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The Valuation of Options on Futures Contracts
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ABSTRACT

Rational restrictions are derived for the values of American options on futures contracts.
For these options, the optimal policy, in general, involves premature exercise. A model
is developed for valuing options on futures contracts in a constant interest rate setting.
Despite the fact that premature exercise may be optimal, the value of this American
feature appears to be small and a European formula due to Black serves as a useful
approximation. Finally, a model is developed to value these options in a world with
stochastic interest rates. It is shown that the pricing errors caused by ignoring the
location of the interest rate (relative to its long-run mean) range from —5% to 7%, when
the current rate is +£200 basis points from its long-run value. The role of interest rate
expectations is, therefore, crucial to the valuation. Optimal exercise policies are found
from numerical methods for both models.

IN RECENT YEARS, THERE has been a steady growth in the number of financial
assets, which one might properly call derivative assets, that are available for
trading on the organized exchanges. Among these, the most recent and notable
are options contracts written on available futures contracts: options are now
traded on the futures contracts on stock market indexes; on the futures contracts
on Treasury instruments; on the futures contracts on foreign exchange rates; and
on the futures contracts on some metals. In design, these options contracts do
not differ substantially from the well-known options contracts on common stock,
except that the underlying asset is a futures contract. The received theory of the
valuation of these options suggests that such contracts provide a direct vehicle
for investors to alter the terminal payoffs on their portfolios to a desired
distribution. In the absence of these contracts, investors would be forced to
pursue a dynamic portfolio policy at the expense of considerable transactions in
order to achieve a similar distribution. Indeed, the availability of put options on
the futures contracts on stock market indexes now enables well-diversified
investors to purchase portfolio insurance.

In his seminal work, Black [1] provided a complete description of forward and
futures contracts, as well as the description and valuation of European options
on forward contracts and on spot commodities. Breeden [3] has examined the
use of commodity options in a theoretical framework, and Courtadon [6] has
studied the valuation of options on Treasury bond futures. French [13], Cox,
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Ingersoll, and Ross [8], and Richard and Sundaresan [17] studied relationships
between forward and futures contracts and examined procedures for valuing these
contracts.

The valuation of options on futures contracts differs from the valuation of
options on common stocks in two important ways. First, the futures price must
be found as a function of the underlying state variables. Except in the case of a
flat term structure, when the state is fully described by the underlying asset’s
value, this is a difficult task. Second, as we show below, even when the underlying
asset does not pay any dividends, it may be optimal to exercise the option on the
futures contract prematurely. Therefore, the valuation problem must characterize
endogenously the critical region of the underlying asset values and the interest
rates where exercise is optimal. In this paper, we provide a framework to value
the options on futures contracts with and without interest rate uncertainty. The
futures prices and the critical regions are found endogenously in both settings,
as part of the option valuation problem.

In Section I, we provide a description of options on futures contracts and
discuss rational restrictions on their prices. In Section II, we develop a model for
pricing American options on futures contracts in a world with constant interest
rates. To illustrate, we use a stock index as the underlying asset. Under the
assumptions that the dividend yield is constant and that the stock index follows
a lognormal diffusion, we characterize the call option pricing function and the
optimal exercise policies. In Section III, we extend the analysis to a setting in
which both the stock index value and the interest rates are random. Option
values and critical regions are derived for call options on stock indexes and for
call options on stock index futures contracts. We compare the properties of
options on the index with those of options on futures contracts on the index.

I. Options on Futures and Rational Option Prices

In this section, a brief description of options on futures is provided, and rational
restrictions on their prices are derived.

A futures contract, whose price at date ¢ is quoted as H(t), commits the buyer
(and seller) to consummate the purchase (sale) of the commodity at the maturity
of the contract, date T,. The buyer will pay (or receive from) the seller the full
amount of the change in the futures price from the previous day, whenever this
price change is negative (positive). The payment to be made by the buyer in
exchange for the commodity at the maturity of the futures contract is simply the
commodity price at that time. In the so-called “cash settlement” contracts, such
as the futures contracts on stock market indexes, there is no exchange of the
commodity and the cash price on the maturity date. A complete characterization
of forward and futures contracts is given in Black [1], and a thorough treatment
of the relationships between these contracts is given in Cox, Ingersoll, and
Ross [8].

An American call (respectively, put) option on a futures contract gives the
holder the right to purchase (sell) a futures contract on or before a prespecified
date at a prespecified futures price, called the exercise price, K. Note that the
option may expire at date T, prior to the maturity of the underlying futures
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contract (T, = Ts). The holder of an option on a futures contract, upon exercise
at date s, receives $H(s) — K in cash and opens immediately a long position in a
futures contract at a futures price, H(s). That is, by exercising the call option at
the futures exercise price of K, the buyer of the option has a futures contract
that is immediately “marked-to-market.” The call-option writer will put up the
amount $H(s) — K in cash and open a short position in a futures contract at the
futures price, H(s). Since the newly opened futures contract at the futures price,
H(s), has zero value (see, e.g., Black [1]), the wealth in an investor’s portfolio is
altered only by the cash inflow or outflow upon exercise, although the future
dynamic properties of the value of the portfolio could be altered significantly by
the newly opened futures position.
To fix matters, let

C(H(t),t) = value at date ¢t of an American call option on a futures contract
with the futures price, H(t), where the option expires in 7 = T} —
t periods, the underlying futures contract matures at date T, and
the option exercise price is K;
P(H(t),t) = value of an American put option on a futures contract; and
b(t, T) = the price at date ¢t of a unit discount bond paying $1 at date T.

