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Abstract

Capacity decisions in service operations often involve a trade-off between operating cost and the

level of service offered to customers. Although the cost of attaining a pre-specified level of service has

been well-studied, there isn’t much research studying how customer service levels affect revenue and

profit. This paper conducts an empirical study to analyze how waiting in a queue in the context of a

retail store affects customer purchasing behavior. Our methodology uses a novel technology based on

digital imaging to record periodic information about the queuing system. Our econometric methodol-

ogy integrates these data with point-of-sales information to estimate the effect of queues on purchases.

We find that waiting in queue has a non-linear effect on purchase incidence and that customers appear

to primarily focus on the length of the queue rather than the actual expected wait when making their

purchase decisions. We also find that customer sensitivity to waiting is heterogeneous and negatively

correlated with price sensitivity. We discuss implications of these results in the context of service design

and category pricing.

Keywords: queuing, service operations, retail, choice modeling, empirical research, operations/marketing

interface.
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1 Introduction

Capacity management is an important aspect in the design of service operations. These decisions involve a

trade-off between the costs of sustaining a service standard and the value that customers attach to this level of

service. Most of the work in the operations management literature has focused on the first issue, developing

models that are useful to quantify the costs of attaining a given level of service. Because these operating

costs are more salient, it is frequent in practice to observe service operations rules designed to attain a

given quantifiable service stantard. For example, a common rule in retail stores is to open additional check-

outs when the length of the queue surpass a given threshold. However, there isn’t much research focusing on

how to choose an appropriate target service level. This requires measuring the value that customers assign to

objective service levels measures and how this translates into revenue. The focus of this paper is to measure

the effect of service levels– in particular, customers waiting in queue– on actual customer purchases, which

can be used to attach an economic value to customer service.

Lack of objective data is an important limitation to empirically study the effect of waiting on customer

behavior. A notable exception is call centers, where recent studies have focused on measuring customer

impatience while waiting on the phone line (Gans et al. (2003)). Our focus is to study physical queues

in services, where customers are physically present at the service facility during the wait. This type of

queues is common in retail stores, banks, amusement parks and health care delivery. Because objective

data on customer service is typically not available in this type of service facilities, most of the previous

research relies on surveys to study how customers’ perceptions of waiting affect their intended behavior.

However, previous work has shown that customer perceptions of service do not necessarily match with the

actual service level received, and their purchase intentions do not always translate into actual revenue (e.g.

Chandon et al. (2005)). In contrast, our work uses objective measures of actual service collected through

a novel technology – digital imaging with image recognition – that tracks operational metrics such as the

number of customers waiting in line. We develop an econometric framework that uses these data together

with sales transactions to estimate the impact of customer service levels on purchase incidence and choices

among products. We test our methodology using field data collected in a pilot study conducted at the deli

section of a big-box supermarket.

Our model provides several metrics that are useful for the management of service facilities. First, it

provides estimates on how service levels affect the effective arrivals to a queuing system when customers

may balk. This can be useful to set service and staffing levels optimally balacing operating costs against lost

revenue. Second, it can be used to identify the relevant visible factors in a physical queuing system that drive
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customer behavior, which can be useful for the design of a service facility. Third, our models can be used to

estimate how the performance of a queuing system may affect how customers substitute among alternative

products or services accounting for heterogeneous customer preferences. Finally, our methodology can be

used to attach a dollar value to the cost of waiting experienced by customers and to segment customers based

on their sensitivity to waiting factors.

There are two important challenges in our estimation. A first issue is that congestion is highly dependent

on store traffic and therefore periods of high sales are typically concurrent with long waiting lines. Con-

sequently, we face a reverse causality problem: while we are interested in measuring the causal effect of

waiting on sales, there is also a reverse effect by which spikes in sales generate congestion and therefore

longer waits. The correlation between waiting times and aggregate sales is a combination of these two si-

multaneous effects and therefore cannot be used directly to estimate the causal effect of waiting on sales. To

address this issue, we collected a detailed panel data with the history of individual customer transactions,

which we use to control for this congestion effect.

Using customer transaction data produces a second estimation challenge. The imaging technology cap-

tures snapshots that describe the state of the queuing system at specific time epochs and does not provide

an exact measure of the actual service experienced by an individual customer (technological and legal lim-

itations preclude us from tracking the identity of customers in the queue). Therefore, the actual state of the

queue observed by each customer is missing data which needs to be handled appropriately in the estima-

tion. Our approach relies on using queuing theory to describe the stochastic process driving the transient

behavior of the queue, and use this to infer the actual state of the queue observed by each customer based on

the periodic snapshot data. We believe this is a valuable contribution that will facilitate the use of periodic

store operational data in other studies involving customer transactions obtained from point-of-sales (POS)

information.

Our empirical results suggest that purchase incidence is mainly affected by the number of customers in

line, and does not seem to be affected by the level of staffing of the queue. This is consistent with customers

using the number of people waiting in line as the only visible cue to assess the expected waiting time, not

fully accounting for the actual speed at which the line moves. This empirical finding could have important

implications in the design of the service facility. For example, we show that pooling multiple queues into

a single queue with multiple servers may lead to more customers walking away. We also find significant

heterogeneity in customer sensitivity to waiting, and that the degree of waiting sensitivity is negatively

correlated with customer’s sensitivity to price. We show the implications of these results in pricing decisions

of product categories under the presence of congestion effects. Finally, our results suggest that the effect of
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queues is economically significant and appears to have a strong non-linear effect. Moderate increases in the

number of customers in queue can generate sales reduction equivalent to a 5% price increase.

2 Related Work

In this section, we provide a brief review of the literature studying the effect of waiting on customer behavior

and its implications for the management of queues. The literature is extensive, including empirical research

using experimental and observational data in the fields of operations management, marketing and economics.

We focus this review on a selection of the relevant literature, which helps us to identify hypotheses that are

useful in developing our econometric model (described in section 3). At the same time, we also reference

survey articles that provide a more exhaustive review of different literature streams.

Recent studies in the service engineering literature have analyzed customer transaction data in the con-

text of call centers. See Gans et al. (2003) for a survey on this stream of work. Customers arriving to

a call-center are modeled as a Poisson process where each arriving customer has a “patience threshold”.

Customers join the queue waiting to be served, but abandon the queue if they wait more than their patience

threshold. This is typically referred to as the Erlang-A model or the M/M/c+G, where G denotes the generic

distribution of the customer patience threshold. Brown et al. (2005) estimate the distribution of the patience

threshold based on call-center transactional data and use it to measure the effect of waiting time on the

number of lost (abandoned) customers.

Customers arriving to a call center typically do not directly observe the number of customers ahead of

the line. In contrasts, for physical customer queues at a retail store, the length of the line is observed and

may become a visible cue to assess the expected waiting time. Hence, the length of the line is an important

factor in the customer’s decision to join the queue, which is not captured in the Erlang-A model. In these

settings, given a fixed amount of serving capacity, arrivals to the system can be modeled as a Poisson process

where a fraction of the arriving customers may balk – that is, not join the queue – depending on the number

of people already in queue (see Gross et al. (2008), chapter 2.10). Our work focuses on estimating how

visible aspects of physical queues, such as queue length and capacity, affect choices of arriving customers,

which provides an important input to this class of models.

Png and Reitman (1994) empirically study the effect of waiting time on the demand for gas stations.

They identify service time as an important differentiating factor in this retail industry. Their estimation is

based on aggregate data on gas station sales and uses measures of a station’s capacity as a proxy for waiting

time. Allon et al. (2010) study how service time affects demand across outlets in the fast food industry, using

3



a structural estimation approach that captures price competition across outlets. Both studies use aggregate

data from a cross-section of outlets in local markets. The data for our study is more detailed as it uses

individual customer panel data and periodic information on the queue state, but it is limited to a single

service facility.

Several empirical studies suggest that customer responses to waiting time are not necessarily linear. Lar-

son (1987) provides anecdotal evidence of non-linear customer disutility under different service scenarios.

