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I. Introduction

We construct an equilibrium production model of
default with two agents in this paper. We lay the
groundwork for linking the asset pricing with
default and offer a theoretical rationale for default
premium to influence asset returns. This property
was assumed by Jagannathan and Wang (1996)
and other scholars in the asset pricing literature.
The general equilibrium productionmodel of Cox,
Ingersoll, and Ross (1985) provides our basic
frame of reference. The borrower in the economy
has exclusive access to the only risky production
technology when the economy begins. The bor-
rower is endowed with a limited initial endow-
ment of the only good, which is not storable. The
lender has no access to the risky technology on the
initial date but is endowed with the good, which
he can decide either to lend to the borrower or sim-
ply consume. Since the good is not storable, the only
way for the lender to consume over time is to lend
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We present an
equilibrium production
economy in which
default occurs in
equilibrium. The
borrower chooses
optimal default and
consumption policies,
taking into account that
default is costly and the
lender gains access to
the technology upon
default. We derive asset
prices and default
premia in this economy.
The borrower’s relative
risk aversion in wealth
increases with decreases
in wealth due to the in-
creased possibility of
default at low wealth
levels. This produces a
time-varying pricing
kernel and a
countercyclical equity
premium. We thus
provide an equilibrium
rationale for the default
premium to influence
expected asset returns.



the good to the borrower in exchange for a stream of promised payments.
To keep the focus sharply on default, we assume that the borrower offers
a debt contract to the lender that promises an eternal, constant flow rate of
payments to the lender.1 The borrower faces a cost associated with de-
fault: when the promised payments are not paid, the borrower loses a
fraction of his wealth plus a fixed amount to the lender. Moreover, upon
default, the lender is able to access the risky technology, permitting him
to become a fully utility-maximizing participant in the economy. The
lender chooses his optimal strategy at time 0 also by comparing the ex-
pected utility associated with lending with the utility of consuming the
good today. When the lender optimally decides to lend at time 0, the bor-
rower can augment his endowment and determine optimally his con-
sumption and default policies. This is the equilibrium that we study in the
paper. We characterize the feasible loans and an equilibrium in which
there is lending with welfare improvements to both lender and borrower.
The decision to accept the loan and to default later is endogenous in the
model. The borrower chooses the optimal time of default to maximize his
expected lifetime utility.
Our approach has some merits and some drawbacks relative to other

contributions in the literature.We contribute at a methodological level by
computing allocations and prices in an economy where there is endog-
enous default.We use optimal stopping-timemethods to do this.We offer
a framework in which asset prices depend on the default premium. We
derive an intertemporal capital asset pricing model (ICAPM) to make
this relationship explicit. Finally, we exploit the production technology to
draw some predictions about how the default-free term structuremight be
influenced by the probability of default. The drawbacks are the follow-
ing: we exogenously impose a participation constraint on the lender and
we are unable to permit some agents to default whil, at the same time,
allowing other agents to be solvent. We also impose a specific debt con-
tract as a means to augment the initial endowment, although we explore
later (see fig. 1) under what circumstances borrower prefers debt to using
equity. We focus our attention on allocations and prices before default,
because under many realistic conditions, the economy operates with a
positive probability of default but actually does not experience default for
very long periods of time. We believe that this focus is reasonable: we
often focus on asset prices of firms before default to examine default
premium. This is one of the distinct contributions of our paper.
The subject we study in this paper has been investigated by some

scholars. Two theoretical papers (Zhang 1997;Alvarez and Jermann 2000)
explored the importance of default risk on asset pricing using models
of endogenous solvency constraints. These models draw on the insights of
Kocherlakota (1996) and Kehoe and Levine (1993) by incorporating

1. We discuss later the conditions under which equity is used instead.

998 Journal of Business



participation constraints and shed some light on the risk-sharing impli-
cations of default risk. But, by construction, these models of solvency
constraints eliminate the possibility of default in equilibrium. In our frame-
work, there is default in equilibrium. Inmodels of solvency constraints, no
default-risky loan is modeled; hence, the default premium is less direct to
compute. Moreover, the determination of a default-free term structure is
not addressed in models of solvency constraints. Our approach also differs
in a major way in the nature of risk sharing. In the model of Alvarez and
Jermann (2000), default leads to autarchy with no risk-sharing possibili-
ties. We accommodate this as a special case but in general permit the risk
sharing to continue even after default. A second strand of literature, ex-
emplified by Geanakoplos and Zame (1998), explores default in an en-
dowment economy with two periods, wherein a durable good is used as
collateral to borrow and the collateral is seized by lenders upon default.
Our paper uses a production economy similar to Cox et al. (1985) and
treats the case of a perishable good. Kubler and Schmedders (2001) con-
sider an economy with a perishable good. The productive asset plays the
role of collateral. They offer a computational framework to study the equi-
librium properties. Zame (1993) offers a framework in which default ac-
tually helps to complete the market.2

Our approach allows us to shed some light on the following issues and
questions:

1. What are the properties of optimal default strategies in an equilibrium
model? A key result here is that there is default in equilibrium in our
model. This is in sharp contrast to the results in the existing literature on
equilibrium models with solvency constraints, which we review later. In
addition, the optimal default boundary depends on the costs associated
with default and the lender’s status after default. If the lender participates
in the economy as amaximizing agent after default, we show that the risk-
sharing possibilities effectively reduce the cost of default and hence leads
to a higher optimal default boundary. If the lender and borrower have
identical preferences, default effectively leads to autarky. For most part,
we focus on this latter case as it is closer to much of the equilibrium
literature on defaults.

2. What is the effect of costs of default (transfer payments to the lender) on
the risk aversion of the borrower? An important result in this context is
that the borrower becomes much more risk averse as his wealth level
drops and approaches the optimal default boundary. He reduces the op-
timal flow rate of consumption to reduce the likelihood of default.
Eventually, when the wealth drops further and is very close to the optimal
default boundary, the borrower becomes much less risk averse and starts
to dissipate his wealth by increasing his optimal flow rate of consumption.

2. We thank the referee for bringing this paper to our attention.
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The presence of these two regions is shown to be robust whether the
borrower returns to autarky after default or is allowed to share his risk
with the lender after default.