The terminal conditions of options on futures contracts are
P(H(T,), T\) = Max{0, K — H(T))},
C(H(Ty), Th) = Max{0, H(T,) — K}. (1)

The values of the options upon rational exercise at date s will be as in the
equations above, with s replacing T}.

It is well-known that with nonstochastic interest rates and for contracts of
equal maturity, the futures price will equal the forward price. If interest rates are
stochastic, these prices will, in general, differ (see, e.g., Cox, Ingersoll, and Ross
[8]). Cornell and Reinganum [5] have shown empirically that the difference is
rather small, and French [14] argues that available models are useful in discrim-
inating between these prices. It turns out, however, that the values of options on
forwards will differ from the values of options on futures contracts, depending
on the definition of the payoff (upon exercise) to the holder of the option on the
forward contract.!

! Options on forward contracts are not traded assets. However, options on forward contracts are
useful theoretical constructs in the pricing of currency option bonds (see, e.g., Feiger and Jacquillat
[12] and Garman and Kohlhagen [15]). There are, at least, two ways in which options on forward
contracts may be defined.

Under the first definition, the owner of a call option on a forward contract receives from the option
writer, upon exercise at date, s, the difference between the forward price, G(s), and the strike price,
K, and opens a long position in a newly created forward contract. The newly created forward contract
has zero value, so the implication is that the owner receives a cash inflow equal to the difference
between the current forward price and the exercise price, K. This definition is consistent with the
view that the option buyer speculates on the forward price, being given an exercise price, K; and, in
a world with nonstochastic rates, this definition leads to option values that are identical to the values
of options on futures contracts. Under the second definition, the owner of a call option on a forward
contract receives from the option writer, upon exercise at date s, a forward contract with the forward
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A. Rational Option Prices

It is possible to develop (as has been done in Merton [16]) rational restrictions
on option prices. We assume: (a) that investors are price takers in frictionless
markets; (b) that they prefer more wealth to less; and (c) that there is a market
for pure discount bonds of every maturity. No assumptions (strictly speaking,
rather weak assumptions) on the stochastic process of options or their underlying
assets (futures and forward contracts) are employed. Most of the restrictions
that can be derived in this framework are similar to those for options on common
stocks, and they are stated below without proof.?

Upper and lower bounds for these options are given in the relationships below:

K =z P(H, t) Z Max{0, K — H}
H = C(H, t) =z Max{0, H — K}. (2)

In comparison to the established bounds for American options on stocks, the
inequalities in (2) are identical: formally, the upper bound for American calls on
futures contracts, when violated, requires the use of the “rollover” strategy
outlined in Proposition 2 of Cox, Ingersoll, and Ross [7].2

It is easy to show that put (respectively, call) option values are increasing
(decreasing) and convex functions of the exercise prices, and that the difference
in the values of two otherwise similar options is bounded above by the difference
in their exercise price. It is also easy to verify that American option values are
increasing functions of the maturity (T — ¢) of the options, keeping the maturity
date (T%) of the underlying futures contract fixed.*

We now turn our attention to the relationship between call-option and put-
option values. Unlike options on common stocks which obey the put-call parity

price, K. No money changes hands at date s. The value of the forward contract received at date s is
the present value of $G(s) — K, payable at date T,, where G(s) is the current forward price. This
definition is consistent with the view that the option buyer speculates on the value of the forward
contract whose price is G(t), being given a “forward” exercise price, K; and it is consistent with the
fact that forward contracts are not marked-to-market.

It can be shown, under the second definition, that options on forward contracts will not be
exercised, even though the options on futures will be. This conclusion holds even if G(s) = H(s) for
all s.

2 Merton ([16], Theorem 9 and Appendix) has shown that if the distribution of the rate of return
per dollar on the underlying stock is independent of stock price level, then the option value must be
homogeneous of degree one in the stock price and the exercise price. This is a useful statement in
that it permits the use of option valuations normalized to an exercise price (of unity, say) to value
otherwise similar options at different exercise prices. A similar statement for options on futures
contracts can only be made with much stronger (and hence, less plausible) restrictions. We would
require here that the distribution of future interest rates, as well as the correlation between future
interest rates and changes in futures prices, be independent of futures price levels. For options on
the futures contracts on fixed income securities, for example, this would be an undesirable assumption.

3 This strategy is described in this section in the proof to the Proposition.

* The options on the futures contract on Standard and Poor’s 500 as well as the futures contract
expire on the same day. Note that if T}, = T,, then European options on forwards and European
options on futures contracts are both equivalent to European options on the spot commodity. This
follows from the fact that at maturity, the forward price, the futures price, and the spot price are all
equal.
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relationship, one can only demonstrate, without additional restrictions on the
stochastic processes for the futures price and interest rates, an upper bound for
a call in terms of the put and other variables. This is shown in the proposition
below:

PROPOSITION
C(H,t) = P(H, t) + H(t) — Kb(t, T})

Proof: Compare the payoffs to the following two portfolios:

(A) a long position in a call option;

(B) along position in an otherwise similar put option, and the dynamic strategy
(hereafter “H-strategy”) outlined in Cox, Ingersoll, and Ross [7], Proposition 2:
following their notation, invest $ H(¢) in one-period bonds and roll them over
until T, earning random one-period interest rates, R, — 1, R,y;y — 1, ---,
Rr_1—1. Ateachj,j=tt+1, .., T, — 1, take a long position in 14—, R, futures
contracts, liquidating these contracts and reinvesting the proceeds or borrowing
the deficit at the one-period rates. The value of this strategy at date s is

H(s)IIiZ' R,

which is, with nonnegative interest rates, no less than H(s). Futhermore, borrow
$Kb(t, T}) to be repaid at T. The following table summarizes the cash flows to
these portfolios.

