to 11. These tables report the 

true parameters, the point estimates averaged over the 1,000 datasets, and the estimated 

standard error of the point estimates over the datasets is in parentheses.9 Overall, our 

algorithm seems to recover the underlying parameters well, even with misspecified error 

distributions. The datasets used for the simulations are substantially smaller than the 

actual data, and the statistical power should be at least as good in the actual data as found 

here. As expected, the estimators that do not account for selection tend to underestimate 

the systematic risk. The GLS and MCMC estimators (without selection correction) 

produce very similar results and both overestimate the intercept and underestimate the 

volatility, consistent with the intuition behind the selection problem. 

A.3 Convergence to Posterior Distribution 

We use several tests to assess the convergence of the simulations to the posterior 

distribution: We plot the simulated parameters, their autocorrelation functions, and 
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formally test for convergence using the Geweke (1992) and the Gelman and Rubin 

(1992) tests. These tests are all performed using the actual data and specification 1 in 

Table 2. Convergence tests for the other specifications and the simulated data produce 

similar results.  

Figure 4 plots the parameter draws. They appear to converge quickly from their 

initial values to a stationary region of the parameter space. Most of the convergence 

appears within the first few hundred iterations, and there are no apparent subsequent drift 

or changes in the volatility.  

To formally test for convergence, we first compute the Geweke (1992) 

convergence diagnostic. This diagnostic compares draws from the beginning and end of 

the chain (after discarding the initial 1,000 draws for burn-in). As suggested by Geweke 

(1992), we use a Z-score to test for equality of the means of the first 10% and the last 

50% of the 5,000 remaining iterations, taking into account the auto-correlation of the 

parameter draws using the Bartlett spectral density estimator of standard deviations. The 

results presented in Table 12 show that we cannot reject equality of the means, 

suggesting that the subsamples are drawn from a stationary distribution and that our 

procedure has converged. 

Our second convergence diagnostic uses the Gelman and Rubin (1992) potential 

scale reduction factor. This test is based on 10 chains each consisting of 1,000 burn-in 

iterations and 1,000 monitoring iterations, with starting values that are over-dispersed 

relative to the posterior distribution. If the chains have converged after the burn-in period, 

the variance within the chains should be similar to the variance between the chains. We 
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draw starting values randomly as described in Table 12, and calculate the R-statistic as 

the between-chain variance divided by the within-chain variance. Values of R above 1.1 

are generally considered problematic. All our values are below 1.07, and we cannot 

formally reject the hypothesis that our chain has converged for any of the parameters. 

A.4 Relaxing Normality Assumption  

One attractive feature of our procedure is that it preserves the Gibbs sampling and 

linear filtering properties when the distributional assumption is relaxed to mixtures of 

normals. Mixtures of normals approximate a wide range of distributions, including 

skewed and fat-tailed distributions. We specify the density of the error term in the 

valuation equation as: 

 2

1
( , )

K

i i i
i

f p N! µ "
=

=# , (A.1) 

which can be interpreted as if, with probability ip , we draw ( )t!  from a Normal 

distribution with mean 2( , )i iN µ ! . Note that only the combined mixture distribution, but 

not the individual underlying distributions, is identified, but this is not a problem for 

Bayesian estimators [see Rossi, Allenby, and McCulloch (2005) for details]. We use prior 

distributions of   ! i
2 ~ IG(2.1,1/ 600)  and 2 2| ~ (0,100 )i i iNµ ! !" . Figure 6 presents 

parameter plots and the estimated parameters are in Table 13. In the top plot of Figure 6, 

it is apparent that the individual mixtures are not identified and their means keep 

vacillating. However, the intercept is identified and converges quickly, as seen the second 

plot. Similar patterns are observed for the variances and probabilities, as seen in the 
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bottom two plots. In Table 13, we see that the results are largely robust to relaxing the 

normality assumption. The estimated mixtures show slightly positive skew and kurtosis, 

although the deviations from normality are slight. The coefficients in the valuation and 

selection equations are largely unaffected. Given this evidence, the normality assumption 

for the error term in the valuation equation seems unproblematic. 

A.5 Company-Specific Coefficients Using Hierarchical Priors 

As a final robustness check, we investigate whether our results are sensitive to the 

assumption that intercepts and betas are constant across companies. We estimate 

company-specific  ! i  and  !i  using a hierarchical prior approach, similar to a random 

coefficients specification [for additional details, see Rossi, Allenby, and McCulloch 

(2005)]. We specify that   (! i ,"i )  is distributed i.i.d across companies with: 

 ( )0 0( , ) ~ ( , ),i i N S! " ! " , (19) 

where  !0 ,  !0 , and S are parameters to be estimated. For these parameters, we use the 

priors: 

   S ~ IW (h, H )  (20) 

 ( )0 0( , ) | ~ (0,0),100S N S! " #  (21) 

where   IW (h, H )  denotes the conjugate Inverse Wishart distribution. Following Rossi, 

Allenby, and McCulloch (2005), we set   h = 5  and  



 
36 

 
  
H = (h ! 3) 0.12 0

0 12

"

#
$
$

%

&
'
'

, (22) 

implying a mean of S of 
 

0.12 0
0 12

!

"
#
#

$

%
&
&
. For each company the prior standard deviations 

of  ! i  and  !i  are 0.1 (10% per month) and 1, respectively. For the hyperparameters, the 

standard deviations of  !0  and  !0  are ten times as large, i.e., 1 and 10. The priors on the 

idiosyncratic volatility and the parameters in the selection equation are left unchanged.  