3. How does the presence of default risk affect the default-free term struc-
ture? We show that the presence of default risk induces an extra value to
the risk-free asset in the economy. The borrower’s increasing risk aver-
sion as the default boundary is approached leads to a lower shadow risk-
free rate. This effect is mitigated by the possibility of risk sharing with the
lender after default. The term structure of default-free interest rates
becomes steeper in the presence of default. In the second region the risk-
free rate increases and the term structure becomes inverted. Many recent
papers documented that the Treasury rates reflect a flight to a high-quality
premium and argued that perhaps collateralized rates, such as the re-
possession rates or swap rates, are better proxies for risk-free rates at
different maturity sectors. To our knowledge, this is the first paper to
formally demonstrate this effect.

4. What is the relationship between default premium and asset returns? We
derive a capital asset pricing model (CAPM) with default risk and show
that equity premium depends on two factors: (1) the covariance of
consumption with wealth, which is the standard prediction; and (2) the
covariance of consumption to the household indebtedness. We char-
acterize these factors and show two key results. First, the presence of
default risk generally increases the equity premium in the economy.
Second, there is a positive association between equity risk premium and
default premium.

The paper is organized as follows: The next section develops the basic
equilibrium model of default and motivates its construction. Section III
characterizes the properties of an optimal debt contract, borrower’s risk
aversion in wealth, optimal consumption policies, and the default-free
term structure. We also characterize the feasible regions of lending. In
Section IV, we develop the CAPM with endogenous default risk. We
simulate the model to present some implications for asset pricing. Here,
we show how default risk influences the equity premium. We provide a
theoretical rationale for the assumption that the equity premium depends
on default risk. This assumption is used, for example, by Jagannathan and
Wang (1996). Section V concludes. The appendix collects all our tech-
nical results.

II. The Model and the Nature of Default

We consider a production economy setting with two agents: a borrower
and a lender. In the next subsection, we describe the technology and the
economic environment. The subsequent sections describe the optimiza-
tion problem and our notion of equilibrium in this economy.
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A. Economic Environment

The economic environment consists of production technology, prefer-
ences, punishment mechanisms associated with default, and the manner
in which equilibrium prevails in the economy. We proceed to describe
each in turn.

1. Production Technology and its Access

There is a single good in the economy, and it serves as the numeraire. The
production sector has a risky technology. Once an amount qt of the good
is invested in the technology at time t, the output evolves as follows:

dqt

qt
¼ mdt þ sdzt ð1Þ

where the instantaneous expected rate of return m and the diffusion coef-
ficient s are exogenous positive constants.3 The process zt is a standard
Brownian motion on the underlying probability space (W, F, �).

Preferences and endowments. The risk-averse borrower (consumer)
is endowed with an initial wealth of x0 and has exclusive access to the
risky production technology. He maximizes his lifetime discounted
expected utility of consumption: E0½

R1
0

e�rtuðctÞdt�, where u is his von
Neumann-Morgenstern utility function and r is his time preference rate.
In this paper, we examine a special class of utility functions whose rela-
tive risk aversion in consumption is a positive constant:4

uðcÞ ¼ 1

1� A
c1�A; A > 0; A 6¼ 1 ð2Þ

This specification has been widely used in the theory of intertemporal
consumption-portfolio selection problems, default-free term structure the-
ory, and asset pricing.
The second agent in our model is the lender. He is restricted from par-

ticipating in the production technology at time 0. He arrives at time 0with
an initial endowment. The good is not storable. Hence, the only way for
the lender to consume over time is to lend to the borrower in exchange for
a stream of promised future payments.
The loan contract and punishment mechanism. In our model, we

assume a specific loan contract fC̄;a;K; I0g which is described next.

3. We restrict attention to a constant opportunity set to get tractable results. The gener-
alization to a stochastic opportunity set introduces significant computational complexity.
4. We want to point out that all our major results still hold for a general von Neumann-

Morgenstern utility function u, which is a strictly increasing, strictly concave C3ð0;þ1Þ
function with lim c!0u

0ðcÞ ¼ þ1 and lim c!þ1u0ðcÞ ¼ 0 and satisfies the condition
j uðcÞ j� Mð1þ cÞg for some positive constants M and g.
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The borrower can borrow an amount I0 from the lender at time 0.5 But
this requires him to pay the lender a flow rate of C̄ per unit time until de-
fault.6 If the borrower decides to default at time t� 0, then he loses a
fraction (1 � a) of his wealth plus a lump sum of K and the exclusive
access to the risky technology.7 The lender, in exchange for lending I0
at time 0, derives utility by consuming the contractual debt payments C̄
per unit time until default. During this period, the lender is outside the
economy due to the participation constraint: he can neither invest in the
risky technology nor trade with the borrower. Upon default, the lender
collects the amount of ð1� aÞW þ K from the borrower and becomes a
maximizing agent in the economy. He then has full access to the risky
technology and active risk-free lending and borrowing takes place after
default. There are no deadweight losses in our economy. One should note
that the parameters {a, K} reflect the sharing rule of wealth between
lender and borrower upon default, which is governed by the relevant
bankruptcy codes applicable in the economy and the relative bargaining
positions of the lender and the borrower. We have not explicitly modeled
the trade-offs between equity and debt contract in this model. We briefly
address this issue later to show that, under some circumstances, debt may
not be the optimal contract.

B. Optimization Problem and Equilibrium

We now describe the equilibrium in this economy. The equilibrium after
default is a standard two-person dynamic equilibrium in a production
economy (similar to the one studied by Dumas 1989). Although the
lender remains outside of the economy until default, he can still signif-
icantly influence the equilibrium before default through his participation
in the economy after default. By letting the lender and borrower be
identical, we can reduce the problem after default to autarky, which is the
standard assumption imposed by Alvarez and Jermann (2000).
Given the loan contract fC̄;a;Kg, the controls of the borrower are the

amount qt invested in the risky technology, the consumption rate ct , and
the optimal default level W*. We define the fFtg-stopping time: t ¼
infft � 0jWt � W*g. The wealth dynamics facing the borrower can be
formally represented as

dWt ¼ ½rtðWt � qtÞ � ct � C̄ �dt þ mqtdt þ sqtdzt for 0 � t < t ð3Þ

5. We do not consider dynamic borrowing opportunities. This implies that the borrower has
no ‘‘reputational costs’’ associated with default. We show that the consumer reduces the rate of
consumption in poor states of the economy to stave off default. This may be interpreted as a
‘‘dynamic borrowing’’ action. We thank Patrick Bolton for pointing out this interpretation.
6. Given a value for C̄, we determine I0 endogenously. Equivalently, we can take I0

exogenously and find the coupon level C̄ endogenously.
7. In this sense, the risky production technology effectively serves as collateral to borrow

money from the lender. This type of modeling has been used in the context of credit cycles
by Kiyotaki and Moore (1997) and Krishnamurthy (1998).
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where rt is the default free interest rate. Let us denote the set of admissible
controls by AðW0Þ. The objective function facing the borrower is the ex-
pected lifetime discounted utility maximization. Formally, the borrower
maximizes the value function J, which is defined as the supremum of the
expected utility over the set of admissible controls:

JðW0Þ ¼ sup
AðW0Þ

E0

Z 1

0

e�rtuðctÞdt
� �

ð4Þ

Let us denote the optimal policy to be ðc*; q*;W*Þ. The equilibrium in
this economy is defined as follows.
Definition 1. An equilibrium fðr; c*; q*Þ; I0*g is a set of stochastic

processes ðr; c*; q*Þ and an initial borrowing amount I0* that satisfy:

(i) Market clearing condition, qt*¼ Wt.
(ii) Borrower’s loan valuation condition,

Iðx0 þ I0*Þ ¼ I0*; ð5Þ

where Ið�Þ is the borrower’s valuation function for the loan.
(iii) Feasibility for the borrower,

J ðx0 þ I0*Þ > J0ðx0Þ; ð6Þ

where J0(�) is the borrower’s valuation function in autarky.8

(iv) Feasibility for the lender,

JL > JL0 ð7Þ

where JL is the lender’s expected utility at time 0 by lending and JL0 is the
corresponding expected utility when he simply consumes the endowment.

The market clearing condition (i) implies that there is no risk-free
lending or borrowing at equilibrium, as in Cox et al. (1985). The bor-
rower’s loan valuation condition (ii) is a fixed-point requirement, which
says that the equilibrium level of borrowingmust be such that the amount
borrowed I0* is equal to the borrower’s valuation of the loan contract at
time 0. The borrower’s feasibility condition (iii) states that the borrower
is willing to borrow from the lender only if the loan is sufficiently attrac-
tive to him at time 0; that is, his lifetime expected utility by borrowing is

8. For the setup we have chosen (i.e., a constant opportunity set and a power utility func-
tion), Merton (1971) showed the following results for autarchy: if k ¼ 1=A½r� ð1� AÞðm�
As2=2Þ� > 0, then the value function J0ðW Þ is given by J0ðW Þ ¼ ½k�A=ð1� AÞ�W 1�A.

1003Asset Prices and Default-Free Term Structure in an Equilibrium Model of Default



larger than the lifetime expected utility in autarky. For example, when the
coupon rate C̄ is very unfavorable to the borrower (C̄ is very large relative
to his initial endowment x0) or the recovery rate to the lender is very fa-
vorable, then it is likely that the borrower will choose not to borrow from
the lender. The lender’s feasibility condition (iv) requires that the lender
also has to be better off by providing such a loan contract. Otherwise, the
lender simply consumes his initial endowment at time 0. For a risk-averse
lender, condition (iv) is trivially satisfied, because lending is the onlyway
for him to smooth consumption over time.
Critical to the characterization of our equilibrium with default is the

optimal default boundary W*. We show in the appendix that the value
function satisfies the following properties:

(i) J(�) is strictly increasing and strictly concave.
(ii) J(�) is continuous on ½W*;1Þ with JðW*Þ ¼ JBðaW*� KÞ, where

JB(�) is the borrower’s valuation function after default.
(iii) (Smooth pasting condition) lim

W!W*þJ
0ðW Þ ¼ ½GJBðaW*�KÞ�=

GW*.
(iv) (Dynamic programming principle)

JðW0Þ ¼ sup
AðW0Þ

E0

Z t

0

e�rtuðctÞdt þ e�rtJBðaW* � KÞ
� �

: ð8Þ

We also show in the appendix that, for any t < t, the value function
J(�) is the unique C2ðW *;þ1Þ solution of the Bellman equation:

rJ ¼ 1
2
s2W 2JWW þ ðmW � C̄ÞJW þmax

c�0
½uðcÞ � cJW � ðW > W*Þ ð9Þ

with boundary condition J ðW*Þ ¼ JBðaW*� KÞ and lim
W!W*þJ

0ðW Þ ¼
½GJBðaW*� KÞ�=GW*. And the optimal policy ct* is given by

c*ðW Þ ¼ ðu0Þ�1½ JW ðW Þ�: ð10Þ

The approach to solve this problem is by backward induction. We first
solve the two-person general equilibrium after default. An example of
such a two-person general equilibrium is the one studied by Dumas
(1989), in which the borrower and lender are both risk averse but dif-
ferent (as in Dumas 1989, one agent has a power utility function and the
other has a log utility). The wealth-sharing rule is obtained by maxi-
mizing the welfare function (which is a weighted sum of the utilities of
the two agents), as in Dumas (1989). Since we know at default the share
of wealth of borrower and lender, we can precisely compute the constant
weight l* (used in the welfare function) for a given default boundary.
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Using this weight we determine the value function JBðaW *�KÞ of the
borrower upon default. The value function of the borrower reflects the
risk-sharing possibilities after default. In particular, the risk aversion of
lender influences the value function of the borrower. We then use this
value function of the borrower as the boundary condition to search for the
optimal default boundary of the borrower as explained in the appendix.9

We designed and implemented a finite-difference scheme to numerically
solve such a free-boundary problem. The formal analysis that leads to
the determination of the optimal default boundary is presented in the
appendix. There, we also present and discuss the technical results that
characterize the properties of the equilibrium. These results show that the
economy which we study has a well-defined equilibrium and the value
function and its derivatives converge to their counterparts in a general
equilibriummodel with identical consumers. We also present, in detail in
the appendix, the numerical procedure we use in the paper to compute the
equilibrium.
We now proceed directly to illustrate our numerical results in the next

few sections. In view of the computational complexity, we focus simply
on a baseline case where the borrower and the lender are identical. For an
active risk-sharing lender who is different from the borrower, the results
are qualitatively similar to the baseline case.10

III. Optimal Default, Time-Varying Risk Aversion, and Term Structure

We examine a baseline case where we set the borrower’s subjective
discount factor r = 0.05 and the risk aversion parameter A = 2.0.We also
assume for the baseline case that the lender is identical to the borrower. At
time 0, the borrower is endowed with 1 unit of consumption good: x0 ¼
1:0. For the risky technology, we assume the instantaneous expected rate
of return m = 0.10 and the diffusion coefficient s2 ¼ 0:02. We further
assume that the sharing rule between borrower and lender upon default is
a ¼ 0:25 and K = 0.05. In the following context, we first describe the
optimal coupon rate for the borrower under the baseline setting. Given
that such an optimal contract is sustainable by both borrower and lender,

9. It should be emphasized that the computational burden associated with solving this
problem by backward induction is nontrivial: we have to solve the two-person general
equilibrium model after default for every wealth level to determine the optimal default
boundary.