Value at T
Portfolio Cost at t H(T,) >K H(T)) =K
(A) call C(H,t) H(T,) - K 0
(B) put P(H, t) 0 K- H(Ty)
“H-strategy” H(t) H(T)IAR, H(T)IE'R,
Borrowing —Kb(t, Ty) —-K -K
Totals (B) P+ H - Kb(t, Th) H(T)NL'R, — K H(T){IAR, — 1}

The payoffs to (B) dominate (A), so that C = H + P — Kb(t, T}). It may be
verified that if the call is exercised at s < T, the payoffs to (B) would still
dominate (A) ats. Q.E.D.

Analogous to a similar argument in Merton [16], one would like to demonstrate
using these assumptions that C =2 P + H — K, which is a lower bound for the
value of the call option. But this inequality leads to absurd conclusions due to
the possibility of premature exercise. For example, if the call is optimally
exercised, this inequality leads to P = 0 which is absurd. It will be shown below
that premature exercise may indeed be optimal for call options, so that this lower
bound for calls will not hold.

The possibility of premature exercise is best understood if one recognizes that
options on a futures contract are isomorphic to options on a portfolio whose
stochastic properties are identical to that of the futures price but which pays a
continuous dividend at the (perhaps stochastic) riskless rate of interest. Consider
a portfolio, @, which at date ¢ contains one futures contract at the futures price,
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H(t), and $H(t) invested in a one-period loan. At ¢t + 1, the gain or loss,
H(t + 1) — H(t), augments the now matured loan, and the one-day interest from
the loan at date ¢ equal to {R, — 1}H(t) is paid out as a dividend. Thus, the ex-
dividend value of @ at any date s is simply $H(s), the amount that is invested in
the one-period loan; and the stochastic properties of the ex-dividend value of @
are identical to the stochastic properties of the futures price. Define an American
call or put option written on the portfolio, @, with $K payable in cash in exchange
for Q upon exercise. This call or put option on @ will have the same payoff as the
traded call or put options on the futures contract, both upon premature exercise
and at expiration. However, the call option on @ may be exercised prematurely,
using the arguments from Cox and Rubinstein [10], when the present value of
the future dividends from Q is less than the interest that can be earned on the
exercise price. Therefore, the call option on the futures contract may be exercised
prematurely. This result is fairly general. However, in order to value these
options, one needs to characterize the optimal exercise policies in detail. In
Sections II and III, we develop models for the valuation of options on futures
contracts with constant interest rates and with stochastic interest rates. It should
be clear that the use of a model with constant interest rates will preclude
application to options on the futures contracts on fixed income securities. The
use of a stochastic interest model permits such application, but it would require
us to develop the valuation for the underlying fixed income security. We have
chosen to focus the application on options on stock index futures contracts,
where the models fit somewhat more directly with the contingent claims view of
these options.

II. The Valuation of Options on Futures Contracts

In this section, we provide a framework to value American options on a stock
index and on its associated futures contract. The valuation of options on the
underlying index is discussed in order to compare them with options on futures
contracts.

The approach to the valuation of options on futures contracts begins by
specifying a process for the evolution of the underlying asset’s value and a process
for the evolution of interest rates. By doing so, we avoid bringing preference
assumptions explicitly into the valuation framework, and we are able to employ
contingent claims valuation techniques using observable and traded assets. This
approach can be made consistent within a general equilibrium context by suitably
specifying preferences and the technology. For example, by assuming that pref-
erences are represented by isoelastic utility functions that are additive over time,
that the opportunity set is stationary, and that investment technologies are linear
and exhibit constant stochastic returns to scale, we can derive (the well-known)
implications that spot prices will follow a lognormal diffusion and that the
interest rate will be constant. These considerations underlie the assumptions
below.

(A1) Investors prefer more wealth to less and act as price takers in frictionless
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markets. There are no taxes, and all margin requirements can be met by
posting interest-bearing securities.

(A2) The dynamics of the spot price, denoted S(t), are given by the stochastic
differential equation

dS(t) = [a(S, t) — 6S] dt + 1S dz, 3)

where o? represents the variance rate of proportional price changes,
a(S, t) is the cum dividend expected change in the price, {z(t), t > 0}
represents a standard Wiener process, and 6 represents the (flow rate)
continuous dividend yield. It is clear that one can accommodate the
lognormal diffusion as a special case.

(A3) The rate of interest on default-free securities is a constant, r.

In this framework, it is easy to show that the futures price, H(S, t; T3), at time
t is given by

H(S, t; Ty) = S(t)edT0), (4)

Relation (4) says that the futures price will be at a premium relative to the spot
price throughout the contract’s life for r > 6 and will be at a discount for r < é.
Furthermore, as t approaches T,, the futures price approaches the spot value.
This second property has an interesting implication for the dynamic behavior of
the futures price: by applying Ito’s lemma to (4), we find that the futures price
evolves as

a(S, t)
S

This says that the expected rate of change in the futures price is equal to the
expected rate of change in the spot index price minus the risk-free rate. Thus,
the dynamics of the futures price involves an “implicit dividend” flow at the
riskless rate. This suggests that, in general, it may be optimal to exercise the
option on a futures contract prematurely. This conclusion holds whether or not
the underlying asset pays dividends, because the evolution of the futures price in
(5) is independent of the dividend yield.