Laboratory and field experiments have shown that customer’s perceptions of waiting are important drivers

of dissatisfaction and that these perceptions may be different from the actual (objective) waiting time, some-

times in a non-linear pattern (e.g. Davis and Vollmann (1993); Berry et al. (2002)). Mandelbaum and Zeltyn

(2004) use analytical queuing models with customer impatience that can explain non-linear relationships

between waiting time and customer abandonments. Indeed, in the context of call-center outsourcing, the

common use of service level agreements based on delay thresholds at the upper-tail of the distribution (e.g.

95% of the customers wait less than 2 minutes) is consistent with non-linear effects of waiting on customer

behavior (Hasija et al. (2008)).

Larson (1987) provides several examples of factors that affect customers’ perceptions of waiting, such

as: (1) whether the waiting is perceived as socially fair; (2) whether the wait occurs before or during the

actual service begins; and (3) feedback provided to the customer on waiting estimates and the root causes

generating the wait, among other examples. Berry et al. (2002) provides a survey of empirical work testing

some of these effects. Most of this research relies on surveys which measure objective and subjective

waiting times, linking these to customer satisfaction and intentions of behavior. Although surveys are useful

to uncover the mechanism by which waiting affects customer behavior and the factors that mediate this

effect, it also suffers from some disadvantages. In particular, there is a sample selection of non-respondents

which tend to have higher opportunity cost for their time. In addition, several papers report that customer’s

intentions of purchase do not always match well with actual purchasing behavior (e.g. Chandon et al.

(2005)). Our work uses measures on actual customer purchases and operational drivers of waiting time

which have the benefit of being objective metrics, albeit at the expense of being somewhat limited to study

some of the underlying behavioral mechanisms driving the effect of waiting time.

Several other studies use primary and secondary observational data to study the effect of service time

on customer behavior. Forbes (2008) analyzes the impact of airline delays on customer complaints, show-

ing that customer expectations play an important role in mediating this effect. Campbell and Frei (2010)

study multiple branches of a bank, providing empirical evidence that teller waiting times affect customer

satisfaction and retention. Their empirical study reveals significant heterogeneity in customer’s sensitivity
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to waiting time, some of which can be explained through demographics and the intensity of competition

faced by the branch. Our study also looks at customer heterogeneity in waiting sensitivity but in addition

we relate this sensitivity to customers’ price sensitivity. This has important implications for pricing, as we

show later in section 5.

Our study uses discrete choice models based on random utility maximization to measure substitution

effects driven by waiting. The same approach was used by Allon et al. (2010), who incorporate waiting time

factors into the customer’s utility modeled through a multinomial logit (MNL). We instead use a random

coefficient MNL, which incorporates heterogeneity and allows for more flexible substitution patterns (Train

(2003)). The random coefficient MNL model has also been used in the transportation literature to incorporate

the value of time in consumer choice (e.g. Hess et al. (2005)).

Finally, all of the studies mentioned so far focus on settings where waiting time and congestion generate

disutility to customers. However, there is theory suggesting that longer queues could create value to a

customer. If a customer’s utility for a good depends on the number of customers that consume it (as with

positive network externalities), then longer queues could attract more customers. Another example is given

by herding effects, which may arise when customers have asymmetric information about the quality of a

product. In such a setting, longer queues provide a signal of higher value to uninformed customers, making

them more likely to join the queue (see Debo and Veeraraghavan (2009) for several examples).

3 Estimation

This section describes the data and models used in our estimation. The literature review of section 2 pro-

vides several findings and hypotheses that are useful for specifying our econometric model. These can be

summarized into the following testable hypotheses: (1) the effect of waiting time on customer purchasing

behavior may be non-linear, such that a customer’s sensitivity to a marginal increase in waiting time may

vary at different levels of waiting time; (2) the effect may not be monotone– for example, although more an-

ticipated waiting is likely to negatively affect a customer’s purchase intentions, herding effects could make

longer queues attractive to customers; (3) customer purchasing behavior is affected by perceptions of wait-

ing time which may not necessarily match actual waiting time; (4) customer’s sensitivity to waiting time is

heterogeneous and possibly related to demographic factors, such as income or price sensitivity.

The first subsection describes the data used in our empirical study, which motivates the econometric

framework developed in the rest of the section. Section 3.2 describes an econometric model to measure the

effect of queues on purchase incidence. It uses a flexible functional form to measure the effect of the queue
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on purchasing behavior that permits non-linear and potentially non-monotone effects (hypotheses (1) and

(2) above). Different specifications are estimated to test for factors that may affect customer’s perceptions

of waiting (hypothesis (3) above). Section 3.3 describes how to incorporate the periodic queue information

contained in the snapshot data into the estimation of this model. The last subsection develops a discrete

choice model that captures additional factors not incorporated into the purchase incidence model, including

substitution among products, prices, promotions, and state-dependent variables that affect purchases (e.g.,

household inventory). This choice model is also used to measure heterogeneity in customer sensitivity to

waiting (hypothesis (4) above).

3.1 Data

We conducted a pilot study at the deli section of a super-center located in Santiago, Chile. The store belongs

to a leading supermarket chain in this country and is located in a working-class neighborhood. The deli

section sells about 8 product categories, most of which are fresh cold-cuts sold by-the-pound.

During a pilot study running from October 2008 to May 2009 (approximately 7 months), we used digital

snapshots analyzed with image recognition technology to periodically track the number of people waiting at

the deli and the number of sales associates serving it. Snapshots were taken periodically every 30 minutes

during the open hours of the deli, from 9am to 9pm on a daily basis. Figure 1 shows a sample snapshot

that counts the number of customers waiting (top figure) and the number of employees attending customers

behind the deli counter (bottom figure).1 Throughout the paper, we denote the length of the deli queue at

snapshot t by Qt and the number of employees serving the deli by Et.

During peak hours, the deli uses numbered tickets to implement a first-come-first-served priority in the

queue. The counter displays a visible panel intended to show the ticket number of the last customer attended

by a sales associate. This information would be relevant for the purpose of our study to complement the data

collected through the snapshots; for example, Campbell and Frei (2010) use ticket-queue data to estimate

customer waiting time. However, the ticket information was not stored in the POS database of the retailer

and we learned from other supermarkets that this information is rarely recorded. Nevertheless, the methods

proposed in this paper could also be used with periodic data collected via a ticket-queue, human inspection

or other data collection procedures.

In addition to the queue and staffing deli information, we also collected point-of-sales (POS) data for all

transactions involving grocery purchases from Jan 1st, 2008 until the end of the study period. In the market
1In counting the number of employees, the image recognition technology counts only those employees whose role is to serve

customers, which wear a different uniform. Employees focused in other tasks (slicing, cleaning, etc.), which also appear in Figure
1, are not counted.
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area of our study, grocery purchases typically include bread and about 78% of the transactions that include

deli products also include bread. For this reason, we selected basket transactions that included bread to

obtain a sample of grocery-related shopping visits. Each transaction contains check-out data on the basket

of purchases, including a time-stamp of the check-out and the stock-keeping units (SKUs) bought along

with unit quantities and prices (after promotions). We use the POS data prior to the pilot study period– from

January to September of 2008 – to calculate metrics employed in the estimation of some our models (we

refer to this subset of the data as the calibration data).

Using detailed information on the list of products offered at this supermarket, each cold-cut SKU was

assigned to a product category (e.g. ham, turkey, bologna, salami, etc.). Some of these cold-cut SKUs

include prepackaged products which are not sold by the pound and therefore are located in a different

section of the store. For each SKU, we defined an attribute indicating whether it was sold in the deli or

pre-packaged section. About 29.5% of the transactions in our sample include deli products, suggesting that

deli products are quite popular in this supermarket.

We then examined how the number of transactions, queue length and number of employees varied

throughout the course of the day. In weekdays, peak traffic hours are observed around mid-day, between

11am and 2pm, and in the evenings, between 6 and 8pm. Although there is some adjustment in the number

of employees attending, this adjustment is insufficient and therefore queue lengths exhibit an hour-of-day

pattern similar to the one for traffic. A similar effect is observed for weekends, although the peak hours are

different. Congestion generates a positive correlation between sales and queue lengths, making it difficult

to study the causal effect of queues on traffic using aggregate POS data. For this reason, our empirical study

uses instead detailed customer transaction data. More specifically, the supermarket chain in our study op-

erates a very popular loyalty program where more than 60% of the transactions are matched with a loyalty

card identification number. Using this information we constructed a panel of individual customer purchases.