10. When the lender’s utility is log, and thus different from the borrower’s, the risk-
aversion results are somewhat muted. In general, for a lender who is different from the
borrower, active trading takes place between the borrower and the lender after default. This
leads to welfare gains to both the lender and the borrower. As a consequence, the borrower’s
effective cost of default is reduced and his optimal policy before default is different. One
would expect that, for a different lender, the borrower’s relative risk aversion before default
becomes lower and the default boundary W* becomes higher.
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we next characterize the property of the equilibrium for our model under
such a contract.

A. Lending and Risk Sharing

We first characterize the feasibility of a certain loan contract for the bor-
rower. Note that the borrower is willing to take on the loan only if his
lifetime expected utility by borrowing is larger than the lifetime expected
utility in autarky (condition [iii] of the equilibrium). To examine how
much utility he can gain by taking on the loan, we define the relative
certainty equivalence as

CEðx0Þ ¼
J�1
0 ½J ðx0 þ I*Þ�

x0
; ð11Þ

whichmeasures the normalized utility change for the borrowerwith an initial
wealth level x0. Relying on the concavity of the value functions J and J0, the
relative certainty equivalence CE(�) is a well-defined continuous function. A
borrower is willing to accept a loan contract if and only if his relative
certainty equivalence CE>1.
Figure 1 shows the borrower’s relative certainty equivalence for dif-

ferent coupon rate C̄ and lump sum cost K. For our baseline setting K =
0.05, the relative certainty equivalence reaches the maximum level when
coupon rate C̄ = 0.027. Typically, the relative certainty equivalence is
smaller for a borrower with a higher lump sum cost K. When the lump
sum cost is very high (e.g., K > 0.26), the maximum level of certainty
equivalence is smaller than 1. In this situation, the borrower prefers to

Fig. 1.
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remaining autarky and does not borrow from the lender. Equity is the
preferred mechanism for any scale expansion under these circumstances.
In these situations, the two agents can become equity holders in the ex-
panded production opportunity set.
The relationship between the proportional cost 1 � a and the relative

certainty equivalence CE is similar to the relationship between the lump
sum costK and the relative certainty equivalence. For the sake of brevity,
this result is not presented in the paper.

B. Relative Risk Aversion in Wealth

In this section, we characterize the behavior of the indirect value func-
tion. In particular, we plot in figure 2, the relative risk aversion in wealth
(RRA) of the borrower as measured using his value function in our
economy. Note that the relative risk aversion in wealth for the general
equilibrium economy with no default under our hypothesized assump-
tions is simply a constant given by A = 2.0. In figure 2, we plot the wealth
along the x-axis and the relative risk aversion in wealth along the y-axis.
We find that the relative risk aversion increases in a significant manner as
the wealth level drops from1 to ŴRRAmax= 0.782, where the relative risk
aversion in wealth reaches its peak RRAmax = 3.8. A further decrease of
wealth leads to a reduction in RRA until it reaches the default boundary
W* = 0.381. Thus, there are two regions in this economy. In one region,
the relative risk aversion increases with decreases in wealth. As the
wealth drops, the probability of default increases and the borrower
becomes more risk averse in this region. We call this region ‘‘flight to
quality.’’ This is a metaphor for the borrower’s implicit preference for
less risky assets and his aversion for the more risky assets. We show later
that, in the flight-to-quality region, the borrower’s shadow risk-free rates

Fig. 2.
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falls with decreases in wealth. The second region where the borrower’s
relative risk aversion decreases with decreases in wealth is a manifes-
tation of the overinvestment distortions in our economy. In this region, he
has an implicit preference for risky asset. We show later that, in this
region, the borrower increases his rate of consumption and thus dissipates
the collateral. Hence, we call this region the ‘‘collateral-dissipation’’
region. Under this set of parameters, the initial augmented wealth for the
borrower is W0 = 1.557. The corresponding relative risk aversion coef-
ficient at time 0 is RRA0 = 3.14. The relative importance of these two
regions depends on the magnitude of the lump sum costs K. This is
discussed further later in the paper.
In figure 2, we also plot the effect of the recovery rate parameter a on

relative risk aversion. Note that, upon default, the borrower keeps a frac-
tion a of his wealth. Naturally, as a increases, the recovery rate on the
loan falls. We found that, when the recovery rate increases (i.e., a de-
creases), two effects occur. First, the optimal default boundary decreases;
the borrower is more careful about defaulting the loan, which implies that
the optimal default boundary W* is decreasing as a decreases. Simul-
taneously, the borrower becomes more risk averse and the relative risk
aversion RRA increases.
Time-varying risk aversion plays an important role in the asset pricing

literature. Campbell and Cochrane (1999) show that models of habit for-
mation which produce time-varying risk aversion can help explain aggre-
gate stock market behavior. We show that time-varying risk aversion may
also arise due to the presence of default. Our model implies that pro-
nounced increases in risk aversion may result in economies where risk-
sharing possibilities after default are limited and the costs of default are high.

C. Equilibrium Default-Free Interest Rate

The instantaneous default-free instantaneous interest rate in our model is
given by rðW Þ ¼ m�WJWWs2=JW. In figure 3, we plot the instantaneous
risk-free rate as a function of wealth.
Default risk has two striking effects on the equilibrium risk-free rate.

First, when the borrower is in the flight-to-quality region, the equilibrium
risk-free rate is always below the one given by the default-free economy,
which equals a constant: R ¼ m� As2. At wealth levels close to Ŵrmax

¼
ŴRRAmax

¼ 0:782, the equilibrium interest rate is well below the level
implied in an economy with no default risk. In the illustration in figure 3,
the maximum difference is about 358 basis points at a wealth level
Ŵrmax ¼ 0:782. Note that the presence of default risk has important pricing
consequences for the default-free interest rates in this flight-to-quality
region. These rates display a cyclical behavior: when the economy’s
wealth decreases, the real risk-free rates go down; and when the econo-
my’s wealth increases, the real risk-free rates increase. A further decrease
in wealth leads the economy to the region of collateral dissipation and the
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interest rate begins to rise as the wealth decreases. The region of collateral
dissipation depends onK. For very high wealth levels, that is, asW ! 1,
the risk-free rate approaches the level given by the model with no default
risk.
In figure 3, we also plot the effect of the lump sum cost K on equilib-

rium default-free interest rates. As K increases, the interest rates fall and
the region where collateral is dissipated becomes smaller. Thus, we find
that the overinvestment distortions are mitigated by the lump sum costs
of default as opposed to the proportional costs of default. The intuition for
this is the following: with proportional costs, the borrower loses more
when the wealth level at which he defaults is high. So he has an incentive
to consume more when default is imminent. This way he leaves less col-
lateral to the lender. With a lump sum cost of default, this incentive is
sharply curbed.