We focus on the valuation of a call option on a futures contract; the treatment
for puts proceeds similarly. Since the underlying state variable is the spot price,
S, we represent the value of a call option on the futures contract as C(S, r; T5),
with® option maturity 7 = T} — t, and the futures contract maturing at date 7T%.
By employing standard arbitrage arguments, it is possible to show that C(S, 7;
T,) satisfies

dH = [ r]H dt + o.H dz,. (5)

Y%a3S%Css + (r — 8)SCs — rC — C, = 0, (6)

for values of S(t) < S(r), where S(r) is the critical boundary at which early
exercise is optimal and is endogenous to the valuation problem. The terminal

5 Note that the state space consists of a single variable, S; the functional form, C(S, 7; Ts), used
here differs from and should not be confused with the form, C(H, t), employed in Section I.
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condition is
C(S, 0; T,) = Max{0, Se"2T-T) — K} 7

The boundary conditions are fairly standard.® Black [1] provides the European
option’s value in this setting.”

Note that an equivalent problem is one which solves for the option value as a
function of the prevailing futures price option and maturity. This is consistent
with the contingent claims view of the option on the futures contract. A contin-
uously rebalanced self-financing portfolio of the underlying futures contracts and
the riskless asset can be constructed to duplicate the payoff to the option on the
futures contract. Since we expect in the short run that the call (respectively, put)
option on the futures contract will increase (decrease) in value as the futures
price rises, we expect that the duplicating portfolio for a call (put) will contain
some futures contracts held long (short). However, the futures contracts cost us
nothing to initiate, whereas the put and call options require a positive investment.
As a result, the duplicating portfolio for the call and the put option will require
a positive investment in the riskless asset, and the amount loaned will always
equal the value of the respective option. The dynamic rebalancing will require
that the gains and losses on the futures positions be additions or withdrawals
from the loan account, since adjustments to the futures position do not require
any net new investment.® Proceeding along these lines, and noting that the
dynamic evolution of the futures price in (5) is independent of the dividend yield,
6 (although the level of the futures price is affected), one could provide a valuation
equation for the option price in a completely analogous manner, and in this case,
the critical futures price will be independent of the dividend yield, é.

The value of an American call option (with similar contractual terms) on the
spot will also satisfy the valuation equation in (6). However, the value at the
terminal date and upon premature exercise will reflect the spot value, S, rather
than the “compounded” futures price, Se”9"2=9 As a result, with r > 4, the

S For the assumed stochastic process on S, zero is an absorbing boundary. Thus, at S = 0, the
option is worthless. Since the option is American, as S approaches S(r), the option is exercised
optimally. Thus, the two boundary conditions are:

C(S=0,7;T) =0,
and
Lims(g)ts‘(,)Cs(S, T, Tz) = e"“"T’"".

"Black [1] provides the European solution for the case T; = T:. His solution, which is stated in
terms of the futures price, holds even when T, < T,. To express it in terms of the spot price, we need
to substitute H = S exp{(r — §)(T: — t)} from Equation (4).

8 Under current institutional rules, a long or short position in a futures contract requires the
investor to post a “performance bond” as initial margin. If the gains and losses on the futures position
are added to or taken from this interest-bearing cash account, then one can view the overall futures
position as similar (in local behavior) to a position in options on the futures contract. Indeed, if the
initial margin is 10% of the futures price, then the performance bond posted together with one long
futures contract may be less than the outlay for a deep-in-the-money call option, which has an
equivalent futures position underlying it. Note also that in duplicating the local behavior of a put
option, we would sell short some futures contracts and lend money.
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option on the futures contract will be worth more than the option on the spot.
For r = §, the options will be equal in value, and for r < §, the option on the spot
will be worth more.

There are no known analytical solutions to the valuation Equation (6) for the
American option on the stock index futures. We employ implicit finite difference
methods to find the option values and the optimal exercise boundary.’ The
parameter values chosen are o, = 0.25 and a dividend yield of 5%. To be consistent
with the treatment of options on the S&P500 futures contract, we assume
T1 = Tg.

Table I provides values of American and European calls on futures contracts
for maturities of 3, 6, and 9 months, together with the prices of the underlying
futures contracts. It can be seen that unless the stock index value rises to 120%
of the exercise price, premature exercise is not optimal. Therefore, the value
added by the “American” feature is rather small, especially for options that are
at-the-money. Black [1] provides a European formula which gives very close
answers for at-the-money options in the constant interest rate case. For options
that are deep in-the-money, the value added due to the “American” feature is
obviously greater.

Figures 1 and 2 provide critical regions for call options on stock index futures
contracts and on the stock index at three interest rate levels: r = 3%; 5%; and
7%. For both options, the critical stock index value is an increasing function of
the maturity. On the other hand, the interest rate level has a markedly different
impact on the critical regions: for stock index options, the critical region is
everywhere higher at r = 5% than its level at r = 3% as shown in Figure 2. In
the case of options on stock index futures, the effect is precisely the opposite,
and the critical region is everywhere lower at the higher interest rate levels. The
intuition for this result is straightforward: in the case of options on the index,
higher levels of the interest rate enable the option holder to earn higher interest
on the exercise price. For the owner of a call option on a futures contract,
increases in r are equivalent to a higher “implicit dividend” on the futures price.