We extend the Gibbs procedure to sample  ! i  and  !i  from company-by-company 

regressions with “priors”  (!0 ,"0 )  and S. Given these draws, we draw  (!0 ,"0 )  and S from 

the posterior distribution of the multivariate regression of  ! i  and  !i  on a constant with 

priors given by equations (20) and (21). Given the increased dimensionality of this 

model, particularly the firm-specific deltas and betas, we use 20,000 iterations for 

estimation, discarding the initial 10,000 ones for burn-in.  

We estimate the hierarchical version of specification 1 of Table 2. The top plots 

of Figure 7 show the posterior distribution of  !0  and  !0 . For  !0 , the posterior 

distribution has mean -0.0572 and standard deviation 0.0017. For  !0 , the mean is 2.8272 

and the standard deviation is 0.1335. The idiosyncratic volatility has mean 0.4032 and 

standard deviation 0.0065. The average alpha across firms is 0.0399. Note that the 

standard deviations of  !0  and  !0  are fairly small, and their distributions are very similar 

to the means and standard deviations reported in specification 1 in Table 2. Overall, this 
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suggests that parameter heterogeneity across companies is not a substantial concern for 

our estimates.  
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1 For multi-factor models, 21 1 1

2 2 2( )diag! " # $ $ $+ % %= & ' & ' , where !  is the 

covariance matrix of the factor returns. 
2 Cochrane reports that, in his version of the dataset, liquidation dates were 

unreliable and apparently clustered on two specific days prior to 1997 (not accounting for 

this clustering led to negative estimates of betas). Moreover, he explicitly models 

measurement error and filters the data to account for outliers. In contrast, we only had to 

eliminate a single round in which the return was below -100%. In the Appendix we relax 

the normality assumption to allow for fat tails and skewed distributions but find no 

evidence of outliers in our data. 
3 Our results are not sensitive to this assumption. In our base specification, we 

estimate an intercept of -0.0563 and a beta of 2.7510. With a liquidation rate of 25%, the 

intercept changes to -0.0566 and the beta becomes 2.7900. The coefficients in the 

selection equation are similarly unaffected. 
4 For each company in the sample that goes public (is acquired), it is included in 

the subsample with probability pi/qi, where pi is the frequency of companies going public 

(being acquired) in the full dataset, and qi is the frequency in the sample with returns. 

Using the full sample of observed valuations changes the intercept and beta in the 

outcome equation from -0.0563 and 2.7510 to -0.032 and 2.7886, and has negligible 

effects on the other parameters. Here, as below, we assume that the subsample of 

companies with valuation information is random conditional on the observed exit. If this 

were not the case, it would introduce an additional distinct sample selection problem. 
5 Our results are robust to this assumption. Extending the period to 120 months, 

the estimates in specification 1 in Table 2 of -0.0563 and 2.7510 decrease to -0.0625 and 

2.6806 for the intercept and beta, respectively. The coefficients in the selection equation 

are less affected. 
6 Note that a formal comparison of these models is complicated by the fact that 

frequentist and Bayesian estimates are not directly comparable. 
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7 As discussed above, conditional on the company’s valuation, the selection 

equation has a negative slope on RMRF. This translates to an upward-sloping selection 

boundary in Figure 2, mitigating the effect of dynamic selection on beta. 
8 Our results are robust to using different priors. If we multiply the prior standard 

deviations on all parameters by 10, the base estimates of -0.0563 and 2.7510 change to -

0.0496 and 2.6364 for the intercept and beta, respectively. Note that the more dispersed 

prior distributions lead to results closer to zero. The coefficients in the selection equation 

are less affected. 
9 Calculated as the empirical standard error of the estimators for the 1,000 datasets 

divided by the square root of 1,000. 



Figure 1: Illustration of effect of selection on short- and long-term observed average drift of a valuation 
process. 
 

 
 
 



Figure 2: Illustration of selection bias on estimates of intercept, systematic risk, and idiosyncratic volatility. 
 
 

 



Figure 3:  Posterior distribution of monthly excess return: This figure plots the posterior distribution of 
monthly risk-adjusted excess returns, !, based on the one-factor market model in log-returns. In the top plot, 
we estimate the model using an MCMC algorithm that uses the information in the selection equation to 
adjust for dynamic selection (specification 1 in Table 2) and an MCMC algorithm that ignores the 
information in the selection equation (specification 1 in Table 3). In the bottom plot, we plot the 
distribution of ! by sub-period, as described in Table 6, using specification 1. 
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Figure 4: Trace plots: Plots of the parameter draws from the MCMC estimation of the one-factor market 
model in monthly log returns, with selection correction (model 1 in Table 2). In the valuation equation, 
! and !  are the monthly intercept and the slope on the market log return (in excess of the risk-free rate). 
! is the estimated monthly standard deviation of the error term.  In the selection equation, 0!  is the 
loading on the intercept, 1! is the loading on the log return since the previous financing event, and 2!  and 

3!  are loadings on the time since the last financing event (in years), and its squared value.  
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Figure 5: Auto-correlation functions: Plots of the autocorrelation functions of the MCMC draws of the 
one-factor market model in monthly log returns, with selection correction (model 1 in Table 2). The 
autocorrelations are calculated from 5,000 iterations of the MCMC algorithm, after discarding the first 
1,000 draws. In the valuation equation, !  and !  are the monthly intercept and the slope on the market log 
return (in excess of the risk-free rate). !  is the estimated monthly standard deviation of the error term.  In 
the selection equation, 0!  is the loading on the intercept, 1!  is the loading on the log return since the 
previous financing event, and 2!  and 3!  are loadings on the time since the last financing event (in years), 
and its squared value.  
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Figure 6: Trace plots of error term parameters for mixture of 2 normals: Plots of parameter draws of 
the MCMC estimation of the mixture model with 2 normals in the error term. We graph the individual error 
mixture distribution means ( 1µ  and 2µ ) along with the valuation equation intercept (! ) in the top plot. In 