D. Default-Free Term Structure

We now characterize the default-free term structure in this economy.11 In
a standard equilibrium setting, the term structure is flat, as the yield to
maturity for a zero-coupon bond Rðt;TÞ ¼ �½lnPðt;TÞ�=ðT � tÞ is
simply a constant equal to the instantaneous interest rate m� As2. How-
ever, in our model, the shape of the term structure is wealth dependent
and exhibits a rich pattern, as shown in figure 4.

11. Let us denote P(t, T ) as the price at time t for a zero coupon bond that pays 1 unit
consumption good at time T. P(t, T ) satisfies the following partial differential equation
(PDE) with boundary conditions PðW *; tÞ ¼ e�RðT�tÞ;PðW ;TÞ ¼ 1:

�rðW ÞP þ ½rðW ÞW � c*ðW Þ � C̄ �PW þ 1
2
s2W 2PWW þ Pt ¼ 0: ð12Þ

Fig. 3.
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In the flight-to-quality region, the default-free term structure becomes
more expensive as the wealth goes down and the curve gets steeper. The
impact of the default risk on default-free term structure is quite subtle: it
arises from the implied relative risk-aversion in wealth and the optimal
default boundary. We find that our model with a constant opportunity set
is able to deliver fairly rich shapes of default-free term structure once de-
fault risk is admitted. The default risk (which is priced as a factor through
the new equilibrium default-free instantaneous rate) permeates through
the pricing of the yield curve.
Recently in the United States economy, several practitioners have at-

tributed the fall in the Treasury interest rates and the increase in the slope
of the Treasury term structure to the increased risk aversion concern-
ing the potential for costly defaults in the telecommunications sector of
the economy. Our model’s implications are certainly consistent with this
view.

E. Optimal Consumption

In the absence of default risk, the general equilibrium model implies that
the optimal consumption is given by kW. Moreover, the elasticity of
optimal consumption with respect to wealth is a constant. In figure 5a, we
plot the normalized optimal consumption CðW Þ=kW ; and in figure 5b,
the normalized elasticity of optimal consumption with respect to wealth.
It is useful to note that the consumption elasticity in our model is the ratio
of the RRA in wealth to the RRA in consumption. Since the RRA in

Fig. 4.
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wealth has already been characterized in figure 2, it is easy to interpret
figure 5.
In our model, the optimal consumption rate and the elasticity of con-

sumption depend on how close the economy is to defaulting. In partic-
ular, they depend on in which region the wealth level falls. As wealth
approaches infinity, our economy approaches that of an equilibriummodel

Fig. 5.—(a) Normalized optimal consumption. (b) Normalized elasticity of optimal

consumption with respect to wealth.
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with no default. In this region, the consumption and elasticity is close to
the baseline case. In the flight-to-quality region, as the wealth decreases,
the rate of consumption falls and the wealth elasticity of consumption
rises. The elasticity is generally higher than what is implied by the base
case for moderate to high levels of wealth. Our prediction is that the
wealth elasticity of consumption increases as the economy approaches
the default boundary. This is when the economy behaves with greater
caution to avoid default. Our results in this context are in conformity with
the evidence reported by Olney (1999) concerning the consumption data
in the United States in the Great Depression. Olney (1999) reports that,
prior to the Great Depression, the bankruptcy code favored the sellers of
consumer durables on installment credit to the households. She argues
that the households tried to avoid default by curtailing their consumption,
which in turn precipitated the depression. Our model predicts that the
consumption elasticity is higher at lower wealth levels when the default
probability is high. Note that, when the lump sum costs are lower, the
collateral-dissipation region or the overinvestment region increases.12

IV. Equity Premium

In this section, we discuss the equity premium in the economy. The
possibility that the equity premiummay be related to default risk has been
recognized by many scholars in empirical asset pricing. Papers by Chen
(1991), Fama and French (1989), Keim and Stambaugh (1986), and
Ferson and Campbell (1991) show that the market risk premium is time
varying and varies over the business cycle. Stock andWatson (1989) and
Bernanke (1990) stress the superior ability of proxies of default premium
to forecast business cycles. Jagannathan and Wang (1996) assumed that
the conditional equity risk premium is a linear function of the default
premium in the economy. Their conditional CAPM (which also takes into
account the returns from human capital) can explain the cross-sectional
variations in equity returns more successfully. Empirical evidence also
suggests that default risk proxies, such as the junk bond spreads over
default-free security yields, are useful in explaining the returns on stocks
and default-free bonds. Chen, Roll, and Ross (1986) present evidence
that the spread on high-yield bonds explains the returns on stocks. All
these papers suggest that the existence of default risk may affect the
equity returns.
The value of equity in our economy is the wealth net of the market

value of borrowing at any time. We denote this by EðW Þ ¼ W � IðW Þ,
which can be viewed as a contingent claim with continuous payout c*.

