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Nontraded Asset Valuation with Portfolio
Constraints: A Binomial Approach

Jérome Detemple
McGill University and CIRANO

Suresh Sundaresan
Columbia University

We provide a simple binomial framework to value American-style derivatives
subject to trading restrictions. The optimal investment of liquid wealth is solved
simultaneously with the early exercise decision of the nontraded derivative. No-
short-sales constraints on the underlying asset manifest themselves in the form of
an implicit dividend yield in the risk-neutralized process for the underlying asset.
One consequence is that American call options may be optimally exercised prior
to maturity even when the underlying asset pays no dividends. Applications to
executive stock options (ESO) are presented: it is shown that the value of an ESO
could be substantially lower than that computed using the Black—Scholes model.
We also analyze nontraded payoffs based on a price that is imperfectly correlated
with the price of a traded asset.

The economics of asset pricing when one or more of the assets in the op-
portunity set are either subject to trading restrictions or entirely nontraded
is a matter of great interest. Viewed from a practical perspective, we have
several important examples of such assets that are subject to trading restric-
tions. Pensions, which represent perhaps the most significant of assets held
by individual households, are subject to trading restrictions. It is typically
the case that assets in pensions are not available for immediate consump-
tion. Borrowing against pension assets is subject to significant direct and
indirect costs by way of taxes and early withdrawal penalties. Human capital
is another example. Housing investment is also illiquid and subject to sig-
nificant transaction costs. Together, pensions, human capital, and housing
constitute a substantial part of a typical household’s assets. The significance
of such nontraded assets for risk premia has already been noted by Bewley
(1982). There are other circumstances where lack of unrestricted trading
plays an important role. Executive compensation plans usually take the
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form of options that are not allowed to be traded on the open market. They
are subject to restrictions on how often and when they may be exercised.
In addition, executives who own such options are not permitted to short the
underlying shares of the company. In a similar vein, long-dated forward con-
tracts are frequently entered into by counterparties who are fully aware that
a liquid secondary market for the contract does not exist. Furthermore, the
underlying commodity often is yet to be harvested or cannot be sold short.
It seems reasonable then to think of such forward contracts as essentially
nontraded assets. These examples stress the role of nontraded derivatives
on an underlying asset on which there may be trading restrictions.

The purpose of this article is to provide a constructive framework to
value derivative assets that are subject to trading restrictions. This frame-
work relies on simple dynamic programming techniques and can be viewed
as a counterpart to the martingale methods in Cvitanic and Karatzas (1992).
Our approach, however, delivers significant new insights. In the context of
a simple binomial model, we characterize the pricing and the optimal ex-
ercise strategies associated with derivative assets that are nontraded. The
approach is illustrated with an executive stock option (ESO) example, al-
though it is general and can be applied to any other contexts where trading
restrictions are important. In particular, it could be utilized to explain en-
dogenous convenience yields in long-term forward contracts which have a
very thin market and hence may be viewed to a first approximation as non-
traded assets (NTA). In some instances, such long-term forward contracts
are written on assets which may not be shorted easily. Examples are long-
dated forwards on crude oil or on commodities that are yet to be harvested.
Our contribution pertaining to ESOs draws and builds significantly upon
the work of Huddard (1994), Kulatilaka and Marcus (1994), and Carpenter
(1998). We briefly review these articles to motivate our own work and place
it in the proper perspective.

Huddard (1994) and Kulatilaka and Marcus (1994) consider expected
utility maximizing models, which is in the spirit of our own work. But both
articles assume that the nonoption wealth (liquid wealth) is invested in the
risk-free asset. As Carpenter (1998) notes, this assumption places an artifi-
cial constraint on portfolio choice before and after the exercise of the option
which may in turn distort the optimal exercise decision. Carpenter (1998)
develops two models. The first is an extension of Jennergren.and Naslund
(1993). In this model she considers an exogenous stopping state in which the
executive must either optimally forfeit or exercise the option. This setting is
well suited to examine issues pertaining to vesting restrictions. In her sec-
ond model, which is much closer to our own work, she studies an expected
utility maximizing model in which the executive is offered an exogenous
reward for leaving the firm at each instant. This induces the executive to
optimally select the exercise (or continuation) policy. Carpenter concludes
that the first model, which is much simpler to implement, does as well as the
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more elaborate expected utility maximizing model in terms of predicting the
actual exercise times and payoffs. Like Huddard (1994) and Kulatilaka and
Marcus (1994), Carpenter (1998) assumes an exogenous investment policy
for the nonoption wealth: the executive invests in the Merton (1969, 1971)
portfolio. She notes an important complication in making this assumption:
“Investing non-option wealth in the Merton portfolio is more appealing al-
though not fully optimal in the presence of the option. Full optimality would
allow the executive to choose investment and exercise strategies simultane-
ously. This scenario is intractable because the nonnegativity constraint on
the stock holdings would become binding along some stock price paths, but
not along other paths. Under these conditions, the optimal portfolio value
would be a path-dependent function of the stock price, and backward recur-
sion would be impossible.” This is in fact one of the thrusts of our article.
We model the simultaneous investment and exercise decision problem. This
problem is path dependent as Carpenter (1998) correctly notes. However,
an expansion of the state space enables us to formulate the problem as a
purely backward problem that can be solved using a dynamic programming
algorithm. As we show in the article, the optimal investment policy differs
from the Merton policy. Thus our article provides a broad framework which
is both constructive and easy to implement numerically.

Section 1 focuses on European-style nontraded assets. We analyze the
private valuation of such an asset and the hedging policy when there is a
no-short-sales constraint on the underlying asset. One insight arising out
of this analysis is that trading restrictions manifest themselves in the form
of an implicit dividend yield in the risk-neutralized underlying asset price
process. This implicit dividend yield will lead to qualitatively different pre-
dictions for the exercise policies of American options on the underlying
asset. In this context the private value of the asset is given by the certainty
equivalent of its payoff. We show that this certainty equivalent is bounded
above by the unconstrained asset value. We also provide a simple compu-
tational algorithm and a numerical example which illustrates the algorithm
for nontraded European options. The solution of the constrained portfolio
problem can be formulated in terms of a backward equation which involves
the liquid wealth of the manager and his certainty-equivalent valuation.
Due to the trading restrictions, a simple closed form solution such as Black
and Scholes cannot be obtained. But this is precisely where our binomial
framework lends itself superbly to the computation of the solution of the
model.

In Section 2 we examine the private valuation and the early exercise pol-
icy associated with American-style nontraded derivatives. We first display
simple examples involving call options on a non-dividend-paying stock in
which the policy of holding the option to maturity is dominated by early
exercise. These examples demonstrate that early exercise (prior to maturity)
of an ESO may be optimal even when the underlying asset does not pay
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dividends. This result runs counter to the conventional wisdom and seems
to contradict a well-known proposition on the suboptimality of early exer-
cise of such claims [see Merton (1973)]. In this context, exercising a call
option has two consequences. On the one hand, it reduces welfare since the
holder effectively gives up any potential appreciation in the expectation of
the discounted call option payoff. On the other hand, early exercise provides
an indirect benefit since it alleviates the no-short-sales constraint faced by
the investor in the underlying market. Early exercise eliminates the need to
hedge the NTA and increases liquid wealth; both of these effects increase
the optimal demand for the stock and reduce the occurrence of a binding
constraint. In instances in which the constraint is sufficiently binding when
the NTA is held to maturity, the benefits of early exercise (relaxing the con-
straint) may dominate the costs (the loss of gains from appreciation of the
discounted payoff) and this leads to the optimality of early exercise.' These
results enable us to rationalize a well-known empirical regularity: the fact
that executives tend to exercise their compensation options prior to maturity,
and at times that do not seem to conform to the predictions of conventional
options pricing theory. The arguments above show that such an early exer-
cise policy may well be rational even in the absence of an exogenous reward
for leaving the firm. The remainder of Section 2 characterizes the optimal ex-
ercise policy. Section 3 presents numerical applications of the model to ESO.

In Section 4 we extend our basic model to consider cases in which the
nontraded payoff depends on a price S? that is imperfectly correlated with
the price S' of the asset in which the investor can invest. Our analysis is based
on a trinomial model. In this context we extend the dynamic programming
approach of earlier sections and provide numerical results on the effects of
correlation. We show that the private value of a nontraded call option may
exceed the unconstrained value when correlation is negative or sufficiently
low: in such a situation the nontraded option has diversification benefits
that may offset the negative impact of the no-short-sales constraint on the
traded asset. When correlation increases toward 1 the nontraded call option
on asset 2 becomes a substitute for a nontraded call option on asset 1:
the private values of the two contracts converge. For American-style call
options on non-dividend-paying assets, early exercise may take place even
when the two asset prices S' and S? are imperfectly correlated.

Appendix A presents background results on the dynamic programming
approach to the problem. Proofs are collected in Appendix B. Appendix C
details a recursive procedure to construct certainty-equivalent values. Ap-
pendix D solves the constrained portfolio problem with two underlying
assets in the context of a trinomial model.