the second plot, we show 
1

K
i ii
p! " µ

=
= +# , which represents the intercept in the valuation equation when 

the error term has mean zero. The standard deviations of the mixture distributions, 1!  and 2! , are in the 
third plot, and the last plot shows the probabilities of the mixture distributions.  
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Figure 7: Cross-sectional distribution of risk and return in hierarchical model: Histograms of the 
distribution of firm-specific risk and return estimates from the MCMC estimation of the one-factor market 
model with hierarchical priors, as described in the Appendix. In the valuation equation, !i and "i are firm-
specific (monthly) intercept and the slope on the market log return (in excess of the risk-free rate), and #i is 
the risk-adjusted excess return. The plots show the histograms of the posterior means of !i, "i, and #i across 
the 1,934 firms in the sample. The posterior means are calculated from 10,000 iterations of the MCMC 
sampler (after discarding the first 10,000 iterations). 
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Table 1: Descriptive statistics: This table describes the number of rounds and companies, along with their 
exits, in the full dataset and the subsample used for estimation. The full dataset is obtained from Sand Hill 
Econometrics. The subsample used for estimation contains only companies with valuation information 
adjusted to match the IPO and acquisition rates in the full data, as described in the text. 
 
  Data Subsample 
Rounds 61,356  5,501 
Companies 18,237 1,934 
Company Outcomes  
    IPO 10.4% 10.3% 
    Acquisition 23.4% 23.3% 
    Liquidation 15.9% 23.0% 
    Unknown 50.4% 43.4% 

 



Table 2: Bayesian estimates of one-factor market model: The table presents MCMC estimates of the 
one-factor market model in monthly log returns with selection correction.  Factor and risk-free returns are 
from Kenneth French’s website. The estimates are means and standard deviations (in parentheses) of the 
simulated posterior distributions.  In the valuation equation, Intercept is the monthly intercept in excess of 
the risk-free rate and RMRF is the slope on the market log return in excess of the risk-free rate.  Sigma is 
the estimated standard deviation of the error term.  In the selection equation, Return is the log return earned 
since the previous financing event. Time is the time since this event (in years). Acquisitions, IPOs, and 
Rounds contain the number of VC-backed acquisitions, IPOs, and total VC investment rounds in the month 
of the observation (in 000s).  The simulations use 5,000 iterations preceded by 1,000 discarded iterations 
for burn-in. ***, **, and * denote whether zero is contained in the 1%, 5%, and 10% credible intervals, 
respectively. 
 

  (1)     (2)     (3)     (4)   
Valuation Equation                     
Intercept -0.0563 ***  -0.0566 ***  -0.0570 ***  -0.0571 *** 
 (0.0016)   (0.0017)   (0.0015)   (0.0017)  
RMRF 2.7510 ***  2.7900 ***  2.6773 ***  2.7013 *** 
 (0.1127)   (0.1100)   (0.1071)   (0.1189)  
            
Sigma 0.4109 ***  0.4119 ***  0.4135 ***  0.4131 *** 
 (0.0050)   (0.0051)   (0.0045)   (0.0055)  
Selection Equation                     
Return 0.3321 ***  0.3368 ***  0.3502 ***  0.3508 *** 
 (0.0079)   (0.0083)   (0.0097)   (0.0104)  
Time 0.3666 ***  0.3777 ***  0.4139 ***  0.4137 *** 
 (0.0202)   (0.0203)   (0.0211)   (0.0216)  
Time Squared -0.0361 ***  -0.0371 ***  -0.0405 ***  -0.0402 *** 

(0.0028)   (0.0028)   (0.0028)   (0.0027)  
            
Acquisitions       6.9829 ***  6.4927 *** 
       (1.0674)   (1.0446)  
IPOs       -1.8940 *  -1.5898  
       (1.0304)   (1.0137)  
Rounds       0.3083 ***  0.3267 *** 
       (0.0788)   (0.0793)  
RMRF    -0.7095 ***     -0.4747 *** 
    (0.1653)      (0.1656)  
Constant -1.9290 ***  -1.9331 ***  -2.2637 ***  -2.2588 *** 
  (0.0170)     (0.0162)     (0.0275)     (0.0275)   



Table 3: OLS, GLS, and MCMC estimates: The table presents OLS, GLS, and MCMC estimates of the 
market model and the Fama-French three-factor model in monthly log returns without selection correction. 
Factor and risk-free returns are from Kenneth French’s website. The OLS estimator regresses the log 
returns on the factor log returns. The GLS estimator scales each observation with the inverse of the square-
root of the time since last financing round. MCMC estimates are the mean and standard deviation of the 
parameters’ simulated posterior distribution, without correcting for selection bias (i.e., forcing   ! v = 0  in 
the estimation). RMRF is the return on the market in excess of the risk-free rate, SMB is the small-minus-
big portfolio, and HML the high-minus-low book-to-market portfolio. For the GLS and MCMC estimators, 
Sigma is the estimated standard deviation of the error term. The MCMC estimator use 5,000 iterations 
preceded by 1,000 discarded iterations for burn-in. For OLS and GLS estimates ***, **, and * denote 
statistical significance at the 1%, 5%, and 10% levels, respectively. For Bayesian estimates, they denote 
whether zero is contained in the 1%, 5%, and 10% credible intervals, respectively. 
 