12. We note that, when the lender has a logarithmic utility and thus is distinct from the
borrower, the borrower’s consumption policy is less conservative due to the possibility of
more risk-sharing after default.
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The risk premium in the underlying Cox et al. (1985) setting is simply a
constant: m� As2. However, it is wealth dependent in our model. The
presence of default risk in our model has a strong effect on the equity risk
premium. As the probability of default begins to increase, the agent
becomes more risk averse and consumes less to avoid the costliness of
default. Such a behavior causes the equity risk premium to be system-
atically higher in our model when the wealth level in the region of flight
to quality.
Since Ið�Þ2C 2ðW *;1Þ,we apply the Ito’s lemma to EðW Þ and write

the stochastic differential equation governing the movement of E(�) as

dE

E
¼ ðmE � c*Þdt þ VEdzt; ð13Þ

where the instantaneous rate of return on equity is given by mE ¼ ½ð1�
IW ÞðmW � C̄Þ þ IW c*�O IWWs2W 2�=E. Following theorem 2 of Cox et al.
(1985), we state the following lemma without proof.
Lemma 1. The instantaneous risk premium mEðW Þ � rðW Þsatisfies a

version of CAPM:

mE � r ¼ 1

E

�uccðc*Þ
ucðc*Þ

� �
ðCOVc*;W Þ� 1

E

�uccðc*Þ
ucðc*Þ

� �
ðCOVc*; IÞ; ð14Þ

where ðCOVc*;W Þ denotes the instantaneous covariance between opti-
mal consumption and wealth.
The CAPM says that the equity premium depends on the covariance of

consumption with wealth and the covariance of consumption with risky
debt value. If the latter covariance is negative, the equity premium is
higher, ceteris paribus.
We investigate the implications of our ICAPM in two ways: first, we

explore how the two covariances influence the equity premium. This is
reported in figure 6.
Note that the second covariance term, which captures the covariance of

consumptionwith the household debt is never positive (after incorporating
the negative sign). In the limit, when wealth increases to infinity, this
covariance term vanishes. This covariance becomes more negative as the
wealth goes down. On the other hand, since consumption is influenced by
default, the first covariance term actually increases more than the decrease
in the second covariance term as the wealth goes down, thereby causing
a net increase in equity premium. This result is stable for a number of
parameter configurations in the flight-to-quality region. In figure 7, we re-
late the default premium to the equity premium as both are simultaneously
set in our economy.
Note, in figure 7, that as wealth increases, both the default premium

and the equity premium decline in our economy, although the default
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premium declines much more rapidly than the equity premium. As the
wealth declines, the premia rise slowly at first, then much more sharply.
We thus provide a framework that accounts for the comovement of de-
fault and equity premia.13

In a paper, Lettau and Ludvigson (2001) present evidence that allowing
for time variation in risk premia may be essential to the success of con-
ditional consumption CAPM. The source of such variations may come
from such factors as habit formation, labor earnings, or as in this paper,
default risk. All these approaches deliver a variation in risk aversion
that is countercyclical: the risk aversion is high in recession and low in

13. In the collateral-dissipation region, the effects are different for the reasons discussed
earlier.

Fig. 6.

Fig. 7.
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booms. Thus, we have three competing alternative drivers to the time
variation in risk premia. Future empirical work can test towhat extent these
drivers are useful in understanding the time variation in equity premia.

V. Conclusion

We presented an equilibrium production model of default. This model
extends the general equilibrium production model of Cox et al. (1985) to
a case where there are two agents and presents an equilibrium in which
default occurs with a positive probability. The model allows one to de-
termine endogenously the optimal default boundary, optimal consump-
tion, risk-free term structure, and the default premium. A key implication
of our model is that the risk aversion in wealth of the borrower displays
time variation through endogenous wealth dependency. Our model pre-
dicts that there are two (endogenously determined) regions. In one re-
gion, the risk aversion increases with decreases in wealth. In the other
region, the risk aversion decreases with decreases in wealth. The model
permits the borrower to be a lifetime expected utility maximizer. The
lender is initially subjected to a participation constraint, which is removed
upon default by the borrower, when he becomes a utility-maximizing,
a risk-sharing player in the economy.
The model can be extended in many ways. We chose to model the

lender through a participation constraint before default. Alternatively, the
lender could participate in the economy throughout the time period as a
utility maximizer with access to either the risky or risk-free asset or both.
This extension takes the model closer to a truly general equilibrium
analysis with default. We also focused on the simple case of static bor-
rowing. The case with dynamic borrowing opportunities is a natural
extension to our framework.

Appendix

Characterization of the Equilibrium

To characterize this competitive economy, we first look at the planning problemwith
the same physical production opportunities but no default-free borrowing and
lending. In this situation, the wealth process before default is as follows:

dWt ¼ ½mWt � ct � C̄�dt þ sWtdzt for 0 � t < t ðA1Þ

and the central planner seeks to maximize the corresponding value function J̃ :

J̃ðW0Þ ¼ sup
ÃðW0Þ

E0

�Z 1

0

e�rtuðctÞdt
�

ðA2Þ

where ÃðW0Þ is the corresponding set of admissible controls.

1015Asset Prices and Default-Free Term Structure in an Equilibrium Model of Default



It is evident that, if J ¼ J̃ and r ¼ rðLJ̃W=J̃W Þ, then the solution to the original
competitive equilibrium are exactly equivalent to this simple planning problem.14

So, in the following context, we characterize the planner’s dynamic programming
problem (A2). For notational simplicity, we do not distinguish the variables in the
planning economy and the competitive economy in the following context.

Lemma 2.
(i) J(�) is strictly increasing and strictly concave.
(ii) J(�) is continuous on ½W*;1Þ with JðW*Þ ¼ JBðaW*� KÞ, where JBð�Þ is

the borrower’s valuation function after default.
(iii) (Smooth pasting condition) limW!W*þ J 0ðW Þ ¼ ½GJBðaW*� KÞ�=GW*:
(iv) (Dynamic programming principle)

JðW0Þ ¼ sup
AðW0Þ

E0

Z t

0

e�rtuðctÞdt þ e�rtJBðaW* � KÞ
� �

ðA3Þ

Proof. Principles (i) and (ii) follow fromZariphopoulou (1994) proposition 2.1.
For (iii), see Dumas (1991), who provides an extensive discussion of ‘‘smooth
pasting’’ or ‘‘super contact’’ conditions. The dynamic programming principle (iv) is
presented with proof in Fleming and Soner (1993). Q.E.D.

The next lemma is a key result, which we use to characterize the value function
and the optimal default boundary.

Lemma 3. For any t < t, the value function J(�)is the unique C2ðW*;þ1Þ
solution of the Bellman equation:

rJ ¼ 1
2
s2W 2JWW þ ðmW � C̄ÞJW þmax

c�0
½uðcÞ � cJW � ðW > W*Þ ðA4Þ

with boundary condition JðW*Þ ¼ JBðaW*� KÞ and lim
W!W*þJ

0ðW Þ ¼
½GJBðaW*� KÞ�=GW*. And the optimal policy ct* is given by

c*ðW Þ ¼ ðu0Þ�1½JW ðW Þ� ðA5Þ

Proof. Equation (A4) is uniformly elliptic and hence has a unique smooth
C2ðW*;þ1Þ solution (see Krylov 1987).15 Applying the verification theorem
(Fleming and Rishel 1975) leads to our lemma. Q.E.D.