To better control for customer heterogeneity, we focus on grocery purchases of loyalty card customers who

visit the store one or more times per month on average. This accounts for a total of 284,709 transactions

from 13,103 customers. Table 1 provides some summary statistics describing the queue snapshots, the POS

and the loyalty card data.

3.2 Purchase Incidence Model

Recall that the POS and loyalty card data are used to construct a panel of observations for each individual

customer. Each customer is indexed by i and each store visit by v. Let yiv = 1 if the customer purchased

a deli product in that visit, and zero otherwise. The objective is to model how the probability of purchase
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at the deli is affected by the state of the queue during a customer’s visit. Define Q̃iv and Ẽiv as the number

of people in queue and the number of employees, respectively, that were observed by the customer during

visit v. Note that we (the researchers) do not observe Q̃iv and Ẽiv directly in our data. For now, we assume

that these are observable but in the next section we show how to handle the unobserved data on Q̃iv and

Ẽiv in the estimation. As described in section 2, the effect of waiting time on customer behavior may be

non-linear. Accordingly, let f(Q̃iv, Ẽiv) be a vector-valued function that captures the functional form by

which the state of the queue experienced by the customer affects its purchase incidence. The probability of

a deli purchase is then modeled through the following generalized linear model:

h (Pr[yiv = 1]) = βq · f(Q̃iv, Ẽiv) + βxXiv, (1)

where h(·) is a link function, Xiv is a set of covariates that capture other factors that affect purchase inci-

dence and (βq, βx) are parameters to be estimated, with dimensions that match their respective covariates.

Changing the link function h(·) leads to different statistical models. For example, an identity link function

leads to a linear probability model that can be estimated via Ordinary Least Squares. A logit link function,

h(x) = ln[x/(1 − x)], gives a logistic regression model which can be estimated via maximum likelihood

methods (ML). We tested alternative link functions and found the results to be similar. For brevity, we only

report the results from the logistic regression specification later in section 4.

Based on our discussion of section 2, we consider several specifications for f(Q̃iv, Ẽiv) to test for

multiple factors that affect a customer’s perception of waiting. Upon arrival to the queue, a customer may

estimate the waiting time and make a decision based upon that information. The number of customers in

queue divided by the number of employees serving the deli, Wiv = Q̃iv/Ẽiv, is a reasonable proxy for the

expected waiting time of an arriving customer.

As shown in some of the experimental results reported in Carmon (1991), customers may use the length

of the line, Q̃iv, as a visible cue to assess the expected waiting time. The only information provided to

customers is the number of customers ahead of them (through the display showing the ticket number of the

last customer being served); no other metric of expected waiting time is provided. Hence, the length of the

queue is highly visible in the environment we study, whereas the number of employees attending is not.

Therefore, we test some specifications where the effect of the state of the queue is only a function of the

queue length, f(Q̃iv).

We consider alternative formulations for the function f(·): (1) a simple linear specification, to measure

the average effect of expected time in queue on purchase incidence; (2) a piece-wise linear specification, to
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capture non-linearity and potentially non-monotone effects; and (3) a quadratic polynomial, which allows

for non-linear and monotone effects in a more parsimonious way. Different criteria for model selection (e.g.

Chow test and Akaike Information Criteria) are used to identify which models are best supported by the

data.

There are two important challenges to estimate the model in equation (1). The first is that we are seeking

to estimate a causal effect– the impact of (Q̃iv, Ẽiv) on purchase incidence – using observational data rather

than a controlled experiment. In an ideal experiment a customer would be exposed to multiple (Q̃iv, Ẽiv)

conditions holding all other factors (e.g., prices, time of the day, seasonality) constant. For each of these

conditions, her purchasing behavior would then be recorded. In the context of our pilot study, however, there

is only one (Q̃iv, Ẽiv) observation for each customer visit. This could be problematic if customers with a

high purchase intention visit the store around the same time. These visits would then exhibit long queues

and high purchase incidence, generating a bias in the estimation of the causal effect. One example of this is

when customers are heterogeneous in their purchase incidence and deli-customers visit the store at specific

weekend hours. The data suggests such an effect: the average purchase probability is 34.2% on weekends

at 8pm when the average queue length is 10.3, and it drops to 28.3% on weekdays at 4pm when the average

queue length is only 2.2. Another example of this potential bias is when the deli runs promotions: price

discounts attract more customers which increases purchase incidence and also generates higher congestion

levels.

To partially overcome this challenge, we include covariates inX that control for customer heterogeneity.

A flexible way to control for this heterogeneity would be to include customer fixed-effects, which controls

for the average purchase incidence of customers. Purchase incidence could also exhibit seasonality– for

example, consumption of fresh deli products could be higher during a Sunday morning in preparation for

a family gathering during Sunday lunch. To control for this, the model includes a set of time of the day

dummies interacted with weekend-day indicators. Finally, we also include a set of dummies for each day in

the sample which controls for seasonality, trends and promotional activities (because promotions typically

last at least a full day).

Although customer fixed effects account for purchase incidence heterogeneity across customers, they

don’t control for heterogeneity in purchase incidence across visits of the same customer. Furthermore, some

of this heterogeneity across visits may be customer specific, so that they are not fully controlled by the sea-

sonal dummies in the model. State-dependent factors, which are frequently used in the marketing literature

(Neslin and van Heerde (2008)) could help to partially control for this heterogeneity. In addition, we note

that the purchase incidence model (1) cannot be used to characterize substitution effects with products sold
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in the pre-packaged section, which could be important to measure the overall effect of queue-related factors

on total store revenue and profit. The choice model described in subsection 3.4 addresses these and other

limitations of the purchase incidence model (1). Nevertheless, these additions require focusing on a single

product category, whereas the purchase incidence model considers all product categories sold in the deli.

For this reason and due to its relative simplicity, the estimation of the purchase incidence model (1) provides

valuable insights about how consumers react to different levels of service.

A second challenge in the estimation of (1) is that (Q̃iv, Ẽiv) are not directly observable in our data set.

The next subsection provides a methodology to infer (Q̃iv, Ẽiv) based on the periodic data captured by the

snapshots (Qt, Et) and describes how to incorporate these inferences into the estimation procedure.

3.3 Inferring Queues From Periodic Data

We start by defining some notation regarding the times associated to the relevant events in the data set, which

are summarized in Figure 2. Time ts denotes the observed checkout time-stamp of the customer transaction.

Time τ < ts is the time at which the customer observed the deli queue and made his decision on whether to

join the line. The snapshot data of the queue were collected periodically, generating time intervals [t− 1, t),

[t, t+ 1), etc. For example, if the checkout time ts falls in the interval [t, t+ 1), τ could fall in the intervals

[t−1, t) ,[t, t+1), or in any other interval before ts (but not after). LetB(τ) andA(τ) denote the snapshots

just before and after time τ . In some applications, such as the one we analyze, there is no record of the time

at which the customer visited the queue. Therefore τ is not observed and we model it as a random variable

for the purpose of estimation, and denote F (τ |ts) its conditional distribution given the checkout time ts.2

In addition, the state of the queue is only observed at pre-specified time epochs, so even if the deli visit

time τ was known, the state of the queue may not be known exactly. It is then necessary to estimate (Qτ , Eτ )

for any given τ based on the snapshot data (Qt, Et). The snapshot data reveals that the number of employees

in the system, Et, doesn’t fluctuate much: for about 60% of the snapshots, consecutive observations of Et

are identical. When they change, it is typically by one unit (81% of the samples). When Et−1 = Et = c,

it seems reasonable to assume that the number of employees remained constant in the interval [t− 1, t) and

hence Eτ = c. When changes between two consecutive snapshots Et−1, Et are observed, we assume (for

simplicity) that the number of employees is equal to Et−1 throughout the interval [t− 1, t).

Assumption 1. In any interval [t− 1, t), the number of servers in the queuing system is equal to Et−1.