Panel A: OLS       
  (1)       (2)     
 Coef. Std. Err.    Coef. Std. Err.   
Intercept -0.0286 (0.0013) ***  -0.0221 (0.0016) *** 
RMRF 2.0766 (0.1003) ***  1.8104 (0.1130) *** 
SMB     -0.3258 (0.1710) * 
HML     -1.0429 (0.1390) *** 
        
Sigma 1.3695       1.3536     
        
Panel B: GLS       
  (1)       (2)     
 Coef. Std. Err.    Coef. Std. Err.   
Intercept -0.0167 (0.0019) ***  -0.0110 (0.0021)  
RMRF 2.2906 (0.1166) ***  2.1012 (0.1256) *** 
SMB     -0.3581 (0.1915) * 
HML     -0.9726 (0.1512) *** 
        
Sigma 0.4156       0.4117     
        
Panel C: MCMC       
  (1)       (2)     
 Mean Std. Dev.    Mean Std. Dev.   
Intercept -0.0159 (0.0015) ***  -0.0115 (0.0017) *** 
RMRF 2.6624 (0.1170) ***  2.2631 (0.1145) *** 
SMB     1.1377 (0.1747) *** 
HML     -1.2435 (0.1340) *** 
        
Sigma 0.3566 (0.0036)  ***   0.3509  (0.0037) *** 



Table 4: Estimates of Fama-French three-factor model with selection correction: The table presents 
MCMC estimates of the one-factor market model in monthly log returns with selection correction.  Factor 
and risk-free returns are from Kenneth French’s website. The estimates are means and standard deviations 
(in parentheses) of the simulated posterior distributions.  In the valuation equation, Intercept is the monthly 
intercept in excess of the risk-free rate and RMRF is the slope on the market log return in excess of the risk-
free rate. SMB is the small-minus-big portfolio, and HML the high-minus-low book-to-market portfolio. 
Sigma is the estimated standard deviation of the error term.  In the selection equation, Return is the log 
return earned since the previous financing event. Time is the time since this event (in years). Acquisitions, 
IPOs, and Rounds contain the number of VC-backed acquisitions, IPOs, and total VC investment rounds in 
the month of the observation (in 000s).  The simulations use 5,000 iterations preceded by 1,000 discarded 
iterations for burn-in. ***, **, and * denote whether zero is contained in the 1%, 5%, and 10% credible 
intervals, respectively. 
 

  (1)     (2)     (3)     (4)   
Valuation Equation           
Intercept -0.0538 *** -0.0539 *** -0.0544 *** -0.0548 *** 
 (0.0018)   (0.0018)   (0.0018)   (0.0019)  
RMRF 2.2972 *** 2.3430 *** 2.2532 *** 2.3048 *** 
 (0.1140)   (0.1090)   (0.1203)   (0.1208)  
SMB 1.0651 *** 1.0168 *** 0.9728 *** 0.9759 *** 
 (0.1608)   (0.1782)   (0.1790)   (0.1807)  
HML -1.6391 *** -1.6513 *** -1.5425 *** -1.5487 *** 
 (0.1258)   (0.1290)   (0.1339)   (0.1329)  
            
Sigma 0.4033 *** 0.4038 *** 0.4048 *** 0.4060 *** 
 (0.0050)   (0.0040)   (0.0044)   (0.0053)  
Selection Equation                     
Return 0.3311 *** 0.3374 *** 0.3462 *** 0.3509 *** 
 (0.0094)   (0.0091)   (0.0089)   (0.0105)  
Time 0.3673 *** 0.3752 *** 0.4067 *** 0.4115 *** 
 (0.0212)   (0.0217)   (0.0207)   (0.0218)  
Time Squared -0.0362 *** -0.0367 *** -0.0398 *** -0.0399 *** 
 (0.0029)   (0.0029)   (0.0029)   (0.0029)  
            
Acquisitions       6.9160 *** 6.3833 *** 
       (1.0406)   (1.1412)  
IPOs       -1.8341 * -1.7884 * 
       (0.9853)   (1.0304)  
Rounds       0.2746 ***  0.3043 *** 
       (0.0765)   (0.0833)  
RMRF    -0.6025 ***    -0.3886 ** 
    (0.1670)      (0.1659)  
SMB    0.0682      -0.1002  
    (0.2296)      (0.2336)  
HML    0.7097 ***    0.6203 *** 
    (0.1903)      (0.2094)  
            
Constant -1.9340 ***  -1.9370 *** -2.2488 *** -2.2481 *** 
  (0.0169)     (0.0166)     (0.0270)     (0.0273)   



Table 5: Estimates by stage of development of entrepreneurial company: The table presents MCMC 
estimates of the one-factor market model in monthly log returns with selection correction.  Factor and risk-
free returns are from Kenneth French’s website. The estimates are means and standard deviations (in 
parentheses) of the simulated posterior distributions. The specifications contain separate coefficients for 
companies at the seed, early, late, and mezzanine stages, as defined in Table 2 in Sahlman (1990). Our late 
stage corresponds to the second, third, and fourth stage according to Sahlman’s definition. In the valuation 
equation, Intercept is the monthly intercept in excess of the risk-free rate and RMRF is the slope on the 
market log return in excess of the risk-free rate. SMB is the small-minus-big portfolio, and HML the high-
minus-low book-to-market portfolio. Sigma is the estimated standard deviation of the error term.  In the 
selection equation, Return is the log return earned since the previous financing event. Time is the time since 
this event (in years). Acquisitions, IPOs, and Rounds contain the number of VC-backed acquisitions, IPOs, 
and total VC investment rounds in the month of the observation (in 000s).  The simulations use 5,000 
iterations preceded by 1,000 discarded iterations for burn-in. ***, **, and * denote whether zero is 
contained in the 1%, 5%, and 10% credible intervals, respectively. 
 