Unlike the standard Cox et al. (1985) single-agent economy, there is no closed
form solution to theHamilton-Jacobi-Bellman (HJB) equation (A4). This is due to the
presence of borrowing and lending, in particular, the nonhomogeneous term C̄JW in
equation (A4). We designed and implemented a finite-difference scheme to numeri-
cally solve such a free-boundary problem. Since the value function is C2ðŴ ;þ1Þ
smooth, the convergence of our numerical scheme directly follows the consistency
and stability of the theory of finite-difference schemes (see Strikerda 1989). A
description of our procedure is outlined in the next section.

14. Here, we assume the existence of an interior equilibrium. The statement follows theorem 1
of Cox et al. (1985).
15. A one-dimensional differential equation is said to be uniformly elliptic if the coef-

ficient of the second-order derivative A22 satisfies 0 < a1ð½a; b�Þ � a22 � a2ð½a; b�Þ for any
interval ½a; b� where a1 and a2 are two constants depending only on ½a; b�.
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Although we cannot get an explicit solution to (A4), intuition suggests that the
economywith active lendingwill converge to a standardCox et al. (1985) single-agent
economy whenW is very large. We formally state the following limiting results under
a special case, when the borrower is identical to the lender. Under this situation, the
borrower’s valuation function after default JB simply is his valuation function in
autarky J0.

Proposition 4.

(i) The limW!1JðW Þ ¼ J0ðW Þ ¼ ½k�A=ð1� AÞ�W 1�A.
(ii) The limW!1JW ðW Þ ¼ ð1� AÞ½k�A=ð1� AÞ�W�A.
(iii) The limW!1JWW ðW Þ ¼ ð1� AÞð�AÞ½K�A=ð1� iÞ�W�A�1.

Proof. In (i), we first observe that JðW Þ � J0ðW Þ, hence limW!1 JðW Þ �
J0ðW Þ. So, we need to show that limW!1 JðW Þ � J0ðW Þ. Since W * is optimally
chosen by the borrower, we have JðW Þ � J̃ðW Þ, where J̃ðW Þ is the solution to HJB
equation (A4) withW * = 0. So, it is sufficient to prove that limW!1 J̃ðW Þ ¼ J0ðW Þ.
Let uðjÞðW Þ ¼ j1�AJ̃ðW=jÞ, for allW � 0;j> 0. Then, we have limW!0uðjÞðW Þ ¼
uð0Þ=r uniformly in j. Moreover, we can see that uðjÞ is the unique C2ð0;þ1Þ
solution, which satisfies

ruðjÞ ¼ A

1� A
ðuðjÞW Þ1�

1
A þ uWuðjÞW � C̄juðjÞW þ 1

2
s2W 2uðjÞWW ðA6Þ

with lim
W!0

uðjÞðW Þ ¼ uð0Þ
r :

Note that u(j) can be interpreted as the value function for a borrower with coupon
rate C̄j and default levelW * = 0, it is obvious that u(j) preseveres all the properties
of J and uðjÞ ¼ J0. Hence, u(j) is locally uniformly bounded. Moreover, uðjÞW is also
locally uniformly bounded since u(j) is concave and locally Lipschitz. So there exists
a subsequence uðjnÞ that converges to a function J̄ locally uniformly on (0, 1). To
show that J̄ coincides with J0, we need the stability properties of viscosity solutions.
We record the following lemma from Lions (1983).

Lemma 5. Let " > 0;F" be a continuous function from Rþ � R� R� R to R

and J " be viscosity solution of F"ðW; J "; J "
0
; J "

00 Þ ¼ 0 in ½0;1Þ. We assume that F "

converges locally uniformly on Rþ � R� R� R to some function F and J" con-
verges locally uniformly on [0,1) to some function J. Then, J is a viscosity solution
of FðW; J; J

0
; J

00 Þ ¼ 0 in ½0;1Þ.
So, according to lemma 5, J̄ is the unique viscosity solution of (A4). On the other

hand, the value function J0 is also a viscosity solution to (A4). Therefore, J̄ ¼
limjn!0uðjnÞ ¼ J0, which leads to limW!1J̃ðW Þ ¼ J0ðW Þ. Hence, J0ðW Þ �
limW!1JðW Þ � J0ðW Þ. The result directly follows the fact that JW is also locally
uniformly bounded.

Taking limit on both sides of the HJB equation (A4), the convergences of JWW is
straightforward. Q.E.D.

The convergence of J, JW, JWW implies that not only the asymptotic behavior of
value function J converges to that of J0, but also all the interesting variables, which
depend up to second derivative of J, converge to those variables in the standard Cox
et al. (1985) economy. For example, the shadow default-free (instantaneous) interest
rate r(W ) and the optimal consumption policy satisfy

lim
W!1

rðW Þ ¼ m� As2;
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lim
W!1

cðW Þ
W

¼ k: ðA7Þ

The result is important in the sense that it provides a formal proof that the
economy we model approaches the classic general equilibrium production economy
with no default as the wealth approaches infinity.

We also show that, in the limit as the economy approaches the default boundary,
the consumption policy and the default-free interest rates can be solved in closed
form when the borrower is identical to the lender.

From the boundary condition JðW*Þ ¼ J0ðaW*� KÞ and the ‘‘smooth pasting’’
condition lim

W!W*þJ
0ðW Þ ¼ ½GJ0ðaW*� KÞ�=GW*, we can characterize the

limiting behavior of r(W) and c(W) when wealth level is close to default:

lim
W!W*þrðW Þ ¼ 2r

1� A

W � K=a
W

� mþ 2C̄

W
� 2A

1� A
a1� 1

A k
W � K=a

W
;

lim
W!W*þcðW Þ ¼ a1� 1

A k W � K

a

� �
: ðA8Þ

With the value function and the optimal consumption rule determined, we can
specify the borrower’s valuation of the loan. WhenW � W *, the borrower defaults
and the value of the loan simply is that left over upon default: ð1� aÞW � K. When
W > W*, the future payments for the loan can be summarized as C̄; s < t; and
ð1� aÞW*� K; s ¼ t. Given the smoothness of the value function J, the bor-
rower’s value for such a loan at time t can be expressed as the expectation of the
product of its future payoff, a time-discount factor e�rðs�tÞ and a risk adjustment
factor ½JW ðWs; sÞ�=½JW ðWt; tÞ�. The existence and uniqueness of the valuation is
guaranteed by the dynamic completeness of the market. In particular, when
W > W*, the borrower values the loan at time 0 by