2Note that in applications where the time of joining the queue is observed– for example, as provided by a ticket time stamp in a
ticket-queue – it may still be unobserved for customers that decided not too join the queue. In those cases, τ may also be modeled
as a random variable for customers that did not join the queue.
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A natural approach to estimate Qτ would be to take a weighted average of the snapshots around time

τ : for example, two snapshots prior to τ (QB(τ)−2 and QB(τ)−1) and one snapshot after τ (QA(τ)). If, for

example, τ falls in the [t − 1, t) interval but lies closer to t than t − 1, it would be reasonable to give more

weight to the snapshot at t. However, it is not clear which is the exact weight that each observation should

carry when calculating this average, or how many observations before and after τ should be considered. In

what follows, we show a formal approach to use the snapshot data in the vicinity of τ to get a point-estimate

of Q̃τ . Our methodology requires the following additional assumption about the evolution of the queuing

system:

Assumption 2. In any snapshot interval [t − 1, t), arrivals follow a Poisson process with an arrival rate

λt−1(Q,E) that may depend on the number of customers in queue and the number of servers. The service

times follow an exponential distribution with a constant rate identical for all servers within each snapshot

interval.

Assumptions (1) and (2) together imply that in any interval between two snapshots the queuing system

behaves like an Erlang queue model (also known as M/M/c) with balking rate that depends on the state of

queue. The Markovian property implies that the conditional distribution of Q̃τ given the snapshot data only

depends on QB(τ)and QA(τ), which simplifies the estimation. We now provide some empirical evidence to

validate these assumptions.

Given that the snapshot intervals are relatively short (30 minutes), stationary Poisson arrivals within

each time interval seem a reasonable assumption. To corroborate this, we did some analysis on the number

of cashier transactions on every half-hour interval by comparing the fit of a Poisson regression model with

a Negative Binomial (NB) regression. The NB model is a mixture model that nests the Poisson model but is

more flexible, allowing for over-dispersion – that is, a variance larger than the mean. This analysis suggests

that there is a small over-dispersion in the arrivals counts, so that the Poisson model provides a reasonable

fit to the data.3 As we show shortly, the arrival rate during each time period λt(Q,E) will be useful in

the estimation. This state dependent arrival rate is modeled as λt(Q,E) = λ̄t · d(Q,E), where λ̄t is an

average arrival rate that captures seasonality and variations across times of the day, and d(Q,E) ∈ [0, 1] is

a discount factor that captures customer balking and is assumed to be time-independent. To estimate λ̄t, we

grouped the time intervals into different days and hours-of-the-day and calculated the average number of

transactions within each group. For example, we calculate the average number of customer arrivals across
3The NB model assumes Poisson arrivals arrivals with a rate λ that is drawn from a Gamma distribution. The variance of λ

is a parameter estimated from the data; when this variance is close to zero, the NB model is equivalent to a Poisson process. The
estimates of the NB model imply a coefficient of variation for λ equal to 17%, which is relatively low.
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all time periods corresponding to “Mondays between 8-10am” and used this as an estimate of λ̄t for those

periods. Note that the balking effect d(Q,E) is also unknown; in fact, it is exactly what the purchase

incidence model (1) seeks to estimate. To make the estimation feasible, we get a first rough estimate of

d(Q,E) by estimating model (1) replacing Ẽτ by EB(τ) and Q̃τ by a simple average of three snapshots

around time τ : QB(τ)−2, QB(τ)−1 and QA(τ). We later show how this rough estimate can be refined.

Since we do not observe the service times, we cannot estimate its distribution directly from the data.

Therefore, to further validate assumption 2, we compared the distribution of the observed samples of {Qt}

in the snapshot data with the distribution predicted by the Erlang model. To do this, we first group the time

intervals into buckets {Ck}Kk=1 , such that intervals in the same bucket k have the same number of serversEk

and a similar average arrival rate λ̄k. For example, one of these buckets corresponds to “Mondays between

8-10am, with 2 servers”. Provided an estimate of λt(Q,E) (the previous paragraph showed how to obtain

one), the only unknown primitive of the Erlang model is the service rate µt, or alternatively, the utilization

level ρt = λ̄t
Et·µt . The idea is then to estimate a utilization level ρk for each bucket so that the predicted

stationary distribution implied by the Erlang model best matches the empirical distribution observed in the

periods within each bucket. In our analysis, we estimated ρk by minimizing the L2 distance between the

empirical distribution and the predicted Erlang distribution.

Overall, the Erlang model provides a good fit for most of the buckets: a chi-square goodness of fit test

rejects the Erlang distribution only in 4 out of 61 buckets (at a 5% confidence level). By adjusting the

utilization parameter ρ, the Erlang model is able to capture shifts and changes in the shape of the empirical

distribution across different buckets. The implied estimates of the service rate µ vary between 3 and 6

minutes, which also seems reasonable. We found that this service rate has a negative correlation (-0.46)

with the average queue length, suggesting that servers speed up when the queue is longer (Kc and Terwiesch

(2009) found a similar effect in the context of a healthcare delivery service).

The Markovian property (given by assumptions 1 and 2) implies that the conditional distribution of Q̃τ

depends only on the snapshots just before and after time τ , B(τ) and A(τ). Given the primitives of the

Erlang model, we can use the transient behavior of the queue to estimate the distribution of Q̃τ , as we

describe next. The length of the queue can be modeled as a birth-death process in continuous-time, with

transition rates that depend on the primitives Et, λt(Q,E) and ρt. Note that we already showed how to

estimate these primitives. The transition rate matrix during time interval [t, t + 1), denoted Rt, is given

by: [Rt]i,i+1 = λt(i, Et), [Rt]i,i−1 = min{i, Et} · µt, [Rt]i,i = −Σj 6=i[Rt]i,j and zero for the rest of the

entries.

The transition rate matrix Rt can be used to calculate the transition probability matrix for any elapsed
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time s, denoted Pt(s).4 Let pij(s) = [Pt(s)]ij be the probability of transitioning from i to j customers

in elapsed time s during time period [t, t + 1) (the t index is omitted for notational convenience). For any

τ ∈ [t, t+ 1), the distribution of Qτ conditional on the snapshot data can be calculated as:

Pr(Qτ = k) = K · pQB(τ)k(τ −B(τ)) · pkQA(τ)
(A(τ)− τ), (2)

for all k ≥ 0 (there is an implicit conditioning on QB(τ) and QA(τ) which is omitted). K is a constant that

normalizes the probability distribution so that
∑∞

k=0 Pr(Qτ = k) = 1.

In applications where τ is not observed, such as ours, it is necessary to integrate over all possible values

of τ to obtain the posterior distribution of Q̃iv, so that Pr(Q̃iv = k|ts) =
´
τ Pr(Qτ = k)dF (τ |tsiv),

where tsiv is the observed checkout time of the customer transaction. Therefore, given a distribution for

τ , F (τ |tsiv), we can compute the distribution of Q̃iv, which can then be used in equation (1) for model

estimation. In particular, the unobserved value Q̃iv can be replaced by the point estimate that minimizes the

mean square prediction error, which corresponds to its expected value E[Q̃iv].

In our application, we discretize the support of τ so that each 30-minutes snapshot interval is divided into

a grid of 30 one-minute increments. Accordingly, for every minute in the grid, we calculate the probability

of each possible value of the queue length using equation (2). Because we do not have additional information

about how customers distribute their shopping time in the store (e.g., which sections of the store they visit

first), we assume that the distribution of the deli visit time τ follows a discrete uniform distribution over the

60 minutes prior to the check-out time tsiv.

Figure 3 illustrates some estimates of the distribution of the observed queue length Q̃τ for different

values of τ (for display purposes, the figure shows a continuous distribution but in practice it is a discrete

distribution). In this example, the snapshots were Qt = 2 and Qt+1 = 8, the arrival rate is λ̄t = 0.4

arrivals/minute, and the utilization is ρ = 80%. For τ = 5 minutes after the first snapshot, the distribution is

concentrated close toQt = 2, whereas for τ = 25 (5 minutes before the second snapshot), the distribution is

more concentrated around Qt+1 = 8. The proposed methodology provides a rigorous approach combining

queuing theory and the periodic snapshot information to estimate the distribution of the unobserved data Q̃τ

at any point in time.