  (1)  (2)  (3)  (4)  
    Mean Std.Dev.   Mean Std.Dev.   Mean Std.Dev.   Mean Std.Dev.   
Valuation Equation           
Intercept             
 seed 0.0436 (0.0108) *** 0.0452 (0.0104) *** 0.0434 (0.0106) *** 0.0461 (0.0112) *** 
 early -0.0398 (0.0020) *** -0.0405 (0.0020) *** -0.0391 (0.0021) *** -0.0397 (0.0022) *** 
 late -0.0920 (0.0031) *** -0.0922 (0.0033) *** -0.0894 (0.0036) *** -0.0892 (0.0036) *** 
 mezz -0.0517 (0.0130) *** -0.0516 (0.0130) *** -0.0609 (0.0153) *** -0.0630 (0.0143) *** 
RMRF             
 seed 0.7414 (0.7914)  0.5827 (0.7556)  0.7270 (0.7254)  0.4688 (0.8176)  
 early 2.7425 (0.1267) *** 2.6633 (0.1309) *** 2.1774 (0.1317) *** 2.1693 (0.1424) *** 
 late 2.6281 (0.2210) *** 2.5053 (0.1877) *** 2.3840 (0.2204) *** 2.3481 (0.2319) *** 
 mezz 5.8885 (0.9108) *** 5.5939 (0.9100) *** 5.3149 (1.0087) *** 5.0712 (0.9047) *** 
SMB             
 seed       -0.1013 (0.6441)  -0.1443 (0.6081)  
 early       1.4233 (0.2200) *** 1.3245 (0.2202) *** 
 late       0.5772 (0.3924)  0.4167 (0.3982)  
 mezz       1.7806 (1.1654)  1.8336 (1.0111) * 
HML             
 seed       0.5291 (0.4820)  0.5165 (0.5019)  
 early       -1.8732 (0.1520) *** -1.7795 (0.1542) *** 
 late       -1.2142 (0.1632) *** -1.0380 (0.2679) *** 
 mezz       -1.2195 (0.9704)  -1.0938 (0.9146)  
Sigma             
 seed 0.3434 (0.0155) *** 0.3417 (0.0149) *** 0.3415 (0.0168) *** 0.3404 (0.0151) *** 
 early 0.3880 (0.0056) *** 0.3886 (0.0051) *** 0.3784 (0.0053) *** 0.3800 (0.0054) *** 
 late 0.4396 (0.0100) *** 0.4386 (0.0108) *** 0.4397 (0.0093) *** 0.4392 (0.0109) *** 
 mezz 0.3930 (0.0350) *** 0.3810 (0.0314) *** 0.3761 (0.0332) *** 0.3664 (0.0331) *** 
              
Selection Equation           
 Return 0.3339 (0.0094) *** 0.3463 (0.0102) *** 0.3344 (0.0094) *** 0.3466 (0.0095) *** 
 Time 0.3738 (0.0223) *** 0.4089 (0.0202) *** 0.3785 (0.0210) *** 0.4092 (0.0225) *** 
 Time Sq -0.0353 (0.0029) *** -0.0386 (0.0027) *** -0.0360 (0.0029) *** -0.0386 (0.0029) *** 
              
 Acquisitions   6.6045 (1.0821) ***    6.5016 (1.0782) *** 
 IPOs    -1.5986 (0.9941)    -1.7514 (0.9935) * 
 Rounds    0.3142 (0.0789) ***   0.2876 (0.0786) *** 
              
 RMRF -0.6848 (0.1691) *** -0.4554 (0.1748) *** -0.5955 (0.1639) *** -0.3376 (0.1808) * 
 SMB       -0.0739 (0.2232)  -0.0936 (0.2428)  
 HML       0.6960 (0.1804) *** 0.6054 (0.2028) *** 
              
  Constant -1.9364 (0.0167) *** -2.2589 (0.0263) *** -1.9433 (0.0172) *** -2.2488 (0.0279) *** 



Table 6: Estimates by investment period: The table presents MCMC estimates of the one-factor market 
model in monthly log returns with selection correction.  Factor and risk-free returns are from Kenneth 
French’s website. The estimates are means and standard deviations (in parentheses) of the simulated 
posterior distributions. The specifications contain separate coefficients for investments during the periods 
1987-1993, 1994-2000, and 2001-2005. In the valuation equation, Intercept is the monthly intercept in 
excess of the risk-free rate and RMRF is the slope on the market log return in excess of the risk-free rate. 
Sigma is the estimated standard deviation of the error term.  In the selection equation, Return is the log 
return earned since the previous financing event. Time is the time since this event (in years). The 
simulations use 5,000 iterations preceded by 1,000 discarded iterations for burn-in. ***, **, and * denote 
whether zero is contained in the 1%, 5%, and 10% credible intervals, respectively. 
 
    (1)       (2)     

  Mean Std.Dev.    Mean Std.Dev.   
Valuation Equation       
Intercept        
 87-'93 -0.0387 (0.0055) ***  -0.0399 (0.0057) *** 
 94-'00 -0.0332 (0.0029) ***  -0.0341 (0.0029) *** 
 01-'05 -0.0926 (0.0029) ***  -0.0932 (0.0032) *** 
         
RMRF        
 87-'93 0.3814 (0.6710)   0.5015 (0.6245)  
 94-'00 2.5005 (0.2047) ***  2.5582 (0.1934) *** 
 01-'05 1.0855 (0.1837) ***  1.0554 (0.1745) *** 
         
Sigma        
 87-'93 0.3296 (0.0118) ***  0.3316 (0.0116) *** 
 94-'00 0.4185 (0.0053) ***  0.4192 (0.0059) *** 
 01-'05 0.3622 (0.0088) ***  0.3664 (0.0091) *** 
         
Selection Equation             
Return 0.3348 (0.0083) ***  0.3393 (0.0089) *** 
Time 0.3705 (0.0195) ***  0.3794 (0.0199) *** 
Time Squared -0.0358 (0.0027) ***  -0.0366 (0.0028) *** 
         