IðW Þ ¼ Et

Z t

t

e�rs JW ðWs; sÞ
JW ðW ; tÞ C̄dsþ e�rt JW ðW*; tÞ

JW ðW ; tÞ fð1� aÞW* � Kg
� �

: ðA9Þ

It can be shown that I(�) also satisfies the following ordinary differential equation
(ODE) for W=W*:

�rðW ÞI þ ðrðW ÞW � c*ðW Þ � C̄ÞIW þ 1
2
s2W 2IWW þ C̄ ¼ 0: ðA10Þ

From standard differential equation theory, for example, Krylov (1987), we know
that the uniformly elliptic ODE in (A10) has a uniqueC2ðW*;1Þ class solution I(�).
Combining this with fixed-point equation (7), we are able to determine the equilibrium
borrowing amount at time 0, I0*ðx0 j C̄;a;KÞ for a specific choice of (C̄,a, K). The
following theorem provides a formal proof for the existence of such a fixed point I0*.

Theorem 6. For any level of initial endowment x0, there always exists a I0* asso-
ciated with (C̄,a, K), where C̄ � 0; 0 < a � 1, and 0 � K=a < x0 such that I0*

satisfies equation (7).
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Proof. First of all, note that, for allW � W*, the function I(�) satisfyODE (A10),
which is uniformly elliptic; hence, I(�) is continuous on ½W*;1Þ. For K=a <
W < W*, we have Ið�Þ ¼ ð1� aÞð� � K=aÞ, which is continuous. So, I(�) is con-
tinuous on ðK=a;1Þ, which implies that Ið� þ x0Þ is continuous on (0,1) for x0 >
K=a. Second, I(�) also satisfy the expectation form (A9); hence, Ið�Þ > 0. Also, I(�)
satisfies the boundary condition limW!1IðW Þ ¼ C̄=R.

Now, we define function gðxÞ ¼ Iðx0 þ xÞ � x. Noting g(�) is also continuous and
we have

gð0Þ ¼ Iðx0Þ > 0

gð1Þ < 0

� �
;

the existence of such a fixed point I0* immediately follows. Q.E.D.

Numerical Solution to Equation (A4)

In this section, we describe the numerical procedure to solve the HJB equation (A4).
The approach is backward induction: we first solve the two-person general equi-
librium after default to get the borrower’s value function upon default, then we enter
it as the boundary condition to solve equation (A4).

For our baseline setting where the borrower and the lender are identical, the
solution to the two-person general equilibrium problem after default is trivial: the
borrower’s valuation function after default JB simply is his valuation function in
autarky J0. For the case when the lender has a logarithmic utility, there is no closed-
form solution for JB. Following Dumas (1989), we first solve the problem of the
central planner, who maximizes the welfare function, which is a weighted average
(with constant weight l) of each individual’s utility function. The welfare optima
specify the wealth-sharing rule between the two agents. Because we also know the
share of wealth of the borrower and the lender upon default, we can determine the
constant weight l* for a given default boundary W* through the fixed-point re-
quirement (as equation {18} in Dumas 1989). Using this particular weight l*, we
then determine the borrower’s value function upon default JBðaW*� KÞ associated
with such a default boundary W*.

Once we have determined the borrower’s valuation function upon default, we use a
finite-difference scheme analogous to policy iteration to solve the HJB equation (A4).
First of all, for a fixed critical default boundary W*, we introduce a discrete grid
fW0;W1;W2; . . . ;WNg. The low boundary W0 is set to W* and the upper boundary
WN is an artificially chosen large number; hence, the grid size h is ðWN �W*Þ=N . A
finite-difference approximation for JW and JWW is

JiW ¼ Jiþ1 � Ji�1

2h
;

JiWW ¼ Jiþ1 � 2Ji þ Ji�1

h2
; i ¼ 1; . . . ;N � 1: ðA11Þ

We impose two Dirichlet boundary conditions: JðW0Þ ¼ JBðaW*�KÞ and
JN ¼ ½K�A=ð1� AÞ�W 1�A

N . The second one comes from the asymptotic property of
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J. An alternative Neumann boundary condition, JW ðWN Þ ¼ 0, also is applied to
check the robustness of our result. We conclude that these two boundary conditions
lead to exactly identical result except for very large wealth level close to upper
boundary WN.

We adopt the following ‘‘policy iteration’’ algorithm to solve the nonlinear
equation (A4):

Step (0). First we guess an initial J
ð0Þ
i . For example, we can take the standard Cox

et al. (1985) value function J0ðW Þ as the initial form of JðW Þ; that is, J ð0Þi ¼
½k�A=ð1� AÞ�W 1�A

i , i ¼ 1, . . . , N � 1 . Hence, the initial policy C
ð0Þ
i is given by

ðu0Þ�1ðJ ð0ÞiW Þ ¼ ½ðJ
iþ1
ð0Þ � J ð0Þ

i�1
Þ=2h��O

, i ¼ 1, . . . , N � 1.
Step (k). Let J ðk�1Þ denote the solution of kth step of the iterative procedure and

Cðk�1Þ the corresponding optimal policy, where Cðk�1Þ ¼ ðu0Þ�1ðJ
iW
ðk�1ÞÞ. Then, J ðkÞ

is computed as a solution of the tridiagonal system:

rJ ðkÞi þ
J
ðkÞ
iþ1 � J

ðkÞ
i�1

2h

 !
ðC̄ þ C

ðk�1Þ
i � mWiÞ � 1

2
s2W 2

i

J
ðkÞ
iþ1 � 2J

ðkÞ
i þ J

ðkÞ
i�1

h2

 !

¼ uðCðk�1Þ
i Þ; i ¼ 1; . . . ;N � 1;

J
ðkÞ
0 ¼ JBðaW*� KÞ; J ðkÞN ¼ kW 1�A

N :

The iteration procedure is repeated until maxi jJ ðkÞi � J
ðk�1Þ
i j< ", where " is the

desired tolerance level.

After finishing the ‘‘policy iteration,’’ we compute the error for ‘‘smooth pasting
condition’’:

errorðW*Þ ¼
���� J1 � J0

h
� GJBðaW*� KÞ

GW*

����: ðA12Þ

The optimal default level W* is determined by a line search for the minimum of
error (W*). The grid size h is chosen small enough that the finite-difference scheme is
no longer sensitive to h.
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