Arnason and Jagannathan (1994) point out that early exercise could be optimal even when the stock does
not pay dividends in the presence of a reload feature.
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1. European-Style Contingent Claims

In this section we consider a portfolio problem cast in a binomial lattice that
can be solved using dynamic programming methods. A backward numerical
procedure based on the dynamic programming algorithm is developed and
implemented in the context of a simple numerical example.

1.1 The model

Our setting parallels the one in Cox, Ross, and Rubinstein (1979). We
assume that the underlying asset price follows a binomial “process” with
constant parameters « and d, and probability p.

p Sou
5 <
l-p Sod

The initial asset value is Sp and the tree has N steps. There is also a riskfree
asset bearing a constant return r.> We assume that u > r > d.

In this complete market setting the risk-neutral probability is ¢ = (r —
d)/(u — d) and the implied state price density (SPD), &,, satisfies

g0 = ot 2 Llalp wp-p )
nn+l = SH r (l—(])/(l_p) Ww.p. l—p

subject to the initial condition & = 1.

Suppose that an investor holds an NTA with payoff Y, at the terminal
date, where the cash flow depends on the asset price and takes the form Yy =
g(Sy) for some function g(-): R — R. Assume that the investor has strictly
concave, nondecreasing utility function u(-) such that lim,_ o u'(x) = oo
and lim,_, o #’(x) = 0. Let X denote his liquid wealth (X, is liquid wealth
at date n) and 7 be the proportion of wealth invested in the risky asset.
Suppose that the investor cannot short sell the underlying asset. He then
faces the constrained dynamic problem

max Fu(Xy + Yy) s.t. 2)
b4
X, =X, [I‘ + 7, (1 — ’)]
n+l 1 . _
XU = Xylr +m(d—r)) © XO=H )
X,m, >0, forallm =0,...,N — 1 )
Xy +Yy=>0. (5)

2 It is straightforward to extend the analysis to (stochastic) path-dependent coefficients (u, d, r). Likewise
path-dependent payofts can be easily accommodated in our framework.
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1.2 A dynamic programming formulation
Let J(X,, n) be the value function for this constrained portfolio problem.3
It satisfies, forn =0,..., N — 1,

J(Xyon) = max EJ (X1, n +1) (6)
>

where

~

Xn+l =X, [r+m, (‘F~ r)] . (7)
Here the random variable ¥ is the return on the stock (with values u or d) and
X,+1 1s liquid wealth at n + 1. The wealth process [Equation (7)] satisfies
the initial condition Xo = x. This recursion is subject to the boundary
condition J(Xy, N) = u(Xy + Yy).

The Kuhn-Tucker conditions for this constrained problem are standard
and are presented in Appendix A. Let J (X ne1» 1+ 1) denote the marginal
value of wealth, y, the Lagrange multiplier for the budget constraint at date
n,q? the adjusted risk-neutral probability, and S,‘f‘” 1 the corresponding SPD
which satisfies Equation (1) substituting g2 for g. Finally, let I (-, n + 1) be
the inverse of the marginal value of wealth at n 4 1.

Our first theorem presents an equivalence relation between the con-
strained economy and an artificial unconstrained economy constructed by
changing the drift of the risk-neutralized process.

Theorem 1. Let {(X}; |, y,.q,.6)): n = 0,..., N — 1} denote the so-
lution, described in Appendix A, to the constrained optimization problem
subject to the initial condition Xy = x. The constrained portfolio problem
is equivalent to an unconstrained portfolio problem in an artificial economy
in which the risk neutral measure is {q,;: n =0, ..., N — 1}. In this uncon-
strained problem the stock price lives on a binomial lattice with parameters
uy =u+8, andd; = d + 3, where 8 = (q —q,)(u —d) and &y, is
the corresponding state price density.* The wealth process and the optimal
portfolio are, forn =0,..., N — 1,

X1 =1 p& i p-n+ 1D

r *1
% = ntl p— q*) ,
" q;;(l - q,T)(M - d) < G;'; !

p (TF — £ YK KU gk * U
where Gn = Sn Xn and n+l — ( n+an+l) :

* The value function is a function of the stock price as well. For ease of exposition we adopt the simpler
notation J(X.n) with two arguments. This notation places emphasis on the fact that liquid wealth X
is controlled by the investor through his portfolio choice. Other arguments of the value function are
exogenous state variables (or time) that have a parametric effect on the optimal solution.

Equivalence results of this type are known to hold in economies with portfolio constraints [see Cvitanic
and Karatzas (1992)].

840



w

Nontraded Asset Valuation with Portfolio Constraints

The equivalence between the two optimization problems implies that £
is the pricing kernel for the constrained individual and g, = (r —d)/ (u} —
dy) his adjusted risk-neutral measure in the constrained market. The pair
(&7, q,7) encodes the private valuation of the constrained investor taking the
environment as given. It reflects the no-short-sales constraint as well as the
other exogenous parameters of the model, in particular the fact that he is
endowed with a nontraded asset paying off at date N.

Note that the stock price takes the value

Sy = Sou™*a*

at N if there are N — k steps up and k steps down, fork =0, ..., N. Using
the definitions of u}; and d; above and the fact that 1)} — & and d;; — 4" are
constant, we can also write

Sy =Sou*d =5 T] i -8 []e@;—s0

neN—N; neN;

fork =0,..., N, where N = {0,..., N — 1} and Ny is the subset of k
elements of N corresponding to the relevant down movements in the stock
price. Hence the stock price in the constrained market can be viewed as
paying an implicit dividend equal to §; at date » + 1. This interpretation
also emerges if we use the definition of g, to derive the stock price formula

I N
S’l = ; [q;’; IIII-H + (l - q:)Sn[-l-l] + ’—S,,S:

This formula shows that the stock price S, is the discounted value of S,,5
augmented by the expected value of the discounted price at n + 1 where
discounting is at the risk free rate and the expectation is taken under ¢*. By
analogy with the standard representation result, we can then interpret the
stock as a dividend-paying asset with dividend yield §, under the adjusted
risk-neutral measure g*.>

We therefore reach an important conclusion: in the presence of a no-
short-sales constraint, a derivative asset on a non-dividend-paying stock
is equivalent to a derivative written on a dividend-paying stock under the
adjusted risk-neutral measure. Theorem 1 then suggests that the (private)

The interpretation of the stock as a dividend-paying asset under the adjusted risk-neutral measure g* is
not meant to suggest that the properties of complete market models will hold in this economy. In fact
there are significant differences. For example the adjusted risk-neutral measure ¢* is not independent
of the dividend yield 8%, and this is a consequence of the no-short-sales constraint. Furthermore, ¢* is
affected by changes in exogenous variables such as the risk aversion of the investor and the properties
of his nontraded payoff (see Sections 3 and 4). Our interpretation also assumes that the dividend yield
applies to the initial stock price at date n (i.e., the implicit dividend payment at n 4 | is §,8;) and this
differs from the standard binomial model with proportional dividend yield. Note that the solution of the
constrained portfolio problem and our results concerning the rationality (optimality) of early exercise are
independent of the interpretation given to the process §*.
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valuation of a nontraded derivative may be lower than an otherwise identical
derivative which is freely traded. This insight has far-reaching implications
for the exercise policies associated with ESO, which we explore later. Ad-
ditional intuition about the costliness of a constraint is provided by the
certainty equivalent of the nontraded asset from the perspective of an in-
vestor endowed with the nontraded payoff and facing this trading restriction.
What is the certain compensation required to induce this investor to give up
his claim to the future cash flows associated with the NTA? We examine
this issue next.

1.3 Certainty equivalent and unconstrained valuation

In the absence of any constraint the (complete market) value of the European
contingent claim with payoff Yy is Vy = (')NE*[YN] = E[EnYy]. 1
the presence of the no-short-sales constraint the value of the claim is the
certainty equivalent Yo of the payoff Yy [see Pratt (1964)]. By definition

Yo = 7~'(J(X0,0),0) — Xo,

where J (Xo+ YO) represents the value function for the constrained problem
without cash flow Y but starting from initial wealth X + YO, and J~'(-,0)
is the inverse of this function.

With unrestricted investment the financial market described above is
complete. The market value of an asset is then unambiguous: it represents the
amount of initial wealth that is required to synthesize the terminal cash flow
Yx.The certainty equivalent, on the other hand, represents the compensation
required by an individual for giving up his right to the terminal cash flow
Yy. Clearly these two notions coincide when the market is complete.

What is the relationship between the unconstrained value and the cer-
tainty equivalent of the NTA in our constrained problem? Our next result
shows that the two notions relate in a simple manner.

Proposition 2. Consider the constrained investment problem with an NTA
paying a terminal cash flow Y. Suppose (a) that the payoff Y is an in-
creasing function of the stock price and (b) that the short-sales constraint
never binds for the pure portfolio problem with initial wealth Xo + YO The
following properties hold.

(i) If the short-sales constraint never binds in the constrained problem,
the certainty equivalent and the complete market value are equal: Yy = V.

(ii) Suppose that the short-sales constraint binds with positive probabil-
ity. Then the certainty equivalent is bounded above by the complete market
value of the asset: Vo > Y.