RMRF     -0.4644 (0.1667) *** 
         
Constant -1.9391 (0.0161) ***   -1.9415 (0.0152) *** 



Table 7: Estimates with VC factor: The table presents MCMC estimates of the one-factor market model 
in monthly log returns with selection correction.  Factor and risk-free returns are from Kenneth French’s 
website. The estimates are means and standard deviations (in parentheses) of the simulated posterior 
distributions.  In the valuation equation, Intercept is the monthly intercept in excess of the risk-free rate and 
RMRF is the slope on the market log return in excess of the risk-free rate. SMB is the small-minus-big 
portfolio, and HML the high-minus-low book-to-market portfolio. VC Factor is the log-change in the total 
dollar volume of VC investments in the month of the observation. Sigma is the estimated standard deviation 
of the error term.  In the selection equation, Return is the log return earned since the previous financing 
event. Time is the time since this event (in years). Acquisitions, IPOs, and Rounds contain the number of 
VC backed acquisitions, IPOs, and total VC investment rounds in the month of the observation (in 000s).  
The simulations use 5,000 iterations preceded by 1,000 discarded iterations for burn-in. ***, **, and * 
denote whether zero is contained in the 1%, 5%, and 10% credible intervals, respectively. 
 
  (1)     (2)     (3)     (4)   
Valuation Equation           
Intercept -0.0537 ***  -0.0540 ***  -0.0527 ***  -0.0525 *** 
 (0.0016)   (0.0016)   (0.0018)   (0.0019)  
RMRF 0.9345 ***  1.0659 ***  0.9791 ***  1.1644 *** 
 (0.1488)   (0.1713)   (0.1555)   (0.1756)  
SMB       0.5201 ***  0.5435 *** 
       (0.1915)   (0.1739)  
HML       -1.0093 ***  -1.0556 *** 
       (0.1290)   (0.1215)  
VC Factor 0.5816 ***  0.5460 ***  0.4773 ***  0.4289 *** 
 (0.0369)   (0.0377)   (0.0394)   (0.0411)  
Sigma 0.4048 ***  0.4048 ***  0.4035 ***  0.4014 *** 
 (0.0053)   (0.0045)   (0.0048)   (0.0045)  
Selection Equation           
Return 0.3567 ***  0.3546 ***  0.3561 ***  0.3560 *** 
 (0.0094)   (0.0089)   (0.0091)   (0.0104)  
Time 0.4091 ***  0.4038 ***  0.4146 ***  0.4064 *** 
 (0.0207)   (0.0209)   (0.0216)   (0.0243)  
Time Squared -0.0396 ***  -0.0387 ***  -0.0400 ***  -0.0390 *** 

(0.0028)   (0.0027)   (0.0030)   (0.0031)  
Acquisitions 7.3768 ***  7.6483 ***  7.2524 ***  7.3702 ** 
 (1.0357)   (1.1640)   (1.0105)   (1.1041)  
IPOs -3.1900 ***  -3.1766 ***  -3.1626 ***  -3.0994 *** 
 (1.0098)   (1.0451)   (0.9949)   (1.0286)  
Rounds 0.2134 ***  0.1791 **  0.2251 ***  0.1866 ** 
 (0.0771)   (0.0849)   (0.0756)   (0.0807)  
RMRF    -0.3309 *     -0.2997 * 
    (0.1697)      (0.1827)  
SMB          -0.1836  
          (0.2344)  
HML          0.4435 ** 
          (0.1991)  
VC Factor    0.0838 ***     0.0950 *** 
    (0.0274)      (0.0275)  
Constant -2.2136 ***  -2.2071 ***  -2.2207 ***  -2.2067 *** 
  (0.0264)     (0.0289)     (0.0267)     (0.0294)   



Table 8: Monthly risk-adjusted excess returns: The table presents means, standard deviations, and 
percentiles of the posterior distributions of the monthly risk-adjusted excess returns (alphas). See text for 
construction of these estimates. 
 

      mean std.dev.  1 5 50 95 99 
Table 3: No selection       
 Model 1         
  GLS 0.0681          
  MCMC 0.0517 (0.0019)  0.0472 0.0486 0.0517 0.0549 0.0562 
 Model 2         
  GLS 0.0794          
  MCMC 0.0560 (0.0022)  0.0513 0.0525 0.0559 0.0598 0.0613 
Table 2: One-factor market model    
 Model 1 0.0326 (0.0021)  0.0277 0.0292 0.0326 0.0361 0.0375 
 Model 2 0.0327 (0.0020)  0.0281 0.0294 0.0326 0.0361 0.0377 
 Model 3 0.0329 (0.0021)  0.0283 0.0296 0.0329 0.0365 0.0380 
 Model 4 0.0325 (0.0021)  0.0274 0.0290 0.0325 0.0361 0.0376 
Table 4: Fama-French three-factor model    
 Model 1 0.0351 (0.0023)  0.0299 0.0313 0.0351 0.0390 0.0405 
 Model 2 0.0355 (0.0023)  0.0300 0.0317 0.0355 0.0393 0.0407 
 Model 3 0.0345 (0.0022)  0.0297 0.0311 0.0344 0.0383 0.0398 
 Model 4 0.0349 (0.0024)  0.0294 0.0310 0.0349 0.0389 0.0405 
Table 5: By stage        
 Model 1         
  Seed 0.1031 (0.0117)  0.0781 0.0850 0.1026 0.1235 0.1325 
  Early 0.0400 (0.0024)  0.0346 0.0362 0.0399 0.0440 0.0462 
  Late 0.0087 (0.0038)  -0.0002 0.0023 0.0088 0.0148 0.0173 
  Mezz 0.0528 (0.0196)  0.0129 0.0233 0.0512 0.0881 0.1051 
 Model 2         
  Seed 0.1040 (0.0112)  0.0801 0.0867 0.1034 0.1233 0.1325 
  Early 0.0392 (0.0023)  0.0340 0.0355 0.0392 0.0430 0.0445 
  Late 0.0081 (0.0039)  -0.0004 0.0019 0.0079 0.0148 0.0174 
  Mezz 0.0464 (0.0185)  0.0084 0.0180 0.0453 0.0785 0.0947 
 Model 3         
  Seed 0.1025 (0.0120)  0.0777 0.0845 0.1018 0.1223 0.1385 
  Early 0.0408 (0.0026)  0.0348 0.0366 0.0408 0.0452 0.0470 
  Late 0.0137 (0.0048)  0.0027 0.0057 0.0138 0.0217 0.0247 
  Mezz 0.0399 (0.0212)  -0.0017 0.0085 0.0380 0.0777 0.0973 
 Model 4         
  Seed 0.1049 (0.0126)  0.0779 0.0849 0.1042 0.1266 0.1376 
  Early 0.0404 (0.0027)  0.0342 0.0360 0.0403 0.0448 0.0469 
  Late 0.0131 (0.0051)  0.0025 0.0051 0.0128 0.0217 0.0261 
  Mezz 0.0311 (0.0196)  -0.0070 0.0014 0.0293 0.0667 0.0826 
Table 6: By time period      
 Model 1         
  '87-'93 0.0159 (0.0060)  0.0028 0.0064 0.0157 0.0261 0.0306 
  '94-'00 0.0580 (0.0030)  0.0515 0.0533 0.0579 0.0631 0.0653 
  '01-'05 -0.0269 (0.0031)  -0.0339 -0.0320 -0.0268 -0.0218 -0.0198 
 Model 2         
  '87-'93 0.0153 (0.0055)  0.0034 0.0064 0.0151 0.0246 0.0286 
  '94-'00 0.0576 (0.0030)  0.0506 0.0527 0.0576 0.0625 0.0646 
  '01-'05 -0.0259 (0.0031)  -0.0331 -0.0311 -0.0260 -0.0209 -0.0181 