Finally, note that the calculation of (2) requires knowing λt(Q,E) = λ̄td(Q,E) . We used a first rough

estimate of the discount factor d(Q,E) to estimate the transition rate matrix Rt which leads to the point

estimates of Q̃iv to be used in the estimation of model (1). It is possible to run this process iteratively
4Using the Kolmogorov forward equations, one can show that Pt(s) = eRts. See Kulkarni (1995) for further details on

obtaining a transition matrix from a transition rate matrix.
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by using the latest estimates of the purchase incidence model (1) to get new values of the discount factor

d(Q,E) and thereby update the transition rate matrix Rt and estimates of Q̃iv. In our application, we found

that the estimates converge quickly after 3 iterations.

3.4 Choice Model

There are three important limitations of using the purchase incidence model (1). The first limitation is that it

doesn’t account for changes in a customer’s purchase probability over time, other than through seasonality

variables. This could be troublesome if customers plan their purchases ahead of time, as we illustrate with

the following example. A customer who does weekly shopping on Saturdays and is planning to buy ham by

the pound at the deli section visits the store early in the morning when the deli is less crowded. This customer

visits the store again on Sunday to make a few “fill-in” purchases at a busy time for the deli and does not buy

any ham products at the deli because she purchased ham products the day before. In the purchase incidence

model, controls are indeed included to capture the average purchase probability at the deli for this customer.

However, these controls don’t capture the changes to this purchase probability between the Saturday and

Sunday visits. Therefore, the model would mistakenly attribute the lower purchase incidence on the Sunday

visit to the higher congestion at the deli whereas in reality the customer would have not purchased regardless

of the level of congestion at the deli on that visit.

A second limitation of the purchase incidence model (1) is that it cannot be used to attach an economic

value to the disutility of waiting by customers. One possible approach would be to calculate an equivalent

price reduction that would compensate the disutility generated by a marginal increase in waiting. Model (1)

cannot be used for this purpose because it does not provide a measure of price elasticity. A third limitation is

that model (1) does not capture substitution with products that do not require waiting (e.g., the pre-packaged

section), which can be useful to quantify the overall impact of waiting on store revenues and profit.

To overcome these limitations, we use a random utility model (RUM) to explain customer choice. As it

is common in these type of models, the utility of a customer i for product j during a visit v, denoted Uijv,

is described as a function of product attributes and parameters that we seek to estimate. Previous research

in marketing and economics has effectively estimated RUM specifications using scanner data from a single

product category (e.g., Guadagni and Little (1983) model choices of ground coffee products; Bucklin and

Lattin (1991) model saltine crackers purchases; Fader and Hardie (1996) model fabric softener choices;

Rossi et al. (1996) model choices among tuna products). Note, however, that deli purchases include multiple

product categories. Hence, using a RUM to model customer choice requires us to select a single product

category for which purchase decisions are independent from choices in other categories and where customers
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typically choose to purchase at most one SKU in the category. The ham category appears to meet these

criteria. We calculated correlations between ham purchases and purchases on other cold-cut categories and

they are relatively small (all less than 8% in magnitude). About 93% of the transactions with ham purchases

included only one ham SKU. In addition, it is the most popular category among cold-cuts, accounting for

more than 33% of the total sales. The ham category has 75 SKUs, 38 of them which are sold in the deli and

the rest in the pre-packaged section. About 85% of ham sales are sold in the deli. In what remains of this

subsection, we describe a RUM framework to model choices among products in the ham category. Table 2

shows statistics for a selection of products in this category.

One advantage of using a RUM to characterize choices among SKUs in a category is that it allows us to

include product specific factors that affect substitution patterns. Although many of the product characteris-

tics do not change over time and can be controlled by a SKU specific dummy, our data reveals that prices do

fluctuate over time and should be an important driver of substitution patterns. Accordingly, we incorporate

product-specific dummies, αj , and product prices for each customer visit (PRICEvj) as factors influencing

customer’s utility for a product j. Including prices in the model also allows us to estimate customer’s price

sensitivity, which we use to put a dollar tag on the cost of waiting.

As in the purchase incidence model (1), it is important to control for customer heterogeneity. Due

to the size of the data set, it is computationally challenging to estimate a choice model including fixed

effects for each customer. Instead, we control for customer’s average propensity to buy by including a

covariate measuring the average consumption rate of each customer, denoted CRi. This consumption rate

was estimated using calibration data as done by Bell and Lattin (1998). We also use the methods develop

by these authors to estimate customer’s inventory of ham products at the time of purchase, based on a

customer’s prior purchases and their consumption rate of ham products. This measure is constructed at the

category level and is denoted by INViv.

We use the following notation to specify the RUM. Let J be the set of products in the product category

of interest (i.e., ham). JW is the set of products that are sold at the deli section and, therefore, potentially

require the customer to wait. JNW = J\JW is the set of products sold in the pre-packaged section which

require no waiting. Let Tv be a vector of covariates that capture seasonal sales patterns, such as holidays

and time trends. Also let 1[·] denote the indicator function. Using these definitions, customer i’s utility for

purchasing product j during store visit v is specified as follows:

Uijv = αj + 1[j ∈ JW ] · βqi · f
(
Q̃iv, Ẽiv

)
+βpricei PRICEjv + γcrCRi + γinvINViv + γT · Tv + εijv, (3)
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where εijv is an error term capturing idiosyncratic preferences of the customer and f
(
Q̃iv, Ẽiv

)
captures

the effect of the state of the queue in the customer’s preference. Note that the indicator function 1[j ∈ W ]

adds the effect of the queue only to the utility of those products which are sold at the deli section (i.e.,

j ∈ JW ) and not to products that do not require waiting. As in the purchase incidence model (1), the queue

state (Q̃iv, Ẽiv) is not perfectly observed but the method developed in subsection 3.3 can be used to replace

these by point-estimates.5 An outside good, denoted by j = 0, accounts for the option of not purchasing

ham, with utility normalized to Ui0v = εi0v. The inclusion of an outside good in the model enables us to

estimate how changes in waiting time affect the total sales of products in this category (i.e., category sales).

Assuming a standard extreme value distribution for εijv, the RUM described by equation (3) becomes a

random-coefficient multinomial logit. The model includes random coefficients for PRICE (βpricei ) and for

some of the coefficients associated with the effect of the queue (βqi ). These coefficients follow a Multivariate

Normal distribution with mean (θq, θprice)′ and covariance matrix Ω, which we seek to estimate from the

data. Including random-coefficients for price is useful to accommodate more flexible substitution patterns

based on this characteristic, overcoming some of the limitations imposed by the independence of irrelevant

alternatives of standard multinomial logit models. Allowing for covariation between the price and the queue-

state coefficients (βpricei and βqi ) provides useful information on how customer’s sensitivity to the state of

the queue relates to price sensitivity.

The estimation of the model parameters is implemented using standard Bayesian methods (see Rossi

and Allenby (2003)). The goal is to estimate: (i) the SKU dummies αj ; (ii) the effect of the consumption

rate (γcr), inventory (γinv), and seasonality controls (γT ) on consumer utility; and (iii) the distribution of

the price and queue sensitivity parameters, which is governed by θq, θprice and Ω. In order to implement

this estimation, we define prior distributions on each of these parameters of interest: αj ∼ N(ᾱ, σα),

γ ∼ N(γ̄, σγ), θ ∼ N(θ̄, σθ) and Ω ∼ Inverse Wishart(df, Scale). For estimation, we specify the following

parameter values for these prior distributions: ᾱ = γ̄ = θ̄ = 0, σα = σγ = σθ = 100, df=3 and Scale equal

to the identity matrix. These choices produce weak priors for parameter estimation. Finally, the estimation

is carried out using Markov chain Monte Carlo (MCMC) methods. In particular, each parameter is sampled

from its posterior distribution conditioning on the data and all other parameter values (Gibbs sampling).

When there is no closed form expression for these full-conditional distributions, we employ Metropolis

Hastings methods (see Rossi and Allenby (2003)). The outcome of this estimation process is a sample of

values from the posterior distribution of each parameter. Using these values, a researcher can estimate any

5In our empirical analysis, we also performed a robustness check where instead of replacing the unobserved queue length Q̃iv by
point estimates, we sample different queue lengths from estimated distribution of Q̃iv . The results obtained with the two approaches
are qualitatively similar.
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moment of the posterior distribution, such as the posterior mean, variance and quantiles of each parameter.