An investor who is effectively unconstrained in the constrained economy
is in fact in a complete market situation. Equality between the two notions
follows.
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When the constraint binds at certain nodes of the tree the value func-
tion decreases (since the set of feasible policies is effectively restricted).
The certainty equivalent then unambiguously decreases when condition (b)
holds: Vy > Y.

A numerical illustration of the results of Proposition 2 is given in Sec-
tion 1.7. Before presenting this example we provide further insights about
the solution of the constrained portfolio problem.

1.4 A certainty-equivalent formulation

Further light can be shed on the optimal portfolio policy by defining a
certainty-equivalent payoff Y, for each date n and using it to reformulate the
dynamic portfolio problem. Indeed, by definition of the certainty equivalent,
the value function at every node equals the value function of a pure portfolio
problem without NTA but starting from an adjusted (certainty equivalent)
wealth level. It follows that we can write the objective function at date n
entirely in terms of the value function of the certainty-equivalent problem at
date n+ 1. This procedure leads to a recursive construction of the certainty-
equivalent payoff ¥, which is detalled in Appendix C. We summarize the
constructlon next.

Let J(X,,+| + Y,,+| , n+ 1) denote the value function at date n + 1 of the
pure portfolio problem without NTA but starting from the adjusted wealth
level X,+1 + Y,4+1. By definition the date n + 1 certainty equivalent Y,
solves

JXpsron+ 1) =T (X1 + Vg n +1).

The constrained portfolio problem at time n 4 1 can then be written as

J(Xm n) max EnJ(Xn+l + Yn-‘rh n—+ l) S.t. Xn = En[s,(,s‘”+| §n+l]-

=

Let (X, Y, |, q,) denote the solution. The value function, certainty
equivalent, and optimal portfolio at date n are

J(X,,n) = E,,J(X”Jrl Y,T+|,n +1)
Yn(Xn) = J_I(J(an)an)_ X (8)

. G
P = grea (G - a)
where G = £ X and G| = (§7,, X}, )" and where T~ Vis the inverse
of the date n value function T (-, n) of the pure portfolio problem with initial
wealth X, +Y,. The second equation in Equation (8) provides the recursive
relation between the certainty equivalents at dates n and n + 1.

In the next sections we specialize the model to power utility functions.

In this context we present a numerical recipe for solving the problem and
examine the behavior of the certainty equivalent.

T
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1.5 Power utility function (CRRA)

Consider the utility function u(X) = % X'~* where R > 0is the constant
relative risk-aversion coefficient. Let K,,(X,,) = BY,,(X,,) /90X, represent
the derivative of the CE and let g, xv = E, 4 [§H+|I/}5] where ‘g’,,+| N is
the adjusted state price density for the pure portfolio problem over {n +
I,..., N} with initial wealth X, ; = X,4+| + Y,+ and subject to a no-

short-sales constraint. Now define the function F,(a, b) = E, [“g‘,,l';ir/,R(l +

K,+1(a@))’8,+1.5]. Appendix C shows that the certainty equivalent and its
derivative satisfy the system of recursive equations

Fy(Xpp1il /R—T)V IR R
(X, +fﬂ)?il)( ( F}T(IX,LLI/;?)) (gu.n) TF — X,
1

~ | > X,
Y, (X,) = "

o~ —~, 1/(1-=R) ,~ _ R
(E,, [(I‘X,, + Y, (I‘Xn)) Rg,l,:.] N]) / (gu.N) TF=X,
it X, , =rX,

1+ K, =rE, [(Xn-i—l + Yn+l)_ (1+ Kn-l—l)g,,+| N] (X, + ?n)Rgf/

where W, = ,l_[q Y,’I‘H + (1 — q) o +]] These recursions are subject to the
boundary conditions YN =Yyand Ky =0.

1.6 Numerical evaluation of the certainty equivalent

The numerical scheme that we employ implements the dynamic program-
ming equations described above. The procedure is a backward algorithm
structured as follows:®

1. Select a grid for wealth: X(j), j =1,..., N,.

2.SetYy =Yy, Ky =0.

3. Atdate N — I: foreachnode and for j =1, ..., N,
(1) fix Xy_ = X (j) and solve for (X},(j), Xﬁ(j)),
(i1) compute Yy_;(j) and Kn_(j).

4. At date n: for each node and for j =1, ..., N,,
(1) fix X,, =§(j) and solve for (X, (), X,‘fH(j)),
(ii) compute ¥,,(j), K, (j).

5. Proceed recursively until n = 0.

An alternative computational procedure can be developed based on a forward-backward binomial algo-
rithm (FBB). Such a scheme involves the recursive computation of the CE based on estimated state prices
(backward binomial procedure) combined with a reestimation of state prices (forward procedure involving
the liquid wealth process and the optimal portfolio). Applying this FBB algorithm repeatedly eventually
leads to a fixed point (in the space of processes) which represents the solution of our constrained problem.
In numerical experiments the FBB algorithm has produced CE values that are identical to those obtained
via the dynamic programming procedure in this article.
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Several approaches are available for computing the derivative K, of the
certainty equivalent. Direct computation based on the recursive equation for
K, can be performed in parallel with the computation of Y,, An alternative
estimate is based on the finite difference (¥,,(j) — Y, (j — 1))/(X(j) —
X (j — 1)). Both approaches are easily implemented and produce similar
results for sufficiently fine grids for wealth.

1.7 A numerical example

We illustrate the results in this section by considering a simple numerical
example involving a nontraded call option with strike k. The binomial model
is calibrated in the standard manner: u = exp(o\/}_z), d =1/u,and p =
%(l +(u/o)v/h), where h = T /N . The example’s parameters are . = .08,
0=3,r=05R=2X0=40,k=80,T=1,and N =8. R

Figure 1 illustrates the relationship between the certainty equivalent Yy
and the unconstrained call value C when the initial stock price Sy ranges
from O to 300. For low values of the underlying stock price the option is out
of the money and both its private value and the unconstrained value are near
0 (the ratio is 1). As the stock price increases the option payoff increases
at every node at the maturity date. As the owner of the nontraded option
attempts to hedge the contract he will hit the no-short-sales constraint on the
underlying asset and this will reduce his private valuation. In fact, his private
valuation declines as a fraction of the unconstrained value (see Figure 1) for
moderate values of the underlying stock price. For larger values of the stock
price the magnitude of the difference between unconstrained valuation and
private valuation increases to an upper bound: the ratio of the two values
eventually converges to 1.

This numerical example also vividly illustrates the fact that the private
value of the nontraded asset can be at a substantial discount to the uncon-
strained value: in the example the discount is nearly 17% for an at-the-money
option.

The analysis above shows that the nontraded derivative with the short-
sales constraint is equivalent to an unconstrained derivative on a dividend-
paying stock. This property, whose consequences are illustrated in the nu-
merical example, also foreshadows the result that early exercise may be
optimal if we allow for an early exercise feature. Furthermore, by taking
this argument to the limit, it is easily seen that the private value of a non-
traded European option on a non-dividend-paying stock is equal to the
certainty-equivalent value of a traded European option on a stock with the
same drift and volatility coefficients but which pays a continuous nonneg-
ative dividend flow. This suggests that the Black—Scholes formula will in
fact overestimate the private value of a nontraded option; in our discrete
time setting, the binomial model of Cox, Ross, and Rubinstein (1979) is
an upper bound for the private value of the executive stock option. The
first-order conditions of Equation (C.1) also show that the implicit dividend
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Figure 1

Certainty-equivalent relative to unconstrained value: moneyness effect

Parameter values: u = .08, 0 = 3.r =.05. R=2. Xy, =40. k =80. T = I, N = 8. §, ranges from
0 to 300.

yield tends to be positive precisely when the nontraded asset owner would
like to go short but cannot due to the short-sales constraint. The dividend
yield 87 = (¢ — gq,))(u — d) becomes zero when he is unconstrained. For
logarithmic utility this dividend yield can be characterized in greater detail.
In this case the dividend yield is (a) a decreasing function of liquid wealth
(this clearly illustrates that the lack of diversification is a major source of
loss in the private value of an executive stock option) and (b) a decreasing
function of the excess return on the stock.

2. American-Style Contingent Claims

We now turn to the case of American contingent claims. We first demonstrate
that early exercise of claims such as call options may be an optimal policy
even when the underlying asset does not pay dividends. We then characterize
the optimal exercise time.
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2.1 The optimality of early exercise

In the case of complete markets it is well known that it is never optimal
to exercise a call option when the underlying asset does not pay dividends.
More generally, it is suboptimal to exercise any claim whose discounted
payoft is a strict submartingale under the risk-neutral measure g (i.e., when
r~"E*Y, > Y;). We now consider the exercise decision when the holder
of the NTA is subject to a no-short-sales constraint in the underlying asset.
Contrary to conventional wisdom our first result establishes the optimality
of early exercise.

Proposition 3. Early exercise of a contingent claim whose discounted pay-
off is a submartingale under the risk-neutral measure q may be optimal.

This proposition states that waiting until maturity to exercise such a
claim is a suboptimal policy under certain conditions. In order to prove this
proposition we need only exhibit examples that display the property. Our
first example below sets the stage: it shows that it is always optimal (in the
context of the example) to exercise early any claim whose discounted payoff
is a martingale. The second and third examples are numerical examples
involving an ESO which demonstrate that a submartingale discounted payoff
may also be optimally exercised prior to maturity.