It is easy to verify that the critical exercise boundary is a decreasing function
of the dividend yield for the stock index option and an increasing function of the
dividend yield for options on stock index futures contracts. Note that for put
options on futures contracts, these results are reversed. Premature exercise of
the put option on a futures contract occurs if the stock price falls to a critical
boundary which is a decreasing function of the option’s maturity, a decreasing
function of the interest rate level, and a decreasing function of the dividend yield.

The comparative statics properties of these options with respect to ¢ and r
are similar to the familiar options on common stocks. Increases in either of these
parameters, ceteris paribus, will lead to increases in call option values. Figure 3
shows the difference between stock index futures option value and the stock
index option value for r = 3%, r = 5%, and r = 7%. At r = 5%, these options
have the same value. At an interest rate of r = 3%, the option on the index sells

 The discrete time approach taken by Cox and Rubinstein [10] can also be used to price American
options and characterize optimal exercise policies. In this approach, one could treat the futures price
or the spot price as the underlying state variable.
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Table I
Values of Call Options on Futures Contracts (X1072)
Option Maturity (Days)

Spot Price 90 180 270
80.00 0.0054 0.1073 0.3683
0.0054 0.1070 0.3659
80.9924 81.9971 83.0143
85.00 0.0577 0.4220 0.9953
0.0577 0.4202 0.9865
86.0544 87.1219 88.2027
90.00 0.3542 1.2341 2.2075
0.3535 1.2265 2.1808
91.1165 92.2468 93.3911
95.00 1.3577 2.8403 4.1760
1.3535 2.8419 4.1076
96.1785 97.3716 98.5795
100.00 3.5692 5.4089 6.9619
3.5510 5.3396 6.8089

101.2405 102.4964 103.7679

105.00 7.0703 8.9023 10.5127
7.0107 8.7408 10.2063
106.3025 107.6212 108.9563

110.00 11.4961 13.1367 14.7079
11.3411 12.8054 14.1475
111.3646 112.7460 114.1447

115.00 16.4266 17.9011 19.4167
16.0870 17.2874 18.4649
116.4266 117.8709 119.3331

120.00 21.4886 22.9957 24.5215
20.9772 21.9931 23.0169
121.4886 122.9957 124.5215

Notes: The first row at each spot index value contains the values
of an Amerian call option on a futures contract. The second row
contains the values of a European call on the futures contract, with
similar contractual terms. The third row contains the price of the
underlying futures contract. The futures contract matures on the
same day as the option on the futures contract expires. The follow-
ing parameters have been used: interest rate = 0.10; dividend yield
= 0.05; spot asset volatility = 0.25; and exercise price = 100.

at a premium and this premium increases with option maturity. At an interest
rate of 7%, the option on the stock index sells at a discount, and this discount
increases with option maturity. This result follows from the fact that, with
constant interest rates, the yield-to-maturity of a pure discount bond (maturing
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Figure 1. Critical Region for Call Options on Futures Contracts — Constant Interest Rate (r).
Exercise Price = 1, Volatility of Underlying Index Asset (¢) = 0.25, Dividend Yield = 5%.
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Figure 2. Critical Region for Call Options on Stock Index — Constant Interest Rate (r). Exercise
Price = 1, Volatility of Underlying Index Asset (¢) = 0.25, Dividend Yield = 5%.
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Figure 3. Option Value Differentials (Futures Minus Spot) — Constant Interest Rate (r). Exercise
Price = 1, Volatility of Underlying Index Asset (¢) = 0.25, Dividend Yield = 5%.

at date T,) is constant through time, and hence the futures contract will sell at
a premium or a discount relative to the spot if this yield is greater than or less
than the dividend yield. If the term structure is nonstochastic but rising or falling,
the yield-to-maturity of a pure discount bond maturing at date T’ will rise or fall
over time, and as a result, the discount or premium that prevails in the spot and
futures prices can reverse itself. Therefore, one cannot conclude that the option
on the index will be dominated by the option on the futures contract for all future
dates based upon a current comparison of the current yield of a bond maturing
at T, and the dividend yield on the stock.!®

III. Valuation of Options on Stock-Index Futures Contracts with
Stochastic Interest Rates

In this section, we extend the model presented in Section II to a world with
stochastic interest rates. Numerical methods are employed to determine the
values of options on futures contracts and to characterize the optimal exercise
policy. Courtadon [6] has presented a similar analysis on the valuation of options
on Treasury bond futures contracts in a single state variable setting.

19 With discrete dividends, the option on the spot index may be exercised just prior to the ex-
dividend date. If the futures price at that time is higher than the spot price, then the call option on
the futures will be worth more: this condition will depend on the size of remaining dividends (until
T,) which affect the futures price.



Options on Futures 1331

In order to develop a tractable model that preserves the essential features, we
retain assumptions (A1) and (A2) and replace (A3) by (A3’).