 



Table 9: Estimates using simulated data: Estimation results from 1,000 simulated datasets of 10 firms 
over 120 months. The simulated model is: 

  

v(t) = v(t !1) + r + " + #(rm (t) ! r) + $(t)

w(t) = % 0 + % 1v(t) + % 2& + % 3&
2 +'(t)

 

where ( ) ln( ( ))v t V t=  is observed when the latent selection variable ( ) 0w t ! . The log-market return ( )mr t  
is drawn from an i.i.d. 2(0,0.1 12)N ,  and !  is the time since the last observed valuation. The error terms 

2( ) (0, )t N! "!  and ( ) (0,1)t N! !  are independent of each other. We set the risk-free rate r  to zero. Other 
parameter values used to simulate the model are shown in the column labeled “True.” The OLS and GLS 
methods are explained in the main text. The MCMC (no selection) method forces 0v! = , as described in 
the paper. The MCMC (w/ selection) method is our dynamic selection algorithm detailed in the Appendix. 
Both MCMC methods use the same priors as specified the in the Appendix. For each variable, the first 
number is the mean of the point estimates across datasets (posterior means for MCMC results). The number 
in parentheses is the standard error of the estimates across datasets. 
 
 True  OLS GLS MCMC  

(no selection) 
 MCMC  

(w/ selection) 
Valuation Equation     
Intercept 0.0  -0.0038 0.0077 0.0077  0.0001 
   (0.0001) (0.0001) (0.0001)  (0.0001) 
RMRF 3.0  1.1926 2.3578 2.3585  3.0100 
   (0.0122) (0.0123) (0.0124)  (0.0118) 
Sigma 0.1  0.1468 0.0875 0.0864  0.0990 
   (0.0003) (0.0002) (0.0002)  (0.0003) 
Selection Equation     
Return 10.0      10.6303 
       (0.0484) 
Time 0.1      0.1078 
       (0.0011) 
Time-
Squared 

0.0      0.0000 
      (0.0000) 

Constant -1.0      -1.0241 
       (0.0052) 
 
 



Table 10: Estimates using simulated data with t-distributed errors: Simulations of the model described 
in Table 9, but with 5( ) 0.0775t t! "! , where t5 is the Student t-distribution with 5 degrees of freedom.  The 
distribution of ( )t!  is symmetric with mean zero and standard deviation 0.1, and excess kurtosis (in excess 
of the Normal distribution) of 6. We refer the reader to Table 9 for more details. 
 
 
 True  OLS  GLS  MCMC  

(no selection) 
 MCMC  

(w/ selection) 
Valuation Equation       
Intercept 0.0  -0.0037  0.0077  0.0077  0.0002 
   (0.0001)  (0.0001)  (0.0001)  (0.0001) 
RMRF 3.0  1.1774  2.3313  2.3338  3.0632 
   (0.0132)  (0.0123)  (0.0123)  (0.0143) 
Sigma 0.1  0.1512  0.0901  0.0889  0.1030 
   (0.0004)  (0.0003)  (0.0003)  (0.0004) 
Selection Equation       
Return 10.0        10.2325 
         (0.0538) 
Time 0.1        0.1048 
         (0.0011) 
Time-
Squared 

0.0        -0.0001 
        (0.0000) 

Constant -1.0        -0.9943 
         (0.0051) 
 
 



Table 11: Estimates using simulated data with log-normal errors: Simulations of the model described 
in Table 9, but with 2 2( ) (0,0.0993 ) exp(0.0993 2)t LN! "! . The distribution of ( )t!  has mean zero and 
standard deviation 0.1, skewness of 1.8346 and excess kurtosis (in excess of the normal distribution) of 
0.16. We refer the reader to Table 9 for more details. 
 