Example 1. Consider an investor with logarithmic utility. Suppose first that
the discounted payoff of the claim is a supermartingale (i.e.,r " E*Y, < Yy)
and that p = g(i.e., E¥ — r = 0). In this case the unconstrained optimal
portfolio is a pure hedging portfolio equal to

d
Vrjl+l B Vn—H

Xnnn = -
u—d

for all n(V, 4, is the unconstrained value of the claim at n + 1). For claims
that are positively correlated with the underlying stock price, this portfolio
demand is negative. The constrained optimum is then 7, = 0. The policy
of exercising the claim at maturity leads to a random terminal wealth equal
to Xor™ 4+ Yu. Immediate exercise on the other hand leads to the certain
amount of terminal wealth (since the optimal unconstrained and constrained
portfolios are null) (Xo + Yo)r™N. Let J(X) (resp. J(Xo + Yo)) denote the
value functions if exercise takes place at maturity (resp. immediately). The
value functions are related by

J(Xo) = Elog(Xor™ + Yy)
log(Xor¥ + EYy)
log((Xo 4 Yo)r™) = T(Xo + Yo),

A

IA
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where the first inequality follows from Jensen’s inequality and the second
from the supermartingale property of the discounted payoft function. In
particular, if the discounted payoff is a p-martingale, there is no incentive
to wait until maturity. Thus in this example immediate exercise strictly
dominates the policy of never exercising prior to maturity.

In this first example there are two distinct effects at play. The first is
the effect of the constraint. By preventing a complete hedge of the non-
traded position the no-short-sales constraint prevents terminal consumption
smoothing. The individual is forced to bear unwanted variability in his
terminal payoff and this reduces his expected utility. This effect provides
incentives to exercise early. The second effect is the supermartingale be-
havior of the discounted payoff which also provides incentives for early
exercise. Combining both effects results in the suboptimality of waiting
until maturity to exercise.

Under the conditions of the example above (p = ¢), a call option on
a non-dividend-paying stock is a p-submartingale r"E*(S, — k)T >
(So — k)*. This submartingale behavior works in the opposite direction
of the smoothing/constraint effect and may mitigate the negative effect of
the constraint on welfare. However, as we show in the next numerical ex-
ample, this effect may be too weak to fully offset the negative impact of the
constraint.

Example 2. Consider an ESO with the following parameters 0 = .2, r =
1, p=.61767, u(X) =log(X), Xo=0, k =80, So =100, T =1,
N = 3. In this case the value of waiting to maturity is J(Xo) = —o0
while immediate exercise leads to J (X + Yy) = 3.0957. If the individual
waits until maturity to exercise the portfolio constraint binds at all nodes
and terminal wealth includes highly undesirable outcomes with null payoff
XorM + Yy = 0. Immediate exercise on the other hand ensures strictly
positive terminal wealth in all cases. In this example the submartingale
property of the discounted option payoft mitigates the effect of the constraint
but not sufficiently to offset the suboptimality of waiting to maturity.

Our last example shows that the suboptimality of waiting to maturity
may also hold when p > g (i.e., EF — r > 0) and Xy > 0, provided risk
aversion is sufficiently large.

Example 3. Consider an ESO with the following parameters: o0 = .2, r =
d, p=.62, R=4, Xo=10, k =80, S =100, T =1, N = 3.
In this case the value functions are, respectively, J(Xo) = —0.0000265
and J (Xo + Yy) = —0.0000091Again, waiting to maturity is dominated by
immediate exercise.

In all examples above there is tension between two conflicting effects.
On the one hand, waiting until maturity to exercise enables the holder of
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the NTA to capture the benefits associated with the appreciation of the dis-
counted payoff (a submartingale is a positive sum game: » " E*Y, > Y)).
On the other hand, the portfolio constraint prevents a complete hedge of
the claim (i.e., prevents terminal consumption smoothing) and this reduces
welfare. Whenever the constraint is binding, early exercise has the impor-
tant added benefit of alleviating the portfolio constraint. When the welfare
losses resulting from the inability to smooth consumption are sufficiently
important early exercise becomes optimal.

2.2 A dynamic programming formulation

We consider an American-style contingent claim with payoff ¥ = {¥,;: n =
0, ..., N}, where Y, is a function of the stock price. If exercised at date n the
payoffis ¥,.” Let i, denote an indicator variable equal to 1 if early exercise
did not take place at or before n — 1 and equal to O if it did. Let J(X,,, i,,, n)
be the value function for the portfolio problem with this American-style
NTA. It satisfies, forn =0, ..., N — 1,

J (X, 1, 1) = max {maxeo E,J (X4, ,,0,n + 1),
max,>( E,,J(kvf;H, I,n+ l)] 9
J(XIH 07 n) = maxnz() E”J(XII;_’J, 0, n + l).

where
iﬁ+l = (X, + Y,,)[r + ]'["(7-'_ I‘)]

y[)

(10)
ntl — Xlr + 7, (F = r)l.

Here 3524_' (resp. i,’;H) is liquid wealth at n 4 1 in the event of exercise
(resp. continuation) at »; the wealth process [Equation (10)] is subject to the
initial condition Xy = x. The random variable 7 is the return on the stock
(with values i or d). These recursions are subject to the boundary conditions
JXn,1,N) = u(Xy +Yy)and J(Xy,0, N) = u(Xy). The first com-
ponent inside the bracket on the right-hand side of Equation (9) represents
the immediate exercise value function, the second is the continuation value
function.

Clearly, immediate exercise is optimal at »n if and only if the exercise
value function exceeds the continuation value function, that is, if and only
if J(X,, 1,n) = maxy>o E,J(X{ .0, n+ 1). Thus the optimal exercise
time is

n* =inf{n >0 J(X,,1,n) = max E,.J (y,‘l'H,O, n+1)
>

7 Without loss of generality we assume that ¥, > Oforalln =0, ..., N. Otherwise replace ¥, by ¥,}.
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or n* = N if no such time exists in {0, ..., N — 1}, that is, n* is the first
time at which immediate exercise dominates continuation.

__ Forany value taken by J (X, 1, n) we can define the certainty equivalent '
Y, as the solution to

J(Xp. 1,n) = J(X, + Y,.0,n),

that is,
Y =7 (I (X, 1,1), 0, 1) = Xy,
where J7'(-, 0, n) represents the inverse of J (-, 0, n) relative to the first

argument. An alternative characterization of the optimal exercise time is
then

n* =inf{n > 0: Y, < Y,}

or n* = N if no such time exists in {0, ..., N — 1}, that is, n* is the first
time at which the CE is bounded above by the exercise payoft of the claim.

2.3 Solving the dynamic program
The first step in the determination of the exercise policy is the resolution
of the portfolio problem in the event that exercise takes place (i.e., the
identification of the exercise value function J(X,, 0, n)). This problem was
in fact resolved in the context of the previous section.

Suppose that immediate exercise takes place at date n. Then the exercise
value function is

(X, +Y,,0.n) = max E, ] (X9,,,0,n+1) = J(X, + Yo, ),

where J (X, n) is the solution-defined in Theorem 7, Appendix C, evaluated
atinitial wealth X, +Y,,. Note that the function J (-, n): (0, 00) — (0, 0c0) is
strictly increasing since the inverse marginal utility function 1 () is strictly
decreasing. Thus J(-, 0, n) is strictly increasing in the first argument and
the certainty equivalent Y, is uniquely defined.

To complete the description of the exercise decision we still need to iden-
tify the continuation value function J(X,, n) = max,»¢ E, J(X,le, I, n+
1). This function can be determined recursively since forn =0, ..., N—1,

J (X, n) = 21‘21())( E, ’J‘(X,ler,,n + 1)1(

2+I>yn+l}
+J(§llj+l + Y41, 0,n + l)l{2+|iyn+|]] S
st J(Xn, N)=J(Xn+Y,, 0, N)=u(Xy+Yy) (12)

where X fj 4 satisfies Equation (10). This dynamic programming problem
can be solved recursively using the methodology developed earlier, since it
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consists of a sequence of static one-period problems. Let 7 (-, n + 1) denote
the inverse of the date n + 1 marginal value function

JUXp o+ DIy L X+ Y Oon+ Dy

with respect to X ,‘j +1- With this definition the first-order conditions at date
n are also given by Equation (A.2) in Appendix A; denote this new system
(A.2a). Solving this system for (y,, q,‘f ) resolves the constrained portfolio-
exercise decision problem. Indeed, the solution identifies the optimal stop-
ping time n* as the first time at which the certainty equivalent falls below
the exercise payoff. At the exercise time n* the liquid wealth of the in-
vestor increases to X, + Y,+, which equals the present value of terminal
consumption. Thus

X = Eys |0+ NI(VH*“;:M* N)] Yy,

where ’g‘,, is the state price density process postexercise. Prior to exercise,
liquid wealth satisfies X,, = E,[£¢ .X,+] by construction. Since the state

n.n*

price densities must coincide at exercise (S,,* = £¢.) we can also write

Xn = E, [&,, n* [En [Sn* Nl(yn*‘i:n* N = n*]]
= (S,(,)_ En IE-\NI(BTII*SH*.N) - S,(Ivv Yn*] .
Summarizing,

Theorem 4. Consider the joint portfolio and exercise decision problem
with initial wealth Xo = x and subject to a no-short-sales constraint. Let
(X5 Yy an &) n=0,..., N — 1} denote the solution of the sys-
tem of backward equations (A.2a) subject to the initial condition X¢ = x.
The optimal exercise time is

n* = inf{n >0y, < Y,,}; or

n* = N ifno such time exists in {0, ..., N — 1}.
At times prior to exercise, n < n*, the optimal wealth and portfolio are

X:-H = I(y:é:‘n+l’ n+ l)

*U
* __ r n+1
= g, (I —g)(u —d) < P q")’

» *n — * u * * * *
where G\ | = (&7 X, )" and G, = &7 X, Forn > n",

gn = E, E'\II.NI(SI\H*’S\M*,N)]
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ﬁ _ r an+l p _ a
" 6\”(1 - é\”)(u - d) Gn " '

where G, = E,,[’gNI(}\,,*g,*vN)] and g, satisfies ¢ — q, > 0,7, > 0 and
(q - Z]\,,)ﬁ,, =0.