(A3’) All uncertainty in the term structure of interest rates (and hence in the
valuation of default-free bonds) is captured by the movements of the
instantaneously riskless rate, r(t). Its dynamics are given by:

dr(t) = k(u — r) dt + oovVr dzs. (8)

According to (8), the instantaneously riskless rate is expected to drift
towards the long-run mean level u, with a speed of adjustment, x, and
the instantaneous variance of changes in r is proportional to its level.
{zo(t), t = 0} is a standard Wiener process. We assume that
Cov(dz,, dz;) = p dt, where p is the correlation coefficient;

and we employ an additional assumption:

(A4) Default-free discount bonds are priced according to the Local Expecta-
tions Hypothesis (henceforth LEH; for a discussion, see Cox, Ingersoll,
and Ross [7]). That is, we assume that the expected instantaneous
holding period return on any default free bond is equal to the prevailing
risk-free rate, r:

E.[dB/B] = r(¢) dt. 9)

The process for the riskless rate in (8) has been employed by Cox, Ingersoll,
and Ross [7], who discuss its properties.!' The motivation for (A4) should be
clear. The value of a contingent claim with a stochastic term structure will
depend (in general) on investor preferences. To see this, note that in order to
construct a locally riskless hedge, an interest-rate-based hedging instrument such
as a default-free bond is necessary. This instrument’s price dynamics will depend
on liquidity premiums, which depend on preferences and are present in the
fundamental valuation equation for the contingent claim. The LEH permits us
to avoid explicitly modelling preferences, and leads to tractable solutions with
potential for empirical testing. Further, it precludes arbitrage and it is consistent
with equilibrium models in which preferences induce liquidity premiums propor-
tional to the level of the interest rate, r(t).

The underlying state variables in this model are the index price, S(t), and the
interest rate, r(t), so we now represent the value of an American call option on
the futures contract as C(S, r, 7; T2), where 7 = Ty — t is the option’s maturity;
we represent by H(S, r, 72) the date ¢ price of a futures contract which matures
in 7o = T, — t periods, i.e., at date T:. Assumptions (A1), (A2), (A3’), and (A4)
permit the development of a continuous hedging argument as in Black and

11 Alternative processes can be employed for the short rate, and, together with assumption (A4),
used to find futures prices and option values. The futures price, H, is a function of the spot value,
(S), the interest rate, (r), and maturity, (72), and must be solved for first. Given complicated processes
for r, this is a difficult task. Considerable simplification is achieved by the assumption that the spot
price process exhibits constant stochastic returns to scale, for in this case, the futures price function
is linear in the spot price, so that a single state variable problem emerges and can be solved
numerically. The option valuation then proceeds as shown in Section III.
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Scholes [2]. Having written (or purchased) one call option on the futures contract,
we can design a dynamic, self-financing strategy that involves investment in the
underlying stock index and a default-free discount bond such that the evolution
of the portfolio’s value is locally riskless. This portfolio must earn the locally
riskless rate, r(t), at time ¢t. These arguments lead to the following fundamental
valuation equation for options on stock index futures:

Ya3rC,, + %03S%Css + po103SVr Cos + k(u — r)C,
+ (r—08)8SCs—rC=2C, (10)
with the terminal condition
C(S, r, 0; T;) = Max{0, H(S(Ty), r(Ty), T: — T,) — K} 11)

where H(S(T,), r(T,), Ty — T,) is the value at date T, of a futures contract with
maturity, T, — T. The American call option on the futures contract will satisfy
(10) and (11) for values of the pair {S(¢), r(t)} that lie below the critical boundary
at date t, {S(t), 7(¢t)} at which exercise is optimal. This boundary is endogenous
to the valuation problem. If the index value and the rate of interest rise to this
“high-contact” boundary, then the option will be exercised, and

C(S(), 7(8), 7) = H(S(t), 7(t), 7o) — K (11a)

will denote its value.

The solution to (10) and (11) requires as an input the price of the futures
contract as a function of the state variables, r and S. This function is itself found
as a solution to a partial differential equation in these variables, thus complicating
the overall problem. For p = 0, the futures pricing function is given by

H(S(t), r(t), t; 7o) = S(t)a(rz)exp[b(ro)r(t)], (12)
where
_ Oy a2 2xp/0§
a(ry) = [27 ¥ (v + 0)fe™ — 1}] [exp{—d72}],
_ 2(e" — 1)
b(7'2) = 27 + ('Y + K){e‘"z _ 1}’
and

v = vk?* — 263> 0 (by assumption)

12 As S approaches S and r approaches 7, the option will be exercised. These two conditions serve
as upper boundaries for S and r, respectively. At S = 0, the process for S is absorbed so that the
option is worthless. The process specified for r admits 0 as an accessible boundary when ¢% > 2«u. At
r = 0, the valuation Equation (10) becomes:

1/20’%82033 + KﬂC, - 8SCs = C,.

The equation shown above serves as the lower boundary condition for r.
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For nonzero!® values of p, there is no known closed-form solution for H(S, r, 7).
We have solved for the futures price numerically for p = 0.2 and p = —0.2, and
not found significant differences from the known solution for p = 0. The
computational problem for the option is greatly simplified by using the solution
in (12), which is done below. Note that the futures price in (12) is an increasing
function of S, and an increasing and convex function of r. The futures contract
can be at a discount or a premium relative to the index price, depending on the
parameter values.