4 Empirical Results

Using the methodology described in section 3.3, we obtained a point estimate of the state of the queue (Q̃, Ẽ)

which is associated with each individual customer visit in the data. This section reports the estimates of the

purchase incidence model (1 ) and the choice model (3) after replacing (Q̃, Ẽ) by these point estimates.

Purchase Incidence Model Results

Table 3 reports a summary of alternative specifications of the purchase incidence model (1). All the

specifications include customer fixed effects and hour of the day dummies interacted with weekend/holiday

dummies. The specifications differ in terms of: (1) the functional form for the queuing effect f(Q̃, Ẽ),

including linear, piecewise linear and a quadratic polynomial; (2) the measure used to describe the state

of the queue, either the expected waiting time, W̃ = Q̃/Ẽ or the queue length, Q̃ (we omit the tilde

in the table). Accordingly, models I-III include linear, quadratic, and piecewise linear (with segments at

(0, 5, 10, 15)) functions of W̃ , respectively; while models IV-VI are the corresponding specifications based

on Q̃ instead of W̃ . We discuss the remaining models in Table 3 later in this section. The table also

reports the number of parameters associated with the queuing effects (i.e., the dimension of βq, dim(βq))

and the log-likelihood achieved in the ML estimation. Because not all the models are nested, we provide two

additional measures of goodness of fit, the Akaike Information Criterion (AIC) and the Bayesian Information

Criterion (BIC), that are used for model selection.

Using AIC and BIC to rank the models, all the specifications with Q̃ as explanatory variables (models

IV-VI) fit significantly better than those with W̃ (models I-III), suggesting that changes in purchase incidence

are better predicted by the queue length than the expected waiting time. Moreover, all of the βq coefficients

in models I-III are not statistically significant at the 5% level (not shown), whereas the coefficients in models

IV-VI are statistically significant (discussed later in Table 4). In addition, we also estimated models that

include both measures Q̃ and W̃ in a quadratic specification that nests models III and IV (not shown in the

table). In this unrestricted model, none of the coefficients of W̃ are statistically significant (the average p-

value is 35% and the smallest is 6%), whereas the coefficients on Q̃ are highly significant (a joint F-test has

p-value less than 10−10). This provides further support that it is the length of the line and not the expected

waiting time what is driving customer purchase incidence.

Among the specifications that use Q̃, most of the nonlinear models outperform the linear one. Table 4

shows the estimated coefficients describing the non-linear effect of Q̃ in specifications V and VI. Note that
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for the quadratic model V, we de-meaned Q̃ to reduce multi-collinearity. The pattern obtained in these two

models is similar: a slight positive effect in the purchase probability in the range Q ∈ [0, 5], and then a

marginally decreasing negative effect for queues longer that 5. To verify if the positive effect observed in

the [0,5] range was driven by the limited flexibility of the function specification, we estimated additional

specifications which allow for more flexibility in the range [0,6]: model VII is piecewise linear segmented at

(0, 3, 6, 10, 15); model VIII is piecewise linear segmented at (0, 2, 4, 6, 10, 15); and model IX is a quadratic

model similar to model V plus an indicator I0≤Q̃≤1 to capture a “jump” near zero (labeled Quadratic+Jump).

The AIC scores in Table 3 suggests that these more flexible models tend to provide a better fit than the less

flexible models IV and VI. The BIC score, which puts a higher penalization for the additional parame-

ters, tends to favor the more parsimonious quadratic models V and IX. A likelihood ratio test between the

quadratic models V and IX suggests that the jump at zero is not statistically significant (p-value 0.64).

A detailed comparison of the estimates of these model is shown in figure 4. The purchase incidence

pattern suggested by the estimates of the model is quite robust: customers balk when they experience long

lines but they are less sensitive when the queue is short. The effect on purchase incidence can become quite

large for queue lengths of 15 customers and more, reducing purchase incidence from 30% to 27%, which

corresponds to a 10% drop in sales.

What is less intuitive is the slight increase in the purchase probability between 0 and 5. This result was

puzzling at first to us, which motivated the additional estimation of models VII-IX. In all of these models

there was a statistically significant increase in the purchase probability in the [0,5] range, corroborating

that the effect was robust to alternative specifications.6 We also discussed this pattern with managers from

several supermarket chains to see if it made sense to them. In particular, when we presented the results to

a senior executive of a leader first-tier supermarket chain in the US, he corroborated that some of their own

data analysis (using a completely different methodology and data sources) showed a similar pattern.

Herding effects could explain this increasing pattern. Freshness is an important attribute of cold-cut

products and there could be asymmetric information on this product characteristic across customers. An-

other potential explanation is that customers are not perfectly informed about the price promotions at the

deli and observing people in line may lead customers to pay more attention to promotions. Finally, zero

customers in the queue may be an indication that the deli is closed. To check this, we dropped observa-

tions during early and late hours and those for which the snapshots recorded no customers in line and zero

staff. The estimated effects were similar in this sub-sample, suggesting this is not the main explanation of
6For model VII, the slope in the [3,6] range was not statistically significant, but it was positive and significant in the [0,3] range.

For Model VIII, it was positive and significant in [0,2] but not significant in [2,4] and [4,6]. For Model IX, the Jump at zero was
not statistically significant and the maximum of the quadratic polinomial is around Q = 5.
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the observed effect. Although the increasing pattern is relatively small compared to the negative effects of

long queues, it would be interesting to analyze in more detail the mechanism that drives this effect in future

research.

Choice model results

In this subsection we present and discuss the results obtained for the choice model developed in section

3.4. The specification for the queuing effect f(Q̃, Ẽ) was based on the results of the purchase incidence

model. In particular, we used a quadratic function of Q̃, which balanced goodness-of-fit and parsimony in the

purchase incidence model. The utility specification includes product-specific intercepts, prices, consumption

rate (CR), household inventory (INV) and controls for seasonality as explanatory variables. The model

incorporates heterogeneity through random coefficients for price and the linear term of the length of the

queue. We use 2,000 randomly selected customers in our estimation. After running 50,000 MCMC iterations

and discarding the first 30,000 iterations, we obtained the results presented in Table 5 (the table omits the

estimates of the product-specific intercept and seasonality). The left part of the table shows the estimates

of the average effects, with the estimated standard error (s.e., measured by the standard deviation of the

posterior distribution of each parameter). The right part of the table shows the estimates of the variance-

covariance matrix (Ω) characterizing the heterogeneity of the random coefficients βpricei and βqi .

Price, inventory and consumption rate all have the predicted signs and are estimated precisely. The

average of the implied price elasticities of demand is -4.7. The average effects of the queue coefficients

imply qualitatively similar effects as those obtained in the purchase incidence model: a small increase from

Q̃ = 0 to 6 and then a sharper decrease above Q̃ = 7.

These results can be used to assign a monetary value to a customer’s cost of waiting. For example, for

an average customer in the sample, an increase from 5 to 10 customers in queue is equivalent to a 3.22%

increase in price. Instead, an increase from 10 to 15 customers is equivalent to a 8.26% increase in price,

illustrating the strong non-linear effect of waiting on customer purchasing behavior.

The estimates also suggest substantial heterogeneity on customers’ price sensitivities (estimates on the

right side of Table 5). The estimated standard deviation of the random price coefficients is 2.165, which

implies a coefficient of variation of 26.4%. There is also significant heterogeneity in customers’ sensitivity

to waiting, as measured by the standard deviation of the linear queue effect, which is estimated to be 1.556.

The results also show a significant negative correlation between the price and waiting sensitivity, estimated

as −0.507.

To illustrate this negative relationship between price and queue sensitivity we consider the purchase

probability of ham products in the deli section for three customer segments with different levels of price
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sensitivity: a price coefficient equal to the mean; one standard deviation below the mean, labeled high price

sensitivity; and one standard deviation above the mean, labeled low price sensitivity. To compute these

choice probabilities, we considered customer visits with average levels of prices, consumption rate and con-

sumer inventory. Given the negative correlation between price and queue length sensitivity, customers with

higher price sensitivity will in turn have lower sensitivity to the length of the queue. Figure 5 illustrates this

pattern, showing a much stronger decline in the purchase probability in the customer segment with low price

sensitivity. Interestingly, the low price sensitivity segment is also the most profitable, with average purchases

that are 40% higher than those of the high price sensitivity segment. This has important implications for

pricing product categories under congestion effects, as we discuss in the next section.