Theorem 4 shows quite clearly that the structure of the solution changes
after exercise has taken place. This reflects the irreversible nature of the
exercise decision which changes the structure of Arrow—Debreu prices.
These Arrow—Debreu prices are different from those used to compute the
continuation value.

2.4 The certainty-equivalent formulation
The certainty-equivalent formulation of Section 1.4 can be easily adapted
to the case of American-style contingent claims. In order to embed the
possibility of early exercise in this formulation it suffices to replace the
certainty equivalent which appears in the dynamic programming algorithm
with the maximum of the exercise payoff and the continuation certainty
iquwalent n+[(Xll+l) that is, Y11+1(Xn+l) = max{ ,,+1(Xn+l) Yop} =
Y,,C+1(Xn+l) Vv Yn+l'

The continuation value at date n now satisfies

J Xy, n) = max E,,J(X”JrI + Yy Vv ,j'+|),n +1)

Nll_
s.t. X" - E"[én n+le+l]

and the first-order conditions are given by

TXE 4 Yt VY D)+ DA+ K (X2, ) = 08y,
Xn - En[g,n.HXn.H] Yn > 0

(Xb )= Xur>0,9 —q! >0,
and (g — q:f)[(X,'fH)” —Xur]=0
(13)
where
0 (YM—H Vv Y,+](Xb+])) BY,,.H(X

Xy

n+l) ~
3X11:+1 1(Y:.+|<Yu+|} (14)

Kn-H(X,[;.H):

is the derivative of the certainty equivalent in the event of optimal continua-
tionatn+ 1. The system [Equation (C.1)] with ¥y, | (Xp41) = Y, | (Xpy 1)V
Y,+1 substituting for the CE then characterizes the optimal policy; de-
note this new system Equation (C.1.a). Solving for (y,, g°) gives the so-
lution qt\ date n assuming that the NTA is held one more period. Let
(X5 1 Y1 vy gy) denote the solution. The date n continuation value
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function J(X,,,n) = E,,:I\(X,’j+l + Y,TH, n + 1) then leads to the date n
continuation certainty-equivalent payoft

YOX,) =T ' (J (X n),n) —

where J - is the inverse of the value function J J (-, n) of the pure portfolio
problem with initial wealth X, + Y,, Immediate exercise at date n is optimal
if and only if

YE(X) <Y,
and the date n CE is f’\,,(X,,) = f’:j'(X,,) Vv Y,. Summarizing,

Theorem 5. Let {(Xn+l, s V@) n=0,..., N — 1} denote the so-
lution of the system of backward equations (C.la) subject to the initial
condition Xo = x. The optimal exercise time n* is

=inf{n > 0: Y* < Y,}

or n* = N if no such time exists in {0, ..., N — 1}. The optimal portfolio

is, forn < n*
]_[* — r (G;';l-:rl p—gq >
n q,’f(l _q:)(u _d) n !

* * *U * u
where G = Ex X and G}, | = (§;,, X, )" and for n > n*

~ r 6;\n+l ~
Ty = =< = —qnl,
g (1 —q,)(u—4d) G, P

where 6,, = E,,[ENI(&\,,:S\,,*.N)] and q, satisfies ¢ — q, > 0,7, > 0 and
(g — Z]\n)ﬁn =0.

Remark 1. (i) The certainty equ1valent * represents the private value that
the investor attaches to the full llqu1dat|0n of the asset at date n. It represents
the cash compensation that yields indifference between ownership of the
asset and liquidation. The CE private valuation captures the fact that the
asset is not divisible.

(ii) The notion of certainty equivalent has been introduced by Pratt (1964)
in the context of static problems under uncertainty. An important difference
in our model is the endogenous timing of collection of the random payoft.
The CE payoff Y, captures both the intrinsic randomness of the payoff as
well as the randomness of the optimal exercise time.

2.5 American-style claims with logarithmic utility

In the case of logarithmic utility the solution of the portfolio problem with
initial wealth X, = X, + Y, is given in Corollary 8 with R = 1. In the
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particular case EF —r > 0 (i.e., p > ¢) the portfolio policy is strictly
positive and the adjusted risk-neutral measure is the unconstrained measure
gn = q; also &, y = &, . We shall maintain this assumption in the deriva-
tions below. The constrained portfolio problem with NTA at date n can now
be written

max E, 1og(X, 1+ Y1) = Eylog(Erain) st Xu = Eyléyp i Xasi],
where ?,,H = Y41 V% 41- Specializing the first-order conditions of Equa-

tion (C.3) to the log case and solving gives YN (Xy)=Yyand Kn(Xy) =
at date N and, at an arbitrary date n,

1+ Kn+l(Xllz+l)

X W Su -1 _ f}u X
n-H = (X, + W) 1+ EnKn+l(Xn+l)( n.n+l) n+|( n+I)

_ s 5
W” - r [q" n+1 + (l qn) n+l] WH-H = n+l(Xn+|)

and
8VVn+I _ 8Yn+| .
X 41 X 41 Yo <Vusr}®

The value function and the certainty equivalent are

Kn+I(Xn+I) =

1+K) I(XrH»I)
log(Xn + Wn) + En 10g (m) - En log(é:n.N)
J (X, n) = if X041 >:X”
E,log(r X, + W, 1(rX,)) — E, log(§,41.n)
if X', =rX,

(X + Wy) exp ( By log(Hkethea )

ey =1 M=k
exp(E, log(r X, + W, 1(rX,)) — E,log(é,41.0)) — X,
Xy, =rX,

1+ K, =rE, [(XH—H + Yn—H) (l + Kn+l)gn+l N] (Xn + Yn)g,, N

Yn(Xn) = Yn vV Y,;'(Xn)-

Immediate exercise at date n is optimal if and only if ?,,(X,,) < Y,. Sum-
marizing,

Corollary 6. Suppose that EF — r > 0. Let {(X"H, e Y dy): n =
0,..., N — 1} denote the solution of the system of backward equations
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above subject to the initial condition Xo = x. The optimal exercise time n*
is
. . Sx
= mf{n >0: Y, < Y,,}

or n* = N if no such time exists in {0, ..., N — 1}. The optimal portfolio
is, for n < n*,

* r G’;l;l—ll-l
T, = * * 4 —CIn ’
qn(l - qn)(u —d)
where Gy = £ X" and G}, | = (&), Xn )", and forn > n*
* r

KiTOEr o R

3. Application: Executive Stock Options

In this section we provide numerical results illustrating the behavior and
properties of ESOs. The computations are performed using the backward
numerical scheme described in Section 1.

Executive stock options are typical examples of NTAs involving trad-
ing restrictions in the underlying asset market. These restrictions imply
substantial differences with standard option contracts.

The liquidity of the manager’s wealth plays an important role for the
value of the ESO. Figure 2 documents the difference between the European
ESO value ( Y") and the American ESO value (Y") as a function of liquid
wealth. Values are reported as a fraction of the option value in an unrestricted
market (C). Note that the early exercise premium decreases as liquid wealth
increases. For a fixed immediate exercise payoff, the incidence of a binding
constraint decreases when liquidity increases and this reduces the gains
from early exercise. However, both the European and the American ESO
values are at a substantial discount to the unconstrained value (the European
ESO value may be worth less than 10% of the unconstrained value when
the investor experiences severe liquidity shortage).

The ESO is a concave function of liquid wealth when the early exer-
cise premium is sufficiently small (the European ESO is always concave):
the marginal impact decreases as X increases. As liquid wealth tends to
infinity the ESO value converges to the value of a standard call option if
the probability of a binding constraint tends to zero. If the probability of a
binding constraint converges to a positive limit the ESO value remains at a
discount to a standard call even for large values of Xj.