 
 True  OLS  GLS  MCMC  

(no selection) 
 MCMC  

(w/ selection) 
Valuation Equation       
" 0.0  -0.0038  0.0078  0.0078  0.0002 
   (0.0001)  (0.0001)  (0.0001)  (0.0001) 
# 3.0  1.1556  2.3050  2.3054  3.0257 
   (0.0132)  (0.0132)  (0.0133)  (0.0120) 
$ 0.1  0.1510  0.0913  0.0901  0.1037 
   (0.0003)  (0.0002)  (0.0002)  (0.0003) 
Selection Equation       
Return 10.0        10.4099 
         (0.0489) 
Time 0.1        0.1072 
         (0.0011) 
Time-
Squared 

0.0        -0.0000 
        (0.0000) 

Constant -1.0        -1.0247 
         (0.0052) 
 



Table 12: Convergence tests: This table shows the Geweke (1992) and Gelman-Rubin (1992) tests for 
convergence, computed for our dataset of entrepreneurial firms in the paper, using a one-factor market 
model in monthly log returns, with selection correction (model 1 in Table 2). In the valuation equation, !  
and !  are the monthly intercept and the slope on the market log return (in excess of the risk-free rate). !  
is the estimated monthly standard deviation of the error term.  In the selection equation, 0!  is the loading 
on the intercept, 1!  is the loading on the log return since the previous financing event, and 2!  and 3!  are 
loadings on the time since the last financing event and its squared value. The Geweke (1992) Z-statistic is a 
difference in means test. After discarding the first 1,000 cycles, we calculate the mean and standard 
deviation of the first 10% (Mu1 and Sigma1) and the last 50% (Mu2 and Sigma2) of the next 5,000 cycles. 
We use Bartlett spectral density estimates of Sigma1 and Sigma2, to account for autocorrelation. We also 
report the p-values of the Z-statistic. The Gelman-Rubin (1992) R-statistic is based on 10 chains with 1,000 
burn-in and 1,000 estimation cycles. Each chain has different starting values.  We draw starting values of 
!  and !  from a 2(0,0.08 )N  and 2(3,1.5 )N distribution, respectively. The starting value for !  is drawn 
uniformly between 0 and 0.5. Starting values for !  are drawn from a 2(0,0.5 )N  distribution. Values of R-
stat above 1.1 or 1.2 are usually considered non-stationary. For both convergence tests, we use the priors 
described in the Appendix.  
 
 
  Geweke (1992)  Gelman-

Rubin 
(1992) 

  Mean 1 Std. 
dev. 1 

 Mean 2 Std. 
Dev. 2 

 Z-stat p-value  R-stat 

Valuation Equation         
Intercept  -0.0563 0.0020  -0.0563 0.0115  0.2028 0.8393  1.0274 
            
RMRF  2.7675 0.2888  2.7709 0.4475  -0.1706 0.8646  1.0081 
            
Sigma  0.4097 0.0108  0.4115 0.0656  -0.9886 0.3229  1.0426 
            
Selection Equation         
Return  0.3334 0.0245  0.3316 0.0366  1.3207 0.1866  1.0655 
            
Time  0.3725 0.1690  0.3698 0.0838  0.3506 0.7259  1.0361 
            
Time-
Squared 

 -0.03714 0.0244  -0.0365 0.0076  -0.6259 0.5314  1.0215 
           

Constant  -1.9318 0.1218  -1.9302 0.0491  -0.2865 0.7745  1.0184 
            
 



Table 13: Robustness to non-normality of error term: This table reports MCMC estimates of the one-
factor market model in monthly log returns, with selection correction. All reported estimates are mean and 
standard deviations (in parentheses) of the simulated posterior distributions. In the valuation equation, !  
and !  are the monthly intercept and the slope on the market log return (in excess of the risk-free rate). The 
error term in the observation equation, ! , is a mixture of K normal distribution, with probability density 

2
1

( , )K
i i ii

f p N! µ "
=

=# . The priors on the mixture parameters 2 2| (0,100 )i i iNµ ! !"!  and 

( )2 2.1,1/ 600i IG! !  are the same as for the single normal distributed error term in the paper.  

The parameter 
1

K
i ii
p! " µ

=
= +#  incorporates the mean of the mixture distribution. We report the moments 

of the centered error term 
1

K
i ii
p! µ

=
"# , where kurtosis is in excess of the normal distribution kurtosis. In 

the selection equation, 0!  is the loading on the intercept, 1!  is the loading on the log return since the 
previous financing event, and 2!  and 3!  are loadings on the time since the last financing event and its 
squared value. The simulations use 5,000 iterations preceded by 1,000 discarded iterations for burn-in. ***, 
**, and * denote whether zero is contained in the 1%, 5%, and 10% credible intervals, respectively. 
 
 
  K=1  K=2  K=3 

Valuation Equation       

Intercept -0.0563 ***  -0.0509 ***  -0.0508 *** 

 (0.0016)   (0.0016)   (0.0017)  

RMRF 2.7510 ***  2.7029 ***  2.6367 *** 

 (0.1127)   (0.1134)   (0.1335)  

Selection Equation      

Return 0.3321 ***  0.3266 ***  0.3284 *** 

 (0.0079)   (0.0090)   (0.0089)  

Time 0.3666 ***  0.3499 ***  0.3476 *** 

 (0.0202)   (0.0211)   (0.0216)  

Time-
Squared 

-0.0361 ***  -0.0352 ***  -0.0345 *** 

(0.0028)   (0.0029)   (0.0028)  

Constant -1.9290 ***  -1.9228 ***  -1.9203 *** 

 (0.0170)   (0.0164)   (0.0170)  

Error Term        

Mean 0.0000   0.0000   0.0000  

Std. Dev. 0.4109   0.4064   0.4073  

Skewness 0.0000   0.0011   0.0024  

Kurtosis 0.0000   0.0060   0.0134  

 
 