One could equivalently have posed the valuation problem by specifying the
state space in terms of (H(t), r(t)). In developing that valuation equation, one
must ensure that relationship (12) between the state variables, H(t) and r(¢), is
always satisfied. With the state space described in terms of (H(t), r(t)), the
fundamental valuation equation and the terminal condition will not explicitly
depend on the dividend yield. The call option price will be affected by the
dividend yield only through the level of futures prices given by (12).M

The partial differential Equation (10) is solved numerically subject to the
terminal condition (11) and the boundary conditions. We have solved for values
of options on index futures by using the method of alternating directions
described in Brennan and Schwartz [4]. The parameter values chosen are « = 2,
a2 = 0.09, and u = 10%. The stock index volatility, o, was set at 0.25, the exercise
price, K, at 1, and both the option and its associated futures contract were
assumed to expire on the same date (T = T}). In the numerical procedure, we
used a maximum stock index value of 2, and the maximum interest rate of 0.50;
the numbers of mesh points along these axes were chosen to be 400 and 100,
respectively. The maximum option maturity (7, — t) was 9 months.

Tables II to IV show values of American call options and the values of
associated futures contracts for maturities of 3, 6, and 9 months respectively, for
a range of values of S and r. The call option values increase as the index value,
S, and interest rate, r, increase. The option values in Table I, the constant
interest rate case with r = 10%, are marginally higher when compared to option
values in these tables under the column r = 0.10, which corresponds to the long-
run mean value (u) for the interest rate. When the current rate, r, is located
away from its long-run mean value, the term structure is not flat, and the option
values can differ substantially from the corresponding values for the constant
interest rate model. For 6-month call options, the relative error in using the
constant interest rate model in place of the stochastic rate model varies from 7%
(for S = 100 and r = 8%) to —5% (for S = 100 and r = 12%). We computed the
option values for two alternative values of the interest rate volatility parameter,
o2 = 0.02 and o2 = 0.04. The resulting option values differed only marginally
from those presented in Tables II to IV. Our findings suggest that it is the
location of the interest rate relative to its long-run mean value rather than the

13 Fama and Schwert [11] document for six-month and three-month holding periods, respectively,
significant negative correlation between stock market returns and Treasury bill returns. The proof
of (12) has been omitted to conserve space, but can be obtained from the authors.

4 These assertions are valid only when the stock index value follows a lognormal diffusion.
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Table I1
Values of American Call Options on Futures Contracts (X1072)

(Stochastic Interest Rates)
Dividend Yield = 0.05

OPTION MATURITY =3 MONTHS

Interest Spot Index Value (S)
Rate
(r) 80.00 90.00 100.00 110.00 120.00
0.03 0.00 0.23 2.87 10.18 19.84
79.90 89.88 99.87 109.86 119.84
0.05 0.00 0.26 3.06 10.54 20.31

80.21 90.23 100.26 110.28 120.31

0.07 0.00 0.29 3.25 10.91 20.77
80.52 90.58 100.65 110.71 120.77

0.08 0.00 0.31 3.36 11.10 21.01
80.67 90.76 100.84 110.92 121.01

0.10 0.00 0.35 3.56 11.49 21.48
80.99 91.11 101.23 111.35 121.48

0.12 0.01 0.39 3.78 11.88 21.95
81.30 91.46 101.62 111.79 121.95

Notes: At each interest rate, r, the first row contains the value of an American
call option on the futures contract, and the second row contains the underlying
futures price. The spot index volatility (¢3) = 0.0625, and the option’s exercise price
= 100.00. For the assumed stochastic process on interest rates, the speed of adjust-
ment (k) = 2.0, the long-run mean rate = 0.10, and the volatility (¢3) = 0.0081.

volatility of interest rates which makes a sizable difference in the values.!®
Changes in the value of « will affect the speed with which the interest rate is
pulled toward its long-run mean, and hence impact option values. In Figure 4,
we have shown call-option values against current interest rate levels for 6-month
options on futures contracts, for values of x = 1, 2, and 5, keeping the value of
S fixed at the striking price, K. When r is below its long-run mean level of 10%,
increases in the value of « will increase option values; when r is above the long-
run mean value, decreases in « are associated with increased option values,
because the interest rate is expected to stay above its long-run mean for a larger
interval of time.

In Figure 5, the critical regions of index and interest rate values {S, 7} are
shown for three values of option maturity for call options on futures contracts.

15 Thus, the deterministic term structure model [obtained from (8) by setting o, = 0] can be used
to incorporate one’s prior about the term structure (e.g., as to whether it is upward sloping or
downward sloping) in the valuation of options on futures contracts. The resulting option values differ
considerably from those obtained using the flat term structure model reported in Table I. These
conclusions are to be viewed in the context of the specific term structure model used in this study.
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Table III
Values of American Call Options on Futures Contracts (X1072)

(Stochastic Interest Rates)
Dividend Yield = 0.05

OPTION MATURITY = 6 MONTHS

Interest Spot Index Value (S)
Rate
(r) 80.00 90.00 100.00 110.00 120.00
0.03 0.06 0.84 4.24 11.17 20.36

80.21 90.24 100.26 110.29 120.32

0.05 0.07 0.94 4.55 11.71 21.08
80.71 90.80 100.89 110.98 121.07

0.07 0.08 1.05 4.88 12.26 21.83
81.22 91.37 101.52 111.68 121.83

0.08 0.09 1.10 5.05 12.54 22.21
81.47 91.66 101.84 112.02 122.21

0.10 0.10 1.22 5.39 13.12 22.97
81.98 92.23 102.48 112.73 122.97

0.12 0.12 1.35 5.76 13.71 23.74
82.50 92.81 103.12 113.43 123.74

Notes: At each interest rate, r, the first row contains the value of an American
call option on the futures contract, and the second row contains the underlying
futures price. The spot index volatility (¢2) = 0.0625, and the option’s exercise price
= 100.00. For the assumed stochastic process on interest rates, the speed of adjust-
ment («x) = 2.0, the long-run mean rate = 0.10, and the volatility (¢3) = 0.0081.