Unlike conventional option prices, the ESO value depends on the risk
aversion of the owner. As risk aversion increases the ESO holder invests
more conservatively in the risky asset and this leads to an increased proba-
bility of a binding constraint. The ESO value then decreases. As illustrated

855



The Review of Financial Studies /v 12 n 4 1999

0 50 100 150 200 %

Figure 2

Liquidity effect

Parameter values: 4 = .08, 0 = .3, =.05,R=3. k=280, 5, =100, T = 1, N = 6. Wealth between
2 and 200.

in Figure 3 the American ESO value may be at a substantial discount to
the unconstrained value for moderate risk aversion levels even if there is no
discount for risk aversions less than or equal to 1.

The ESO also exhibits high sensitivity to the drift of the underlying asset.
An increase in drift raises the American ESO value since the probability of
a binding constraint decreases (see Figure 4).

Contrary to conventional wisdom an increase in volatility may reduce the
ESO value. In the context of our model a higher volatility has two effects. On
the one hand, it increases the upside potential of the ESO and this increases
its CE value. On the other hand, it may reduce the demand for the stock,
thereby increasing the probability of a binding constraint. This second effect
reduces the CE value. As Figure 5 illustrates, the negative impact due to the
failure to smooth terminal consumption perfectly dominates over certain
regions of parameter values. This behavior emerges, in particular, when
the manager’s liquidity is low. When liquid wealth is sufficiently high the
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Figure 3

Risk aversion effect

Parameter values: u = .08, 0 = .3, r = .05, Xy =40, k = 80. S, =100, T = I, N = 7. Risk aversion
values between .| and 5.

probability of a binding constraint decreases and the American ESO value
mimicks the behavior of an unconstrained American call option value over
typical ranges of volatility values.

Finally, we note that time to maturity has the usual effect on the American
ESO: value increases with time to maturity since a longer maturity implies
an increased set of feasible exercise policies.

4. The Effects of Imperfect Correlation

We now consider an extension of our model to a situation in which the
nontraded payoff depends on a price that is imperfectly correlated with the
price of the asset in which the investor can trade. Let S' be the price of the
traded asset and S? be the price of the asset underlying the nontraded payoff.
We consider a nontraded European call option with payoff (S? — k)*. The
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Figure 4

Drift effect

Parameter values: 0 = .3, r =.05, R=1, Xy =40.k =80, S =100, T = |, N = 6. Drift 1 between
.04 and .2.

model of the previous sections corresponds to the case of perfectly correlated
assets. Our objective is to examine the structure of the certainty equivalent
in this more general context; in particular we are interested in the effect of
correlation between the two assets.

4.1 Dynamic programming for the multiasset case

In order to model correlated assets we consider a trinomial model with three
possible states of nature following each node. The tree profile is as follows
(at date 0):

(Séul, Sguz) W.p. pi
(S5, = (Symi.Sima)  wp.p2
N

(Sgdi, Sidy) W.p. P3
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Volatility and liquidity effects

Parameter values: © = .08, r = .05, R =3, k =80, S, = 100, T = 1. N = 6. Volatility ranges
from .04 to .50; wealth from 10 to 100.

where p| 4+ p; + p3 = 1. The initial asset values are Sé, Sg and the tree has
N steps. The riskfree asset has a return equal to r.

The solution of our problem is given by the same set of equations as in
Sections 1 and 2 and in Appendix A, with the proviso that we must now
account for three possible states following each node of the tree. Further-
more, since the investor cannot trade in the asset underlying the nontraded
payoff, we have an additional constraint on his investment policy. For power
utility these considerations lead to a set of first-order conditions described
in Appendix D. We present some numerical results next.

4.2 Numerical results

We calibrate the trinomial tree using the parametrization of He (1990).% The
backward numerical algorithm of Section 1.6 is used to solve the equations
characterizing the solution (see Appendix D).

® The model is calibrated as follows

U = exp (u|h+m,/3h/2)

my = exp(uh)
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Consider a nontraded European call option written on the price S? of a
non-dividend-paying asset. Figure 6 displays the correlation effect on the
certainty equivalent expressed as a fraction of the unrestricted call option
value (the ratio Y,/ C(S?)). When the underlying asset prices (S 1. 8?) are
negatively correlated the nontraded option hedges fluctuations in the traded
asset S'. The investor values this hedging function and prices the nontraded
derivative above its unrestricted value. As correlation increases, its use-
fulness as a hedging vehicle diminishes. In the limit the nontraded option
behaves more and more like an option on asset 1: its private value converges
to the certainty equivalent of a call option written on the first asset.’

Note also that the certainty equivalent falls below the immediate exercise
value when the correlation coefficient p is sufficiently large [max(S? —
k,0)/C(8%) = .9403]. If the contract were American style it would be
optimally exercised prior to maturity. Early exercise would be optimal even
in the absence of dividend payments on the underlying asset.

Conclusion

In this article we have provided a simple framework to value derivative assets
subject to trading restrictions. The approach, which is based on the binomial
model, is computationally tractable and easy to implement numerically.
The methodology is also flexible: it accommodates any type of derivative
contract as well as any type of utility function for the holder of the nontraded
asset. In particular it enables us to characterize the optimal portfolio and
exercise decisions for nontraded American-style derivatives.

In the case of a no-short-sales constraint, we have shown that the certainty-
equivalent value of a nontraded derivative is bounded above by the uncon-
strained value of the asset. The constraint is in fact equivalent to the presence
of an implicit dividend yield in the risk neutralized underlying asset price

d = exp(u,h—a,\/m)

iy = exp (,izh+az (p 3/2+\/_|~—p2\/1/_2) ﬁ)
my = exp (Mzh—az\/rpz\/r/z)\/ﬁ)

dy =

e (1o (oy/ 572 T/ 172) )

where i = T/N. States have equal probabilities: py = p, = p3 = 1/3.

In the calibration of He (1990) the returns on the second asset (u,, m3, d,) depend on the correlation
coefficient. In fact the distribution of asset 2’s return is symmetric with respect to correlation and has less
favorable outcomes when correlation is closer to zero. This payoft effect complements the hedging eftect
and explains the mildly humped (decreasing-increasing) shape of the CE. When the option is deeper in
the money the shape can exhibit multiple humps.
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Figure 6
Correlation effect on certainty equivalent for call option on asset 2
Parameter values: u, = u, = .1, 0y =0, = .3.r =.1. R =3, X, = 100, S") = Sf) = 100, k = 40,
T =1, N = 3. Correlation varies between —.9 and +.9.

process. This implicit dividend yield leads to qualitatively different pre-
dictions for the exercise policies of American options. The most notable
property is that an American call option may be optimally exercised prior
to maturity even when the underlying asset pays no dividends.

When applied to the case of an executive compensation option, our model
shows that the private value of such an option is bounded above by the
Black-Scholes value (in the absence of dividend payments) or the standard
American option valuation formula (with dividend payments). The model
also suggests that early exercise may take place even when the underlying
asset pays no dividends. This property is consistent with empirical and a pri-
ori puzzling facts. Naturally the private valuation of an ESO and the optimal
exercise decision of the manager are influenced by additional factors such as
incentive effects or provisions of the contract (reload options, vesting restric-
tions). These aspects can be easily incorporated in our setting and analyzed.
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The framework that we propose can be used to value any nontraded
derivative with an underlying asset subject to trading restrictions. Besides
ESOs other claims in this category include forward contracts with thin mar-
ket. In this context it is possible to show that the convenience yield which
arises in the forward’s valuation is related to trading restrictions impacting
the underlying asset. This endogenous convenience yield is easily charac-
terized and its structure in terms of the deep parameters of the economy can
be examined.

Appendix A: Some Dynamic Programming Results

This appendix details some of the steps taken in the resolution of the intertemporal
portfolio problem in the body of the article. These results could also be used to show
the equivalence with the Cox and Huang (1989) martingale approach.

A.1 The unconstrained case
Let J, (X,) denote the value function at date n. The unconstrained dynamic programming
problem is (here 7, represents the amount of wealth invested in the stock)

Jn(xn) = max,,,,E,, [Jn+I(Xn+I)] s.t.

u—-r

Xu—i—l = an + 7, d—r"

Xo=1x

forn =0,..., N — 1, subject to the boundary condition Jy(Xy) = u(Xy + Yn).
Since the market is dynamically complete we can at each date n optimize state by

state over wealth in the next period X, and then compute the portfolio policy which

supports optimal wealth. Using the definition of the SPD in Equation (1) enables us to

write the budget constraint at date n as X, = E, [s,,{,,Jr] X,,+]]. Thus the optimization
problem can be reformulated as

Jo (X)) = maXX,,HEn [J11+I(Xn+|)]

= maxg o [P (X)) + (1= ) (X0 ] st

X, = E, [&-n.n+lxn+l] = ;l‘ [C]X:;+] +( _q)X;xI+I]

forn = 0,.... N — 1. The corresponding optimal portfolio is uniquely (by complete
markets) given by

n+1 e+l T
u—r d—r

X =X, X X,r
T, = = .

The first-order conditions for the program above are

Jl:+|(Xllll+|) = -v”érlxl+l = V”,l(q/p)
Tt Xil) = Wil = i (1 =)/ (L= p)
X, = E, [sn.n+lxn+l] sy Yn > 0
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forn =0,..., N — 1. Standard arguments show that the value function J, (-) is strictly
increasing and concave (thus the first-order conditions are also sufficient). It follows that
there is a unique solution (X, vy) forn =0,..., N — 1.