5 Managerial Implications

The results of the previous section suggest that: (1) purchase incidence appears to be affected by the length

of the line rather than the expected waiting time – which are not equivalent when the number of servers

changes over time; and (2) there is heterogeneity in customers’ sensitivity to the queue length, which is

negatively correlated with their price sensitivity. We discuss two important managerial insights implied by

these findings. The first one is that pooling multiple identical queues into a single multi-server queue may

lead to an increase in lost sales. The second one discusses the implications of the externalities generated by

congestion for pricing and promotions management in a product category.

5.1 Queuing Design

A relevent question for queuing design in services is whether to operate with multiple queues or to merge

them into a single queue with pooled servers. It is well known that an M/M/c pooled queuing system

achieves lower waiting time than a system with separate M/M/1 queues operating under the same utiliza-

tion. Therefore, if waiting time is the only measure of customer service, then pooling queues is beneficial.

However, Rothkopf and Rech (1987) provide several reasons why pooling queues could be less desirable.

For example, there could be gains from server specialization that can be achieved in the separate queue

setting. The results in this paper provide another argument for why splitting queues may be beneficial: al-

though the waiting time in the pooled system is shorter, the queue is longer. If customers base their decision

of joining a queue based on the length of the queue, as our empirical results suggest, then a pooled system

may lead to fewer customers joining the system and, therefore, increase lost sales. We illustrate this in more

detail with the following example.
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We study two alternative queuing systems. The first corresponds to a pooled system given by a M/M/2

queue with constant arrival rate λ. The second system corresponds to a split join-the-shortest-queue (JSQ)

system with two parallel single-server queues with total arrivals given by a Poisson process with rate λ. In

the split JSQ system, customers join the shortest queue upon arrival and no jockeying is allowed thereafter. If

there is no balking– that is, all customers join the queue – it can be shown that the pooled system dominates

the split JSQ system in terms of waiting time. However, the queues are longer in the pooled system, so if

customers may walk away upon arrival and this balking rate increases with the queue length, then the pooled

system may lead to fewer sales.

The following numerical example evaluates the differences in the average waiting time and revenue

between the two systems. For the split JSQ system, the approximate model proposed by Rao and Posner

(1987) is used to numerically evaluate the system’s performance. The arrival rate when the queue has n

customers is given by λdn, where dn ≤ 1 is a discount factor. The discount factor is set to follow a similar

pattern to that obtained in the estimates of the purchase incidence model (1): di = 1 for i ∈ [0, 6] and

then decreases down to 75% when the queue reaches 20 customers (we set the capacity of the queue to

20). Traffic intensity is defined as ρ = d0λ/µ and revenue is defined as the number of customers that join

the queue. Figure 6 shows the long-run steady-state average waiting time and average revenue of the two

systems. As expected, the pooled M/M/2 system always achieves shorter waiting time but generates less

revenue as it suffers more traffic loss due to long queues. The difference increases as the traffic intensity

approaches one. In this example, the split JSQ system gains 2.6% more revenue while almost doubling the

average waiting time at high levels of utilization compared to the pooled system.

5.2 Implications for Category Pricing

The empirical results also suggest that customers’ sensitivity to waiting is negatively correlated with price

sensitivity. This could have important implications for the pricing of products under congestion effects, as

we show in the following example.

Consider two vertically differentiated products, H and L, of high and low quality respectively, with

respective prices pH > pL. Customers arrive according to a Poisson process to join a M/M/1 queue to

buy at most one of these two products. Following model (3), customer preferences are described by a

multinomial logit model, where the utility for customer i of buying product j ∈ {L,H} is given by Uij =

δj − βpi pj − βqi Q̃ + θi + εij . Customer may also choose not to join the queue and get a utility equal

to Ui0 = εi0. In this RUM, δj denotes the quality of the product and Q̃ is a r.v. representing the length of

queue observed by the customer upon arrival. Customers have heterogeneous price and waiting sensitivities,
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characterized by the parameters βpi and βqi , respectively. In particular, heterogeneity is modeled through

two discrete segments, s = {1, 2}, with low and high price sensitivity, respectively, such that each segment

accounts for 50% of the customer population. Let βp1 and βp2 be the price coefficients for these segments,

with 0 < βp1 < βp2 , and let θ1 and θ2 characterize the different utility intercepts of the two segments. In

addition, the waiting sensitivity βqi is a random coefficient that can take two values: ωh with probability rs

and ωl with probability 1−rs, where s denotes the segment of customer i and ωl < ωh. This characterization

allows for price and waiting sensitivity to be correlated: if r1 > r2 then a customer with low price sensitivity

is more likely to be more wait-sensitive; but if r1 = r2, then there is no correlation.

Consider first a setting with no congestion so that Q is always zero (for example, if there is ample

capacity to serve customers). For illustration, we fixed the parameters as follows: δH = 15, pH = 5,

δL = 5, pL = 1.5, βp1 = 1, θ1 = 0, βp2 = 10 and θ2 = 12. In this example, the difference in quality and

prices between the two products is sufficiently large so that most of the price sensitive customers (s = 2)

buy the low quality product L. Moreover, define the cross elasticity EHL as the percent increase in share of

the H product from increasing the price of L by 1%, and vice-versa for ELH . In this numerical example, we

allow for significant heterogeneity with respect to price sensitivity so that, in the abscence of congestion, the

cross elasticities between the two products are close to zero (to be exact, EHL = 0.002 and ELH = 0.008).

Now consider the case where customers do observe queues. In this setting, congestion effects generate

an externality: increasing the demand of one product generates longer queues, which decreases the utility of

some customers which may in turn decide not purchase. Hence, lowering the price of one product increases

congestion and thereby has an indirect effect on the demand of the other product, which we refer to as the

indirect cross elasticity effect.

We now show how customer heterogeneity and negative correlation between price and waiting sensi-

tivity can increase the magnitude of the indirect cross elasticity between L and H. We parameterized the

waiting sensitivity of each segment as ωl = 1.25− 0.5∆ and ωh = 1.25 + 0.5∆, where ∆ is a measure of

heterogeneity in waiting sensitivity. We also considered different values of the conditional probabilities r1

and r2 to vary the correlation between waiting and price sensitivity while keeping the marginal distribution

of waiting sensitivity constant (50% ωl and 50% ωh). Fixing all the parameters of the model (including

prices pH and pL), it is possible to calculate the stationary probabilities of the queue length Q̃. Using the

RUM together with this stationary distribution it is then possible to calculate the share of each product (de-

fined as the fraction of arriving customers that buy it). Using finite differences with respect to prices, one

can then calculate cross elasticities that account for the indirect effect through congestion.

Using this approach, we evaluated the cross elasticity of the demand for the H product when changing
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the price of the L product (EHL) for different degrees of heterogeneity in customer sensitivity to wait (∆)

and several correlation patterns. The results of this numerical example are presented in Table 6. Note how

in the absence of heterogeneity– that is, ∆ = 0 – the cross-price elasticity is low: the two products H and L

appeal to different price-sensitivity segments and there is little substitution between them. However, adding

heterogeneity and correlation can lead to a different effect. In the presence of heterogeneity, a negative

correlation between price and waiting sensitivity increases EHL, showing that the indirect cross-elasticity

increases when the waiting sensitive customers are also the least sensitive to price. The changes in cross-

elasticity due to correlation can become quite large for higher degrees of customer heterogeneity. In the

example, when ∆ = 2, the cross elasticity changes from 0.011 to 0.735 when moving from positive to

negative correlation patterns.

We now discuss the intuition behind the patterns observed in the example of Table 6. When there

is heterogeneity in price sensitivity, lowering the price of the L product attracts customers who were not

purchasing before the price reduction (as opposed to cannibalizing the sales of the H product). Due to this

increase in traffic, congestion in the queue increases, generating longer waiting times for all customers. But

when price and waiting sensitivity are negatively correlated, the disutility generated by the congestion will

be higher for the less price sensitive customers. Hence, the less price sensitive customers are more likely to

walk away after the price reduction in L. Since a larger portion of the demand for the H product comes from

the less price sensitive buyers, the indirect cross-price elasticity will increase as the correlation between

price and waiting sensitivity becomes more negative.