Four points are noteworthy. First, the futures price alone is not sufficient for
characterizing the critical region. That is, the combinations {S(r), 7()} do not
imply a constant H(r) at which exercise is optimal. Second, the critical price, S,
is a decreasing function of F at each maturity. Higher interest rates mean higher
“implicit” dividends on the futures price, thereby lowering the critical futures
price, and since the futures price itself is an increasing function of S and r, the
index value at which exercise occurs at a given maturity falls as interest rates
rise. Third, note that the critical boundary is relatively flat at high rates of
interest. However, at low rates, for levels of r at and below x, much smaller
increases in r induce a given drop in the critical index value. The location of the
current rate of interest relative to its long-run mean is thus crucial in character-
izing the optimal exercise region. This underscores the importance of modelling
stochastic variations in interest rates, for with deterministic rates, the critical
index value is fixed for a given maturity. Finally, we note that for long maturities,
the critical index value might be below the corresponding value for shorter
maturities, especially at higher interest rate levels. Longer maturity options are
written on futures contracts with correspondingly high maturity: at higher
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_ Table IV
Values of American Call Options on Futures Contracts (x1072)

(Stochastic Interest Rates)
Dividend Yield = 0.05

OPTION MATURITY = 9 MONTHS

Interest Spot Index Value (S)
Rate
(r) 80.00 90.00 100.00 110.00 120.00
0.03 0.22 1.56 5.48 12.36 21.32

80.79 90.88 100.98 111.08 121.18

0.05 0.26 1.73 5.87 13.00 22.18
81.41 91.59 101.76 111.94 122.12

0.07 0.30 1.90 6.29 13.66 23.07
82.04 92.30 102.55 112.81 123.06

0.08 0.32 2.00 6.50 13.99 23.54
82.36 92.65 102.95 113.24 123.54

0.10 0.36 2.19 6.94 14.68 24.49
82.99 93.37 103.74 114.12 124.49

0.12 0.41 2.40 7.40 15.40 25.45
83.63 94.09 104.54 115.00 125.45

Notes: At each interest rate, r, the first row contains the value of an American
call option on the futures contract, and the second row contains the underlying
futures price. The spot index volatility (¢%) = 0.0625, and the option’s exercise price
= 100.00. For the assumed stochastic process on interest rates, the speed of adjust-
ment (x) = 2.0, the long-run mean rate = 0.10, and the volatility (¢%) = 0.0081.

interest rates, there is an impact of maturity on the futures price that interacts
with the option’s maturity.

The properties of the critical regions of options on the stock index differ from
those of options on stock index futures discussed so far. The critical index value
increases with increases in interest rates for index options of all maturities. This
implies that at high levels of interest rates, it is generally suboptimal to exercise
call options on stock indexes. From Figure 5, it is clear that at high levels of
interest rates, the probability of early exercise of call options on stock index
futures contracts is very high. At higher dividend yields, it is easy to see that the
critical region for call options on the stock index is everywhere lowered (implying
higher probability of early exercise), whereas precisely the opposite is true for

call options on the futures.'®
The difference between the values of options on the index futures and options

6 While we have shown results for call options alone, the results for put options on futures
contracts are reversed. Exercise occurs if the pair {S, r} falls to a critical level given by a locus {S, };
§ is an increasing function of 7 for each maturity, 7; and the boundary is everywhere lower at distant
maturities.
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on the index are plotted in Figure 6 (+ = 6 months) and Figure 7 (+ = 9 months).
The option on the futures always sells at a premium relative to the option on the
index. Indeed, this is the case even when the current rate of interest is less than
the dividend yield. This is because at low values of r it is expected that the
interest rate will be pulled towards its long-run mean rate of 10% which is higher
than the dividend yield. For options which have a life of 6 to 9 months, there is
sufficient time for the rate of interest to revert to its mean value. As a result, call
options contracts on futures sell at a premium relative to calls on the underlying
index.

IV. Conclusions

We have examined rational restrictions for the values of options on futures
contracts, and we have presented approaches to their valuation.

In presenting methods of valuation for options on futures contracts, we noted
that one must solve first for the futures price as a function of the relevant state
variables, and then employ this solution in the boundary or terminal condition
for the valuation of the option. Except under special assumptions, as were
employed here, the analytical characterization of the futures pricing function in
the first step is difficult. We have presented two solution procedures for options
on futures contracts, with and without interest rate uncertainty. We employed
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Figure 6. Option Value Differentials (Futures Minus Spot) — Stochastic Interest Rates. Exercise
Price = 1, Volatility of Underlying Index Asset (¢,) = 0.25, Dividend Yield = 5%, Long-run Mean
Interest Rate (1) = 10%, Volatility of Interest Rate (o) = 0.09, Option Maturity = 6 Months.
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numerical methods to examine options on a stock index and options on stock
index futures contracts and characterized the optimal exercise policies. Sizable
differences arose in option values and in the critical exercise boundaries between
the two models. These differences are largely attributable to the location of the
current rate of interest relative to its long-run value, or equivalently, on the
expectations of rates through the option’s life. Our analysis suggests that a
deterministic term structure model which captures one’s prior belief about the
shape of the term structure can lead to significantly different option values
relative to those obtained by using a constant interest rate model.
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