A.2 The constrained case with European-style nontraded assets
Suppose that the nontraded asset pays off at time N only (European-style claim). The
dynamic programming algorithm for the constrained portfolio problem is '

Jn(Xn) = maxﬂ,,Erx[Jrr+](Xrl+l)] .1

u-—r

X1 = Xur + 7y {d_,.

m, = 0

forn =0,..., N — 1, subject to the boundary condition Jy(Xy) = u(Xy + 7).

Due to the presence of the portfolio constraint the market is not dynamically complete.
It follows that the choice of wealth in any state is a constrained choice problem. More
precisely, for any date n since

)€ X,,I' le _ X,,I'
T, = n+1 — n+l >0
u—r d—r

the portfolio constraint is equivalent to the wealth constraint

u .
Xn+] = X”'

d .
Xn+l = X”’

(X,’1I+| - X,,r) d—-r) = (Xf,’+] - X,,r) (u —r).
Note that the last constraint is redundant and can be eliminated. Indeed

d—r u—r
u—d u—d

& 0= (X = Xa) g + (XL~ Xur) (=)

& X, =E, [sll.n—i-IXn—H]

0 — (Xu

n+1

- Xur) — (X4, — Xur)

where the last line follows upon dividing by r and using the definition of &, ., in
Equation (1). The constrained dynamic problem is then equivalent to

J.(X,) = maxx"HE,, [Jn+l(Xn+I)] s.f.

Eu [‘g:n‘n+l Xn—H]

u . d .
Xn+] - X"” Xn—H - X”’ = 0

X

Il

o
IA

forn=0,...,N— 1.
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The Kuhn-Tucker conditions for the dynamic program are, forn =0,..., N — 1
J,;+|(X,’;I+|) = W& — VAP

J,;+|(X;II+|) = y"‘i:::l.n+| +y!/(1=p)

Ey (& Xon] = X0o 3 >0

Xywr = Xar 20,3,/ 20

X = X,r<0, y¢>0

d
n+1

VX = Xarl =0

)/,;I[Xd

wrt ~ Xar1=0.
Here y! and y are the Kuhn-Tucker multipliers associated with the inequality con-
straints and the last two conditions are the complementary slackness conditions.

Next note that the two constraints are linked through the budget constraint. When
y¥ = 0 then y = 0 as well, and conversely. Now suppose that " > 0. It must
then be the case that X , — X,r = 0. The multiplier y, ensures that the budget

constraint E, [E,,,,,Jr] X,,+|] = X, is satisfied (and this for any arbitrary choice of y,j’ >

0). Combining these two equalities yields X,‘,'+I — X,r = 0 for any ¥/ > 0. In other
words, we can set y¢ =y without loss of generality.

Using the change of variables,

811
r(u—d)

n

— " _andy!=
r(u —d) Y = In

u
J/n = Vu

enables us to rewrite the Kuhn-Tucker conditions as

T Xi) = 3t(g = 25)/p

u—d

Jonn X)) = vy (L =g + 2 /(1 = p)

u—d

E, [‘Eu.n—HXn—H] = X, Yn > 0

Xo—Xyr >0, 8,20
SulX;y,, — Xur] =0.
Defining
5_r—d—6,,_ S
I = u—d =4 u—d

we obtain the sequence of equalities

Xn = En [Eu.n+lxn+l] = [q(X:,’_H - Xn") + (1 - ’I)(Xr(ll+l - an)] + Xn

~
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1 8, u 8, y

=7 [((1 - m) (X — Xur) + (l —q+ u_—7) (X”'+] — X,,r)] + X,
1
’_. [q,‘?(x,’,l_;_] - an) + (] - CI,‘?)(X,’,IH - an)] + Xn = En [s,?.,,.;.] Xn+|] )

where in the third line we use the complementary slackness conditions 8, [ X,/ — X,,r] =

0 and <‘3,,[X,‘,'JrI — X, r] = 0. Substituting in the Kuhn-Tucker conditions leaves us with
J,;+|(X::+|) = ,vn,l.(q,‘f/p)
LX) = (L= g/ = p))

E &, Xom] = X0 >0 (A1)

X~ X >0, g—q'>0

(g — CI,'?)[X,','H - X,r1=0,

forn =0,..., N — 1. Equivalently, if /(-, n + 1) denotes the inverse of the marginal
value of wealth at n + I, we can write

Xpyr = 1()’,;&,‘,5.,,_,_], n+1)

E" [Sr?.n+l 1(,"11 Ill;.ll+| ot ])] = Xn- Y > 0
(A.2)

X

n+1 X”r = 0’ q = ql? >0

(g —g)IX,, — Xu]1=0.

The first three conditions in Equation (A.1) [equivalently, the first two conditions
in Equation (A.2)] correspond to an unconstrained portfolio problem in an auxiliary
economy in which the stock price follows a binomial model with coefficients (i +
8y, d + 68,). Let m,(8,) be the solution of this unconstrained problem. The last two
conditions are equivalent to 7, (8,) > 0,8, > 0, and §,7,(8,) = 0.

This system of first-order conditions characterizes the solution of the constrained
problem and underlies the discussions in Sections | and 2. This characterization is

similar to the one obtained using a martingale approach [see Cvitanic and Karatzas
(1992)].

Appendix B: Proofs

Proof of Theorem 1. The Kuhn-Tucker conditions for the constrained problem are
given by Equation (A.1). They imply X , = I(yy&r, ., n + 1), where &7 . is the

constrained SPD. Let §7 = (¢ — ¢q,))(u — d). Using Equation (3) we obtain

B B L.t B N TR Rt Y R T
n u—r X u—r \u+8—r X;
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| u—r X:’J’rl 1 8 X:’frl
—r|+ —r
u—r \u+8—r Xx u—r \u+6 —r X
; X::'] —rl= ! :i]X:‘-;—] (g*u )—] —r
u+ 8,"; —r X;‘I‘ (l — C]’T)(M — d) s:x;,; na+1

_ ! Git, (@)-'_r: . Gty
T—gu—a | G \7'p g —gpu—a | Gy "

The first equality above follows from Equation (3), the fourth uses the complementary
slackness condition in Equation (A.2), 8 (X — X;r) = (u—d)(q—g; ) (X4, — X;r) =
0, the fifth the relation u + &7 — r = (1 — ¢,/)( — d), and the sixth the definition of the

constrained SPD which satisfies Equation (1) substituting ¢, for ¢. u

Proof of Proposition 2. (i) Suppose that the no-short-sales constraint never binds. Ap-
plying a standard Cox—Huang (1989) methodology shows that the portfolio problem
with initial wealth xo + Y, has solution

Xn iIG’\EN)
x + Yo = ElEnI (G,

where I (-) is the inverse of u’(-). The value function is 7()\' + ?0, 0) = Eu(I(Gky)).
On the other hand, the solution of the “constrained” problem with the NTA paying off
at N is

Xn=1("n)— Yy
xo = EEnIT(y*én) — Y]]

Equivalently, the static budget constraint can be written as
Xo+ Vo = ElEn1(y*6n)],

where Vo = E[&yYn]. The corresponding value function is?(x+ Vo, 0) = Eu(l(y*&n)).

It follows immediately from these expressions that y* = y and Yy = V,, where
Vo = E[&yYn] is the unconstrained value of the claim.

(ii) Suppose now that the constraint binds with positive probability in the constrained
problem with European-style claim. Assume that Y, > Vo. But then by Assumption (b)
we must have J (x+ Yo, 0) > J(x+ V), 0), where the right-hand side is the unconstrained
value function starting from initial wealth x + V;. Since the left-hand side equals J (x, 0)
by definition of the certainty equivalent it follows that J (x, 0) > J(x + Vp, 0), that is,
the individual is better off constrained than unconstrained. This cannot hold since the
portfolio constraint reduces the feasible choice set. n

Appendix C: Backward Construction of Certainty Equivalents

C.1 A general recursive procedure

In order to construct the sequence of certainty equivalents we need to solve the pure
portfolio problem without nontraded asset but starting from an adjusted wealth level.
This problem can be solved by using the method of Cvitanic and Karatzas (1992). This
leads to the following result.