In summary, the relationship between price and waiting sensitivity is an important factor affecting the

prices in a product category when congestion effects are present. Congestion can induce price-demand in-

teractions among products which in the absence of congestion would have a low direct cross price-elasticity

of demand. We illustrate how heterogeneity and negative correlation between price and waiting sensitivity

can exacerbate these interactions through stronger indirect cross-elasticity effects. This can have important

implications on how to set prices in the presence of congestion.

6 Conclusions

In this paper, we make use of a novel data set that links the purchase history of supermarket customers with

objective measures of their service experience. Using this information we are able to study how an important

component of the service experience – waiting in queue – affects customer purchasing behavior.

An important contribution of this paper is methodological. An existing barrier to study the impact of
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service levels on customer buying behavior in retail environments comes from the lack of objective data on

waiting time and other customer service metrics. This work uses a novel data collection technique to gather

high frequency store operational metrics related to the actual level of service delivered to customers. Due

to the periodic nature of these data, an important challenge arises in linking the store operational data with

actual customer transactions. We develop a novel econometric approach that relies on queuing theory to

infer the level of service associated to each customer transaction. This allows us to estimate the effect of

service on customer purchase incidence and choice. In our view, this methodology could be extended to

other contexts were periodic service level metrics and customer transaction data are available.

This methodology allows us to estimate a comprehensive descriptive model of how waiting in queue

affects customer purchase decisions. Based on several aspects of this descriptive model we provide useful

prescriptions for the management of queues and other important aspects of service management in retail.

In this regard, a first contribution of our work it to measure the overall impact of waiting on customer

purchasing incidence, thereby attaching an economic value to the level of service provided. This value of

service together with an estimate of the relevant operating costs can be used to choose an optimal target

service level, a useful input for capacity and staffing decisions.

Second, our model describes the actual factors in a queuing system that influence customer behavior.

The results suggest that customer seem to focus on the length of the line when deciding to join a queue, and

seem to disregard information about the speed at which the queue is expected to move. This has implications

for the design of a queuing system. For example, although there are several benefits of pooling multiple

single-server queues into a single queue with multiple servers, the results in this paper suggest that some

precautions should be taken. In moving towards a pooled system, it may be critical to provide information

about the expected waiting time so that customers do not anchor their decision solely on the length of the

line, which tends to increase when the system is pooled. In addition, our empirical analysis provides strong

evidence that the effect of waiting on customer purchases is non-linear. Hence, measuring extremes in the

waiting distribution – for example, the fraction of the time that 10 or more customers are waiting in queue –

may be more appropriate than using average waiting time to evaluate the system’s performance.

Third, our econometric model can be used to segment customers based on their waiting and price sen-

sitivities. The results show that there is indeed a large degree of heterogeneity in how customers react to

waiting and price. Moreover, there is a significant negative correlation between waiting and price sensitivity.

This has important implications for the pricing of a product category where congestion effects are present.

Pricing under congestion effects generates an externality across products. Heterogeneity and negative cor-

relation in price and waiting sensitivity exacerbates this externality, and therefore should be accounted for
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in pricing decisions.

Finally, our study has several limitations that could be explored in future research. Our analysis focuses

on studying the short term implications of queues by looking at how customer purchases are affected during

a store visit. There could be long-term effects whereby a negative service experience also influences future

customer purchases, for example, the frequency of visits and retention. Another possible extension would be

to measure how observable customer characteristics – such as demographics – are related to their sensitivity

to wait. This would be useful, for example, to prescribe target service levels for a new store based on the

demographics of the market. Competition could also be an important aspect to consider; this would probably

require data from multiple markets to study how market structure mediates the effect of queues on customer

purchases.

On a final note, this study highlights the importance of integrating advanced methodologies from the

fields of operations management and marketing. We hope that this work stimulates further research on the

interface between these two academic disciplines.
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Figure 1: Example of deli snapshot showing the number of customers waiting (top) and the number of
employees attending (bottom).

Figure 2: Sequence of events related to a customer purchase transaction.
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Figure 3: Estimates of the distribution of the queue length observed by a customer for different deli visit
times (τ ). In this example, the two circles in the vertical axes correspond to the snapshots before and after
time τ , equal to 2 and 8, respectively.
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Figure 4: Results from the different specifications of the purchase incidence model.
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Figure 5: Purchased probability of ham products in the deli section versus queue length for three customers
segments with different price sensitivity.
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Figure 6: Comparison between the Split Join-Shortest-Queue (JSQ) and Pooled systems.
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# obs mean stdev min max
Periodic snapshot data
Length of the queue (Q ) weekday 3671 3.76 3.81 0 26

weekend 1465 6.42 4.90 0 27
Number of employees (E) weekday 3671 2.11 1.26 0 7

weekend 1465 2.84 1.46 0 9
Point-of-Sales data
Purchase incidence of deli products 284,709 22.5%
Loyalty card data
number of visits per customer 13103 62.8 45.7 20 467

Table 1: Summary statistics of the snapshot data, point-of-sales data and loyalty card data.

Product Avg Price St.Dev. Price Share
1 0.67 0.10 21.23%
2 0.40 0.04 9.37%
3 0.53 0.06 7.12%
4 0.59 0.06 6.13%
5 0.64 0.07 5.66%
6 0.24 0.01 5.49%
7 0.52 0.07 3.97%
8 0.54 0.07 3.10%
9 0.56 0.07 2.85%
10 0.54 0.08 2.20%

Table 2: Statistics for the ten most popular ham products, as measured by the percent of transactions in the
category accounted by the product (Share). Prices are measured in ten thousands Chilean pesos per kilo
(Ch$10,000 = US$20, approximately).
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Model Function form Metric dim(βq) logL AIC rank BIC rank
I Linear W 1 -121005.95 265503.90 9 388364.53 7
II Quadratic W 2 -121003.19 265500.38 8 388371.46 8
III Piecewise I W 4 -121000.35 265498.70 7 388390.70 9
IV Linear Q 1 -120991.61 265475.22 6 388335.84 3
V Quadratic Q 2 -120977.24 265448.48 3 388319.56 1
VI Piecewise I Q 4 -120975.48 265448.96 5 388340.96 4
VII Piecewise II Q 5 -120973.21 265446.42 1 388348.88 5
VIII Piecewise III Q 6 -120973.40 265448.80 4 388361.72 6
IX Quadratic+Jump Q 3 -120976.13 265448.26 2 388329.80 2

Table 3: Goodness of fit results on alternative specifications of the purchase incidence model (equation (1)).

Variable Coef. Std. Err. z

Model V Q̃− 5.7 -.0050 .0028 -1.79
(Q̃− 5.7)2 -.0018 .0003 -5.35

Model VI Q̃0−5 .0161 .0062 2.58
Q̃5−10 -.0199 .0042 -4.79
Q̃10−15 -.0215 .0066 -3.25
Q̃15+ -.0306 .0230 -1.33

Table 4: Estimation result for selected specifications of the purchase incidence model (equation (1))

Average Effect Variance/Covariance (Ω)
estimate s.e. estimate s.e.

Inv -0.119 0.029
CR 3.589 0.150

Price -8.202 0.221 Ω(Price) 4.689 0.292
Q̃ -0.221 0.073 Ω(Q̃) 2.419 0.188
Q̃2 -0.792 0.097 Ω(Price,Q̃) -1.708 0.176

Table 5: Estimation results for the choice model (equation 3). The estimate and standad error (s.e.) of each
parameter correspond to the mean and standard deviation of its posterior distribution.

Correlation between price and waiting sensitivity
Heterogeneity -0.9 -0.5 0 0.5 0.9

∆ = 0.0 - - 0.042 - -
∆ = 1.0 0.342 0.228 0.120 0.047 0.010
∆ = 2.0 0.735 0.447 0.209 0.070 0.011

Table 6: Cross-price elasticities describing changes in the probability of purchase of the high priced product
(H) from changes in the price of the low price product (L).
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