866



Nontraded Asset Valuation with Portfolio Constraints

Theorem 7. Consider the pure portfolio problemover {n+1, ..., N}withinitial wealth
Xu+1 = Xuy1 + Yoy and subject to a no-short-sales constraint. Let 1(-) denote the
inverse of the marginal utility function u'(-). Optimal terminal wealth is

Xy = 1®1+I$II+I.N)

where'ﬁ,ﬂ solves Xor1+Yor = Eng [EII+I.NI(.‘7H+ISH+].N)]- The value function, wealth
process and portfolio policy are, form > n + 1,

7(Xn+l +’)7n+lvn + ]) = En+|[u(l(.\7n+l/gn+].N))]

X = E:n[En.N’@r+l‘§n+l.N)]

-~

,7? . F Gm—H p _;7
" CIm(l _an)(u - d) G,,, " '

where G, = E[en] GosrEnri )] and G, satisfies ¢ — Gy > 0,7, = 0 and (¢ —
q/n)nm - 0

By definition the certainty equivalent ?,,H solves
J( X1+ 1) =T X + Voot + 1),
The dynamic problem [Equations (6) and (7)] can then be written

J(Xlun) = ma)é EnJ(Xn+I + Yn—l—l- n—+ l) s.t. Xn = En[s,, n+l n+|]

Ty 2!

forn =0,. — 1. Taking account of the fact that the certainty-equivalent payoff
depends on llqu1d wealth (i.e., Y,1| = Y, 1(X,41)) leads to the first-order conditions

T Xt + Yorron+ DU+ Koy 1 (X,0)) = v

X, = E,,[Eu T+l n+|]: o >0

Xt —Xur=0,g—¢q)>0 and (g — X"

n+1 X""] =0

where

aYn+| (Xn+l)
aXrH—I
is the derivative of the certainty equivalent at n + 1. The structure of the first-order

conditions l§ similar to the conditions in Appendix A. Let H, () be the inverse of
J' (Xu41 + Yugr, n 4 1) with respect to the first argument, X, + Y,,. We can write

Ku+l (Xn+l) =

X = H ‘”Enn+| ? X
wtt = o \ oo ) — Yot (Xa)

.\'nE: " < C.1
X = En [’é,, n+1 [H11+I (W&I‘,w) - Y11+I(Xn+l)jli| ) Yn > 0 ( )

Xt —Xyr>0,g—q) =0 and (g —g))[ X, — Xur]=0

n+1
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and

X _ I'X,, . G
T, = n+1 — ! n+1 p— q’? . (C2)
(] —(1,‘?)(11 _d)Xn q,(?(l -q,‘f)(ll _d) Gn

where G, = & X, and G*, | = (£}, X,+1)". In the event that the constraint is not
binding, g5 = ¢ and 7, satisfies Equation (C.2) evaluated at q.
Solving Equation (C.1) for (y,. q,f) gives the solution of the constrained portfolio

roblem at date n. Let (X* ,, Y* |, v¥, ¢*) denote the solution. The value function is
p n+1° . n 1/1

.
k]

J(Xuon) = E,,’](X,";JrI + Yy, . n+1). The certainty-equivalent payoff at date n is then
Yo (Xo) =T~ I (X)) = X,

where 7~ is the inverse of the date n value function 7(-, n) of the pure portfolio problem
with initial wealth X, + Y,,.

C.2 Power utility function

In the case of the power utility function we have u'(x) = x % and I (y) = y‘LR, where
R denotes the relative risk-aversion coefficient. The solution of the portfolio problem
with initial wealth X,y = X,y + Y,y is

Corollary 8. Consider the pure portfolio problemover {n+1. ..., N}withinitial wealth
Xov1 = Xyt + Yau) and subject to a no-short-sales constraint. Suppose that u exhibits
constant relative risk aversion. Optimal terminal wealth is

T1/R A~

Xy = (X,,+1 + Y”+])sn+l<Ngn+].N’

where ’gn v =E, [SH'J:I' / }5 1. The value function, wealth process, and portfolio policy

are, form > n + 1,

1=R ~

~ —~ 1 ~
It + Yoo+ 1) = o (Xun + Yort) @y

~

v v o-1/R 8m.N

X = (Xn+l + Yn+1) s/z—H.m"
8n+1.N

;‘? _ r G::x+| p _ZI‘
m (Im(l — qm)(u —d) G [

where G,, = E,, [E,]V_]/R] and?;,, is such that g —21\,,, >0,7, > 0,and (q —Zi,,, 7, = 0.

The constrained portfolio problem with NTA at date n can now be written as

1 =~ \I-R~
max Enl—_R (Xn+l + Yn+|) g,I,:.LN s.t. Xn = Err[s,‘?_,,+|xn+l]«

20 -
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The first-order conditions are

(Xn—H + Yll+l))—R(] + Kn+l(Xn+l))/g\,l,e+|\N = yné,{?.”.H

Xn - En[‘g,, n+1 n+]]; Yn > 0 (C3)
Xiy = Xur 20,9 — gy 20, and (¢ — g)X;,, — X,r] = 0.

At date N we have ’})N (Xn) = Yy and Ky (Xy) = 0. At an arbitrary date n we can write
the solution of the first-order conditions as

Ena) A+ K X DR

n [(’é,, ,,+|)] /R (l + KII+I(XII+|)) gn—i-LN]

X,l:_H = (Xn + M/n)

u u
n+l(xn+l)

[q,,Y,:'H +(L—g)Y/ ]
and

8?&1

Kn Xn = .
1 (Xug1) 9%,

Defining F,(a,b) = E,,[‘E,:;L/IR(I + K,,+|(a))”§,,+|‘,v] we can then write the value
function, the certainty equivalent, and its derivative as

T (X, + W'~ R(TF(‘XX—:%— if X", > rX,
J(X,,n)=
ﬁEn [("Xn + Yn+]("Xn))I_R,§,]f+].N] if X:;+| - "Xn
Fa(Xypr 1/R=1))/1=H _k
(Xn + M/II)L(T:(I)&T/)])QT—— gn.N) -k — Xu
_ if X1, > X
Yn(Xn) = |
> % R
(En [(an + Yn+l(rxn))|—R/g\,’,e+|‘N]) e @J.N) =R — Xn
it X, =rX,

1 + Kn = rEn [(X11+I + leJrI)_R(l + K11+I)E,R+|.N] (Xn + xl)Rg,T,If/

Appendix D: The Trinomial Model

For the power utility function the first-order conditions at date n are
Kot + Yar )™+ Kt (X D8Ry = Vb

Xn - E,,[E” n+1 n+|]; Yn > 0

(D.1)
“|+3| — (X, —rXy) 20.8, >0, and —— u|+6|—r — X, = X]=0
(X::”Jrl rXy) = ,:7::::::/’ (X:ll+| =X,
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where 8§, = (u; — d.)(q‘lS —q)+ (m — a'l)(q§S — ¢2) — (d; — r). The first two condi-
tions in Equation (D.1) parallel the corresponding conditions for the one asset case in
Appendix C. To derive the next two conditions note that optimal wealth satisfies

][t d )
X ! b—r mb—r||m ’
Solving for the optimal portfolio yields

T L (’"2 ’)(X/1+I "Xn) - (M‘; - r)(X:,"_H - ’.Xn)
To | det | —(md — ) (X', —rX,) + @ — ) (X", —rX,)

n+1 n+l

where det = (m‘; — r)(u‘? —Fr) — (u‘s2 — r)(m‘f — r). The constraint 7, = 0 is then
equivalent to

( X ’n [

n+1

—rX,) =

e — (X,I,I.H rX,),
1

provided u} —r > O (this is automatically satisfied if u; —r > Oand §, > 0). Substituting
in the equation for 7| gives

l 5 — " l "
T = Jet |:(m2 —r) = (u} —I) i }(X”JrI rX,) = = X”JrI —rX,).

The last two conditions in Equation (D.1) follow from these expressions.
At date N we get Yy(Xy) = Yy and Ky(Xy) = 0. At an arbitrary date n the
quadruple (qf, qg. X1+ X'\ )) solves the system of equations

u R/\'
SI‘ISI:I+|) YR+ K,,+|(X,+l))'/ Surin

XI“ | —(X/,+"V,,) _Y“Jr|(X“+|)
" ” [( n II+I)I_]/R (l + Ku—H(Xqu])) gn+I.N] ! !
56:1 ) I/R(l K" ( XM ))I/R’éﬁ’n
Xy = X+ W) o el ) S e xn )

n [(é,,.,,_‘_])I*I/R (l + Kn+](Xn+])) gn+|.N]

wy + 6,

(X,'1”+| —rX,) = m(xuﬂ —rX,)
Xy =Xy,
where
[‘11 n+| +‘17 Y,’,’ir] +(1 - ‘If - qg)yf;crl]
and
8’)/\II+|
Kn (XI ) = .
+1 (X 3%,
The optimal portfolio is
1
X,m, = W(X,HJ —rX,).
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The value function, the certainty-equivalent, and its derivative are

| =R _FaXyp1 1/R=D) - ]
S =Xy + W) m it Xt >rX,
ny ) =
PRE[0X VX )RR ] X, =X,
_pli-r R
(X, + w,,)%@w) TR X,
N it X, >rX,
Yn(Xu) = |
v F _ Rk
(Ea [0 X0 + Vo X)) G ) TF @) T = X,
it X, =rX,

1 + Kn = "En [(Xll+l +/)>11+I)_R(I + Kn+|)/g\f+|./v] (Xn + YH)R:Q,TZ

with F,(a,b) = E,[(],, )" ""*(1 + K, (@))"gn+1.n ). Solving these equations recur-
sively fromn = N — 1, ..., 0 leads to the certainty equivalent of the nontraded asset at
the initial date.

For the case of an American-style NTA it suffices to replace the CE in the dynamic

programming algorithm above by ¥, =Y, | v ¥, 4, in the manner of Section 2.4.
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